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With tremendous gratitude to all of my colleagues and
authors who have made the commitment and worked
so hard to provide excellent chapters for the four editions
of this book.






PREFACE FOR THE

Once again, [ appreciate the opportunity to edit the Fourth
Edition of Hospital Epidemiology and Infection Control.
The Fourth Edition has 104 chapters prepared by 184
authors. It has the most changes between editions com-
pared to those between the First and Second Edition and
those between the Second and Third Edition. Nineteen
chapters from the Third Edition were retired, and ten new
chapters were added to the Fourth Edition. The authors of
the chapters on computer fundamentals and on the per-
sonal computer collaborated on a single chapter for the
Fourth Edition entitled “Using the Personal Computer for
Healthcare Epidemiology.” A chapter on meta-analysis was
added to Section I, and another new chapter in this sec-
tion integrates the information from the other chapters in
the section to provide the reader with a useful approach
to study design and data analysis. This author cites other
chapters in the section by page number.

Once again, my good friend and colleague, Dr. David
Birnbaum, provided guidance and direction on revision of
Section Il on Healthcare Quality Improvement. I particularly
appreciate his suggestion on adding a chapter on working
with the media on public communication.

Other new chapters include mechanisms of biofilm
formation in staphylococci, microbiologic sampling of the
environment in healthcare facilities, antimicrobial steward-
ship, and elements of design in the built environment of
the healthcare facility. Biofilms have been recognized to
be of importance in infections related to inanimate mate-
rials and devices inserted into patients. The chapter on

FOURTH EDITION

environmental cultures was included, because when cul-
ture of the environment is indicated, the best data can be
obtained when appropriate techniques are used to obtain
the samples. The chapter on elements of design of the built
environment is intended to be a companion chapter to the
chapter on prevention of infections related to construc-
tion. Inclusion of a chapter on antimicrobial stewardship
relates to the increasing resistance of healthcare-associ-
ated microorganisms and the need for defined programs to
prevent antimicrobial resistance. The first two chapters in
Section XIII provide an excellent background for the chap-
ter on antimicrobial stewardship.

Many chapters in this edition have new coauthors and
several chapters have been revised or rewritten by an
entirely new set of authors.

A new feature for the Fourth Edition is that only 15 to
20 key references are located at the end of the chapters in
the printed book while all references cited in the chapters
are online. The numbers for the references that are only
online are italicized in the text whereas the numbers for
the references printed at the end of the chapters are not
italicized in the text.

As for all of the editions of this reference text, my goal
has been, and is, to bring together many of our colleagues
with particular areas of expertise in Healthcare Epide-
miology and other experts in related fields to provide a
comprehensive and up-to-date reference text that the
reader will find useful in the daily practice of Healthcare
Epidemiology.
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Applied Epidemiology and Biostatistics
in Healthcare Epidemiology and

Infection Control

Principles of Infectious Diseases

Epidemiology

Lennox K. Archibald

Epidemiology is defined as the study of the factors
determining the occurrence of diseases in human popu-
lations. It is an indispensable tool for characterizing
infectious disease occurrences in medical institutions,
communities, regions, or industry, and for determining the
exposure—disease relationship in humans and the modes
of acquisition and spread that are critical for treatment,
control, and prevention of these infectious disease occur-
rences. Clinicians, microbiologists, and other personnel
involved in the preventive and public health professions
use epidemiologic methods for disease surveillance, out-
break investigations, infectious diseases outcome measure-
ments, and observational studies to identify risk factors for
various infectious diseases. Knowledge of these risk factors
is essential for making decisions regarding further epidemi-
ologic or microbiological investigations, directing research
activities, implementing relevant prevention and control
measures or interventions, and establishing public health
policies. In the pharmaceutical and biomedical industries,
the application of epidemiologic methods is integral to the
investigation of intrinsic contamination of products, ascer-
tainment and characterization of risk factors for contami-
nation, and maintenance of quality assurance practices in
the laboratory or manufacturing operations before distri-
bution of products.

The use of epidemiology and the use of statistical meth-
ods to analyze epidemiologic data grew out of attempts to
understand, predict, and control the great epidemics of
our past; the diseases associated with those early epidem-
ics were largely infectious. The study and implementation
of infection control practices and interventions grew out

of the need to understand and control the institutional
epidemics of infectious diseases that complicate the care
of the ill (1,2). Thus, discussions of the principles of epi-
demiology begin with examples of methods that were first
formalized in the study of transmissible microorganisms,
many of which continue to cause problems today.

The term hospital epidemiology was a modern addition
by workers in the United States (3), as was the recognition
of the potential use of epidemiologic methods in hospitals
for the study and control of noninfectious diseases (4).
The term nosocomial infection has traditionally defined
acute infections acquired in the hospital inpatient setting
(5). However, in the current era of managed care, health-
care systems in the United States have evolved from the
traditional acute care hospital inpatient setting to a new
integrated, extended care model that now encompasses
hospitals, outpatient clinics, ambulatory centers, long-
term care facilities, and the home. As expected, infec-
tions (and antimicrobial resistance among implicated
pathogens) may be acquired at any of these levels of care.
For this reason, the term nosocomial infection has been
replaced by healthcare-associated infection. Except for the
acute care hospitals, however, the relative importance of
each of these levels of care as risk factors for the acqui-
sition of healthcare-associated infections remains largely
uncharacterized or unknown.

The terms hospital epidemiology and infection control
remain synonymous in the minds of many, and both the
terms and their associated programs have grown in defi-
nition and function over the past five decades. Interest in
infection control has broadened from focused concerns
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with puerperal sepsis and surgical site infection to full,
scientifically tested programs of surveillance, prevention,
and control of healthcare-associated infections acquired
at other anatomic sites. Hospital epidemiology programs
were among the earliest projects used to demonstrate the
utility of the scientific method and statistics for charac-
terizing and analyzing infectious diseases data and using
the results of these analyses to improve the quality of
care and patient outcomes. In the special environment of
the acute care hospital, a natural repetition of earlier stud-
ies of population-based infectious diseases provided the
basis for epidemiologic investigations.

Surveillance data generated from epidemiologic stud-
ies may be used to determine the need for clinical or public
health action; assess the effectiveness of prevention, inter-
vention, or control programs, or diagnostic algorithms;
or set priorities for rational or appropriate use of limited
microbiology resources, planning, and research. An under-
standing of epidemiology is important for quantifying and
interpreting microbiology and pharmaceutical data, and
for application of these data to clinical practice, quality
assurance, hypothesis generation during investigation of
outbreaks and other adverse events, rational prescribing
policies, and public health.

Data from epidemiologic and microbiological studies
can inform diagnostic and therapeutic practice and indi-
cate areas for allocation of already scarce resources. For
example, one of the perennial problems that clinicians
and microbiologists face is how to differentiate between
true bacteremia and blood culture contamination resulting
from coagulase-negative staphylococci, which are the most
frequently isolated microorganisms in blood cultures (6).
Blood culture contamination can occur during venipuncture
if the skin is not adequately cleaned, after the blood draw at
the time of inoculation of blood into the culture bottle, or
at some point during processing of blood culture bottles in
the microbiology laboratory. To make an informed decision
on true bacteremia versus contamination, clinicians and
microbiologists need to be familiar with the epidemiology
of bloodstream infections in different clinical settings and
be able to integrate these data with the relevant clinical and
microbiology information at hand so that a decision could
be made whether or not to initiate antimicrobial therapy or
request additional, supplemental investigations that might
facilitate the decision-making process.

DEFINITIONS

In the application and discussion of epidemiologic prin-
ciples, standard definitions and terminology have been
widely accepted (7,8). The definitions of some commonly
used terms are outlined in this section:

Attack rate A ratio of the number of new infections divided
by the number of exposed, susceptible individuals in a
given period, usually expressed as a percentage. Other
terms are the incidence rate and the case rate.

Attributable mortality indicates that an exposure was a
contributory cause of or played an etiologic role leading
to death.
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Attributable risk The measure of impact of a causative
factor. The attributable risk establishes how much of
the disease or infection is attributable to exposure to a
specific risk factor. It is a proportion where the numera-
tor is the difference between the incidence in exposed
and unexposed groups and the denominator is the inci-
dence for the exposed group.

Bias The difference between a true value of an epidemio-
logic measure and that which is estimated in a study.
Bias may be random or systematic. There are three
types of bias: selection bias, information bias, and con-
founding. Selection bias is a distortion in the estimate
of effect resulting from the manner in which parameters
are selected for the study population. Information bias
depends on the accuracy of the information collected.
Confounding arises from unrecognized factors that may
affect interpretation of epidemiologic data. Unrecog-
nized, systematic bias presents the greatest danger in
studies by suggesting relationships that are not valid
(see also Chapter 2).

Carrier An individual (host) who harbors a microorgan-
ism (agent) without evidence of disease and, in some
cases, without evidence of host immune response. This
carriage may take place during the latent phase of the
incubation period as a part of asymptomatic disease or
may be chronic following recovery from illness. Carriers
may shed microorganisms into the environment inter-
mittently or continuously, and this shedding may lead to
transmission. Shedding and potential transmission may
be increased by other factors affecting the host, includ-
ing infection by another agent.

Case An individual in a population or group recognized as
having a particular disease or condition under investiga-
tion or study. This definition may not be the same as the
clinical definition of a case.

Case—fatality rate A ratio of the number of deaths from a
specific disease divided by the number of cases of dis-
ease, expressed as a percentage.

Cluster An aggregation of relatively uncommon events
or diseases in time and/or space in numbers that are
believed to be greater than are expected by chance
alone.

Colonization The multiplication of a microorganism at a
body site or sites without any overt clinical expression
or detected immune reaction in the host at the time
that the microorganism is isolated. Colonization may
or may not be a precursor of infection. Colonization
may be a form of carriage and is a potential source of
transmission.

Communicability The characteristic of a human patho-
gen that enables it to be transmitted from one person
to another under natural conditions. Infections may be
communicable or noncommunicable. Communicable
infections may be endemic, epidemic, or pandemic.

Communicable period The time in the natural history of
an infection during which transmission to susceptible
hosts may take place.

Confounding An illusory association between two factors
when in fact there is no causal relationship between the
two. The apparent association is caused by a third vari-
able that is both a risk factor for the outcome or disease
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and is associated with but not a result of the exposure
in question.

Contact An exposed individual who might have been
infected through transmission from another host or the
environment.

Contagious Having the potential for transmission.

Contamination The presence of an agent (e.g., microorgan-
ism) on a surface or in a fluid or material—therefore, a
potential source for transmission.

Cumulative incidence The proportion of at-risk persons
who become diseased during a specified period of time.

Endemic The usual level or presence of an agent or disease
in a defined population during a given period.

Epidemic An unusual, higher-than-expected level of infec-
tion or disease by an agent in a defined population in a
given period. This definition assumes previous knowl-
edge of the usual, or endemic, levels.

Epidemic curve A graphic representation of the distribu-
tion of defined cases by the time of onset of their disease.

Epidemic period The time period over which the excess
cases occur.

Hyperendemic The level of an agent or disease that is con-
sistently present at a high incidence and/or prevalence
rate.

Immunity The resistance of a host to a specific agent,
characterized by measurable and protective surface
or humoral antibody and by cell-mediated immune
responses. Immunity may be the result of specific pre-
vious experience with the agent (wild infection), from
transplacental transmission to the fetus, or from active
or passive immunization to the agent. Immunity is rela-
tive and governed through genetic control. Immunity
to some agents remains throughout life, whereas for
others, it is short-lived, allowing repeat infections by
the same agent. Immunity may be reduced in extremes
of age, through disease, or through immunosuppressive
therapy.

Immunity: celllmediated versus humoral Cell-mediated
immune protection, largelyrelated to specific Tlymphocytic
activity, as opposed to humoral immunity, which is meas-
ured by the presence of specific immunoglobulins (anti-
bodies) in surface body fluids or circulating in noncellular
components of blood. Antibodies are produced by B lym-
phocytes, also now recognized to be under the influence of
T-lymphocytic functions.

Immunogenicity An agent’s (microorganism’s) intrinsic
ability to trigger specific immunity in a host. Certain
agents escape host defense mechanisms by intrinsic
characteristics that fail to elicit a host immune response.
Other agents evoke an immune response that initiates
a disease process in the host that increases cellular
damage and morbidity beyond the direct actions of the
microorganism itself. These disease processes may con-
tinue beyond the presence of living microorganisms in
the host.

Incidence The ratio of the number of new infections
or disease in a defined population in a given period
to the number of individuals at risk in the popula-
tion. “At risk” is frequently defined as the number of
potentially exposed susceptible persons. Incidence is
a measure of the transition from a nondiseased to a
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diseased state and is usually expressed as numbers
of new cases per thousands (1,000, 10,000, or 100,000)
per year.

Incidence rate or density Similar to the incidence but
members of the at-risk population may be followed for
different lengths of time. Thus, the denominator is the
sum of each person’s time at risk (i.e., total person-time
of observation).

Incubation period The period between exposure to an
agent and the first appearance of evidence of disease
in a susceptible host. Incubation periods are typical for
specific agents and may be helpful in the diagnosis of
unknown illness. Incubation periods may be modified
by extremes of dose or by variations in host immune
function. The first portion of the incubation period fol-
lowing colonization and infection is frequently a silent
period, called the latent period. During this time, there
is no evidence of host response(s) and evidence of
the presence of the infecting agent may not be meas-
urable. However, transmission of the microorganism
to other hosts, though reduced during this period, is
a recognized risk (e.g., chicken pox, hepatitis B virus,
human immunodeficiency virus [HIV]). Measurable
early immune responses in the host may appear shortly
before the first signs and symptoms of disease, marking
the end of the latent period. Signs and symptoms of dis-
ease commonly appear shortly thereafter, marking the
end of the incubation period.

Index case The first case to be recognized in a series of
transmissions of an agent in a host population. In semi-
closed populations, as typified by chronic disease hos-
pitals, the index case may first introduce an agent not
previously active in the population.

Infection The successful transmission of a microorgan-
ism to the host with subsequent multiplication, colo-
nization, and invasion. Infection may be clinical or
subclinical and may not produce identifiable disease.
However, it is usually accompanied by measurable host
response(s), either through the appearance of specific
antibodies or through cell-mediated reaction(s) (e.g.,
positive tuberculin test results). An infectious disease
may be caused by the intrinsic properties of the agent
(invasion and cell destruction, release of toxins) or by
associated immune response in the host (cell-mediated
destruction of infected cells, immune responses to host
antigens similar to antigens in the agent).

Infectivity The characteristic of the microorganism that
indicates its ability to invade and multiply in the host.
It is frequently expressed as the proportion of exposed
patients who become infected.

Isolation The physical separation of an infected or colo-
nized host, including the individual’s contaminated
body fluids and environmental materials, from the
remainder of the at-risk population in an attempt to
prevent transmission of the specific agent to the latter
group. This is usually accomplished through individual
environmentally controlled rooms or quarters, hand
washing following contact with the infected host and
environment, and the use of barrier protective devices,
including gowns, gloves, and, in the case of airborne
agents, an appropriate mask.
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Morbidity rate The ratio of the number of persons infected
with a new clinical disease to the number of persons at
risk in the population during a defined period; an inci-
dence rate of disease.

Mortality rate The ratio of those infected who have died
in a given period to the number of individuals in the
defined population. The rate may be crude, related to
all causes, or disease-specific, related or attributable to
a specific disease in a population at risk for the disease.

Odds The ratio of the probability of an event occurring to
the probability of it not occurring.

Pandemic An epidemic that spreads over several countries
or continents and affects many people.

Pathogenicity The ability of an agent to cause disease in a
susceptible host. The pathogenicity of a specific agent
may be increased in a host with reduced defense mecha-
nisms. For some agent-host interactions, the resultant
disease is due to the effects of exaggerated or prolonged
action of defense mechanisms of the host.

Prevalence The ratio of the number of individuals meas-
urably affected or diseased by an agent in a defined
population at a particular point in time. The proportion
of the population having the disease during a specified
time period, without regard to when the process or dis-
ease began, defines the period prevalence.

Pseudo-outbreak Real clustering of false infections or
artifactual clustering of real infections. Often it is iden-
tified when there is increased recovery of unusual
microorganisms.

Rate An expression of the frequency with which an event
occurs in a defined population. All rates are ratios. Some
rates are proportions; that is, the numerator is a part of
the denominator. A comparable rate is a rate that con-
trols for variations in the distribution of major risk fac-
tors associated with an event.

Ratio An expression of the relationship between a numera-
tor and a denominator where the two are usually dis-
tinct and separate quantities, neither being a part of the
other.

Relative risk The ratio of the incidence rate of infection
in the exposed group to the incidence rate in the unex-
posed group. Used to measure the strength of an asso-
ciation between exposures or risk factors and disease.

Reservoir Any animate or inanimate niche in the envi-
ronment in which an infectious agent may survive and
multiply to become a source of transmission to a sus-
ceptible host. Medical care workers and patients con-
stitute the main animate reservoir for microorganisms
associated with healthcare-associated infections; water-
related sources are important inanimate reservoirs that
have been implicated in outbreaks related to dialysis
units and to air conditioning systems.

Secular trend Profile of the changes in measurable events
or in the incidence rate of infection or disease over an
extended period of time; also called a temporal trend.

Sensitivity For surveillance systems, the ratio of the num-
ber of patients reported to have an infection divided by
the number of patients who actually had an infection.

Specificity For surveillance systems, the ratio of the num-
ber of patients who were reported not to have an infec-
tion divided by the number of patients who actually did
not have an infection.
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Sporadic Occurring irregularly and usually infrequently
over a period of time.

Surveillance The ongoing systematic collection, analysis,
and interpretation of healthcare data essential to the
planning, implementation, and evaluation of public
health practice, closely integrated with the timely dis-
semination of these data to those contributing data or to
other interested groups who need to know. Surveillance
was popularized by Langmuir and others at the Centers
for Disease Control and Prevention (CDC) and has been
the basic method in infection control programs in the
United States since the 1960s.

Susceptibility A condition of the host that indicates
absence of protection against infection by an agent. This
is usually marked by the absence of specific antibodies
or specific measures of cell-mediated immunity against
the infecting microorganism.

Transmission The method by which any potentially infect-
ing agent is spread to another host. Transmission may
be direct or indirect. Direct transmission may take place
by touching between hosts, by the projection of large
droplets in coughing and sneezing onto another host,
or by direct contact by a susceptible host with an envi-
ronmental reservoir of the agent. Indirect transmission
may be vehicle-borne, airborne, or vector-borne. In
vehicle-borne transmission, contaminated environmen-
tal sources, including water, food, blood, and laundry,
may act as an intermediate source of an infectious agent
for introduction into a susceptible host. The agent may
have multiplied or undergone biologic development in
the vehicle. In airborne transmission, aerosols contain-
ing small (1-5 pm) particles may be suspended in air
for long periods and inspired into the lower respira-
tory tract to become a site of infection in a host. These
infectious particles may be generated by evaporation
of larger particles produced in coughing and sneezing
(Mycobacterium tuberculosis), by mechanical respira-
tory aerosolizers (Legionella), or by wind or air currents
(fungal spores). In vector-borne transmission, arthropods
or other invertebrates may carry or transmit microor-
ganisms, usually through inoculation by biting or by
contamination of food or other materials. The vector
may be infected itself or act only as a mechanical car-
rier of the agent. If the vector is infected, the agent may
have multiplied or undergone biologic development in
the vector. This type of transmission has been of little
importance for healthcare-associated infections in the
United States.

Virulence The intrinsic capabilities of an agent to infect a
host and produce disease and a measure of the severity
of the disease produced. In the extreme, this is repre-
sented by the number of patients with clinical disease
who develop severe illness or die—the case-fatality
rate.

EPIDEMIOLOGIC METHODS APPLIED
TO INFECTIOUS DISEASES

The classic epidemiologic methods are essential for the
study, characterization, and understanding of the various
infections that occur in healthcare settings, communi-
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ties, or regions. Such methods are used to determine the
exposure—disease relationship in humans; establish the
modes of acquisition, mechanisms of transmission, and
spread; identify risk factors associated with infection and
disease; characterize and relate causal factors to an infec-
tious disease; determine or select appropriate methods of
prevention and control; or guide rational application and
practice of clinical microbiology methods. These epide-
miologic methods were developed in an attempt to control
common errors in observations that occur when one stud-
ies the association of one event (a risk or causal factor)
with another later event (the outcome or disease).

Epidemiologic study methods are grouped as either
observational or experimental. Observational epidemio-
logic methods are further classified as either descriptive
or analytic. Observational studies are conducted in natural,
everyday community or clinical settings, where the inves-
tigators observe the appearance of an outcome but have
no control over the environment or the exposure of people
or product to a risk factor or suspected etiologic agent, a
specific intervention or preventive measure, or a particular
therapeutic regimen.

Descriptive Epidemiology

Observational descriptive studies establish the case defini-
tion of an infectious disease event by obtaining data for
analysis from available primary (e.g., medical records) or
secondary (e.g., infection control surveillance) sources.
These data enable the characteristics of the population
that has acquired the infection to be delineated according
to (a) “person” (age, sex, race, marital status, personal hab-
its, occupation, socioeconomic status, medical or surgical
procedure or therapy, device use, underlying disease, or
other exposures or events); (b) “place” (geographic occur-
rence of the health event or outbreak, medical or surgical
service, place of acquisition of infection, or travel); and (c)
“time” (preepidemic and postepidemic periods, seasonal
variation, secular trends, or duration of stay in hospital).
The information from descriptive studies might provide
important clues regarding the risk factors associated with
infection, and in each case it is hoped that an analysis of
the collected data might be used to generate hypotheses
regarding the occurrence and distribution of disease or
infection in the population(s) being studied.

Analytic Epidemiology

Observational analytic studies are designed to test hypothe-
ses raised by the findings in descriptive investigations. The
objectives of these studies are (a) to establish the cause
and effects of infection in a population and (b) determine
why a population acquired a particular infection in the first
place. The three most common types of observational ana-
lytic studies are cohort studies, case-control studies, and
prevalence or cross-sectional studies.

Cohort Studies In cohort studies, hypotheses that have
been generated from previous (descriptive) studies are
tested in a new population. A population of individuals
(a cohort) that is free of the infection or disease of inter-
est is recruited for study. The presence or absence of the
suspected (hypothesized) risk factors for the disease is
recorded at the beginning of the study and throughout the

PRINCIPLES OF INFECTIOUS DISEASES EPIDEMIOLOGY B

observation period. All members of the cohort population
(e.g., all premature infants admitted to a neonatal inten-
sive care unit during a defined time period) are followed
over time for evidence or appearance of the infection or
disease and classified accordingly as exposed or unex-
posed to specific risk factors. If the observation period
begins at the present time and continues into the future or
until the appearance of disease, the study is called a pro-
spective cohort study. If the population studied is one that
in the past was apparently free of the markers of disease
on examination of records or banked laboratory speci-
mens, it may be chosen for study if data on exposure to
the suspected risk factors for disease also are available.
The population may be followed to the present or until
the appearance of disease. This type of study, common in
occupational epidemiology, is called a historical or retro-
spective cohort study.

A key requirement of a cohort study is that partici-
pants be reliably categorized into exposed and unexposed
groups. Relative risk, that is, the ratio of the incidence of
the outcome in the exposed group to the incidence in the
unexposed group, is used to measure the strength of an
association between exposures or risk factors and disease.
Cohort studies have the advantage of enabling identifica-
tion and direct measurement of risk factors associated
with disease, determination of the incidence of infection
and disease, and ascertainment of the temporal relation-
ship between exposure and disease. In cohort studies,
observational bias may be less of a limitation on the valid-
ity or results, since the information on the presence of risk
factors is recorded before the outcome of disease is estab-
lished. To ensure sufficient numbers for analysis, cohort
studies require continual follow-up of large populations
for long periods unless the disease under investigation is
one of high incidence. Cohort studies are, in general, more
expensive and time-consuming to conduct and are not
suitable for the investigation of uncommon infections or
conditions. However, they render the most convincing non-
experimental approach for establishing causation.

Case-Control Studies In a case—control study, individu-
als (cases) who are already infected, ill, or meet a given
case definition are compared with a group of individuals
(controls) who do not have the infection, disease, or other
outcome of medical interest. In contrast to cohort studies,
participants in a case—control study are selected by mani-
festation of symptoms and signs, laboratory parameters, or
a specific condition, disease, or outcome. Thus, the search
for exposure of case and control subjects to potential
risk factors remains a retrospective one. For case-control
studies, the measure of association between exposures or
risk factors and health outcome is expressed as an odds
ratio, that is, the ratio of the odds of an exposure, event, or
outcome occurring in a population to the odds in a control
group, where the odds of an event is the ratio of the prob-
ability of it occurring to the probability of it not occurring.

The presence of significant differences in the expo-
sure to risk factors among case versus control subjects
suggests an etiologic (causal) association between those
factors and the infection or disease defined by cases. Case—
control methods are useful for studying infections, events,
or outcomes likely associated with multiple risk factors or
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low incidence rates; for investigating situations in which
there is a long lag-time between exposure and outcome
of interest; and for establishing etiologic associations or
causation of a disease, infection, or other outcome when
there is no existing information about the cause or source.
In an attempt to reduce bias, control subjects might be
selected from individuals matched with cases for selected
characteristics, such as age, gender, socioeconomic status,
or other variables not suspected or under investigation as
risk factors. Compared with cohort studies, case-control
studies may be conducted in relatively shorter time, are
relatively less expensive, or may require a smaller sample
size to execute. Limitations of case—control studies include
selection bias in choosing case and control subjects;
recall bias in which study subjects might have difficulty in
remembering possible exposures; incomplete information
on specific exposures; or risk factor data may be difficult to
find (or remember). Case-control studies are not used to
measure incidence or prevalence rates and, generally, are
not capable of establishing temporal relationships between
an exposure and outcome.

Prevalence or Cross-Sectional Studies In prevalence
studies, the presence of putative risk factors and the dis-
ease under investigation is recorded in a survey of a study
population at a specific point in time or within a (short)
time period. The rates of disease among those with and
without the suspected risk factors are compared. Thus,
cross-sectional studies can establish association but not
causation for suspected risk factors. Prevalence studies
are relatively inexpensive and can be carried out rapidly
if well-planned. However, they do not allow the ascertain-
ment of risk factors at the beginning of disease nor do they
enable one to establish a temporal sequence of risk factors
preceding the infection or other outcome of interest. Point
prevalence, period prevalence, and seroprevalence sur-
veys are examples of cross-sectional studies.

Experimental Epidemiology

In experimental studies, the investigator controls an expo-
sure of individuals in a population to a suspected causal
factor, a prevention measure, a therapeutic regimen, or
some other specific intervention. These exposure modali-
ties are randomly allocated to comparable groups, thereby
minimizing confounding factors. Both the exposed and
unexposed groups are monitored thereafter for specific
outcomes (e.g., appearance of infection or disease, evi-
dence of effective prevention or control of the disease, or
cure). Experimental studies often are used to evaluate anti-
microbial or vaccine treatment regimens and are generally
expensive to conduct. Within healthcare settings, studies
that examine restriction of certain antimicrobials or pro-
motion of use of alternative antimicrobials for the control
of antimicrobial resistance could be considered under the
category of experimental. For ethical reasons, it is rarely
possible to expose human populations to potential path-
ogens or to withhold a preventive measure that could
potentially be beneficial to the patient. Unfortunately, ani-
mal hosts are not naturally susceptible to many agents of
human disease. Thus, one has to be careful when extrapo-
lating epidemiologic findings in animal experimental stud-
ies to the control of infections in human subjects.
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Quasi-experimental studies: more recently, there has
been an increase in the number of published papers describ-
ing results from these studies. This type of study shares the
design characteristics of experimental studies but lacks
random assignments of study subjects. Quasi-experimen-
tal studies are useful where randomization is impossible,
impractical, or unethical. The main drawbacks of quasi-
experimental studies are their inability to eliminate con-
founding bias or establish causal relationships.

EPIDEMIOLOGY OF INFECTION
AND DISEASE

The epidemiology of infectious disease presents two
processes for discussion: (a) the epidemiology of the
determinants leading to infections in hosts and (b) the epi-
demiology of the appearance and extent of disease related
to the infection in those hosts. It is common to discuss
health and disease as the result of a series of complex
interactions between an agent of change, the host that is
the target of the agent’s actions, and the mutual environ-
ment in which the host and agent are found. In studies of
healthcare-associated infections, the agents are the micro-
organisms associated with the infections, the hosts are the
patients under care or their healthcare workers, and the
common environment is the acute care hospital, intensive
care unit, outpatient, home, or other healthcare venues.

The interactions determining the probability of a micro-
biologic agent causing infection in a host may be simply
presented by an equation of infection:

Ip:(DxSx TxV)/H,

where [ is the probability of infection, D is the dose (num-
ber of microorganisms) transmitted to the host, .S is the
receptive host site of contact with the agent, T is the time
of contact (sufficient for attachment and multiplication
or not), and V represents virulence, the intrinsic charac-
teristics of the microorganism that allow it to infect. The
denominator in the equation (H,) represents the force of
the combined host defenses attempting to prevent this
infection.

Any reduction in host defenses (represented by the
denominator) in such an equation allows infection to take
place with a similar reduction in one or more of the agent
factors in the numerator. Infection may take place with a
smaller dose of microorganisms. Infection may take place
at an unusual site. The contact time for a microorganism
to fix to an appropriate surface may be briefer, or infec-
tion may take place with an agent of lesser virulence, one
that does not cause infection in the normal host. These
reductions in the host defense characteristics, represented
by the denominator, and the reduction of requirements
to infect for the agent are typical of the interactions that
allow opportunistic infections in compromised hosts, rep-
resented by many patients under care in modern hospitals.
In this model, equation of infection, the environment might
be considered the background or playing field on which the
agent-host interaction takes place. A number of additional
models of the interaction of agent, host, and environment
have been suggested to help understand these processes.
The three models in Figure 1-1—the seesaw model, the
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FIGURE 1-1 Models of interactions of agent, disease, and environment. (See-saw model from Fox

JP, Elveback L, Gatewood L, et al. Herd immunity. Am J Epidemiol 1971;94:179-189, by permission of
Oxford University Press. Triangle model and wheel model from Mausner JS, Kramer S, eds. Mausner &
Bahn epidemiology—an introductory text. Philadelphia, PA: WB Saunders, 1985.)
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triangle model, and the wheel model—have been fre-
quently cited (9,10). Each attempts to simply visualize the
interplay between the three components.

INTERACTIONS OF AGENT, HOST, AND
ENVIRONMENT

All outcome events (infection or disease) have multifacto-
rial causes. For some infectious diseases, a single unique
factor or agent is necessary and sufficient for the disease to
appear. This is exemplified by measles or rabies. It is only
necessary for the host to be exposed to and infected by an
agent (the measles virus or the rabies virus) for that disease
to develop. For other infectious diseases, the single factor
of infectivity of the agent is necessary but not sufficient to
cause disease in the host. M. fuberculosis, polio virus, hepa-
titis A, and many other agents necessary for specific disease
in a human host infect without causing disease in a major-
ity of cases. Within the hospital setting, exposure to a spe-
cific microorganism or colonization of an inpatient with an
agent, such as vancomycin-resistant enterococcus (VRE) or
Staphylococcus aureus, may be necessary but not sufficient
to generate disease, which only develops through com-
plex interactions between other contributory factors, such
as age, state of debilitation, immune or nutritional status,
device use, invasive procedures, antimicrobial usage, or
susceptibility of the microorganism to available antimicro-
bials. The fact of the infection in these cases is not sufficient
to produce disease in the host without the contribution of
these latter elements in the host and the environment.

Agent

The agents causing healthcare-associated infectious dis-
eases are microorganisms ranging in size and complexity
from viruses and bacteria to protozoa and helminths. Bac-
teria, fungi, and certain viruses have been the agents most
recognized and studied as causes of healthcare-associated
infections (11). For transmission to take place, the micro-
organism must remain viable in the environment until con-
tact with the host has been sufficient to allow infection.
Reservoirs that allow the agent to survive or multiply may
be animate, as exemplified by healthcare worker carriage
of staphylococci in the anterior nares or throat (12,13-15),
or the inanimate environment, as demonstrated by Pseu-
domonas spp. colonization of sink areas, Legionella in hot
or cold water supply systems (16-19), Clostridium difficile
spores on computer keyboards, or Serratia marcescens
growing in contaminated soap or hand lotion preparations
(20-22).

Certain intrinsic and genetically determined proper-
ties of a microorganism are important for it to survive in
the environment. These include the ability to resist the
effects of heat, drying, ultraviolet light, or chemical agents,
including antimicrobials; the ability to compete with other
microorganisms; and the ability to independently multi-
ply in the environment or to develop and multiply within
another host or vector. Intrinsic agent factors important to
the production of disease include infectivity, pathogenicity,
virulence, the infecting dose, the agent’s ability to produce
toxins, its immunogenicity and ability to resist or overcome
the human immune defense system, its ability to replicate
only in certain types of cells, tissues, or hosts (vectors), its
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ability to persist or cause chronic infection, and its interac-
tion with other host mechanisms, including the ability to
cause immunosuppression (e.g., HIV).

Once transferred to a host surface, the agent may multi-
ply and colonize without invading or evoking a measurable
host immune response (23-25). The presence of an agent
at surface sites in the host does not define the presence of
an infection. Nonetheless, patients so colonized may act as
the reservoir source of transmission to other patients (26).

If infection takes place, a measurable immune response
will develop in most hosts even if the infection is subclini-
cal. The success of this process for the agent is increased in
the nonimmune host and is most successful in the nonim-
mune, immunocompromised host. A microorganism’s abil-
ity to infect another host vector (e.g., yellow fever virus in
mosquitoes) or another nonhuman reservoir (e.g., yellow
fever virus in the monkey) is important in the epidemiology
of certain infectious diseases in world populations at large
but plays little role in healthcare infection epidemiology.

Host

Infection depends on exposure of a susceptible host to an
infecting agent. Exposure of the susceptible host to such
agents is influenced by age, behavior, family associations,
occupation, socioeconomic level, travel, avocation, access
to preventive healthcare, vaccination status, or hospitali-
zation. Whether or not disease takes place in the infected
host and the severity of disease when it appears depend
not only on the intrinsic virulence factors of the agent but
more importantly on the pathogenicity of the interactions
between the agent and the host. The host immune defenses
attempt to prevent infection. Thus, any reduction in host
defenses may allow infection to take place with a smaller
dose of microorganisms or at a body site that is not usu-
ally susceptible to infection. A combination of reductions
in host defense characteristics and the requirements for an
agent to cause infection are typical of the interactions that
allow acquisition of opportunistic infections in immuno-
compromised patients. A commonly cited model indicating
the potential interactions between agent and host and the
relationships among colonization, infection, and clinical
and subclinical disease is shown in Figure 1-2 (27).

Host factors important to the development and sever-
ity of infection or disease may be categorized as intrinsic
or extrinsic. Intrinsic factors include the age at infection;
birth weight; sex; race; nutritional status (28); comorbid
conditions (including anatomic anomalies) and diseases;
genetically determined immune status; immunosuppres-
sion associated with other infections, diseases, or therapy;
vaccination or immunization status; previous experience
with this or similar agents; and the psychological state
of the host (29). Colonization of the upper and lower res-
piratory tracts is more likely when the severity of illness
increases in critically ill patients. This, along with other
host impairments (e.g., reduced mucociliary clearance or
changes in systemic pH), allows colonization to progress to
invasive infection. Moreover, other clinical conditions may
lead to an alteration in epithelial cell surface susceptibil-
ity to binding with bacteria, leading to enhanced coloniza-
tion (23-25). Extrinsic factors include invasive medical or
surgical procedures; medical devices, such as intravenous
catheters or mechanical ventilators; sexual practices and
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FIGURE 1-2 Venn diagram of agent-host interactions. An

interaction between host and parasite may result in infection.
Infection consists of colonization and an infectious disease. An
infectious disease may be either covert (subclinical) or overt
(symptomatic). (From Hoeprich PD, ed. Infectious diseases.
Hagerstown, MD: Harper & Row, 1972:40.)

contraception; duration of antimicrobial therapy and hos-
pitalization; and exposure to hospital personnel.

Environment

The environment provides the mutual background on
which agent-host interactions take place and contains the
factors that influence the spread of infection. Environmen-
tal factors include (a) physical factors such as climatic con-
ditions of heat, cold, humidity, seasons, and surroundings
(e.g., intensive care units, outpatient clinics, long-term care
facilities, or water reservoirs); (b) biologic factors (e.g.,
intermediary hosts such as insect or snail vectors); and
(c) social factors (e.g., socioeconomic status, sexual
behavior, types of food and methods of preparation, and
availability of adequate housing, potable water, adequate
waste disposal and healthcare amenities). These environ-
mental factors influence both the survival and the multi-
plication of infectious disease agents in their reservoirs
and the behavior of the host in housing, occupation, and
recreation that relate to exposure to pathogens. Food- and
water-borne diseases flourish in warmer months because
of better incubation temperatures for the multiplication of
the agent and recreational exposures of the host, whereas
respiratory agents appear to benefit from increased oppor-
tunities for airborne and droplet transmission in the closed
and closer living environments of the winter. In US hospi-
tals, the frequency of hospital-acquired Acinetobacter spp.
infections is increasing in critical care units and has been
shown to be seasonal in nature (30). The seasonal varia-
tion in the incidence of this pathogen is thought to be due
to changes in climate—summer weather increases the
number of Acinetobacter spp. in the natural environment
and transmission of this microorganism in the hospital
environment during this season (30).

Within healthcare settings, the components of the agent,
host, and environment triad interact in a variety of ways to
produce healthcare-associated infections. For example, the
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intensive care unit is now considered the area of highest risk
for the transmission of healthcare-associated pathogens in
US hospitals (31). Moreover, methicillin-resistant S. aureus
(MRSA), VRE, and ceftazidime-resistant Pseudomonas aer-
uginosa are endemic in many intensive care units in these
hospitals (31). The emergence of vancomycin-resistant S.
aureus in US institutions highlighted the unwelcome but
inevitable reality that this pathogen may become endemic
in acute care settings (32). A complex interaction of con-
tributory factors, such as inadequate hand washing and
infection control practices among healthcare workers, fluc-
tuating staffing levels, an unexpected increase in patient
census relative to staffing levels in the intensive care unit,
or an unprecedented increase in the number of severely ill
patients with multiple invasive devices, could all contribute
to the acquisition of hospital infections caused by one of
these endemic microorganisms (33,34). Adding to the com-
plexity of the process would be the unquantifiable mecha-
nism of transmission of the agent from host to healthcare
worKker, healthcare worker to healthcare worker, and host
to environment. Thus, acceptable measures for the preven-
tion and control of healthcare-associated infection dictate
that the healthcare epidemiologist looks at and analyzes
the interrelationships among all components of the triad of
agent, host, and environment (31).

It is well-known that the social environment is extremely
significant in determining personal behavior that affects the
direct transmission of agents, such as HIV via breast milk in
regions of high HIV endemicity, gram-negative microorgan-
isms via artificial nails worn by healthcare workers in US
intensive care units (35), and pathogens that cause sexu-
ally transmitted diseases. What must be understood to be
equally relevant is the impact of other factors in the social
environment, such as the distribution of and access to med-
ical resources; the use of preventive services (36-38); the
enforcement of codes in food preparation, infection con-
trol practices, or occupational health practices; the extent
of acceptance of breast-feeding for children (39—41); and
the acceptance of advice on the appropriate use of antimi-
crobials (42—44,45,46). Also, there must be an appreciation
by patients, relatives, and healthcare workers alike that
at-risk patients (e.g., those born very prematurely have
severe congenital abnormalities, the very elderly, or those
with premorbid end-stage cardiac or pulmonary disease),
who have numerous indwelling medical invasive devices,
or who have undergone multiple invasive procedures or
surgical procedures would be particularly susceptible to
healthcare-associated infections that are likely nonpre-
ventable. There must be an informed and ethically sound
willingness to reject the extraordinary application of medi-
cal technology, including the inappropriate or repeated
use of resistance-inducing antimicrobials when clinical evi-
dence and experience suggest that the condition of the sick
patient is untreatable or irreversible.

Special Environments

Microenvironments, including military barracks, dormito-
ries, day-care centers, chronic disease institutions, ambula-
tory surgery and dialysis centers, and acute care hospitals,
provide special venues for agent-host interactions. His-
torically, epidemics in these institutional environments
provided the experience that drove the development and
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acceptance of control measures, guidelines, and infection
control programs. Acute care hospitals, especially those
offering regional secondary and tertiary care, remain the
dominant examples of these environments. Changing pat-
terns of outpatient practice, home healthcare, and tech-
nical advances in medicine have resulted in increasingly
severely diseased and injured populations being managed
in acute care facilities. Data from CDC demonstrate that
the changing healthcare environments in the United States
are resulting in larger intensive care unit populations while
there has been a general decrease in the number of general
medical beds (31).

Special units for intensive medical or surgical care
for extensive burns, trauma, transplantation, and cancer
chemotherapy frequently house patients with increased
susceptibility to infection (47). In these patients, reduced
inocula of pathogens or commensals are required to cause
infection, infection may take place at unusual sites, and usu-
ally nonpathogenic agents may cause serious disease and
death. Frequent opportunistic infections in these patients
require repeated, broad, and extended therapy with mul-
tiple antimicrobials, leading to increasingly resistant resi-
dent microbial populations (31,46).

The emergence or reemergence in this setting of patho-
gens resistant to all available antimicrobials is taking place,
a situation that has not been present since the 1950s (48).
For example, in some institutions during the early 1990s,
>80% of VRE isolates were documented as being resistant
to all available antimicrobials (49). Similarly, spiraling
healthcare costs have been the major factor leading to the
current shift toward managed care in the United States.
The process has resulted in the downsizing of hospital
workforces to cut costs and reduce patient charges. As
a result, more severely ill patients are being managed or
treated as outpatients or at home. For example, central
venous catheters may be placed in the hospital, and kept
in situ for long-term home infusion therapy. The trade-off
is minimum exposure to the hospital environment with
decreased costs to the patient. On the other hand, a patient
with a central venous catheter in the home environment
may be potentially at risk of bloodstream infections due
to contamination of lines, dressing, and infusates in a care
environment where infection control practices are not as
well understood, practiced, or regulated.

INFECTION, COLONIZATION, AND
SPECTRUM OF DISEASE

Infection is the successful transmission of a microorganism
to a susceptible host, through a suitable portal of entry,
with subsequent colonization, multiplication, and inva-
sion. The source of a microorganism (the primary reser-
voir) may be animate (e.g., humans, mammals, reptiles, or
arthropods) or inanimate (e.g., work surfaces, toys, false
fingernails, toiletries, or soap). Disease is the overt damage
done to a host as a result of its interaction with the infec-
tious agent: it represents a clinically apparent response
by or injury to the host after infection, with the affected
person showing symptoms or physical signs that may be
characteristic of infection with the invading pathogen.
Thus, disease is the outcome of an infectious process, and
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a pathogen is any microorganism with the capacity to cause
disease in a specific host.

Unapparent or subclinical infection is a frequent occur-
rence where the infected person may not manifest any
symptoms, signs, disability, or identifiable disease. For
example, in patients who acquire Salmonella typhi infec-
tion (typhoid fever), a chronic infection of the gallblad-
der may develop with asymptomatic fecal excretion of the
pathogen for years after the acute event. Patients in HIV-
endemic countries may have M. tuberculosis bloodstream
infections despite having normal chest radiographs and
no symptoms or signs suggestive of underlying pulmonary
disease (50). Persons with subclinical infection are some-
times referred to as carriers. Subclinical infection may be
recognized through laboratory testing of blood or other
appropriate body material from the host. These tests may
indicate evidence of an immune response to infection, the
presence of antigens characteristic of the microorganism,
abnormal cellular function in response to infection, or the
presence of the microorganism itself.

Colonization is the presence of a microorganism in or
on a host, with growth and multiplication, but without any
overt clinical expression or detected immune reaction
in the host at the time the microorganism is isolated. An
infectious agent may establish itself as part of a patient’s
flora or may cause low-grade chronic disease after an acute
infection. For example, 20% of healthy adults are persis-
tent carriers of S. aureus in the anterior nares without any
manifestation of clinical illness (51,52,53). However, under
suitable conditions, patient populations colonized with
S. aureus are at an increased risk of having infection and
disease develop (54-58). Once colonization or infection
is established in a susceptible host, the agent may enter
a silent or latent period during which there is no clinical
or typical laboratory evidence of its presence. Thereafter,
the host may manifest signs and symptoms of mild disease
without disability, exhibit rapid or slow progression of dis-
ease, or progress to either temporary or chronic disability.
Ultimately, the patient may die or have a complete recov-
ery and return to health without sequelae.

The outcome of an infection is determined by the size
of the infecting dose, the site of the infection, the vaccina-
tion status of the host, the speed and effectiveness of the
host immune response, other intrinsic host factors (e.g.,
nutritional status), or promptness of instituting and effec-
tiveness of the therapy. These factors together with intrin-
sic properties of a microorganism, such as its infectivity,
pathogenicity, virulence, and incubation period, determine
the course and progress of an infection, and manifestation
of disease. Infectivity is the characteristic of the microor-
ganism that indicates its ability to invade and multiply in
a susceptible host to produce infection or disease; it is
expressed as the proportion (i.e., the attack rate) of patients
who become infected when exposed to an infectious agent.
The basic measure of infectivity is the minimum number of
infectious particles required to establish infection. Patho-
gens like polio or measles viruses have high infectivity.

The pathogenicity of an infectious agent is a measure
of its ability to cause disease in a susceptible host. Thus,
while the measles virus has a relatively high pathogenic-
ity (i.e., few subclinical cases), the poliovirus has a low
pathogenicity (i.e., most cases of polio are subclinical).
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The measure of pathogenicity is the proportion of infected
persons with clinically apparent disease. The pathogenic-
ity of an agent that is usually innocuous may be increased
in a host with reduced defense mechanisms. For some
agent-host interactions, the resultant disease is due to the
effects of exaggerated or prolonged defense mechanisms
of the host. The virulence of a microorganism is its intrinsic
capability of infecting a host to produce disease. It follows
that a pathogen might have varying degrees of virulence.
Thus, although the nonencapsulated form of Haemophilus
influenzae is a common inhabitant of the upper respira-
tory tract of healthy humans and causes localized infec-
tion without bacteremia (e.g., conjunctivitis or otitis media
in children), the more virulent encapsulated type b form
causes more invasive disease and is an important cause of
meningitis or epiglottitis. If the disease is fatal, virulence
can be measured with the case—fatality rate. For example,
the rabies virus almost always produces fatal disease in
humans and is therefore an extremely virulent agent.

The ability to diagnose an infection or disease depends
on the degree to which typical symptoms and physical
signs develop in patients, the appropriateness of diagnos-
tic tests, and the sensitivity and specificity of these tests
for the particular infecting agent. Whether an infecting
agent produces clinical or subclinical infections depends
on the agent and host factors, for example, age or immune
status. Thus, P aeruginosa, a ubiquitous pathogen that
thrives in aquatic environments and vegetation, seldom
causes disease in healthy humans. However, in debilitated,
hospitalized patients, such as those with burns, critical
care patients with multiple in situ invasive medical devices,
or those who are on prolonged mechanical ventilation,
this pathogen remains an important cause of ventilator-
associated pneumonia in US hospitals (59).

Certain agents may be associated with a variety of
different syndromes that depend on age and vaccination
status of the host, previous infection with the agent, and
agent-related mechanisms that remain unclear. Thus, Stron-
gyloides spp., a nematode that is endemic in many parts of
the world, including Southeast Asia and some parts in the
southeastern United States, can cause asymptomatic infec-
tion or be associated with several syndromes ranging from
mild epigastric discomfort and chronic skin rashes to life-
threatening hyperinfection that results in gram-negative
bacteremia, pneumonia, and multisystem disease in immu-
nosuppressed patients, including solid organ transplant
recipients or patients with chronic airways disease who
are steroid-dependent (60-63). These differences in host—
agent interactions underscore the difficulty in establishing
causation and the importance of confirmatory laboratory
evidence to precisely identify the causal agent associated
with syndromes of infectious disease.

Once colonization or infection is established in a
susceptible host, the agent may enter a silent or latent
period during which there is no clinical or usual labora-
tory evidence of its presence. Thereafter, the host may
manifest signs and symptoms of mild disease without dis-
ability, may have a rapid or slow progression of disease,
or may progress to either temporary or chronic disability,
or, ultimately, death. Alternatively, the patient may have a
complete recovery and return to health without sequelae.
In other instances, the entire process may be inapparent
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or subclinical without evidence of disability or disease.
Subclinical cases may be recognized through laboratory
testing of blood or other body fluids of the host. These
tests may indicate evidence of abnormal cellular func-
tion (abnormal liver function tests), the presence of an
immune response to infection (antibody to hepatitis B
virus core antigen), the presence of antigens character-
istic of the microorganism (positive test for hepatitis B
virus surface antigen), or the presence of the microorgan-
ism itself.

The ability to diagnose an infection or disease is obvi-
ously easier in clinical cases and much easier in severe
clinical cases wherein the typical signs and symptoms of
the disease are apparent and routine tests are diagnostic
of the agent. The ratio of clinical to subclinical infections
varies widely by agent and is influenced by certain host fac-
tors, such as age and immune status. Certain agents may
be associated with a variety of different syndromes that
depend on age and vaccination status of the host, previous
infection with the agent, and agent-related mechanisms
that remain unclear. Poliovirus is less likely to appear as
a paralytic syndrome in children, and Coxsackie virus B
infections may appear as myocarditis one year and more
prominently as meningoencephalitis the next. Respira-
tory syncytial virus infections may appear as bronchiolitis
in infants and as a common cold syndrome in their older
caregivers. Since the ability to diagnose an infection or
disease caused by a specific pathogen depends partly on
the degree to which typical symptoms and physical signs
develop in patients, variation in the clinical manifestation
of disease underscores the difficulty in establishing causa-
tion, the importance of clinical awareness of syndromic
variations of certain infections, and the importance of
confirmatory laboratory evidence to precisely identify the
causal agent associated with syndromes of disease out-
breaks. Evans provides a detailed and excellent review of
the principles and issues in establishing causation in infec-
tion and disease (64).

MECHANISM OF SPREAD

Transmission

For infection to take place, microorganisms must be trans-
ferred from a reservoir to an acceptable entry site on a
susceptible host in sufficient numbers (the infecting dose)
for multiplication to occur. The infecting dose of a micro-
organism may depend in varying degrees on infectivity,
pathogenicity, or virulence of the microorganism itself. The
entire transmission process constitutes the chain of infec-
tion. Within the healthcare setting, the reservoir of an agent
may include patients themselves, healthcare workers (e.g.,
nares or fingernails), tap water, soap dispensers, hand
lotions, mechanical ventilators, intravascular devices, infu-
sates, multidose vials, or various other seemingly innocu-
ous elements in the environment.

Direct transmission from another host (healthy or ill) or
from an environmental reservoir or surface by direct con-
tact or direct large-droplet spread of infectious secretions
is the simplest route of agent spread. Examples of direct-
contact transmission routes include kissing (infectious mon-
onucleosis), shaking hands (common cold [rhinovirus])),
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or other skin contact (e.g., contamination of a wound with
staphylococci or Enterococcus spp. during trauma, surgical
procedures, or dressing changes). Transmission of Neisse-
ria meningitidis, group A streptococcus, or the respiratory
syncytial virus (an important cause of respiratory infection
in young children worldwide) by large respiratory droplets
that travel only a few feet is regarded as a special case of
direct-contact transmission.

Vertical transmission of infection from mother to fetus
is another form of direct-contact transmission that may
occur through the placenta during pregnancy (e.g., HIV,
rubella virus, hepatitis B virus, or parvovirus), by direct
contact of the infant with the birth canal during childbirth
(group B streptococci), or via breast milk (HIV).

Indirect-contact transmission may occur via the hands of
people, contaminated inanimate objects (fomites), various
work surfaces, food, biological fluids (e.g., respiratory, sali-
vary, gastrointestinal, or genital secretions, blood, urine,
stool), invasive or shared medical devices, or through
arthropod or animal vectors. Indirect-contact transmission
is the most common mechanism of transfer of the micro-
organisms that cause healthcare-associated infections and
commonly occurs via the hands of healthcare workers,
their clothing, or instruments like stethoscopes or ther-
mometers. Rapid dissemination of agents, such as respira-
tory syncytial virus or the influenza virus, may occur in
day-care centers through salivary contamination of shared
toys and games. C. difficile is an important diarrheal agent
transmitted from patient to patient in acute care hospitals.
Its transmission is abetted by its spore-forming ability to
survive in the environment, and its selection and promo-
tion in patients by the repeated and prolonged use of cer-
tain antimicrobials (65). Medical devices contaminated
with blood-borne pathogens, including hepatitis B and C
viruses, cytomegalovirus, and HIV, are sources of infection
for both patients and medical care personnel in healthcare
institutions (66,67). Some viruses can remain viable for
extended periods under suitable conditions. For example,
Hepatitis B virus is relatively stable in the environment and
remains viable in dried form for at least 7 days to 2 weeks
on normal working surfaces at room temperature (68) This
property has led to Hepatitis B virus transmission among
dialysis patients through indirect contact via dialysis per-
sonnel or work surfaces in the dialysis unit (69,70). Exam-
ples of other sources of healthcare-associated infections
that occur through indirect contact include bacterial or
viral contamination of musculoskeletal allograft tissues,
intrinsic contamination of infusates or injectable medica-
tions, liquid soap, or contaminated medications prepared
in the hospital pharmacy (20,71,72,73-75). The continuing
presence of Pseudomonas spp. and other gram-negative
rods in potable water supplies acts as an important res-
ervoir for these agents and a readily available source for
hand transmission to patients, especially the severely ill
(19,76).

Airborne transmission is another mechanism of indi-
rect transfer of pathogens. Microorganisms transmitted by
this method include droplet nuclei (1-10 pm) that remain
suspended in air for long periods, spores, and shed micro-
organisms. The airborne transfer of droplet nuclei is the
principal route of transmission of M. tuberculosis, varicella,
or measles. The transmission of Legionella spp. through the
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air in droplet nuclei from cooling tower emissions, and from
environmental water sites, such as air-conditioning sys-
tems, central humidifiers, and respiratory humidification
devices, is another important example of this type of spread
(77-79,80,81). C. difficile—associated disease, the most com-
mon cause of healthcare-associated gastrointestinal infec-
tion in the United States, is frequently acquired through
the transmission of spores via hospital work surfaces and
the hands of healthcare workers (65,82). In fact, C. difficile
may become endemic if its spores are propagated by air
currents throughout an institution. Fungal spores can be an
important cause of healthcare-associated infections. Spores
of invasive fungi, such as Aspergillus spp., may be carried
over long distances in hospitals to cause severe infections
in immunosuppressed patients. The risk of spore contami-
nation was highlighted by an outbreak of Curvularia lunata
(a black fungus) among silicone breast implant recipients,
who had undergone the breast augmentation procedures
in an operating room that was erroneously maintained at
negative pressure resulting in high spore counts in the oper-
ating room environment (operating rooms are supposed to
be maintained at net positive pressures relative to adjacent
areas). The surgeons had not implemented a closed system
for inflating the breast prostheses with saline; instead, they
had inflated the silicone prostheses using syringes filled with
saline drawn up from a sterile bowl exposed to the ambient
operating room environment. The end result was contamina-
tion of sterile saline in the open bowl with C. lunata spores,
which were then injected inadvertently into the breast
prostheses (83). In some settings (e.g., burn units), staphy-
lococci have been thought to spread on skin squamous cells
that have been shed from patients or healthcare personnel.
The importance of this mode of transmission, however, is
not thought to be of great significance in other care settings.
More recent data suggest that S. aureus is a common iso-
late in oropharyngeal cultures (13). Although the epidemio-
logic implications of this finding remain uncharacterized,
the ramification for infection control in healthcare facili-
ties would be enormous if indeed the chain of infection for
S. aureus includes oropharyngeal secretions or droplet
nuclei. More recently, the emergence of extensively drug-
resistant (XDR) strains of M. tuberculosis (i.e., strains
resistant to practically all second-line agents) has again
highlighted the importance of airborne transmission
and the fact that the underlying reason for XDR emergence
stems from poor general tuberculosis control and the
subsequent development of multi-drug resistant (MDR)-
tuberculosis (84,85).

Vector-borne transmission by arthropods or other
insects is a form of indirect transmission, and may be
mechanical or biologic. In mechanical vector-borne trans-
mission, the agent does not multiply or undergo physi-
ologic changes in the vector; in biologic vector-borne
transmission, the agent is modified within the host before
being transmitted. Although the potential for microorgan-
ism carriage by arthropods or other insect vectors has
been described (86,87), this type of transmission has not
played any substantial role in the transmission of health-
care-associated infections in the United States. In tropical
countries with endemic dengue, yellow fever, or malaria,
vector-borne transmission is relatively more important,
requiring screening of patients or other interventions, and
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preventive measures not ordinarily required for patients in
colder climates.

Reservoirs

Humans are the primary reservoir for Neisseria gonor-
rhoeae, S. typhi, HIV, Hepatitis B and C viruses, or Shigella
spp. Animals (zoonoses) harbor the rabies virus, Yersinia
pestis, Leptospira spp., or Brucella spp. Environmental reser-
voirs include the soil (Histoplasma capsulatum, Clostridium
tetani, and Bacillus anthracis) and water (Legionella spp.,
P. aeruginosa, Serratia spp., and Cryptosporidium spp.). In
critical care units, reservoirs in ventilation circuits often
harbor gram-negative pathogens, such as P. aeruginosa,
Serratia spp., or Acinetobacter spp. For some infections,
the interaction between host, agent, and environment
might include an extrinsic life cycle of the agent outside
of the human host. The interplay of such factors can add
significant layers of epidemiological complexity in properly
understanding the cause of an outbreak or in characteriz-
ing the chain of infection.

INCUBATION PERIOD AND
COMMUNICABILITY

The incubation period is the time between exposure to an
infectious agent and the first appearance of evidence of
disease in a susceptible host. The incubation period of a
pathogen usually is typical for that class of microorgan-
isms and may be helpful in diagnosing unknown illness or
making a decision regarding further diagnostic testing. The
first portion of the incubation period after colonization and
infection of a person is frequently a silent period, called
the latent period. During this time, there is no obvious host
response, and evidence of the presence of the infecting
agent may not be measurable or discernible. Measurable
early immune responses in the host may appear shortly
before the first signs and symptoms of disease, marking the
end of the latent period. Incubation periods for a microor-
ganism may vary by route of pathogen inoculation, and the
infecting dose. For example, brucellosis may be contracted
through direct contact with blood or infected organic
material, ingestion of raw dairy products, or through air-
borne transmission in a laboratory or abattoir; these vari-
ous modes of transmission result in an incubation period
for brucellosis that is highly variable, ranging from 5 days
to several months. Incubation periods for other common
microorganisms are as follows: 1 to 4 days for the rhino-
virus (the common cold) or influenza virus; 5 to 7 days
for herpes simplex virus; 7 to 14 days for polio virus; 6 to
21 days for measles virus; 10 to 21 days for chickenpox
virus; 20 to 50 days for hepatitis A virus and the rabies
virus; and 80 to 100 days for hepatitis B virus.

The communicable period is the time in the natural his-
tory of an infection during which transmission may take
place. Generally, microorganisms that multiply rapidly and
produce local infections are associated with short incuba-
tion periods. For example, enterotoxin-producing S. aureus
undergoes such rapid multiplication in unrefrigerated
food that symptoms of food poisoning may become mani-
fest within 1 to 6 hours of ingestion of the contaminated
meal. Microorganisms that cause disease that depend on
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hematogenous spread or multiplication in distant organs
tend to have longer incubation periods. HIV antibodies
are generally detectable 1 to 3 months after the initial
exposure, whereas the HIV-infected person might remain
asymptomatic for years. Cytomegalovirus, a blood-borne
pathogen that frequently causes posttransplant or post-
transfusion infection, generally causes illness 3 to 8 weeks
after initial exposure.

OUTBREAKS, EPIDEMICS, AND
EPIDEMIC INVESTIGATION

An infectious disease outbreak or epidemic is defined as
an increase in the occurrence of infection or disease above
the baseline or background rate, in a given area in a spe-
cific patient population. Epidemics may originate from a
common source or be propagated from person to person.
Common source epidemics appear when susceptible per-
sons have mutual exposure to the same agent in the same
time period. If the exposure to an infectious agent happens
at a single event at a single time and place, such as at a
church dinner, it is called a point source epidemic. When
this happens, the affected (exposed) patients usually have
a similar incubation period, and the average time from the
onset of first symptoms back to the initial, common expo-
sure event is the natural incubation period of the agent. If
the agent is known, its identified incubation period helps
to define the time of the common event. For example, onset
of symptoms of food poisoning caused by S. aureus usu-
ally occurs within 1 to 6 hours; symptoms due to Shigella
spp. usually occur within 24 to 48 hours. If exposure to an
infecting agent is continuous, as in a hospital room with
an air-conditioner contaminated with Legionella spp., epi-
sodes of Legionella pneumonia among hospital inpatients
may appear sequentially. Sewage from a treatment plant
seeping into a water supply is another example of continu-
ous source exposure in which a persistent increase above
an expected level extends beyond a single incubation
period.

Propagated epidemics occur when serial direct or indi-
rect transmission of a microorganism occurs from sus-
ceptible host to susceptible host (e.g., person-to-person
spread of Malassezia pachydermatis, a microorganism with
a short incubation (88)), or it may occur at a more leisurely
pace as in transmission of an agent from a carrier to a sus-
ceptible individual (e.g., transmission of Nocardia farcinica
from the hands of a colonized healthcare worker to a surgi-
cal site (89)). Thus, investigation of an epidemic requires
a prioritized and systematic approach to the gathering and
analysis of data with careful attention to epidemiologic and
clinical detail and correct interpretation of microbiological
and other laboratory information.

Investigating an Epidemic

The first and most critical step in an outbreak investiga-
tion is ascertaining that an epidemic does indeed exist.
This step assumes some previous information on the usual
or endemic rate of occurrence of the infection or disease
under study. When there is a perceived increase in the
occurrence of an infection without reference to a baseline
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level, the aggregation of case-patients is classified as a
cluster. Many clinical microbiology laboratories that serve
large teaching hospitals or other healthcare institutions
maintain computerized, retrospective line listings of infec-
tion or colonization caused by pathogens that are endemic
in the institution. Such line listings are readily available on
request and enable documentation of endemic infection
rates.

The first hint of an outbreak or an unusual cluster of
infections may be the appearance of a microorganism from
epidemiologically related sources noticed by the clinician,
infection control team, pharmacy, or laboratory person-
nel. The microbiology laboratory has been likened to an
early warning, laboratory-based surveillance system for
the detection of outbreaks (11,90). For example, labora-
tory technologists might be the first to suspect the pres-
ence of an outbreak of healthcare-associated infections by
being alert and noting in a line listing the existence of an
unusual cluster of isolates of a particular morphology, spe-
cies, or antimicrobial susceptibility profile. End-of-the-day
scrutiny of routine line listings of microorganisms growing
in cultures by a staff microbiologist might herald the pres-
ence of a cluster of infections or antimicrobial-resistant
microorganisms in a specific hospital inpatient service
that would have otherwise been overlooked or missed by
the clinician or healthcare epidemiologist. Or perception
by an astute pharmacist of overprescribing of antimicro-
bials for infections caused by an unusual microorganism
could be a lead to ascertainment of a putative cluster or
outbreak.

Computerized laboratory records, line listings, and cul-
ture reports that have been retrospectively archived con-
stitute an invaluable source of site-specific, baseline data
on endemic infection rates with which to compare current
perceived increases in infection rates for various patient
populations in a facility. If a comparison of epidemic and
preepidemic infection rates suggests the presence of an
outbreak, the clinical microbiology personnel on the team
conducting the outbreak investigation must then ensure
that all isolates and relevant specimens from patients
associated with the putative outbreak are saved for cul-
ture or other analyses that might become necessary later
on in the investigation. Thus, the initial investigation and
characterization of outbreaks or clusters of infection must
necessarily involve the laboratory (91).

To determine the existence of an outbreak, one must
understand the etiology of the infection or disease. If the
syndrome is unrecognized, a consensus case definition or
criteria for the condition must be formed. This case defi-
nition must be fulfilled for each event that is judged to be
associated with the epidemic. The case definition may
include a medical sign or symptom; a syndrome; an abnor-
mal laboratory test (e.g., a raised white blood cell count);
the isolation of an etiological agent (e.g., positive blood
cultures for bacteremia); or one of the serologic tests, such
as those for serum immunoglobulin levels (e.g., immuno-
globulin M group), that suggest acute or recent infection.
The case definition for epidemics of unknown etiology might
include combinations of clinical and laboratory parameters.
Depending on the data available at the onset of an investiga-
tion, a case definition may include classification of the ill as
(a) definite cases, (b) probable cases, or (c) possible cases.
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Case definitions of healthcare-associated infections
usually involve clinical, epidemiologic, and laboratory
parameters and delineate the patients (person) who have
specific symptoms or syndromic features, the period (time)
during which the symptoms began or were recognized, the
location (place) of the problem, and the infecting agent
and anatomic site of infection (what). If the case definition
is microorganism-based, a careful review of the existing
microbiology records usually is all that is needed to iden-
tify case-patients and determine numerator and denomi-
nator data for the calculation of comparable rates. After a
case definition has been formulated, the outbreak investi-
gators must identify and ascertain case-patients. This step
may be accomplished by calling hospitals, clinics, health
departments, physicians’ offices, schools, or workplaces,
or careful examination of patients’ medical, surgical, or
laboratory records, patient census listings, administrative
staffing records, death certificates, or existing surveillance
data, such as frequency of medical device or antimicrobial
use. Laboratory records play a vital role in this undertak-
ing by providing confirmatory data on pathogen identifica-
tion, site of infection, antimicrobial susceptibility testing
profiles (antibiograms), or microorganism biochemical
profiles (biotype number).

In industry, annual product reviews analyze the
assorted quality parameters that intersect with a given
product, such as reviewing the number of laboratory
deviations, the number of confirmed batch failures, or
the number of manufacturing/testing changes. If avail-
able, such data are helpful in investigations of national
or international outbreaks, such as those associated with
widespread distribution of an intrinsically contaminated
drug, device, or other product. Within healthcare systems,
comparable quality systems are found largely in clinical
laboratories. For example, in the microbiology laboratory,
quality reviews similar to those performed in the phar-
maceutical industry include systematic analyses of batch
failures of reagents; monitoring culture media quality and
variability of set incubation temperatures for incubators;
quality assurance checks of antimicrobial-impregnated
disks and adherence to standards set by the Clinical and
Laboratory Standards Institute for antimicrobial suscepti-
bility testing; regular assessments of the ability of micro-
biology personnel to accurately identify or characterize
“unknown” isolates from the American Type Culture Col-
lection; or weekly checks of the optical density cutoff
points for spectrophotometers used in serological testing.
Data from these reviews are indispensable for outbreak
investigations, especially when an outbreak is linked epi-
demiologically to practices and procedures in the labora-
tory (see Chapter 9).

When an infection outbreak is recognized only by the
presence of a cluster of patients with a specific syndrome,
idiosyncratic clinical features, or pyrogenic reactions, and
the case definition contains only clinical or epidemiologic
parameters, initial cultures of relevant body sites may be
negative. In these instances, it is vital that the laboratory
be involved in all subsequent decision making in the out-
break investigation, particularly regarding the types of cul-
tures, specimens, serologic tests, or assays that should be
considered to assist in determining the source or cause of
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the outbreak. Such additional investigations may include
testing large volumes of dialysis fluid or water for endo-
toxin, performing specialized serologic tests for Salmo-
nella spp., or molecular genotyping. These indispensable
roles of the laboratory underscore the interdependency of
epidemiology and laboratory disciplines during the inves-
tigation of an outbreak where the suspected pathogen is
absent or not initially apparent, and the direction of the
subsequent investigation may require specialized labora-
tory tests or assays that become obvious only after an epi-
demiologic evaluation (see Chapter 95).

After case ascertainment, the next steps are to prepare
a line listing of the patients who meet the case definition
and construct an epidemic curve by plotting the number
of cases (y-axis) over time (x-axis), and identify on a geo-
graphic map the location of the cases. The line listing
should contain the basic demographic data and character-
istics that are relevant to the outbreak, and should include
the features of the outbreak in terms of person, place, and
time that were established by the case definition.

Critical variables in an outbreak investigation include
the following: (a) When did the exposure take place?
(b) When did the disease begin? (c) What was the incuba-
tion period for the disease? If any two of these are known,
the third can be calculated. The epidemic curve can graph-
ically suggest the temporal relationship between acquisi-
tion of infection or disease and index case, the existence
of a common source, the incubation period of an infec-
tious agent, or the mode of transmission. In addition, the
epidemic curve can be used to determine the probable
period of exposure to a source: first look-up the average,
median, and range of the relevant incubation period of
the suspected infection in question. This information can
be obtained from a recognized reference source (e.g., the
Control of Communicable Diseases Manual (7). The median
incubation period is the time when 50% of case-patients
would have acquired the infection. A rapid assessment
would be to count back the average incubation period
from the median case-patient and the minimum incuba-
tion period from the earliest case-patient. There are limita-
tions in extrapolating inferences from an epidemic curve.
For example, the curve might not have a “classic” shape,
especially if the outbreak is small. Moreover, an observed
shape may be consistent with more than one interpreta-
tion; intermittent exposures to a common source may look
like person-to-person exposure, or the incubation period
may remain unknown.

With an initial count of the cases completed, one can
determine the rates of infection and illness in the popu-
lation by age group, birth weight, gender, ethnic origin,
religious affiliation, socioeconomic status, water supply,
food ingestion, device use, treatment regimens, or other
factors that appear to be historically associated with the
individuals infected. On the basis of this preliminary anal-
ysis, a hypothesis is generated to identify the high-risk
population. One may consider conducting a case—control
epidemiologic study to compare ill persons (case-patients)
with randomly selected persons who have remained well
(control group) to identify exposures significantly associ-
ated with cases. The contrast between cases and controls
is then determined by calculation of the odds ratios and
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confidence intervals for each exposure. Alternatively, one
may conduct a cohort study in which attack rates are com-
pared through calculation of relative risks and confidence
intervals for persons exposed and not exposed to a spe-
cific risk factor. Not all case-patients can be expected to
fit the hypothesis because a background rate of endemic
infections or disease must be assumed for many infectious
agents (e.g., Enterococcus spp. in healthcare facilities).
Using the hypothesis, one searches for additional case-
patients, both to increase the numbers for statistical study
and to include persons with mild or subclinical disease,
who might otherwise escape evaluation.

With the additional findings, the data are analyzed and
an interpretation of the events is prepared. If the hypoth-
esis is supported, it is confirmed in a final report; if not, the
data are reviewed for alternative hypotheses, and another
round of testing and analyses is begun. On the basis of the
analyses and the supported hypothesis, intervention and
follow-up programs are outlined, including both short-term
and long-term control measures. Finally, the findings are
reported formally to local and regional authorities, public
health agencies, and medical and public groups, indicating
the nature of the outbreak and recommendations for future
prevention and control.

The Role of Epidemiology and Microbiology
in the Investigation of Outbreaks

Traditionally, the most important function of the microbi-
ology laboratory during outbreak investigations has been
to accurately identify outbreak pathogens, to conduct rel-
evant antimicrobial susceptibility testing, and to determine
the clonality (similarity) of outbreak pathogens based on
whatever phenotypic or genotypic typing methods are
available to the laboratory. These functions now encom-
pass all stages of outbreak investigations. There are two
different approaches to an investigation of infectious dis-
ease outbreaks: (i) to conduct extensive culture surveys to
identify the source of the outbreak (laboratory-based inves-
tigation) or (ii) to conduct an epidemiologic investigation
with subsequent epidemiology-directed environmental
or personnel cultures or assays (epidemiologic investiga-
tion with laboratory confirmation). Experience from CDC
suggests that the former “shot-gunning” approach creates
much superfluous work and may be counterproductive,
because risk factors or environmental reservoirs that are
epidemiologically relevant could potentially be missed
altogether, or the wrong source identified (92). Initial cul-
ture surveys of the environment or personnel without a
prior epidemiologic investigation may appear to identify or
“implicate” the causal agent or person, but also may repre-
sent secondary contamination or colonization rather than
the true source. This may result in erroneous recommen-
dations or interventions, or inappropriate actions against
staff members who are not in any way epidemiologically
associated with disease transmission. Other published data
from CDC suggest that an epidemiology-directed approach
is generally more accurate and less costly for identifying
the source and mode of transmission of outbreak patho-
gens (93,94).

In many CDC outbreak investigations, subsequent labo-
ratory studies have indeed confirmed the epidemiologic
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findings (93-95); moreover, there have been occasions
when the investigators of an outbreak have had to draw
conclusions solely on the epidemiologic findings without
laboratory confirmation, because relevant microbiologi-
cal specimens often are discarded before the decision to
conduct a formal investigation is made (74,75). Random
culture surveys of personnel, products, or the environ-
ment without a prior epidemiologic investigation may be
misdirected, expensive, unsustainable, or costly in terms
of human and laboratory resources and should not be per-
formed before comparative epidemiologic studies are com-
pleted.

Epidemiologic principles are particularly important
when addressing the issue of intrinsic microbial contami-
nation of a product within an industrial plant. Intrinsic con-
tamination of a normally sterile product may be detected
in-house through quality assurance surveillance, such as
end-product sampling, or it may manifest as a common-
source outbreak of local, national, or international propor-
tions (73). If a pharmaceutical product is suspected to be
associated with an infectious disease outbreak, integration
of epidemiology and microbiology remains vital to con-
ducting a successful outbreak investigation (the principles
have been described earlier). Such an approach has been
used to successfully investigate a nationwide outbreak of
sterile peritonitis due to intrinsic endotoxin contamination
of peritoneal dialysis solution from a single manufacturer,
infections among recipients of contaminated allograft
tissues, and fungal infection of saline-filled silicone breast
implants (83,96).

Epidemiologic methods are used to investigate and
relate causal factors to an outbreak and are essential for
understanding the mechanisms of infection acquisition
and transmission, determining risk factors, and directing
the application and practice of clinical microbiology meth-
ods. The information from epidemiologic and descriptive
studies may provide important clues regarding the causes
of or risk factors associated with infections, and may be
used to generate causal hypotheses.

To test a hypothesis, one may attempt to identify the
high-risk population and design appropriate microbiologic
studies and culture surveys. Thus, the laboratory service
must be able and prepared to collect relevant specimens
through liaison with the epidemiologist, culture or process
these specimens using reproducible, quality-controlled
methods, and disseminate the information back to other
outbreak coinvestigators in a timely manner.

In summary, the following issues must be considered
when interpreting environmental culture data: (a) sur-
faces by themselves do not transmit disease; transmission
from surfaces is more likely mediated by personnel who
might not have maintained scrupulous aseptic conditions
resulting in cross contamination of patient care items;
(b) for environmental sampling, there are no benchmarks
or standards to compare data generated from different cul-
ture methods; and (c) epidemiology is essential for inter-
preting environmental cultures—just because a pathogen
is isolated from an environmental culture does not neces-
sarily mean that there is a problem. The classic steps in the
recommended investigation of an epidemic are outlined in
Table 1-1.
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TABLE 1-1

Steps in Investigating an Epidemic

¢ Confirm the existence of an epidemic

e Establish a case definition that reflects time, place, and
person

e Ascertain cases and create a line listing

e Create an epidemic curve

e Determine the extent and characteristics of cases by
rapid survey

e Formulate a working hypothesis

e Test the hypothesis through epidemiologic studies

¢ Initiate appropriate microbiology or other laboratory
studies that are directed by the epidemiologic data

¢ Analyze all cases for interpretation

e Reassess hypothesis if not proven and initiate additional
studies where warranted

e Draw conclusions and inferences from investigation

e Communicate with relevant personnel and recommend
appropriate control and preventive measures (exit
interviews and preliminary report)

¢ Continue postoutbreak surveillance for new cases

e Reevaluate control measures

e Prepare a formal written report and disseminate findings
in a published manuscript

PREVENTION AND CONTROL

Measures for the prevention and control of communica-
ble diseases are directed at various links in the chain of
infection. These include interventions to (a) eliminate or
contain the reservoirs of infectious agents or curtail the
persistence (endemicity) of a microorganism in a specific
setting; (b) interrupt the transmission of infectious agents;
or (c) protect the host against infection and disease. This
approach calls for a detailed knowledge of the epidemi-
ology of infectious diseases in a variety of settings or
environments.

Modifying Environmental Reservoirs

Interventions chosen to modify a reservoir depend on
whether the reservoir is animate or inanimate. Quaran-
tine, the restriction of movement of individuals who have
been exposed to a potentially transmissible agent for the
entire incubation period of the infection, is now rarely used
to control human disease in healthcare settings and has
been replaced, largely, by active surveillance of exposed
individuals in acute care hospitals or long-term care facili-
ties. Animate reservoirs (i.e., carriers) include healthcare
personnel who are colonized with potential pathogens in
their nares or hands, relatives (or pets) who visit patients
in intensive care units, or patients known to be colonized
or infected with a particular healthcare pathogen and are
moved from one unit to another within a given institution,
or are transferred from one hospital to another. Since dis-
ease is often subclinical, it may be difficult to recognize and
separate silent carriers from susceptible persons.
Treatment of humans to eradicate their carriage
of transmissible pathogens that are typically found in
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healthcare settings has had variable success. For example,
treatment to eradicate VRE often yields mixed results
(97-99); whereas, there has been limited success in the
eradication of MRSA among hospital inpatients (100,701-
103) and in the community (104). There are no compelling
data that show an association between eradication of gram-
negative carriage among patients or healthcare personnel
and reduced rates of transmission. Thus, removal of an
individual healthcare worker, known to be a reservoir for a
potentially transmissible pathogen, from a healthcare set-
ting (e.g., bone marrow unit or surgical intensive care unit)
with susceptible patients might be the only control or pre-
ventive option. Human carriers of transmissible pathogens
may be isolated from susceptible individuals, who are not
colonized or infected, for the duration of their stay at the
institution or for as long as they harbor the microorganism
(105,106). Finally, ethical issues arise when the decision is
made to expose asymptomatic carriers or colonized but
well persons to medical therapy that might have serious
side effects, or render them susceptible to adverse events,
such as healthcare-associated infections, disease, or undue
morbidity.

In healthcare settings, reservoirs of a transmissible
pathogen might be limited solely to the inanimate environ-
ment. Thus, appropriate control measures might include
removing contaminated fruit, flowers, intravenous infu-
sates, hand lotions, toys, white coats, stethoscopes, or
other objects deemed to be potential reservoirs; appropri-
ate handling of sewage and medical waste per published
guidelines; ensuring that scrupulous aseptic techniques are
maintained during invasive procedures or line insertion;
or destroying the agent in the environmental niche (e.g.,
work surfaces in an intensive care unit, medicine prepara-
tion areas, or moisture reservoirs in mechanical ventila-
tors) by chemical or physical means. In some healthcare
settings, such as medical or intensive care units, microor-
ganisms, such as VRE or C. difficile, may remain endemic
or persistent despite identification and appropriate treat-
ment or elimination of reservoirs. Such persistence may
require periodic enhanced environmental cleaning of the
concerned unit to curtail the endemicity of the pathogen
(107). The importance of modifying environmental reser-
voirs for the control and prevention of infectious disease
is sustained by the fact that much of the reduction in dis-
ease and death from infectious diseases in the industrial-
ized world during the 20th century has been attributed to
purification of potable water by filtration and chlorination,
improvements in the cooking, processing, and inspection
of food, and advancements in housing, nutrition, and sani-
tary disposal of human waste (108).

Interrupting Transmission

Many of the features of interventions necessary for inter-
rupting the transmission of infection are identical to those
included in the interventions necessary for modifying inan-
imate environmental reservoirs discussed above. The most
important addition to these has been in the behavioral
changes necessary to support improvements in the area
of personal hygiene, specifically in the washing of hands
between tasks in the preparation of food, caring for chil-
dren, and caring for the sick (109,110,111). In the control
of healthcare-associated infections, the use of appropri-
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ate barriers, including the use of gloves, gowns, and eye
protection, has been emphasized to prevent the transmis-
sion of blood-borne pathogens (e.g., HIV and hepatitis B)
between patients and healthcare workers, as has the use of
high-filtration masks for protection from respiratory trans-
mission of influenza or tuberculosis (105,106). Although
one of the key measures for the prevention and control of
healthcare-associated infections remains the routine wash-
ing of hands before, between, and after patient contacts
in healthcare settings, compliance or adherence to hand
washing protocols among healthcare professionals—a
behavioral attribute—remains wanting (712); this is not
surprising since as far back as 1996, Goldmann et al. found
that National Guidelines seldom are studied thoroughly by
physicians, and, if they are read, they rarely are incorpo-
rated into everyday practice (46). Compounding the prob-
lem is the growing body of evidence that hand hygiene is
but one factor in the complex interplay of host, agent, and
the environment that facilitates transmission.

For a microorganism like VRE, transmission is enabled
by one or more of the following factors: (a) the degree of
hand hygiene among healthcare personnel; (b) the inherent
properties of the microorganism that enable it to remain
viable days to weeks on dry, inert environmental surfaces,
coats, or ties; (c) the proportion of patients in the unit of
concern who are colonized with VRE; (d) the proportion
of patients who are inherently susceptible to infection;
(e) selective pressure of vancomycin use in the unit; and
(f) adherence to prevention efforts among healthcare per-
sonnel. Given the above, it follows that complete adherence
to a strict hand hygiene policy alone will not necessarily
preclude intrahospital transmission of VRE.

One method commonly used to interrupt transmis-
sion of pathogens in healthcare settings is the isolation of
patients known to be colonized or infected with a particu-
lar pathogen in a separate area so as to reduce the prob-
ability of transmission of infection to other patients. This
method may include allocation of these cohorted patients
to specific healthcare workers to avoid transmission of the
pathogen by the healthcare workers themselves.

Protecting the Host

The risk of acquisition and transmission of infectious
diseases among patient populations in healthcare set-
tings is better characterized if the patients’ immune sta-
tus or immune response is known. Immunization is the
most effective method of individual and community pro-
tection against epidemic diseases, and can be active or
passive. Through active immunization, smallpox, one of
the major global communicable diseases, was eradicated
(113-115). Although polio has been eliminated from large
areas, including all of the Americas (80), and indigenous
transmission of wild poliovirus types 1 and 3 infection
has been interrupted in all but four countries worldwide
(Afghanistan, India, Nigeria, and Pakistan), there were still
1,655 cases reported in 2008 (116). The occurrences of
other childhood diseases have been substantially reduced,
including diphtheria, pertussis, tetanus, measles, mumps,
rubella, and infections of H. influenzae type B (36,117,118).
Since one of the main goals of epidemiology is to identify
subgroups in the patient population that are at high risk
for infection and disease, a knowledge of the vaccination
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status of patients is essential for the prevention of infection
or disease. Institutional immunization programs have been
recommended as part of the occupational health services
of healthcare facilities for some time, but compliance for
all healthcare workers has only recently come under man-
date. Evaluation of patients for immunization during hos-
pital admission is another program widely recommended
but incompletely implemented. The residual endemic
problems and periodic outbreaks of these vaccine-prevent-
able diseases in both populations at large and in healthcare
institutions have been largely the result of failure of the
delivery programs for the vaccines. These have been due
to poor funding, poor prioritization of the programs, the
lack of political will, and the lack of organization of the vac-
cine effort—not to failure of the vaccine to immunize (38).

Passive immunization with hyperimmune or stand-
ard immunoglobulins is another intervention valuable in
a small group of diseases, including certain genetic and
acquired immunodeficiency diseases, primary antibody-
deficiency disorders, hypogammaglobulinemia in chronic
lymphocytic leukemia, measles, hepatitis A, varicella-
zoster, hepatitis B, and HIV infections in children (36).
Hyperimmune globulin preparations are obtained from
blood plasma donor pools preselected for high antibody
content against a specific antigen (e.g., hepatitis B immune
globulin, varicella-zoster immune globulin, cytomegalo-
virus immune globulin, and respiratory syncytial virus
immune globulin). Although active searches have been car-
ried out for other kinds of immunomodulating agents (e.g.,
interferons and cytokines) and biologics that heighten
host immune function and protect the host from infection
or disease, there are no data that indicate such treatment
modalities play any significant role in the prevention and
control of healthcare-associated infections.

Administering antimicrobials to ensure the presence of
an anti-infective agent at the site of a potential infection is
a more recent addition to the control programs protecting
the host. The use of a single dose or short course of preop-
erative antimicrobials to reduce the probability of infection
with agents commonly seen following certain procedures
has become a standard part of surgical practice (119).

Profound cellular and humoral immunosuppression
may ensue in patients following chemotherapy or radio-
therapy of certain malignancies, or may be a consequence
of the primary disease process. Therapy-related immu-
nosuppression occurs during or following bone marrow
transplantation or may be a sequelae of therapeutic regi-
mens used to prevent rejection of transplanted organs. The
use of local and systemic anti-infectives in these patients
has either prevented infection or mitigated the duration
and severity of infection, leading to reduced morbidity
and mortality, and improved outcomes (120-123). The
use of preprocedure (e.g., surgery or dental) antimicro-
bial prophylaxis in individuals with a history of rheumatic
heart disease is also a standard recommendation to pre-
vent bacterial endocarditis (124-126). Unfortunately, one
of the side effects of repeated short courses of antimicro-
bials has been the appearance of significant resistance to
these agents among pathogens associated with healthcare-
associated infections (31,127,128). This problem has been
aggravated by overprescribing of antimicrobials for non-
bacterial infection by some practitioners, over-the-counter
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sale of antimicrobials in many parts of the world, and the
use of subtherapeutic doses of growth promoters in animal
husbandry in the United States and other countries (129-
131,132).

HEALTHCARE-ASSOCIATED INFECTIONS
AND INFECTIOUS DISEASES

Inherent in the measures for the prevention and control
of healthcare-associated infections is the ongoing educa-
tion of healthcare workers in infection control practices
and procedures through guidelines published by CDC
(133,134), and the implementation of surveillance meas-
ures to detect changes in the incidence or prevalence rates
of infections caused by microorganisms commonly associ-
ated with healthcare-associated infections. The acute care
hospital (inpatient, outpatient, and intensive care unit)
settings and long-term care and home healthcare facilities
provide special settings for the interaction of the agents of
infection and patients and healthcare workers. The ongo-
ing study of the basic epidemiologic features of agent-host
interactions in these environments has led to recommen-
dations for wide application of, and extensive testing of,
surveillance, prevention, and control programs, which
have proven highly successful. Descriptions of the special
features of the investigations and interventions of these
programs are the topics of the chapters to follow.

Despite falls in overall rates of healthcare-associated
infections involving the bloodstream, respiratory tract,
surgical wounds, and urinary tract, rates of infections
caused by antimicrobial-resistant pathogens have been
increasing across the United States. Thus, control of antimi-
crobial resistance in the 2000s remains inextricably linked
to the control of transmission of healthcare-associated,
antimicrobial-resistant pathogens and the infections they
cause. The seriousness of the problem was underscored in
an editorial by Muto, who made the point that “for as long
as CDC has measured the prevalence of hospital-acquired
infections caused by multidrug-resistant microorgan-
isms, it has been increasing” (135). The myriad of articles
in the medical literature has in effect helped explain this
failure since much of the data originated in facilities that
had implemented untried control programs or had already
instituted considerably ineffective programs.

Acute care hospital (inpatient, outpatient, and inten-
sive care unit) settings, free standing medical and surgical
centers, long-term care facilities, and the home provide
special settings for the interaction of the agents of infection
and hosts (i.e., patients, relatives, and healthcare workers
alike). The ongoing study of the basic epidemiologic fea-
tures of agent-host interactions in these environments has
led to evidence-based recommendations for healthcare-
associated infections surveillance, and prevention and
control programs, which have proved highly successful.
For example, the Society for Healthcare Epidemiology of
America (SHEA) has established evidence-based guidelines
to control the spread of MRSA and VRE in acute care set-
tings (136). The tenets of the SHEA guidelines are based on
identification and containment of spread through (a) active
surveillance cultures to identify the reservoir for spread;
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(b) routine hand hygiene; (c¢) barrier precautions for
patients known or suspected to be colonized or infected
with epidemiologically important antimicrobial-resistant
pathogens, such as MRSA or VRE; (d) implementation of
an antimicrobial stewardship program; and (e) decoloniza-
tion or suppression of colonized patients (136). Numerous
reports presented at the SHEA annual meetings over the
past 5 years have repeatedly shown control of endemic
or epidemic MRSA and VRE infections through implemen-
tation of the SHEA guidelines. There is now growing evi-
dence that active surveillance cultures do indeed reduce
the incidence rates of MRSA and VRE infections and that
programs described in the SHEA guidelines are effective
and cost-beneficial (137,138,139). Many other studies have
since established that identification of patients colonized
with MRSA or VRE on admission to hospital for critical care
may enhance implementation of interventions to decrease
infection (140).

Despite all of the resources put into surveillance
activities for healthcare-associated infections in facilities
throughout the nation, there remain several obstacles that
hinder progress in the control of these infections. These
include (a) substantial variation in surveillance activities
from one medical center to another and in the collection,
aggregation, and use of surveillance data; (b) lack of desig-
nated staff healthcare epidemiologists to proactively aggre-
gate, manage, and analyze surveillance data, and apply the
results effectively; (c) failure of healthcare facilities to use
effective control measures or inconsistent implementa-
tion of such measures (e.g., surveillance cultures not being
performed as recommended); (d) lack of commitment and
prescience among healthcare providers and administrative
personnel alike in appreciating the fact that the initial out-
lay of financial resources that is necessary for employing
healthcare epidemiologists and infection preventionists
and executing surveillance activities and preventive meas-
ures could actually result in improved patient outcomes
and substantial savings.

In conclusion, epidemiologic methods can enhance
and strengthen evidence-based infection prevention and
control through the design and conduct of studies to
ascertain risk factors for infection and disease, establish
the appropriateness of laboratory testing (e.g., the clinical
significance of positive blood cultures), or determine best
outcome correlates. In addition, familiarity with infectious
diseases epidemiology enables characterization of commu-
nity or healthcare-associated infections, the pathogens that
cause these infections and their respective antimicrobial
susceptibility profiles, and risk factors that cause (or are
associated with) infection. Such data allow cost-effective
patient care in hospitals with adequate resources, and
enable development of logical, evidence-based preventive
policies that could be applied to hospitals without sophis-
ticated epidemiologic or laboratory support. Finally, the
integration of epidemiologic and microbiologic principles
is necessary for the development of robust surveillance
systems for tracking emerging infections and antimicrobial
resistance, for the effective conduct of infection control
activities and outbreak investigations, and for informed
clinical and public health decision making, research, and
management practices.
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Modern Quantitative Epidemiology
in the Healthcare Setting

Jerome |. Tokars'

I often say that when you can measure what you are
speaking about, and express it in numbers, you know
something about it; but when you cannot express it in
numbers, your knowledge is of a meager and
unsatisfactory Rind; it may be the beginning of
knowledge, but you have scarcely, in your thoughts,
advanced to the stage of Science, whatever

the matter may be. Lord Kelvin

The job of the hospital epidemiologist is an intensely
political one, into which we can occasionally interject
some science. Jonathan Freeman

This chapter is about quantitative epidemiology, a term
without a formal definition. However, epidemiology can be
defined as “the study of the distribution and determinants
of health-related states or events in specified populations,
and the application of this study to control of health prob-
lems” (1). “Distribution” refers to rates of disease overall
and in various subgroups; for example, what percent of
patients having cardiac surgery develop a surgical site
infection? Assembling such rates requires an important
series of steps, including determining which diseases are
important, how they should be defined, and by what practi-
cal means they can be measured. “Study of ... determinants
of health-related states,” or risk factors for disease, is the
part of the definition closest to quantitative epidemiology.
For example, what determines whether one patient gets a
surgical site infection while another does not, or why the
infection rate is higher at one hospital than at another?
“Application of this study to control of health problems”
is the all-important final step, requiring wisdom, judgment,
and political savvy. Given the difficulty of this final step, we
should at least be sure that we have done the best possible
job at quantitative epidemiology, that is, of analyzing and
presenting the data needed for decision making.

In one sense, epidemiology is merely “quantified com-
mon sense.” For example, the simple observation that “our
infection rate is higher than theirs because our patients

'The findings and conclusions in this report are those of the author
and do not necessarily represent the official position of the Cent-
ers for Disease Control and Prevention.

are sicker than theirs” describes what epidemiologists call
confounding. Confounding bedevils a variety of activities
in healthcare epidemiology, including the comparisons of
disease rates among hospitals that underlie interhospital
comparisons (benchmarking) and quality assurance pro-
grams. Simply comparing crude infection or death rates
among hospitals, without accounting for factors such as
severity of illness, leads to obviously incorrect conclu-
sions. While the concept of confounding may be intui-
tive, there is considerable complexity in application of
the methods of quantitative epidemiology to deal with
confounding.

It is difficult to determine the boundary between quan-
titative epidemiology and a related discipline, statistics.
Many healthcare epidemiologists have taken introductory
statistics courses, but such entry-level courses are becom-
ing less and less adequate with each passing year. A study
of articles in a prominent medical journal showed substan-
tial increases in the use of advanced methods such as mul-
tiple regression (from 5% of articles in 1978-1979 to 51%
of articles in 2004-2005), survival methods (from 11% to
61%), and power analyses (from 3% to 39%) (2). In 2004 to
2005, 79% of the articles used methods beyond the scope
of introductory statistics courses. Greater knowledge of
quantitative epidemiology/statistics is needed both to
interpret the infection control literature and to practice
healthcare epidemiology.

HISTORY OF EPIDEMIOLOGY

A famous early example of applied epidemiology is the
work of Dr. John Snow, a physician in London during the
cholera epidemic of 1855 (3). At that time, the germ the-
ory of disease had not been accepted and the pathogen
causing cholera, Vibrio cholerae, was unknown. Whereas
the prevailing view during this period was that disease
was caused by a miasm or cloud, Snow inferred from epi-
demiologic evidence that cholera was a water-borne ill-
ness. He constructed a spot map of cholera cases and
noted a cluster of cases near a water pump on London’s
Broad Street, the so-called Broad Street pump. This early
use of a spot map to find the putative cause of an out-
break is an example of descriptive epidemiology. He also
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performed several analytic studies, noting that the rate
of cholera was higher for people who obtained water
from more polluted areas of the Thames. His well-known
intervention was to remove the handle from the Broad
Street pump, thereby preventing the use of this contami-
nated water, after which cases of cholera in the vicinity
were said to have decreased. This example illustrates
that epidemiologists can define the mechanism of dis-
ease spread and institute control measures before the
agent causing disease is discovered. More recent exam-
ples of this power of epidemiology include Legionnaires’
disease and human immunodeficiency virus disease; for
both diseases, the mechanism of spread and means of
prevention were inferred by epidemiologists before the
microbe was discovered in the laboratory.

DESCRIPTIVE VERSUS ANALYTIC
EPIDEMIOLOGY

In descriptive epidemiology, we describe characteristics of
the cases and generate hypotheses. The line list of cases,
case series, epidemic curves, and spot maps are examples.
In analytic epidemiology, we use comparison groups, cal-
culate statistics, and test hypotheses. Many outbreaks and
other problems in healthcare epidemiology can be solved by
thoughtful examination of descriptive data without the use
of analytic epidemiology. However, the increasingly com-
plex nature of healthcare and associated illness demands
that we have a firm grounding in analytic or quantitative
epidemiology, which is the main focus of this chapter.

MEASURES OF FREQUENCY

Proportions (synonyms are probability, risk, and percentage)
are the simplest way to represent how often something
occurs. A proportion is the ratio of a part to the whole; that
is, the numerator of the ratio is included in the denomina-
tor. The proportion with disease is the number of people
who get the disease divided by the total number at risk for
the disease; that is, proportion ill = number ill/(number ill +
number well). The probability of pulling an ace from a deck
of cards is 4/52 = 7.7%. Proportions can be represented by
a fraction (e.g., 0.077) or a percentage (e.g., 7.7%) and can
range from 0 to 1.0 or from 0% to 100%. Proportions cannot
be >1.0 or 100% since, using proportions, each entry in the
denominator can have at most one entry in the numera-
tor. A proportion is unitless, because the numerator and
denominator have the same units. The proportion is the
measure of frequency used in cohort studies and to calcu-
late the relative risk.

Odds represent the ratio of a part to the remainder
or the probability that an event will occur divided by the
probability that it will not occur. Unlike in proportions,
the numerator of the ratio is not included in the denomi-
nator. The odds of a disease occurring equal the number
of people with the disease divided by the number without
the disease; that is, odds of illness = number ill/number
well. The odds of pulling an ace from a deck of cards are

4/48 = 8.3%. Note that the odds of illness are always
higher than a corresponding proportion ill, because the
denominator is smaller for odds. Odds are unitless and
have bounds of zero to infinity. Odds are used in case-con-
trol studies and to calculate the odds ratio.

A rate, in contrast to proportions and odds, has
different units of measure in the numerator and denomi-
nator, as in 55 miles/hour or 20 healthcare-associated
infections/1,000 observed patient-days. A rate can have
any value from zero to infinity. Rates are used in incidence
density analyses.

Common Usage

The proportion ill, especially in outbreaks, is often called
an “attack rate,” although strictly speaking it is a misno-
mer to refer to a proportion as a rate. This chapter follows
common usage in using the following terms interchange-
ably with proportion ill: percent ill, attack rate, and rate of
illness.

Cumulative Incidence Versus Incidence Density
In a cumulative incidence study, time at risk is not
taken into account; the denominator is the total num-
ber of persons at risk, and the proportion with disease
(or proportion with potential risk factors for disease)
is calculated. The cohort and case-control studies pre-
sented in the following section are examples of cumula-
tive incidence. In an incidence density study, time at risk
is accounted for; the denominator is person-time at risk
and a rate of illness (e.g., infections per 1,000 patient-
days) is calculated. This type of study is considered later
in this chapter.

BASIC STUDY DESIGN

There are three types of analytic study: cohort, case—
control, and cross-sectional. The goal of analytic epide-
miologic studies is to discover a statistical association
between cases of disease and possible causes of disease,
called exposures. A first step in any such study is the care-
ful definition of terms used, especially defining what clini-
cal and laboratory characteristics are required to indicate
a case of disease.

The Cohort Study and Relative Risk

Prospective Cohort Study There are several subtypes
of cohort study, but all have certain common features
and are analyzed the same way. In the prospective cohort
study, we identify a group of subjects (e.g., persons or
patients) who do not have the disease of interest. Then, we
determine which subjects have some potential risk factor
(exposure) for disease. We follow the subjects forward in
time to see which subjects develop disease. The purpose
is to determine whether disease is more common in those
with the exposure (“exposed”) than in those without the
exposure (“nonexposed”). Those who develop disease are
called “cases,” and those who do not develop disease are
“noncases” or “controls.”
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A classic example of a prospective cohort study is
the Framingham study of cardiovascular disease, which
began in 1948 (3). Framingham is a city about 20 miles
from Boston with a population of about 300,000, which
was considered to be representative of the US popula-
tion. A random sample of 5,127 men and women, age
30 to 60 years and without evidence of cardiovascular
disease, was enrolled in 1948. At each subject’s enroll-
ment, researchers recorded gender and the presence or
absence of many exposures, including smoking, obesity,
high blood pressure, high cholesterol, low level of physi-
cal activity, and family history of cardiovascular disease.
This cohort was then followed forward in time by exam-
ining the subjects every 2 years and daily checking of
the only local hospital for admissions for cardiovascular
disease.

Note several features of this study. The study was truly
prospective in that it was started before the subjects devel-
oped disease. Subjects were followed over many years and
monitored to determine if disease occurred, that is, if they
became “cases.” This is an incidence study, in which only
new cases of disease were counted (because persons with
cardiovascular disease in 1948 were not eligible for enroll-
ment). In an incidence study, it is necessary to specify the
study period, that is, how long the subjects were allowed to
be at risk before we looked to see whether they had devel-
oped disease.

The Framingham study allowed investigators to
determine risk factors for a number of cardiovascular
disease outcomes, such as anginal chest pain, myocar-
dial infarction (heart attack), death due to myocardial
infarction, and stroke. One finding of this study was that
smokers had a higher rate of myocardial infarction than
nonsmokers. An advantage of this study design is that
it is very flexible, in that the effect of many different
exposures on many different outcome variables can be
determined. The disadvantages are the time, effort, and
cost required.

Relative Risk Performing hospital surveillance for sur-
gical site infections (SSIs) is an example of a prospective
cohort study. Assume that during one year at hospital X,
100 patients had a certain operative procedure. Of these, 40
were wound class 2 to 3 and 60 were class 0 to 1. Note that
wound class was determined before it was known which
patients were going to develop SSI; this makes it a prospec-
tive cohort study. A subgroup or sample of patients was
not selected; that is, the entire group was studied. When
the patients were followed forward in time, the following
was found: of 40 patients with class 2 to 3 procedures, 10
developed SSI; of 60 patients with class 0 to 1 procedures,
3 developed SSI.

Cohort study data are commonly presented in a 2 x 2
table format. The general form of the 2 x 2 table is shown in
Table 2-1, and the 2 x 2 table for this SSI example is shown
below. Notice that the columns denote whether disease
(8SI) was present and the rows whether exposure (wound
class 2-3) was present. In this example, exposed means
being class 2 to 3 and nonexposed means being class 0 to
1. In the 2 x 2 table below, the total number of cases is 13,
total noncases is 87, total exposed is 40, total nonexposed
is 60, and total patients is 100.

APPLIED EPIDEMIOLOGY AND BIOSTATISTICS

TABLE 2-1
The 2 x 2 Table and Associated Formulas
Exposure Disease
Yes No
Yes a b a+b=h
No c d c+d=h,
at+c=v, b+d=v, N
Exposed cases =a
Exposed noncases = b
Nonexposed cases = ¢
Nonexposed noncases = d
Total cases=a +c=v,
Total noncases =b +d =0,
Total exposed =a + b =h,
Total nonexposed =c +d = h,
Total subjects=a+b+c+d=n
Relative risk = % ill exposed _a / (a+b)
% illnonexposed ¢/ (c+d)
d
Odds ratio = @
bc
Expected values (where “ea” denotes “the expected value of
cell @”)
ea=hy /n
eb=huv,/n
ec=h, /n
ed=h,,/n
. (a- ea)2 b- eb)2 (c— et:)2 (d- edz)
chi - square = + + +

ea eb ec ed
Alternate “calculator” formula: chi-square = (ad - bc)*(n - 1)/(a + b)

(c+d)(a+c)b+d

Disease: Surgical Site Infection

Yes No
Exposure Class 2-3 10 30 40
Class 0-1 3 57 60
13 87 100

In the exposed group, the proportion ill = 10/40 = 0.25 or
25%. In the nonexposed group, the proportion ill=3/60=0.05
or 5%. We compare the frequency of disease in the exposed
versus nonexposed groups by calculating the relative risk
(often called risk ratio). The relative risk of 5.0 means that
patients in wound class 2 to 3 were five times more likely to
develop SSI than were patients in wound class 0 to 1.

Relative risk = __% ill exposed
% ill nonexposed
_ % ill class 2—-3
~ %ill class 0—1
_a/(a+b) 25

c/(c+d) 5

5.0

Retrospective Cohort Study A retrospective cohort
study is started after disease has developed. A study period
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(start date and stop date) is decided upon. Using patient
records, we look back in time to identify a group (cohort)
of subjects that did not have the disease at the start time.
We then use patient records to determine whether each
cohort member had a certain exposure. Again using patient
records, we determine which cohort members developed
disease during the study period. Finally, we calculate the
percent with disease in those with the exposure and those
without the exposure and compare the two.

The following is an example of a retrospective cohort
study based on the SSI example above. Hospital X noted
that the overall SSI rate of 13% was higher than in previ-
ous years. We want to determine whether a new surgeon
(surgeon A) was responsible for the increase. The prospec-
tive surveillance system did not routinely record the sur-
geon performing each procedure, so we pull the records
from each procedure and record whether or not surgeon
A was involved. We find that surgeon A operated on 20
patients,3 of whom later developed SSI. Among the 80 other
patients, 10 developed SSI. The percent ill in the exposed
group (surgeon A) = 3/20 = 15%. The percent ill for other
surgeons (nonexposed) = 10/80 = 12.5%. The relative risk
=15%/12.5% =1.2.

The interpretation is that patients operated on by sur-
geon A were 1.2 times (or 20%) more likely to develop dis-
ease than patients operated on by other surgeons. Factors
to consider in deciding whether surgeon A is truly a cause of
the problem are presented below (see Interpretation of Data,
Including Statistical Significance and Causal Inference).

To review, this was a retrospective cohort study,
since data on the exposure were collected from patient
records after we knew which patients had developed SSI.
The retrospective nature of data collection is sometimes
irrelevant and sometimes a problem. For certain types of
data, such as length of hospital stay or death, retrospec-
tive data collection will be as good as prospective. How-
ever, determining other factors, such as which ancillary
personnel treated a given patient, may be difficult to do
after the fact, and retrospective studies using such data
may be less valid.

Observational Versus Experimental Studies Epidemi-
ologic studies are generally observational; that is, the inves-
tigator collects data but does not intervene in patient care.
Patients, physicians, nurses, and random processes all play
a part in determining exposures in the hospital. The goal of
observational studies is to simulate the results of an experi-
mental study (see Quasi-Experimental Studies)

In an experimental study, a group (cohort) of subjects
is identified and the investigator assigns some of them to
receive treatment A (exposed) and the remainder to receive
an alternate treatment B (nonexposed). The patients are
followed forward in time, the cases of disease are recorded,
and the rates of illness and relative risk are calculated as
usual. The experimental study is a special type of a pro-
spective cohort study where the two exposure groups are
assigned by the investigator.

Cohort Studies With Subjects Selected Based on
Exposure In this type of cohort study, subjects are
selected based on exposure. We select two subgroups: one

that is exposed and one that is nonexposed. Both groups
are followed forward in time to see how many develop
disease. Consider the SSI example and surgeon A above. We
study all 20 patients operated on by surgeon A (exposed);
of the 80 patients operated on by other surgeons, we ran-
domly select 40 (nonexposed). Thus, only 60 patients of
the original group of 100 are included in this study:.

Note that this is a type of cohort study, not a case—control
study. In a case—control study, the subjects are chosen based
on whether or not they have disease. In this study, subjects
were chosen based on whether or not they had exposure.

The disadvantage of this type of cohort study, where
the subjects are selected based on exposure, is that only
one exposure (i.e., the exposure that you selected subjects
on) can be studied. However, this type of study is very
useful for studying an uncommon exposure. In the SSI
surveillance example used above, consider the situation if
there had been 500 surgical procedures, and surgeon A had
performed only 20 of them. If you performed a cohort study
of the entire group, you would have to review 500 charts,
which would waste time and effort. Instead, you could per-
form a cohort study of the 20 procedures performed by sur-
geon A (exposed), and 40 randomly selected procedures
performed by other surgeons (nonexposed). The second
alternative would be much more efficient.

Cohort Studies—Summary Cohort studies can be
prospective or retrospective, observational or experimen-
tal. They usually include a whole group of subjects, but
studying two subgroups selected based on exposure is also
possible. The 2 x 2 table layout and calculations are the
same for all types of cohort studies. All have in common
that subjects are chosen without regard to whether they
develop disease.

The Case—Control Study and Odds Ratio

In a case—control study, we choose subjects for study based
on whether they have disease. Since we have to know
which subjects developed disease before we select them,
case—control studies are always retrospective. We usually
study those with disease (cases) and choose a sample of
those without disease (controls). We usually study one
to four controls per case. The more controls, the greater
the chance of finding statistically significant results. How-
ever, there is little additional benefit from studying more
than four controls per case. Controls are usually randomly
selected from subjects present during the study period
who did not have disease.

Example: Case-Control Study of Surgical Site
Infections This is the same example presented in the
section on cohort study and relative risk. At hospital X,
100 patients had a certain operative procedure, 40 class
2 to 3 (exposed) and 60 class 0 to 1 (nonexposed), and
13 developed SSI. To perform a case-control study, we
select the 13 patients with SSI (cases) and also study 26
patients who had surgical procedures but did not have SSI
(controls). We studied two controls per case, but could
have studied fewer or more controls. The controls were
randomly chosen from all patients who had the surgical
procedure under study but did not develop SSI. From their
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medical records, we find which of the subjects had class
2 to 3 procedures and which had class 0 to 1 procedures.
Our data showed that, of 13 cases, 10 had class 2 to 3
procedures. Of 26 noncases, 9 had class 2 to 3 procedures.
The 2 x 2 table for this example is as follows:

Disease: Surgical Site Infection

Yes No
Exposure Class 2-3 10 9
Class 0-1 3 15

13 26 39

In a case—control study, we cannot determine the per-
cent ill in the exposed or nonexposed groups, or the rela-
tive risk. In this example, note that the percent ill among
class 2 to 3 is NOT = 10/(10 + 9) = 52.6%. However, we can
validly calculate the percent of cases that were exposed,
10/13=76.9%,and the percent of noncasesthat wereexposed,
9/26 = 34.6%. Note that the cases were much more likely
to have the exposure than were the controls. Most impor-
tantly, we can calculate the odds ratio (also called the rela-
tive odds; Table 2-1) as follows:

ad 10x15 150 _

Odds ratio=—= =—=56
bc  9x3 27

We can interpret the odds ratio as an estimate of the rel-
ative risk. Using the case-control method, we estimated that
patients in class 2 to 3 were 5.6 times more likely to develop
SSI than were patients in class 0 to 1. Note that the odds
ratio is similar to, but slightly higher than, the relative risk
(5.0) we calculated previously. If the frequency of disease
is not too high, that is, is less than approximately 10%, the
odds ratio is a good approximation of the relative risk.

The meanings of the letters (i.e., a, b, ¢, and d) used to
represent the 2 x 2 table cells are different in cohort versus
case—control studies (Table 2-1). For example, in a cohort
study, a denotes the number of cases of disease among
exposed persons; in a case—control study, a denotes the
number exposed among a group of cases. Although this
distinction may not be clear to the novice, it will suffice to
keep in mind that in a case-control study, it is not valid to
calculate percent ill or relative risk, but it is valid to calcu-
late an odds ratio.

A more in-depth explanation of the odds ratio is as
follows. In a case-control study, we actually measure the
odds of exposure among those with disease and the odds
of exposure among those without disease. The ratio of
these two odds is the exposure odds ratio; if equal to 2.0,
this would be interpreted as “the odds of exposure are
twice as high in those with disease versus those without
disease.” However, the exposure odds ratio is not a very
useful quantity. Fortunately, it can be proven mathemati-
cally that the exposure odds ratio equals the disease odds
ratio. Therefore, using our example of 2.0, we can say that
the odds of disease are twice as high in those exposed
versus those not exposed, which is closer to being use-
ful. Finally, we use the odds ratio as an approximation of
the relative risk (where the frequency of disease is not too
high) and say simply that those with exposure are twice as
likely to get disease.

APPLIED EPIDEMIOLOGY AND BIOSTATISTICS

Selection of Controls Selection of controls is the critical
design issue for a case—control study. Controls should rep-
resent the source population from which the cases came;
represent persons who, if they had developed disease,
would have been a case in the study; and be selected inde-
pendently of exposure (4). It is always appropriate to seek
advice when selecting controls, and may be worthwhile to
select two control groups to compare the results obtained
with each.

An example of incorrect selection of controls is pro-
vided by a case—control study of coffee and pancreatic can-
cer (3,5). The cases were patients with pancreatic cancer,
and controls were selected from other inpatients admitted
by the cases’ physicians but without pancreatic cancer.
The finding was that cases were more likely to have had
the exposure (coffee drinking) than the controls, which
translated into a significant association between coffee
drinking and pancreatic cancer. The problem was that the
controls were not selected from the source population of
the cases (cases did not arise from hospital inpatients)
and thus were not representative of noncases. The physi-
cians admitting patients with cancer of the pancreas were
likely to admit other patients with gastrointestinal illness;
these control patients were less likely to be coffee drink-
ers than the general population, possibly because they had
diseases that prompted them to avoid coffee. A better con-
trol group might have been healthy persons of similar age
group to the cases.

More contemporary examples of problematic control
selection are studies of the association between vanco-
mycin receipt and vancomycin resistance (6). Cases are
often hospitalized patients who are culture positive for
vancomycin-resistant enterococci. Controls have often
been selected from patients who were culture positive
for vancomycin-sensitive enterococci. Using this control
group, case-patients will be more likely to have received
vancomycin than the controls, resulting in a significant
association and elevated odds ratio. The problem is that
controls were not representative of the source population
and were less likely to have received vancomycin than
other patients, since vancomycin would have suppressed
or eliminated vancomycin-sensitive microorganisms.
Better control groups would be hospital patients similar in
age and severity of illness to the cases.

A potential problem is that hospital patients without
a positive culture may include some patients who had the
microorganism but were not cultured. Inclusion of these
patients as controls would bias the odds ratio to 1.0 (null
result). An alternative method is to limit controls to those
with at least one clinical culture performed. However,
this may not be preferable since it results in selection of
sicker controls (“severity of illness bias”) and also biases
the odds ratio toward 1.0 (7). Another way to look at this
issue of potential “contamination” of the control group
with unrecognized cases is as follows: in a study design
called the case-cohort study, cases are compared with sub-
jects chosen from all patients (i.e., from both cases and
noncases); then, the ad/bc statistic equals the relative risk
rather than the odds ratio; therefore, inadvertent inclusion
of noncases in the control group when performing a case—
control study may “bias” the odds ratio toward the relative
risk and thus be advantageous.
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Comparison of Cohort Versus Case-Control
Studies

Cohort studies may be prospective or retrospective, but
case—control studies are always retrospective. A major
advantage of cohort studies is that we can calculate the
percent ill and the relative risk. Cohort studies are less
subject to bias than case-control studies. The potential
disadvantages of cohort studies are that they are more
time-consuming and expensive and may require study of
a large group to collect information on a small number
of cases.

Prospective cohort studies are the premier type of
observational study. They provide the strongest evidence;
are less subject to bias in collecting exposure data, since
exposure is recorded before the subjects develop disease;
and are flexible in that it is possible to study many expo-
sures and diseases. The disadvantage is that it may be
necessary to follow subjects over a long period of time to
determine whether they develop disease.

The advantages of the case-control study are that
we can determine risk factors while studying a relatively
small group of patients; we can study as many risk factors
as desired; and case—control studies are usually quicker,
easier, and cheaper than cohort studies. The disadvan-
tages are that the percent ill and relative risk are not deter-
mined; only one disease can be studied at a time; and the
selection of controls can be subtle and introduces the
chance of error. Deciding which is the most appropriate
control group for a particular study is a matter of opin-
ion about which even well-trained epidemiologists may
disagree.

Cross-Sectional or Prevalence Study

A third type of study (besides cohort and case-control)
includes only subjects who are present in a locality at one
point in time. Exposure and disease are ascertained at
the same time. Depending on the way the subjects were
selected, a cross-sectional study may be analyzed as a
cohort study or a case-control study.

A cross-sectional study is clearly not an incidence
study, which would include as cases only those free of dis-
ease at the start of the study and who develop disease dur-
ing the study period. However, if an entire group present
at one point in time is studied, the results can be analyzed
in a 2 x 2 table similar to that used for cohort studies. The
formula used to calculate a relative risk in a cohort study
would yield a prevalence ratio in a cross-sectional study.
If the group present at one point in time is sampled as in a
case—control study (i.e., the cases and a random selection
of noncases are studied), then the odds ratio formula could
be used to calculate a prevalence odds ratio.

Incidence Versus Prevalence

Incidence includes only new cases of disease with onset
during a study period; the denominator is the number of
subjects without disease at the beginning of the study
period. Incidence measures the rate at which people with-
out the disease develop the disease during a specified
period of time; it is used to study disease etiology (risk).
Prevalence includes both new and old cases that are
present at one time and place, measuring the proportion of

people who are ill. The commonest measure of prevalence
is point prevalence, which is the proportion of individuals
who are ill at one point in time. Point prevalence is a unit-
less proportion. A different measure of prevalence, period
prevalence, is the proportion of persons present during
a time period with disease. Period prevalence has been
criticized as an undefined mixture of both prevalent and
incident cases without quantitative use, but is occasion-
ally seen.

Prevalence studies are the ideal way to measure dis-
ease burden and plan for needed resources. For example,
if we wanted to know how many isolation rooms would
be needed for patients with resistant microorganisms, we
would want to know average prevalence, that is, the total
number of patients with recognized drug-resistant micro-
organisms of either new or old onset in the hospital at any
given time.

Prevalence can also be used as a simple, quick, and
dirty way to measure disease frequency and risk factors,
but such estimates may be biased by length of stay. It is
often said that prevalence equals incidence times duration.
That is, prevalence is higher if either incidence is higher
or if the duration of the illness is longer. In hospital stud-
ies, prevalence is greatly influenced by length of stay and
mortality. For example, assuming that ascertainment of
vancomycin-resistant enterococci is stable, the prevalence
of vancomycin-resistant enterococci in a hospital may
decrease because of an effective prevention program, or
because patients with this microorganism are being dis-
charged sooner or dying more commonly than had been
the case previously.

Point prevalence and incidence density are mathemati-
cally linked; in a steady-state or dynamic population, one
can be derived from the other. Prevalence can be derived
from incidence density and distributions of durations of
disease, and incidence density may be derived from prev-
alence and distributions of durations to date of disease
(8-11).

INTERPRETATION OF DATA, INCLUDING
STATISTICAL SIGNIFICANCE AND
CAUSAL INFERENCE

Measures of Size of Effect
and their Interpretation

The relative risk and the odds ratio measure the size of
effect, that is, the magnitude of the association between
an exposure and a disease. A relative risk of 1.3 shows a
modest association, whereas a value of 20 shows a large
association. In general, odds ratios are interpreted in the
same manner as relative risks.

Because the relative risk = percent ill exposed/percent
ill nonexposed, the relative risk can fall into three catego-
ries. First, if the two percents are approximately equal, the
relative risk is approximately 1.0; this is a null result show-
ing no association between exposure and disease. Second,
if the percent ill is higher in the exposed group, the relative
risk is >1.0; exposure is apparently associated with disease,
is a risk factor for disease, and may be a cause of disease.
Third, if the percent ill is higher in those without exposure,
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the relative risk is <1.0; exposure is again apparently
associated with disease, but in this instance the exposure
prevents disease. An example of a preventive exposure is
vaccine use; persons who are “exposed” to the vaccine
have a lower rate of disease than those not exposed, lead-
ing to a relative risk <1.0. Interpretation of odds ratios as
equal to, greater than, or less than 1.0 is similar. To intel-
ligently interpret relative risks and odds ratios, we must in
addition understand statistical significance and the distinc-
tion between association and causation (presented below).

Relative risks can be interpreted as a percent increase
or decrease. For example, a relative risk of 1.5 could be
interpreted in two ways: disease is 1.5 times more likely in
exposed than in nonexposed, or disease is 50% more likely
in exposed than in nonexposed. Similarly, a protective rela-
tive risk of 0.6 could be interpreted in two ways: illness was
0.6 times as likely in exposed than in nonexposed, or illness
was 40% less likely in the exposed group.

Statistical Significance and p Values

For a given group and time period, an association between
exposure and disease might occur due to chance alone. For
example, suppose that over many years the rate of SSI at
hospital A is the same as that of other hospitals. However,
during a given quarter, the rate at hospital A may be higher
or lower than average by chance alone. To tell us the prob-
ability that the SSI rate at hospital A differed from the rate
at other hospitals due to chance alone, we commonly use
two measures of statistical significance, the p value and the
confidence interval.

The p value measures the probability that a given
result, or one more extreme, could have happened by
chance alone if there was no association between exposure
and diseases. Because computer packages -calculate
p values automatically, it is more important to know how
to interpret than to calculate them. P values range from
>0 to 1.0. By convention, a p value <.05 indicates statisti-
cal significance. This means that there is a <5% or <1/20
chance that the result we found (or one more extreme)
could have occurred by chance alone; exposure is associ-
ated with disease. Another way of stating this is that we are
95% certain that this observed difference did not arise by
chance alone. If the p value is >.05, the result is not consid-
ered statistically significant and could well have happened
by chance alone; we do not have evidence that exposure is
associated with disease.

The .05 cutoff was not chosen for any particular rea-
son but now is very commonly used. There is not a mean-
ingful difference between p values of .04 and .06; although
the latter would not usually be considered statistically
significant, in fact there is only a 6% chance that such a
result could have occurred by chance alone. The adoption
of the arbitrary .05 standard has its unfortunate aspects
and is subject to interpretation after considering all of the
sources of bias described below. Some published manu-
scripts describe interesting or important studies where the
p value did not reach .05, thus allowing readers to make
their own determinations of biologic importance.

Small epidemics, or epidemics that are stopped before
there are sufficient cases to demonstrate statistical signifi-
cance at the .05 level, may be biologically very important,
so epidemiologists who work with observational data in
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hospitals should not consider statistical p values to be of
primary interest. Biologic importance and size of effect are
much more compelling than p values in the face of an ongo-
ing problem in a hospital.

In biostatistical terms, significance testing can be
viewed as follows. We assume the null hypothesis that
there is no true difference in rate of illness between the
exposed and nonexposed groups. We then compute the
p value, that is, probability of the results (or results more
extreme) under the null hypothesis. If the p value is low,
then apparently the null hypothesis was wrong, and we
reject the null hypothesis and embrace the alternative
hypothesis, namely, that there is a true difference between
exposed and nonexposed (see Chapter 3).

Type | Versus Type Il Error The p value required for sta-
tistical significance is commonly called the chance of type |
error. This means that if we conclude that hospital A has a
high (or low) rate of illness based on a p value of .05, there
is a 5% chance that we are drawing this conclusion in error.
The type I error then indicates the chance of concluding
that a difference in rates exists when in fact there is no
true difference. Type Il error measures the opposite prob-
lem—that there really is a difference between the two rates
but we erroneously conclude that they are the same. The
power of a study (discussed below) = 1—the probability of
type Il error.

Methods of Calculating p Values P values for 2 x 2
tables may be calculated by the chi-square or Fisher exact
methods. The chi-square p value is valid when an expected
value (Table 2-1) is not <5; if an expected value is <5, the
Fisher exact results should be used. Computer packages
commonly calculate expected values and print out a sug-
gestion to use the Fisher exact p value if appropriate. In
addition to a simple or uncorrected chi-square value,
computer packages may compute a continuity corrected
(or Yates corrected) value. The formula for continuity cor-
rection involves subtracting 0.5 from each cell in the 2 x 2
table. There are usually not great differences among these
chi-square values, and many authorities suggest using the
simple or uncorrected value.

The calculation of chi-square value does not differ
depending on whether data are from a cohort, case—con-
trol, or cross-sectional study. However, the computation
of chi-square value is different for incidence density data.
Calculation of chi-square value is shown in Table 2-1 and
Question 3 in Appendix 1 at the end of this chapter. Later
in this chapter we suggest some shareware programs that
perform these calculations. When one has the value for
chi-square, one can determine the p value by looking it up
in a table or by using a statistical program. In Excel, the
CHIDIST function calculates the p value for a given chi-
square value and number of degrees of freedom.

P values may be one-tailed or two-tailed. Two-tailed p
values are usually twice as great as one-tailed values. A
two-tailed p value assumes that the rate in the exposed
group could have been either higher or lower than in
the unexposed group due to chance alone. A one-tailed
value recognizes only one of these two possibilities. For
example, suppose that a study showed rates of illness sig-
nificantly lower among those exposed to a putative toxin
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than among those not exposed; if the intent had been to
conclude that the “toxin” might actually be protective,
we should use a two-tailed test; however, if the intent had
been to consider such a finding to be spurious and prob-
ably due to chance alone and conclude that the toxin has
no effect, then we should use a one-tailed test. Although
there is no uniform agreement as to whether one- or two-
tailed results should be used, the majority of authors use
two-tailed p values. This suggests that, for uniformity and
ease of comparison among studies, two-tailed p values
should be the standard.

One-tailed tests are standard for noninferiority studies,
which are becoming more common in the literature. An
example is a trial of whether hepatitis A vaccine is infe-
rior to the standard method, immune globulin, for pos-
texposure prophylaxis (12). Hepatitis rates were 4.4%
among those vaccinated and 3.3% among those receiving
immune globulin (relative risk = 1.35, two-tailed confidence
interval = 0.7-2.67, one-tailed upper confidence limit =
2.40). Since the one-tailed upper confidence limit did not
overlap a predetermined relative risk of 3.0, the authors
concluded that the vaccine was noninferior. If the rate of
hepatitis A had been lower among those receiving vaccine
than immune globulin, the authors would have dismissed
the finding and not concluded that the vaccine was better.
Given this intent, a one-tailed test was appropriate for this
study, as it is for other noninferiority trials.

Confidence Intervals

The second way to judge statistical significance is the
confidence interval for a relative risk or odds ratio. The
confidence interval combines the concepts of size of
effect (relative risk) and strength of association (p value).
A 95% confidence interval means that, roughly speaking,
we are 95% sure that the true relative risk lies between
the upper and lower confidence interval limits. For exam-
ple, assume that a study showed a relative risk of 5.0 with
a 95% confidence interval of 1.47 to 17.05. Our best guess
is that the relative risk is 5.0, which seems quite high,
but we are 95% sure that it lies between 1.47 and 17.05.
This is much more informative than simply reporting the
probability of our results under the null hypothesis (p
value). An additional benefit of the confidence interval is
humility; a wide interval points out the uncertainty in our
results.

If a 95% confidence interval does not cross 1.0, the
result is statistically significant at the .05 level. Remem-
bering the formula for the relative risk, a relative risk >1.0
with a 95% confidence interval excluding 1.0 means that
we are 95% sure that the rate of illness in the exposed
group is greater than the rate of illness in the nonex-
posed group.

Causal Inference: Association Versus Causation

A statistical association between an exposure and a dis-
ease does not necessarily mean that the exposure caused
the disease. Sir Bradford Hill first described a set of logical
criteria by which associations could be judged for potential
causality. Fulfillment of Hill’s criteria does not guarantee
that an association is causal, but failure to meet these cri-
teria generally excludes the possibility of causality. These

criteria have changed somewhat over time, but here is a
version appropriate for healthcare epidemiology:

1. Size of effect can be estimated by the relative risk. Large
effects are more likely to be causal than small effects.
The magnitude of a credible relative risk must depend
on the magnitude of the potential sources of bias. Gen-
erally, a relative risk >2.0 or <0.5 in a well-done study is
difficult to ignore.

2. Strength of association can be measured by the p value.
A relatively weak association can more easily be the
result of random or systematic error. A p value near
.05 would be considered a weak association. The same
information is better presented by the statement that a
relative risk 95% confidence bound near 1.0 would be
evidence of a weak association.

3. Consistency: A particular effect should be reproducible
in different populations and settings.

4. Temporality: The cause must precede the effect.

5. Biologic gradient: There should be a dose-response
effect. More exposure should lead to more outcome.

6. Plausibility of the biologic model: There should be a
reasonable biologic model to explain the apparent asso-
ciation. This includes Hill’s criteria of coherence, experi-
mental evidence, and analogy.

ERRORS IN EPIDEMIOLOGIC STUDIES

Epidemiologic studies, even observational studies, involve
people and are usually expensive. Therefore, the practical
goal is to design a study that requires the least resources
yet will provide a good-enough answer to a question. Since
the perfect epidemiologic study will never be done, every
epidemiologist has to be an expert on sources of error in
measurement. For every question or every study, one must
review the potential sources of error, estimate their likely
direction and magnitude, and then decide what overall effect
these distortions might have on the result of the study:.

It is worthwhile to distinguish random variation, ran-
dom error, and systematic error. Random variation is the
statistical phenomenon of variability due to chance alone,
and is sometimes called background or noise. If we were
measuring SSIs, the true underlying SSI rate would vary
each month according to many factors, including the mix
of surgeons and patients involved; assuming hypotheti-
cally that these factors could be held stable, the SSI rate
would still vary each month because of chance alone
(i.e., random variation). On the other hand, random and
systematic errors are produced by inaccuracies in finding
or recording data. Random error would occur if we incor-
rectly measure the SSI rate to be higher than it actually is
during some months and lower than it actually is in other
months; over many months, these random errors in meas-
urement balance each other and the average value would
be correct. Systematic error would occur if we consistently
measured the SSI rate as higher or lower than the true rate,
and an average over many months would be wrong; sys-
tematic error is also called bias. We define validity as get-
ting the right answer, or alternately as a lack of bias.

A related concept is precision, which may be function-
ally defined as the width of the confidence interval. A narrow
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confidence interval indicates high precision; that is, we are
confident that the true value is within a narrow range. A con-
fidence interval is narrower when both random variation and
random error are low and vice versa. A larger sample size
leads to a narrower confidence interval and greater preci-
sion. Precision may also be improved by modifying the study
design to increase the statistical efficiency by which informa-
tion is obtained from a given number of study subjects.

Selection Bias or Berkson'’s Bias

Selection bias occurs when inappropriate subjects are cho-
sen for a study. An example is a study of mortality rates in
patients with versus without bacteremia. The problem is
that blood cultures are selectively obtained from patients
who appear septic, and thus mildly ill patients who may
have unrecognized bacteremia are not included as cases.
Therefore, cases are not representative of all patients with
bacteremia. Including only the sicker cases leads to an
overestimate of the mortality associated with bacteremia.
Other examples of selection bias are given in the section
on selection of controls for case-control study. Selection
bias cannot be corrected by data analysis techniques. In
traditional surveillance, however, where no selection of
subjects occurs, selection bias is not usually a problem.

Misclassification or Information Bias

After subjects are chosen, errors in classification of
exposure or outcome are called misclassification. For exam-
ple, suppose that one is comparing postsurgical infections
between thoracic and general surgeons. In this hypo-
thetical hospital, the thoracic surgeons do routine urine
cultures for all patients with urinary catheters, sputum cul-
tures for all intubated patients, and vascular catheter tip
cultures when catheters are removed. However, the general
surgeons obtain cultures only when they feel it is neces-
sary. A comparison of infection rates shows higher infec-
tion rates for the thoracic surgeons when all that has really
happened is that infection status has been misclassified.

Misclassification may be differential or nondifferential.
Differential misclassification means that, in a case—control
study, exposure is incorrectly determined to a differing
extent among those with versus without disease or, in a
cohort study, that disease is incorrectly determined to a
differing extent among those with versus without exposure.
Differential misclassification may bias the calculated rela-
tive risk away from the null value of 1.0, making the relative
risk either falsely high (for risk factors with relative risk
>1.0) or falsely low (for protective factors with relative risk
<1.0). Conversely, nondifferential misclassification would
mean that exposure was recorded incorrectly to a similar
extent for those with and without disease, or disease was
recorded incorrectly to a similar extent in those with and
without exposure. This type of misclassification biases the
relative risk toward the null value of 1.0.

Note that mere low sensitivity does not mean that data
are not useful. The reliability of data primarily depends
on how consistent the sensitivity remains in the data col-
lection. National data on sexually transmitted diseases
and food-borne illnesses such as salmonella gastroenteri-
tis have a consistent sensitivity of around 0.01 or 1%, but
these data remain useful because the sensitivity has been
relatively constant at that level over time, so that secular
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increases or decreases are evident. Data with higher lev-
els of sensitivity but greater variability are actually less
reliable in making valid comparisons. Benchmarking
comparisons among facilities should be attempted only
when a practitioner has some measure of the comparative
sensitivities of data from different populations.

A Broader View of Bias

Bias can be more generally defined as a systematic devia-
tion from the truth: any trend in the collection, analysis,
interpretation, publication, or review of data that can lead
to conclusions that are systematically different from the
truth (13). In the analysis phase of a study, if one has a
strong preconceived idea of what the answer should be,
then a biased analysis and interpretation of the data may
result. If one keeps analyzing and reanalyzing data with a
view to finding something statistically significant to pub-
lish, eventually a satisfactory result will be found. This
has been expressed as “If you torture data enough, it will
confess to anything.” Publication bias results when stud-
ies that show a statistically significant difference between
study groups are published, whereas other studies of the
same topic that did not show such a difference remain
unpublished.

Inaccuracy of Hospital Surveillance

Errors in routine hospital surveillance for healthcare-
associated infections could result in either reporting of
spurious episodes of infection or lack of reporting of true
infections. In practice, the latter problem is much more
common. Patients with true healthcare-associated infec-
tions escape detection because (a) not all relevant data are
present in the medical record or laboratory reports; (b) the
data collector may overlook relevant data; and (c) the phy-
sician did not order appropriate tests to detect the infec-
tion. Estimates of the loss of sensitivity due to (a) and (b)
above are shown in Table 2-2. In this table, all sensitivities
are related to a composite standard, including data from
multiple independent surveys of the medical record, bed-
side examination, and microbiology laboratory records.

The effect of point (c) above was measured in the Study
of the Efficacy of Nosocomial Infection Control (SENIC)
(14,15). The overall culturing rate, which was the proportion
of patients with signs or symptoms of any infection that had
at least one appropriate culture done, was 32% in 1970 and
40% in 1975 to 1976 (14). The proportion of febrile patients
from whom at least one appropriate culture was obtained
was 28% in 1970 and 45% in 1975 (14). These measures varied
substantially from 5% to 95% by hospital type and region of
the country. Patients in academic hospitals in the northeast
United States had the highest likelihood of being appropri-
ately cultured. It follows that patients in such hospitals were
more likely to have a healthcare-associated infection docu-
mented. For urinary tract infections, pneumonias, and bacte-
remias, the lack of availability of objective data was a major
determinant of observed rates of infection (15).

The National Nosocomial Infections Surveillance
(NNIS) system, now replaced by the National Healthcare
Safety Network (NHSN), conducted a study of the accu-
racy of reporting healthcare-associated infection rates in
intensive care unit patients (16). The sensitivity in this
study was greatly improved over that found in the SENIC
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TABLE 2-2

Sensitivities of Methods of Case-Finding for
Healthcare-Associated Infections Quantifying
Only Omissions from Limited Data Sources and
Errors by Surveyors

Study

Method (Reference) Sensitivity

Reference standard: Duplicate surveys + Record review +
Bedside examination + Laboratory tests
UVA, BCH, 1.00
CDC (23)“
Single survey: Record review + Bedside examination +
Laboratory tests

BCH 0.98
Physician self-reports CHIP (23)“ 0.14-0.34
Micro laboratory reports CHIP (23)“ 0.33-0.65
Micro laboratory reports UK (82) 0.71
Kardex clues (50% sample) UVA (23)® 0.69-0.85
Record review (100% sample)  UVA (23)“ 0.90
Kardex clues UK (82) 0.49
Ward Ilaison UK (82) 0.58
ICD-9 coded dx BCH (22) 0.02-0.35
ICD-9 coded dx Yale (83) 0.57
SENIC pilot record review CDC (84) 0.66-0.80
SENIC project record review CDC (85) 0.05-0.95
NNIS CDC (16) 0.30-0.85

Note: The effects of failure of physicians to evaluate patients with
suspicious clinical episodes were not included in these measures.
These data do not include losses from unresolved clinical episodes.
aSome of these results have previously been summarized in
Freeman and McGowan (23).

UVA, University of Virginia; BCH, Boston City Hospital; CDC, Centers
for Disease Control and Prevention; CHIP, Community Hospital
Infection Protocol; UK, United Kingdom; Yale, Yale University; NNIS,
National Nosocomial Infections Surveillance; SENIC, Study of the
Efficacy of Nosocomial Infection Control.

(Adapted from Freeman J, McGowan JE Jr. Methodologic issues in
hospital epidemiology. I. Rates, case finding, and interpretation. Rev
Infect Dis 1981;3:658-667.)

project, as the NNIS hospitals correctly reported the
majority of infections that occurred. Still of concern, how-
ever, was the continuing wide range in the sensitivity that
varied from 30% to 85%, depending on the site of infection.
In this study, substantial numbers of healthcare-associ-
ated infections were missed by prospective monitoring
and a different large group was missed by retrospective
chart review.

The implications of these findings for benchmarking
rates among hospitals are obvious. There is a disincentive for
physicians and hospitals to self-report healthcare-associated
infections, and this leads to the paradox that hospitals that
do the worst job of collecting data and documenting infec-
tions report the lowest rates.

External Validity (Generalizability)

The sections above on bias and errors concern internal
validity; that is, are we measuring correctly within the pop-
ulation we selected? External validity or generalizability

asks the question, are our results applicable in other set-
tings? Generalizability is always a matter of opinion. A lack
of bias does not guarantee generalizability. A perfectly
done epidemiologic study may or may not be generalizable
to a larger population.

Epidemiologists frequently choose to study unrepre-
sentative samples of subjects in order to answer a scientific
question cleanly, cheaply, practically, or safely. Although
not widely generalizable, a study result may be scientifically
sound for the population on which the study was performed.
In a randomized trial, for example, potential study subjects
and their physicians must determine that it is safe for the
study subjects to accept any of the study treatments before
they can be randomized. Patients who have a contraindi-
cation to one of the treatments cannot be included in the
study on the chance that they might be randomized to the
contraindicated treatment. Thus, many treatable patients
must ordinarily be excluded from randomized trials, render-
ing the sample of patients on whom the trial is actually per-
formed highly unrepresentative of the population as a whole
(17). This lack of representativeness does not indicate that
the study is epidemiologically biased, but it may limit the
generalizability of the study result to a larger population.

The Collaborative Antibiotic Prophylaxis Efficacy
Research Study (CAPERS) of antibiotic prophylaxis for
clean (herniorrhaphy and breast) surgery used both exper-
imental and observational components (18,19). In the
experimental component, 1,218 patients were randomized
to receive or not receive prophylaxis; patients were not
included in this study if they or their physicians did not
provide consent. In the observational component, 3,202
other patients received prophylaxis at the discretion of
their surgeons. Both components showed that about half
of the SSIs were prevented by antibiotic prophylaxis. In
this particular instance, the result of the randomized trial
turned out to be generalizable to the larger group, but this
need not have been so.

ACCOUNTING FOR TIME AT RISK

Because many healthcare-associated infections are related
to time at risk, and because average lengths of hospital stay
are decreasing, state-of-the-art studies must use methods
that account for time at risk. Studies of mortality present
a similar challenge: we all have one death per lifetime, and
that is unavoidable, but it matters very much just when
that death occurs. Methods used to account for time at risk
include incidence density methods and survival analysis.

Incidence Density

Incidence density studies are a type of cohort study
where the denominator is the total person-time at risk
for all subjects, rather than the number of subjects.
Commonly used denominators in healthcare-related
incidence density studies are patient-days (vascular or
urinary), catheter-days, and ventilator-days. Of the four
most commonly studied healthcare-associated infec-
tions, three are device-related and are best studied using
incidence density methods: catheter-associated blood-
stream infections (BSIs), ventilator-associated pneumo-
nias, and catheter-associated urinary tract infections (20).
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Only one of the four (SSI) is best studied using cumula-
tive incidence methods; that is, the denominator is the
number of surgical procedures.

If the event being studied is an infection, then incidence
density is the number of infections in a specified quantity
of person-time in the population at risk. The population
at risk is composed of all those who have not yet suffered
an infection. After a patient acquires an infection, that
patient would be withdrawn from the population at risk.
All hospital days for each patient who never acquired an
infection would be included in the pool of days at risk, but
for a patient who became infected only those hospital-days
before the onset of the infection would be included.

Incidence density is the instantaneous rate of change
or what used to be called the force of morbidity. For con-
venience in healthcare epidemiology, healthcare-associ-
ated infection rates are usually expressed as the number
of events in 1,000 hospital-days, because this usually pro-
duces a small single- or double-digit number, but we could
have used seconds or years.

The basic value of this measure can be seen when
comparing healthcare-associated infection rates in two
groups with large differences in time at risk, for exam-
ple, in short-stay patients versus long-stay patients, or
infection rates with peripheral venous catheters versus
implanted ports. By contrast, if one looks at events that
come from a point source, such as eating vanilla ice cream
at a church supper, or events that are not time related, like
acquiring tuberculosis during bronchoscopy with a con-
taminated bronchoscope, the attack rate or cumulative
incidence is an excellent measure of incidence. SSIs are
usually thought of as having a point source—the opera-
tion; therefore, cumulative incidence methods are ade-
quate for studies of SSI.

An incidence density rate = total events/total time at
risk for an event. If we have an exposed and nonexposed
group, then we define the rate ratio = rate ill in exposed/
rate ill in nonexposed. The rate ratio is a measure of the
size of effect analogous to the relative risk used in cumu-
lative incidence studies. Rate ratios are sometimes called
incidence density ratios, relative risks, or risk ratios. Rate
ratios are interpreted in a similar manner to relative risks;
arate ratio of 2 means that disease incidence was twice as
great in the exposed group than in the nonexposed group.
Note that the units for the denominators of incidence den-
sity divide out, so that you will find the same incidence
density ratio no matter whether you use time units of sec-
onds or millennia. P values for the rate ratio may be calcu-
lated by a chi-square or binomial exact method.

Multiple Events in a Single Patient

Standard statistical tests assume that each observation
in a data set is independent, having no linkage with other
observations. A corollary is that each subject in a study
should contribute at most one event to a data set; that is,
we should study only first events in an individual. If this
rule is not followed, the calculated confidence intervals and
p values may not be valid. However, it is well-known that
a subset of patients will have multiple episodes of infec-
tion and other adverse outcomes. Also, patients with a first
event are more likely to suffer a second (21,22,23,24,25).
For quantitative analyses, these nonindependent events
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cannot simply be summed. The biologic and statistical
import of 5 infections per 100 discharges would be entirely
different depending on whether it represented five sequen-
tial infections in a single patient or five first infections in 5
different patients.

Furthermore, a first healthcare-associated infection
becomes a risk factor for a second, and risk factors for
multiple infections are different from the risk factors for a
first infection. The simplest way to cope with multiple inci-
dent events in the same individual is to restrict quantita-
tive analyses to first events. A second method is to stratify
by number of previous infections, for example, study the
effect of exposures on risk of first infection, then on risk of
second infection, and so on. These individual strata would
then be combined into a summary relative risk. However,
this method also violates the independence rule for con-
ventional data analyses. A third alternative is to use statis-
tical methods designed for longitudinal or correlated data.
This type of analysis is technically complex (see Longitudi-
nal Analysis and Repeated Measures, below).

Survival Analysis
Survival analysis is a second method for accounting for
time at risk (3). Survival analysis usually consists of the
familiar Kaplan-Meier plot, where at time zero survival
begins at 1.0 or 100% and gradually falls off as subjects are
followed forward in time. Survival can literally mean not
dying, or it can mean remaining free of infection or what-
ever outcome variable is being studied. The opposite of
survival is termed “failure,” which again may either mean
death or onset of another adverse event. An extremely use-
ful feature of survival analysis is that it can make use of
subjects who are lost to follow-up or die of a disease other
than that of interest; these subjects are called “censored”
since we don’t know if they would have failed if we had
been able to follow them for a longer period of time.
Statistical packages automatically plot survival curves
for two or more groups and calculate a p value for the dif-
ference between the two groups. Median survival (the fol-
low-up time when the probability of survival is 0.5 or 50%)
is often reported. The Kaplan-Meier plot represents a uni-
variable analysis. Multivariable survival analysis is accom-
plished via regression models, the most common of which
is the Cox model (discussed below).

CONFOUNDING AND EFFECT
MODIFICATION

Confounding

Confounding can be defined as “a situation in which a meas-
ure of the effect of an exposure on risk is distorted because
of the association of the exposure with other factor(s) that
influence the outcome under study” (7). An intuitive exam-
ple given in the chapter introduction was “our infection rate
is higher than theirs because our patients are sicker than
theirs.” We can set up an experimental study to measure the
effect of only one exposure at a time, but in observational
studies where several exposures may act jointly to produce
disease, we often need to use statistical techniques to tease
out the independent effect of any one exposure.
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TABLE 2-3

Sample Data: Simple and Stratified Analyses

a. Numbers of Patients Total and Infected, Hospitals A vs. B

High-Risk Patients Low-Risk Patients
Number Number

Hospital Total Infected Total Infected Overall Infection Rate
A 900 90 100 1 91/1,000=9.1%
B 100 10 900 9 19/1,000 = 1.9%
b. Simple (Crude) Analysis: Effect of Hospital
Hospital (Exposure) Total Patients No. (%) Infections Relative Risk

A 1,000 91 (9.1 4.8

B 1,000 19 (1.9) —
c. Stratified Analysis: Effect of Hospital Stratified by Patient Risk
Patient Risk Hospital Total
(Exposure,) (Exposure,) Patients No. (%) Infections Relative Risk
High A 900 90 (10) RR =1.0
High B 100 10 (10) —
Low A 100 1) RR,=1.0
Low B 900 9 (D) —

Note: Mantel-Haenszel summary relative risk (RR, ) = 1.0.

MH)

Example of Confounding by Severity of lliness Let’s
hypothetically assume that we were studying healthcare-
associated infections at two hospitals, A and B. In our
simplified example, there are two types of patients: high-risk
patients who have a 10% risk of disease per hospitalization
and low-risk patients who have a 1% risk. During a time
period, hospitals A and B both admit 1,000 patients, but
hospital A admits 900 high-risk and 100 low-risk patients,
whereas hospital B admits 100 high-risk and 900 low-risk
patients. Using hospital A as the exposed group, the rela-
tive risk is 9.1/1.9 = 4.8; that is, the risk of infection after
admission to hospital A was 4.8 times higher than after
admission to hospital B (Table 2-3).

This is an example of confounding. We are primarily
interested in the relationship between one exposure (hos-
pital A, which we shall denote as exposure ) and disease.
However, the effect of a second exposure (high- vs. low-
risk patient, denoted by exposure,) confuses or confounds
our ability to measure the effect of exposure,. This occurs
because of an unequal mix of exposure, among the expo-
sure, groups (high-risk patients comprise 90% of hospital A
admissions but only 10% of hospital B admissions).

Stratified Analysis Stratification is an important method
to detect and control for confounding. First, we compute
a simple or crude relative risk by our usual 2 x 2 table
methods (Table 2-3b). Second, we perform a stratified
analysis: we calculate two relative risks (RRs), designated
RR, and RR,. In the above example of hospitals A and B, RR,
measures the effect of hospital A among high-risk patients
and RR, the effect of hospital A among low-risk patients
(Table 2-3c). In this example, both RR, and RR, are equal
to 1.0. Third, with the help of a statistical program, we

compute a Mantel-Haenszel summary relative risk (RR,,),
which is a weighted average of RR, and RR,. In this example,
the RR,, was also 1.0 (i.e., null result), indicating that there
was no association between hospital and infection after
adjusting for patient risk.

There was an obvious case-mix difference between
hospitals A and B. The RR,, is our prediction of what the
crude relative risk would have been if there had not been
a case-mix difference between the hospitals. Calculating
an RR, is a way of adjusting for a potential confounding
exposure, and thus the RR, is a type of adjusted relative
risk. Other methods of calculating an adjusted relative risk
include indirect standardization and regression modeling
(these methods are presented later in this chapter).

Calculation of Mantel-Haenszel Relative Risk and
Odds Ratio If there are i strata, the four cells of the 2 x
2 table are designated a, b, ¢, and d; the total number of
subjects in each stratum is n,=a, + b, + ¢, + d; and >, indi-
cates the sum over all i strata:

a(c,+d)/n
Mantel-Haenszel summary relative risk = M
zci(ai +b)/n,
ad)/n
Mantel-Haenszel summary odds ratio = M
z(bici)/ni

Recognizing Confounding The following is a simple
functional definition of confounding: if the adjusted relative
risk differs to a meaningful extent from the crude relative
risk, then confounding is present. There is no statistical
test or firm guide for how great the difference must be.
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In the hospital A versus B example above, the RR, of
1.0 differed substantially from the crude relative risk of
4.9, so confounding was obviously present. We say that
the effect of exposure, (hospital A vs. B) was confounded
by the effect of exposure, (high- vs. low-risk patients). In
order for confounding to occur, both of the following are
required: exposure, must be associated with disease and
exposure, must be associated with exposure,.

Additional Examples of Confounding Older age,
female gender, and instrumentation of the urinary tract are
risk factors for urinary tract infections. If we want to meas-
ure the effect of instrumentation alone, a simple 2 x 2 table
analysis will be confounded by the effects of the other two
variables. However, confounding can be adjusted for if one
has data on the confounders (age and gender) and uses an
appropriate statistical method.

Investigators in the SENIC project reported a relative
risk of 0.94 for healthcare-associated infections in hospitals
with infection surveillance and control programs compared
with those lacking such programs, or a preventive effect of
6%. One could argue that this small apparent preventive
effect could have been due to confounding factors that
were imperfectly measured and adjusted for. Measurement
of such small differences may be beyond the capabilities of
statistical methods applied to observational data.

Quality assurance (26-28) is an area of healthcare epi-
demiology beset with difficulties posed by confounding
variables. The degree to which the unalterable charac-
teristics of the individual patient determine the inherent
susceptibility to infection and probability of death are only
partially defined, yet must be controlled for to make inter-
hospital quality assurance comparisons meaningful (29).
After adjustment for severity of illness, using objective
comparisons, it is often difficult to detect differences in
hospital care that led to excess mortality (30).

Methods to Deal with Confounding We can prevent
confounding in the design phase of a study by doing a
randomized trial or by doing a matched case-control
study. We can adjust for the effects of confounding in the
analysis phase by stratification, by standardization, or by
performing regression analyses.

Randomization Randomized trials arerarely used because
of their expense and difficulty, but are an effective way to
avoid confounding. The magic of randomization is that it
produces groups that are similar with respect to both known
and unknown confounders. The previously mentioned
CAPERS contained both a randomized component, which
produced an unconfounded result, and an observation
component, which required logistic regression to adjust for
multiple confounding variables (18,19).

Matched Case-Control Studies In a simple case-
control study, the controls are usually a random sample
of all noncases. In a matched case—control study, controls
are selected by matching one or more noncases with
each case according to some potentially confounding
variable. For example, if we wanted to study the effects of
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an exposure on risk of vancomycin-resistant enterococcus,
we would want to control for some well-known risk factors
for vancomycin-resistant enterococcus. Therefore, for each
case we could select some controls that were closest to
the case in a measure of severity of illness such as Apache
Il score and antimicrobial receipt. To analyze the matched
data, we do not do a simple 2 x 2 table analysis. Instead, we
would perform a stratified analysis, where each case and its
associated controls form one stratum. The Mantel-Haenszel
summary odds ratio is then used rather than the simple
odds ratio.

A matched design makes sense only if the potential
confounders are well known and one has no need to study
them further. In the matched study, one cannot calcu-
late an odds ratio or p value for the variables that were
used to match the controls (Apache II score and antimi-
crobial receipt, in the example above). To produce an
unbiased odds ratio, we must analyze the data using the
stratified method outlined above, thus reducing flexibil-
ity in the analysis phase. Also, the p value calculated in a
matched study will be higher than that from a conventional
2 x 2 table, reducing the chance of finding a statistically
significant result. Rather than matching, well-trained epide-
miologists usually prefer to select a random sample of non-
cases and adjust the data using a multivariable method.
However, matching clearly makes sense if an important
confounding variable is common in cases and rare in non-
cases; under such conditions, if random sampling is done,
only a few of the controls will have the confounding vari-
able, and much effort will be expended to collect data on
controls that have little relevance.

Standardization There are two methods of standardi-
zation, direct and indirect. Direct standardization is rarely
used in healthcare epidemiology and is not presented
here. However, indirect standardization is commonly
used in healthcare surveillance. This method is typically
used when stratum-specific event rates are available
from a large reference population (e.g., a large number of
facilities) and we want to compare a smaller group (e.g., a
single facility) to this reference population. Any outcome
event can be studied by indirect standardization. When
applied to infections, indirect standardization produces
a standardized infection ratio (SIR) and when applied to
deaths a standardized mortality ratio is produced.

The following example of indirect standardization
(Table 2-4) uses the incidence density approach to calcu-
late rates and rate ratios (31). We want to compare the BSI
rate at a single dialysis center, center X, with the average
rate of a large reference group. At center X, we observed
101 BSIs during 3,395 patient-months of follow-up, for a BSI
rate of 2.97 per 100 patient-months. The crude rate ratio
comparing center X to all centers was 1.67, indicating that
the risk of BSI was 1.67 times higher (or 67% higher) at
center X.

Vascular access type is a potential confounding vari-
able. Rates of BSI from the reference group vary widely
from 0.25 to 8.73 BSIs per 100 patient-months among four
vascular access types (Table 2-4). If center X treats more
patients with high-risk vascular access (e.g., tunneled or
nontunneled catheters) than other centers, we would
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TABLE 2-4

Example of Indirect Standardization to Calculate
a Standardized Infection Ratio

Vascular BSI Rate®  Patient-Months, Expected BSI,

Access Type  All Centers Center X Center X

Fistula 0.25 1,709 4.27

Graft 0.53 528 2.80

Tunneled 4.84 958 46.37
catheter

Nontunneled 8.73 200 17.46
catheter

Total — 3,395 70.9

Note: Crude rate ratio = rate at Center X/rate at all centers =
2.97/1.78 = 1.67.

Standardized infection ratio = actual BSI/expected BSI=101/70.9 = 1.42.
“Rate per 100 patient-months. BSI rate for all centers from reference (31).
BSI, bloodstream infection.

expect more BSI at center X. We want to determine the
intrinsic risk of BSI at center X if the mix of vascular access
types at center X were the same as that at all centers.

To calculate an SIR, we first determine the expected
numbers of BSI at center X for each access type by mul-
tiplying the all-center rates by the center X denominators
(e.g., for nontunneled catheters, 0.0873 x 200 = 17.46).
Second, we sum the expected values for the four access
types to get total expected BSIs = 70.9. If the BSI rates at
center X were the same as the all-centers rates, we would
have expected 70.9 BSIs at center X. Finally, the SIR is cal-
culated as the ratio of the actual to expected BSIs. The SIR
is interpreted as an adjusted rate ratio; that is, after adjust-
ing for vascular access type, the rate of BSI at center X is
1.42 times higher than that at other centers. Notice that the
SIR or adjusted rate ratio (1.42) was lower than the crude
value (1.67), indicating a minimal degree of confounding by
vascular access type.

Effect Modification (Interaction)

Using the terminology of exposure , exposure,, and outcome,
we say that effect modification is present when the effect
of exposure, and exposure, together is different from what
would have been predicted by their independent effects.
Cigarette smoking and asbestos exposure as joint causes of
lung cancer are a familiar example. Each of these is a risk
factor for lung cancer individually, but when both are pre-
sent, the risk of cancer is particularly high; that is, the rela-
tive risk when both are present is even higher than would be
predicted from the sum or product of the two individual rela-
tive risks. The carcinogenic potential of asbestos fibers is
thought to result from their unusual size, which allows them
to migrate easily through the lung tissue. In smokers, these
fibers become coated with the carcinogenic materials in ciga-
rette smoke, and thus asbestos fibers become a uniquely effi-
cient system for the delivery of powerful carcinogens from
cigarettes into lung tissue. Thus, there is biologic plausibility
to the epidemiologic finding of effect modification.

Recall that in the example of confounding involving hos-
pitals A and B presented earlier (see Example of Confounding

by Severity of Illness, above), the stratum-specific relative
risks were equal (i.e., RR, = RR,, Table 2-3). In contrast, effect
modification would have been present if RR, and RR, were
found to differ. Unlike the situation with confounding, statis-
tical tests may be used to determine whether effect modi-
fication is present (see Chapter 3, Breslow-Day test). An
example of effect modification is presented below (see Exam-
ple of Confounding and Effect Modification, and Example of
Logistic Regression Model: Healthcare-Associated Infection
and Neonatal Mortality, and Tables 2-7 and 2-11).

Although a single RR, can be calculated when effect
modification is present, this is not recommended; instead,
report RR, and RR, separately. The value of identifying
effect modification and reporting separate relative risks is
to identify subgroups where a certain exposure is a greater
or lesser problem, or in which certain treatments may be
more or less effective.

Examples of Stratified Analyses

Stratification is a powerful tool to investigate confound-
ing and effect modification. Stratification is simple, intui-
tive, and accessible, because the data remain visible in
tables, and the origin and validity of surprising results can
be investigated immediately by reference to the tables con-
taining the data.

Example of Confounding Without Effect Modifi-
cation In the following example, the effect of healthcare-
associated infections (exposure) on mortality (disease)
was studied in the neonatal intensive care unit at the Utah
Medical Center (32). Note that in this instance healthcare-
associated infection, which we usually consider to be the
disease or outcome, was instead considered the expo-
sure. The crude relative risk was 2.46, indicating an asso-
ciation between infection and death (Table 2-5). However,
if low birth weight is also a cause of death acting jointly
with healthcare-associated infection, and infection occurs
preferentially in low-birth-weight infants, then the crude
relative risk is incorrect, having been confounded by birth
weight. To investigate this possibility, we can stratify by
birth weight and see how the answers change (Table 2-6).
Note that, for simplicity, we have left out several lines from
each table.

Adjusting for birth weight produced an adjusted rela-
tive risk of 1.89, which represents a substantial change
from the crude value of 2.46 (Table 2-5 vs. Table 2-6 and
Fig. 2-1). Thus, low birth weight was a substantial cause
of mortality in this data set and confounded the origi-
nal relative risk. The crude estimate of the relative risk
of mortality with healthcare-associated infection of
2.46 was 30% too high—it represented the added effect
of low birth weight that was mixed in with the effect
of healthcare-associated infection in causing death
(Fig. 2-1). After adjustment to remove the confounding
effect of low birth weight, the relative risk was lower, the p
value was larger, and the lower bound for the relative risk
was closer to 1.0

There might also have been a slight trend of increas-
ing relative risks (from 1.44 to 2.65) as birth weight
category increased. If the relative risk were significantly
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TABLE 2-5

Crude Association Between Healthcare-
Associated Infections and Death

Death Exposed Unexposed Totals
Outcome (+) 46 104 150
Outcome (-) 92 662 754
Totals 138 766 904

Probability of outcome (+) among exposed

Relative risk =
Probability of outcome (+) among unexposed

_a/(a+c)
T b/(b+d)

Crude relative risk of mortality with infection: risk ratio = 2.46.
95% confidence intervals for crude risk ratio: (1.83-3.30).
Chi=5.7; p< 10

different in the different strata, this would represent effect
modification. However, statistical testing did not show that
the relative risk differed significantly among the strata, and
instead the relative risks from the various strata appear to
represent random variation from a true underlying relative
risk. Therefore, effect modification was not present and the
reporting of the RR;,, was appropriate.

Example of Confounding and Effect Modification In
another study of mortality with healthcare-associated
infections from a different neonatal intensive care unit,
data were available on underlying disease as well as birth
weight (25). Infants in neonatal intensive care units have
only a few different diagnoses, and of these underlying dis-
eases, only the persistence of a patent ductus arteriosus
(PDA) appeared to have any influence on the outcome

TABLE 2-6

Association of Healthcare-Associated Infection
With Death Stratified by Birth Weight

Healthcare-Associated
Infection

Birth weight (g) Exposed Unexposed Relative Risk
<1,000 Died 12 10

Total 25 30 1.44
1,000-1,499 Died 12 24

Total 42 107 1.27
1,500-1,999 Died 7 18

Total 18 142 3.07
2,000+ Died 15 52

Total 53 487 2.65

Note: Mantel-Haenszel adjusted relative risk of mortality with infec-
tion: risk ratio = 1.89; 95% confidence intervals for adjusted risk ratio
(1.41-2.55).

Chi=4.1;p< 10

(Adapted from Freeman J, Goldmann DA, McGowan JE Jr. Methodo-
logic issues in hospital epidemiology. IV. Risk ratios, confounding,
effect modification, and the analysis of multiple variables. Rev Infect
Dis 1988;10:1118-1141.)
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FIGURE 2-1 Crude and adjusted risk ratios for the association

of healthcare-associated infection with death in neonates in Utah
for Table 2-6, showing the effect of confounding by birth weight.

(survived vs. died). The data, stratified on birth weight and
PDA, are presented in Table 2-7. Again, the interest is in
the effect of healthcare-associated infection (exposure) as
a cause of mortality (outcome), but here we can also con-
sider effect modification and confounding by the two extra-
neous variables, birth weight and the presence of a PDA.
If we combine all of the data from this study into a single
table (Table 2-7) and look at the crude effect of healthcare-
associated infection on mortality, without stratifying by
birth weight or PDA, this crude relative risk is 3.20. If we
adjust for birth weight, the relative risk is 2.16, indicating
confounding.

We can now investigate whether PDA modified the
effect of healthcare-associated infection as a cause of death
among these neonates. The relative risk of healthcare-asso-
ciated infection on mortality was 0.88 for infants with PDA
versus 5.01 for those without PDA (Table 2-7). This hetero-
geneity of the effect of infection on mortality according to
PDA status was highly significant (chi-square value = 7.3,
p = .007), indicating that effect modification was present.
Because the effect of healthcare-associated infection is so
obviously different for neonates with and without PDA, it
makes no biologic or statistical sense to combine these two
groups. Thus, the crude and adjusted relative risks of mor-
tality with healthcare-associated infection are presented
separately for those with and without PDA. The crude
and adjusted relative risks and the effect modification by
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TABLE 2-7

Association of Nosocomial Infection with Death, Stratified by Birth Weight

and PDA Status

Nosocomial Infection
PDA Absent PDA Present

Birth Weight (g) Exposed Unexposed Exposed Unexposed
<1,000 Died 2 7 2 3

Total 4 38 4 17
1,000-1,499 Died 2 12 0 6

Total 6 107 11 27
1,500-1,999 Died 2 10 1 0

Total 6 136 3 12
2,000+ Died 1 27 0 3

Total 4 520 2 14
Grand total Died 7 56 3 12

Total 20 801 20 70

PDA, patent ductus arteriosus.
Crude relative risk? = 3.20.
Relative risk adjusted for birth weight® = 2.16.
Stratified by PDA:
With PDA, relative risk = 0.88.
Without PDA, relative risk =5.01.

Breslow-Day test for effect modification, chi-square = 7.3, p = .007.

Stratified by PDA and adjusted for birth weight:
With PDA, relative risk? = 0.90.
Without PDA, relative risk® = 3.42.

aAll relative risks are the relative risk of death (outcome) for infants with nosocomial infection (exposure).

®Mantel-Haenszel relative risk.

Effect
modification by
PDA
°] /—/H
0 O Crude RR
5 | 501 [ Adjusted RR
Confounding by
birth weight
4 g
RR 3.42
3 g
2 4
0.88 0.90
1 § No
[ .
PDA() PDA(+) = con_foundl_ng
by birth weight
0 J

FIGURE 2-2 Crude and adjusted risk ratios for the association
of healthcare-associated infection with death in neonates for
Table 2-7, showing the effects of confounding by birth weight and
effect modification by patent ductus arteriosus (PDA) status.

PDA are presented visually in Figure 2-2. Investigation of
effect modification provides more biologic information
concerning which patients (those without PDA) will be
affected and also shows how much greater the effect will
be for that group.

Finally, we both stratify by PDA and adjust for birth
weight. Birth weight was not a confounder among those
with PDA (crude relative risk = 0.88, RH,,, = 0.90; Table 2-7),
but was a strong confounder among those without PDA
(crude relative risk = 5.01, RH, , = 3.42). Similar results are
obtained when these data are analyzed by logistic regres-
sion later in this chapter (see Example of Logistic Regres-
sion Model: Healthcare-Associated Infection and Neonatal
Mortality, below, and Table 2-12).

Example of Confounding When Incidence Density Is
the Outcome Measure One frequently needs to correct
for differing durations of exposure while investigating the
effect ofaspecificexposureonanoutcome.Incidencedensity
data taken from an investigation of an apparent outbreak
of healthcare-associated bacteremia with coagulase-
negative staphylococci in a neonatal intensive care unit are
presented in Table 2-8 (32). Neonatologists were convinced
that an epidemic of bacteremia had occurred in 1982, so
the number of individuals with first positive blood cultures
for coagulase-negative staphylococci were enumerated for
that year and for 1975. The numbers of patient-days at risk
for a first positive blood culture were also accumulated for
these neonates. On a simple level, the neonatologists were
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TABLE 2-8

Longitudinal Comparison of Incidence Densities
of Blood Cultures Positive for Coagulase-Negative
Staphylococci in a Neonatal Intensive Care Unit

Positive Cultures/Days
at Risk

Incidence
Birth Weight (g) 1982 1975 Density Ratio
500-749 3/535 0/10 Unbounded
750-999 8/1,034 2/358 1.4
1,000-1,249 1/424 2/821 1.0
1,250-1,499 1/213 1/567 2.7
1,500-1,749 0/179 1/233 0.0
1,750-1,999 0/455 0/351 Undetermined
2,000+ 3/1,880 2/1,289 1.0
Totals 16/4,720 8/3,629

Ratio of numbers of cases 2.0.

Risk ratio crude for birth weight = 1.54, indicating an apparent 54%
increase in 1982.

Mantel-Haenszel adjusted risk ratio = 1.13 (95% confidence interval
0.44-2.86).

There was no significant heterogeneity by birth weight, p > .05.
(Adapted from Freeman J, Goldmann DA, McGowan JE Jr. Methodo-
logic issues in hospital epidemiology. IV. Risk ratios, confounding,
effect modification, and the analysis of multiple variables. Rev Infect
Dis 1988;10:1118-1141.)

correct, because the number of bacteremias had doubled
from 8 to 16, a relative risk of 2.0. Accounting for patient-
days at risk led to a crude incidence density ratio of 1.54
(16/4,720 vs. 8/3,629). This incidence density ratio corrects
for the much longer exposures to hospital experienced by
the smallest neonates in 1982, and reduces the apparent
relative risk from 2.0 to 1.54. This example used patient days
for the incidence density denominator, whereas central or
umbilical line-days are typically used for surveillance (20).

Finally, we can also adjust for birth weight in this anal-
ysis, and the adjusted incidence density ratio is approxi-
mately 1.1, indicating no real change in the bacteremia rate
(Fig. 2-3). Note that different statistical programs and meth-
ods may produce slightly different results. In the original
article, the authors combined the two strata containing
infants with birth weights from 1,500 to 1,999 g to avoid a
table with a zero marginal total, and calculated an adjusted
relative risk of 1.13. Using OpenEpi, the Mantel-Haenszel
adjusted relative risk is 1.16 if all seven strata are used and
1.14 if the 1,500 to 1,999 g birth weights are combined.

Inspection of the data shows many more patient days
contributed by the lowest birth weight infants (those
under 1,000 g) during 1982 than in 1975. What occurred was
not an epidemic of bacteremia but an epidemic of survival
among the smallest neonates. Important insights are thus
gained through simple inspection of the stratified data.

Summary: Confounding and Effect
Modification

To reiterate, several factors or determinants, acting jointly,
are almost invariably responsible for a single outcome in
healthcare epidemiology. Confounding is the case-mix—
induced distortion of the relative risk for one exposure by
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FIGURE 2-3 Crude, partially adjusted, and completely adjusted
incidence density ratios for the longitudinal comparison of bacte-
remias in neonates in Table 2-8, showing the confounding effects
of time at risk and of birth weight.

the effects of other exposures. Effect modification is the
biologic interaction of two exposures to produce an unex-
pectedly high or low relative risk. Confounding and effect
modification are compared in Table 2-9. A general scheme
for collection and analysis of data for epidemiologic com-
parisons is presented in Table 2-10.

To detect confounding and effect modification, first
calculate a crude relative risk; then perform a stratified
analysis, calculating RR, and RR, separately and an RR,,,. If
the crude relative risk and the RR,, differ to a meaningful
extent, then confounding is present; report the RR .. If RR,
and RR, are statistically significantly different, effect modi-
fication is present; report RR, and RR, separately and do
not report the RR ..

CONTINUOUS VARIABLES

Epidemiologists most commonly deal with dichotomous
(e.g., exposed yes or no, infected yes or no) categorical var-
iables. However, continuous variables that can take on an
infinite number of values, such as age, height, and weight,
are also seen. Continuous variables can be plotted to form
a frequency distribution. These data may be approached
differently depending on whether they form a normal (bell-
shaped) distribution. If the data are not normally distrib-
uted, transforming the data, as by taking the logarithm,
may result in a normal distribution.

If data are normally distributed, the central tendency
is described by the mean and the spread (how closely the
values cluster around the mean) by the standard deviation;
parametric methods (i.e., +test, analysis of variance) are
used to calculate p values that test whether the mean values
in two or more groups are significantly different. If data
are not normally distributed, the central tendency is best
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TABLE 2-9

Comparison of Confounding and Effect Modification by a Third, Extraneous Variable, Which is Neither
the Exposure nor the Outcome Under Study, in a Specific Epidemiologic Comparison?

Confounding

Effect Modification

Comparison of attributes
Effect on comparison

(see Tables 2.5-2.8)
Source and generalizability

same comparison
Analytic strategies:

Always distorting: distorting effect may be
positive or negative; not itself informative

One specific data set; not a feature of biol-
ogy; will differ among data sets containing

Not distorting (unless also a confounder); pro-
vides additional information (see Table 2.7)

Biology/the real world; likely to be similar in most
data sets containing same comparison; prob-
ably a real attribute of the biology of a disease

Observe effect in analysis by Comparison of crude and adjusted measures Comparison of effect across strata

Determine quantitative
importance in analysis by
(see Tables 2.5-2.8)

Subjective observation of magnitude of dis-
torting effect in context of a specific study

Objective tests for heterogeneity of effect
across strata of effect modifier: subjective
inspection for effects in opposite directions

Note: In an epidemiologic comparison, a single extraneous variable may be a confounder, an effect modifier, neither, or both.

aSuggested methods refer to epidemiologic comparisons with discrete outcomes and utilize stratification as the primary analytic strategy.
Reference is made to one or more of the studies reanalyzed in this chapter by table number.

(Adapted from Freeman J, Goldmann DA, McGowan JE Jr. Methodologic issues in hospital epidemiology. IV. Risk ratios, confounding, effect
modification, and the analysis of multiple variables. Rev infect Dis 1988;10:1118-1141.)

described by the median and spread by the interquartile
range (the 25th-75th percentile); nonparametric methods
(i.e., Mann-Whitney U test, Wilcoxon test) are used to cal-
culate p values for differences among groups.

In the following example, we determine whether mater-
nal age was significantly related to disease in a neonatal
intensive care unit outbreak. There were nine cases and 173
noncases. The simplest approach is to dichotomize age at
its median (26.5 years) and analyze the data in the familiar
2 x 2 table. This yields a relative risk = 3.5 and p value = .17.

Disease
Yes No
Exposure Age <26.5 7 84 91
Age >26.5 2 89 91
173 182

To analyze age as a continuous variable, we used the
freeware program Epilnfo. The mean + standard deviation
maternal age was 21.9 + 5.3 years for cases versus 26.95
+ 6.2 for noncases. Epilnfo produces two p values, one
parametric p value = .018 and a nonparametric p value =
.0226. In this package, parametric p values are calculated
assuming the variances are equal in the two groups; other
statistical packages compute an additional parametric p
value that assumes the variances are different in the two
groups. Parametric p values are based on calculating the
variances and are valid only if the data are normally distrib-
uted, whereas nonparametric p values are valid regardless
of the distribution. For simplicity, nonparametric p values
are often used in epidemiology. As in this instance, the
nonparametric p value is usually marginally higher, that is,
less likely to be statistically significant, than the parametric
value. Note that the p values obtained by treating maternal

age as a continuous variable (p = .02) are lower than the
value obtained in the 2 x 2 table above after converting to
a dichotomous variable (p =.17).

The above example was for analysis of unpaired continu-
ous variable data. Alternate methods are used for analyzing
paired values, for example, scores on a test before versus
after an educational program. Rather than just averaging the
mean of all scores before and comparing it with the mean of
all scores after, we can take advantage of some additional
available information, that is, that we know each score before
corresponds to a score after. In brief, the method is to com-
pute the difference between the before versus after scores for
each subject, so that one value per subject is obtained, and
then to statistically test the null hypothesis that the differ-
ence equals zero. This provides a more precise answer and
can be done by either parametric or nonparametric methods.

ADDITIONAL TOPICS IN HEALTHCARE
EPIDEMIOLOGY

Hypothesis-Generating Versus
Hypothesis-Testing Studies

The classic hypothesis testing approach is to state
a hypothesis, for example, postulate an association
between one or a few exposure(s) and disease(s), and
then deliberately collect data to verify or refute the
hypothesis. Most explanations of how to conduct and
analyze epidemiologic studies refer to this approach,
that is, focusing on an exposure of primary interest and
checking for confounding or effect modification from
secondary exposure variables. However, in practice
many modern epidemiologic studies take an alternate
approach, namely, to evaluate a number of exposure vari-
ables and report whether any are significantly associated
with disease. Using this approach, which is one type of
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TABLE 2-10

APPLIED EPIDEMIOLOGY AND BIOSTATISTICS

General Approach to the Collection and Analysis of Data for Epidemiologic Comparisons

With Discrete Outcomes?

Action

Details of Method

Collection and preliminary inspection
of data

Anticipate confounding and effect
modification

Preliminary stratification for inspection
of data

Preliminary inspection for presence of
confounding variables

Preliminary inspection for presence of
effect modification

Test for effect modification

Final analysis and presentation of data

Select variables for inclusion in final
analysis

Select categories for stratification of
confounders and effect modifiers

Present data in stratified format so
readers can observe confounding
and effect modification

Collect data on multiple variables associated with exposure or outcome; include data
on severity of underlying illness and indications for therapy (if therapy was used)

Stratify data repeatedly over a number of extraneous variables that might con-
found comparisons or modify the effect of an exposure on an outcome; experi-
ment with alternative categorizations; determine workable sizes for strata

Compare crude risk ratios with risk ratios adjusted for various extraneous vari-
ables; identify and retain variables for which adjustment alters the risk ratio in
an epidemiologically meaningful way

Compute stratum-specific risk ratios for different categories of various extrane-
ous variables; identify and retain variables for which the risk ratio appears
to vary across strata: if different categories produce risk ratios in opposite
directions, then any summary estimate will be misleading (see Table 2.7): plan
to report stratum-specific values

If different categories produce risk ratios of varying magnitude in same direc-
tion, formally test for heterogeneity of effect over strata: if no significant
heterogeneity is present, plan to use Mantel-Haenszel summary risk ratio (see
Tables 2.6, 2.7, 2.8); if significant heterogeneity is present, look for pattern to
heterogeneity; also, plan to use standardized summary risk ratio

Retain confounding variables and variables that modified the effect of the expo-
sure on the outcome as stratification variables in the final analysis

Choose most efficient and informative categories for stratification; use multiway strat-
ification if necessary to include multiple variables simultaneously (see Table 2.7)

Give summary risk ratios with confidence intervals if appropriate; compute
Mantel-Haenszel estimates if there is no significant effect modification;
compute standardized estimates if effect modification is present and stratum-

specific risk ratios in same directions; give standard and reason for choice

aSuggested methods utilize stratification over levels of variables that may confound a comparison and/or modify the effect of the exposure on

the outcome under study.

(Adapted from Freeman J, Goldmann DA, McGowan JE Jr. Methodologic issues in hospital epidemiology. IV. Risk ratios, confounding, effect
modification, and the analysis of multiple variables. Rev Infect Dis 1988;10:1118-1141.)

hypothesis-generating study, there is no exposure of pri-
mary interest—all are created equal.

Repetition of data analyses with varying assumptions or
methods until a statistically significant result is obtained have
been called “data dredging” or “data torturing.” Any complex
data set will contain many apparent associations. Some of
these are real and causal, whereas others are the result of
random processes and represent no true association. There-
fore, associations are less likely to be valid and reproducible
if found in a hypothesis-generating study and should be inter-
preted with the caveats regarding performance of multiple
testing and attention to Hill’s criteria for causality.

A valid approach is to use one data set for hypothesis
generation and a second independent data set for hypoth-
esis testing. If only one data set is available, this can be
divided into two, with the first for hypothesis generation
and the second for hypothesis testing.

Multiple Comparisons

Strictly speaking, our use of the p value assumes that only
one potential exposure is being evaluated. If the variable is

statistically significant at the .05 level, there is a 5% chance
that this association occurred due to chance alone. We are
willing to accept this chance of error. However, if a large
number of potential exposure variables are evaluated, the
probability that one or more will be significant by chance
alone rises. To compensate, it has been proposed that the
required level of significance be set to approximately .
05 divided by the number of variables tested (Bonferroni
correction). For example, if 10 variables were tested, then
we would require a p value of approximately .005 for sta-
tistical significance. This approach or other more sophisti-
cated methods to account for multiple hypothesis testing
is increasingly used in the literature. However, many epide-
miologists prefer not to use rigid formulae such as these,
but to interpret findings by considering Hill’s criteria for
causation as well as the p value and the number of variables
considered. For example, if 15 independent statistical tests
are performed, we can calculate that there is a 54% chance,
that is, 1 — (1 — 0.05)%, that at least one would be statisti-
cally significant at the .05 level (33) and interpret any sta-
tistically significant findings accordingly.
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Subgroup Analyses

Classically, studies specify a primary hypothesis, for exam-
ple, that a given exposure is a risk factor for disease. It is
common to additionally report the results of the exposure
in subgroups; for example, the exposure may be a significant
risk factor in men but not in women or in older but not in
younger subjects. Testing in a large number of subgroups
is a form of “data-dredging” that will often produce at least
one statistically significant result. Therefore, subgroup
analysis should be supported by statistical tests for interac-
tion and generally considered to be hypothesis generating
rather than hypothesis testing. Other guidelines for report-
ing subgroup analysis include presentation of a subgroup
analysis in the published abstract only if it was a primary
study hypothesis, indication of the number of prespecified
subgroup analysis performed and reported, indication of
the number of post hoc subgroup analyses performed and
reported, and indication of the potential effect of multiple
testing on type I error (34).

Stratifying Continuous Variables and
Analyzing Multilevel Tables

In data analysis, it is often necessary to construct appropriate
groups from a continuous variable. An example is the group-
ing of neonates by birth weight. The cutoff values used to
divide the groups can be chosen by allocating the same num-
ber of subjects in each group (e.g., quartiles with 1/4 of the
subjects in each group), dividing the group at even numbers
(e.g., 750-1,000 g), or using cut points that are widely used
and accepted. The method used should be nonbiased (i.e.,
the cutoff values should not be manipulated to produce a pre-
determined result), include an adequate number of subjects
in each stratum, and include subjects with a similar risk of the
outcome in individual strata. Multilevel categorical variables
result from this grouping.

To analyze multilevel categorical variables, we use a
variation of the 2 x 2 table methods previously presented
for dichotomous or binary exposure variables. In an
example of the effect of birth weight on neonatal mortality,
the continuous exposure variable birth weight has been
divided into four groups to form a categorical multilevel var-
iable (Table 2-11). Note that as the birth weight increases,
the percent of neonates who died decreases from 22.2% to
5.7%; this is an example of a dose-response relationship
as mentioned in Hill’s criteria for causality. These data are
analyzed by forming multiple 2 x 2 tables with the lowest
rate stratum (2,000 g) acting as the nonexposed group in
each (Table 2-11a-c). The number of 2 x 2 tables will be
one less than the number of strata of the multilevel vari-
able. Compared with the reference category, birth weight
>2,000 g, which is assigned relative risk = 1.0, the risk of
death was 1.44 times higher for 1,500 to 1,999 g, 2.31 times
higher for 1,000 to 1,499 g, and 3.87 times higher for <1,000
g. Individual p values for each 2 x 2 table may be reported
along with the individual relative risks. However, it is well
to also calculate a test for heterogeneity among the four
categories; this tests the null hypothesis that the rates are
the same in the four birth weights. In this example, the chi-
square value of 24.8 with three degrees of freedom indi-
cates a highly significant difference in mortality among the
birth weight groups.

Epidemic versus Endemic Disease

The approach to data collection and analysis may differ
for epidemic versus endemic diseases. An epidemic is sim-
ply an increase in the frequency of occurrence of events
above the usual level, often due to a high relative risk
operating over a short period of time. Simpler cumulative
incidence methods may be adequate for investigation of
epidemics, but incidence density methods are generally
preferable for measuring more subtle effects in surveil-
lance of endemic disease. Of note, up to 90% of health-
care-associated infections and other adverse events are
endemic rather than epidemic (35).

The approach to data interpretation may also differ
during an epidemic. An epidemiologist should be more
concerned with the biologic import of observed events,
the size of the effect, and potential future events than with
statistical significance. Hospital epidemics tend to involve
small numbers and an epidemiologist may have to act
before a sample size large enough for a contrast to reach
statistical significance can be collected. A single unex-
pected fatality should trigger the same investigation as do
multiple, less serious events (36).

Systematic Reviews and Meta-Analyses

A systematic review is a “review of a clearly formulated
question that uses systematic and explicit methods to iden-
tify, select, and critically appraise relevant research, and to
collect and analyze data from the studies that are included
in the review” (37). Meta-analysis refers to the use of sta-
tistical techniques in a systematic review to integrate the
results of included studies (37). Using meta-analysis, the
results (e.g., estimates of the relative risk) of multiple stud-
ies may be pooled to produce a single estimate that may
be more informative and precise than any of the individual
estimates. Meta-analyses may resolve uncertainty when
reports disagree and produce more objective summaries of
the literature than might be possible with unaided intellec-
tual interpretation. In addition, meta-analyses may answer
new questions not posed at the start of individual trials.

Originally, meta-analysis had meaning only in terms
of randomized trials (38), but it is now commonly used
for observational studies as well. The results of rand-
omized trials are, on average, unconfounded because
of the randomization process. A summary of uncon-
founded study results will itself be unconfounded. On
the other hand, meta-analysis of confounded obser-
vational studies will produce a confounded summary
result.

The simplest statistical method to perform meta-
analysis is to perform a stratified analysis where each
separate study forms one strata and an RR, is calculated.
As in conventional stratified analyses, we would not want
to calculate and report an RR,,, if the relative risks differed
significantly among the strata, that is, if there was heter-
ogeneity of the relative risks. This amounts to a form of
effect modification where the variable causing the effect
modification is the study itself. Probably the most impor-
tant epidemiologic issue confronted in a meta-analysis is
the determination of whether there is heterogeneity among
studies (4,38—43). This is the same heterogeneity issue
described in Table 2-7.
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TABLE 2-11

APPLIED EPIDEMIOLOGY AND BIOSTATISTICS

Analysis of a Multilevel Variable Created by Categorization of a Continuous Variable

Indicator Variables®
Birth Weight (g) Died, n(%) Survived (n) Relative Risk* BW1 BW2 BW3
<1,000 14 (22.2) 49 3.87 1 0 0
1,000-1,499 20 (13.2) 131 2.31 0 1 0
1,500-1,999 13 (8.3) 144 1.44 0 0 1
>2,000 31 (5.7 509 1.0 0 0 0
Note: Data collated from Table 2-7.
Test for heterogeneity, chi-square = 24.8, three degrees of freedom, p < .001.
aSee Table 2-11 a-c for calculation of the relative risks.
For use in logistic regression model (Table 2-12).
TABLE 2-11A
Died
Yes No
Exposure <1,000 14 49 63
>2,000 31 509 540

Relative risk = (14/63)/(31/540) = 3.87, p < .0001.

TABLE 2-11B

Exposure
>2,000

1,000-1,499

Died
Yes No
20 131 151
31 509 540

Relative risk = (20/151)/(31/540) = 2.31, p = .004.

TABLE 2-11C

Exposure
>2,000

1,500-1,999

Died
Yes No
13 144 157
31 509 540

Relative risk = (13/157)/(31/540) = 1.44, p = .3.

There are two additional threats to the validity of a
meta-analysis. First, publication bias may mean that studies
with a statistically significant effect were more likely to be
published and therefore to be included in the meta-analysis.
Publication bias can be assessed with a funnel plot, that is, a
scatterplot with one dot for each study, sample size plotted
on the vertical axis, and effect size on the horizontal axis. If
there is no publication bias, the scatterplot will be symmet-
ric; if publication bias is present, there will be more small-
sample studies with a large effect size than those with a
small or negative effects (44). Second, variations in the qual-
ity (generally forms of misclassification or confounding) of
studies included may bias the result. Criteria for the quality
of studies included should be set, and a detailed checklist of
items should be reported (45,46) (see also Chapter 7).

Quasi-Experimental Studies

The prefix “quasi” means “having some resemblance
usually by possession of certain attributes.” Here, we
are referring to studies that have some resemblance to
a randomized controlled study, for example, observa-
tional studies that aim to evaluate an intervention. Such
pre-post intervention studies are very common, in part
because of the difficulty and expense of performing formal
randomized trials (47). A recent example is the success-
ful use of a package of proven infection control measures
to reduce catheter-associated bloodstream infections in
Michigan hospitals (48). These studies have a number
of potential limitations: (a) confounding; that is, patients
in the pregroups and postgroups may differ in severity
of illness or other ways difficult to measure and control
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for; (b) regression to the mean; that is, if infection rates
in the preintervention period are higher than the histori-
cal mean, they will tend to decrease toward the histori-
cal mean in the postintervention period regardless of an
intervention (49); (c) preexisting temporal trends; that
is, the infection rate may be increasing or decreasing
independent of the intervention; and (d) seasonal trends
in certain (especially outpatient respiratory) diseases,
which may coincide with premeasurement or postmeas-
urement periods (47,50).

Quasi-experimental studies can be strengthened by
using more sophisticated designs. For example, a simple
study might have only one group with infection rates meas-
ured before and after an intervention (47). A more robust
design might have two groups followed over time, only
one of which receives the intervention. Another way to
improve validity is to use more sophisticated data analysis
methods that account for confounding variables, temporal
trends, changes in temporal trends, and autocorrelation
among infection rates measured several times both before
and after an intervention (51).

Propensity Scores

A related problem is the use of observational data, rather
than a randomized study, to assess the effect of a treat-
ment on disease. In this case, treatment is the exposure
variable in an observational epidemiology study. Often
the analysis is confounded by the fact that patients who
receive a given treatment differ from those who do not.
For example, treated patients may be sicker than those
not treated. A standard approach to this problem would
be to use a multivariable model with disease as the out-
come variable and controlling for as many confounders as
possible. However, if disease is uncommon, the number of
confounders that can be adjusted for is limited. An alter-
nate approach is to control for the propensity to receive
treatment (17,52).

The steps in using a propensity score are (a) construct
a logistic model where the outcome variable is receipt
of treatment and all available factors influencing receipt
of treatment are included as explanatory variables; (b)
based on the model, assign each patient a probability
of being treated; (c) group the patients into categories
(e.g., quintiles) with similar probabilities of being treated;
and (d) measure the effect of treatment on disease while
controlling for these propensity categories (53). Thus,
patients with a % chance of receiving treatment are com-
pared with other patients having a ¥ chance of receiving
treatment, and so on, improving the reliability of the result.
Propensity scores are useful when there are few patients
with disease, many patients receiving the treatment, and
many measured factors that are associated with receipt
of treatment. However, unlike randomization, analyses
adjusted for propensity score cannot control for the effects
of unmeasured confounding variables.

One example of the use of propensity scores was to
investigate whether intensive care unit mortality was lower
for patients cared for by critical care specialists versus
other physicians (54). Patients cared for by critical care
specialists had substantially higher severity of illness than
other patients and would be expected to have higher mor-
tality, and so an analysis that stratified for propensity to

receive treatment from an intensivist was used. In a second
example, the authors determined the effect of candidemia
on hospital mortality, length of stay, and cost (55). Propen-
sity scores were used to compare patients with candidemia
to patients without candidemia but who had the same pro-
pensity for exposure to Candida.

Sensitivity, Specificity, and Predictive Values
Suppose that we have a recognized laboratory method
that we consider the “gold standard” (referred to as the
“standard”) and a proposed newer method (referred to as
the “test”) that may be cheaper, faster, or have some other
advantage. We want to see how the newer test compares
with the recognized standard. We run many specimens by
both methods and arrange the data in the same format as
the 2 x 2 table (“Yes” indicates a positive test, and “No”
indicates a negative test). This same format can be used to
compare two case definitions, two methods of collecting
data, etc., as long as one can be considered the accepted
standard.

Standard
Yes No
Test Yes a b |a+b
No c d |c+d
a+c b+d

We can then define four performance characteristics of
the new test:

e Sensitivity = a/(a + ¢): Of all true positives, what propor-
tion were identified by the test?

e Specificity = d/(b + d): Of all true negatives, what propor-
tion were identified by the test?

e Positive predictive value = a/(a + b): Of those positive by
the test, what proportion are true positive?

e Negative predictive value = d/(c + d): Of those negative
by the test, what proportion are true negative?

Sensitivity and specificity are biologic characteristics
and are not influenced by the frequency of disease in the
population. On the other hand, the predictive values are
influenced by the frequency of disease in the population.
Thus, if the disease is rare in a population, the positive pre-
dictive value will tend to be low even if specificity is high.
Stated another way, if the test is applied in a population
where there are few true positives, then a large number of
false positives (cell b in the 2 x 2 table) will be found, and
most of those found to be positive will in fact be false posi-
tives (cell b will be higher than cell a).

There is a trade-off between sensitivity and specificity.
A change that makes the test more sensitive (more able
to detect true disease) will usually make it less specific
(less able to exclude nondisease). This relationship can be
depicted graphically as a receiver operating curve plotting
sensitivity versus 1-specificity (56).

Sample Size and Power

Assume that there is a true difference in rates of disease
in the exposed versus nonexposed populations that would
be found if a very large number of subjects were studied.
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However, by chance alone, a study of a limited sample of
these subjects might or might not find a statistically signifi-
cant difference. Power is the probability of finding a signifi-
cant difference between the exposed and nonexposed in
your sample of study subjects if there really is a difference
in the rates in the populations from which the samples were
taken. Power = 1—the probability of type II error, where
type Il error is the probability of not finding a significant
difference when there really is a difference between the
rates in the two populations.

Calculations of sample size and power involve specify-
ing the following (1):

e The rate of illness in the nonexposed group

e The rate of illness in the exposed group (or the relative
risk)

e The p value required for statistical significance (usually
.05) and whether a one- or two-tailed test will be performed

e The ratio of the number of exposed to nonexposed
subjects

If the above four are specified, then one can addition-
ally specify the power desired and calculate the sample size
required. Alternately, one can specify the sample size and
calculate the power that will be achieved. These calcula-
tions can be made easily by shareware programs such as
Epilnfo, OpenEpi, and WINPEPI. For example, assume that
the rate of SSI last year (nonexposed) was 4%, and one
wanted to have 80% power to detect an SSI rate of 8% this
year (exposed; relative risk = 2.0) with p <.05; entering these
assumptions into the computer program, we would find that
we would need 1,202 subjects, 601 exposed and 601 nonex-
posed. These types of calculations should probably be used
more frequently in planning hospital surveillance, so that
surveillance efforts can be continued for a sufficient period
of time to detect a predetermined rate of illness.

In a prospectively planned study, it is desirable to have
>80% power to detect a difference between exposure groups.
A hypothesis-testing study with marginal power to detect a
true difference generally will not be worth conducting. On
the other hand, power calculations may not be crucial in
pilot studies or hypothesis-generating studies. Power calcu-
lations are at best only a crude estimate that cannot antici-
pate all the intricacies of the final data set; for example, the
need to control for confounders may increase the sample
size needed. Additionally, planning for sufficient power may
not be possible during an outbreak investigation, where, in
the interests of protecting patients, one should usually pro-
ceed even though the number of subjects involved may be
too small to yield a desirable degree of power.

For studies showing a statistically nonsignificant effect,
calculations are sometimes performed to show that the
sample size was inadequate to detect statistical signifi-
cance given the measured rates of disease. However, such
post hoc power calculations are misleading and should not
be performed or relied upon (57). For example, consider a
study showing 2/20 (10%) ill in the exposed and 1/20 (5%)
ill in the nonexposed, relative risk = 2.0, 95% confidence
interval = 0.2-20.3 (nonsignificant). A post hoc calculation
shows that if the true population relative risk were 2.0, the
total sample size of 40 has only 9% power to find a signifi-
cant difference. This low power is predictable given the
nonsignificant result. If the relative risk of 2 encouraged
us to do a larger study with 874 total subjects, which we
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calculate has 80% power to detect a population relative risk
of 2.0, we might be disappointed to find the rates of disease
to be similar, say 7.5% in both the exposed and unexposed
groups. The problem with the post hoc power calculation
stems from assuming, based on the results of the smaller
study, that the true population relative risk is 2.0, when in
fact we are only 95% sure it is between 0.2 and 20.3.

Shareware Programs for Epidemiologic
Analyses

Epilnfo, available from the Centers for Disease Control and
Prevention, was originally developed in DOS format in the
1980s. The current windows version allows the user to
create data entry screens, enter and manage data, sort and
print data, and perform bivariate and multivariate regres-
sion analyses (58). A “Utilities” tab provides access to DOS
versions of Statcalc, which permits quick entry of the four
elements of a 2 x 2 table and calculation of the relative risk,
odds ratio, p values, and confidence intervals; and a sam-
ple size and power calculator (see Chapter 15). OpenEpi
is an online program developed by the creators of Epilnfo
that performs many of the same functions but does not
have data entry and management capabilities (59).

WINPEPE, a freeware program that performs a wide
variety of epidemiologic and statistical calculations, can be
downloaded from www.brixtonhealth.com (60). This soft-
ware does not have data entry and management capabili-
ties, but some modules can import and analyze data sets
created by other programs. Chapter 3 of this textbook con-
tains a number of examples of the use of WINPEPE.

R is an increasingly popular statistical freeware pro-
gram written in a language similar to S-plus that provides
a platform for development of data analysis packages
(61). A strength is its sophisticated graphics, mapping,
and spatial analytic tools. Currently, R is not the most
convenient option for performing the typical analyses
used by epidemiologists and is more appropriate for
sophisticated analyses performed by mathematicians
and statisticians. However, as its development continues
and documentation improves, R may be an increasingly
viable freeware option.

SaTScan is a DOS-based program for detection of
disease clusters across both time and space (62). It was
first developed to scan for clustering of chronic diseases,
more recently has been used for analysis of syndromic sur-
veillance data (63), and currently is being adapted for use
in defining clusters of antimicrobial resistance (64).

MULTIVARIABLE REGRESSION ANALYSIS

As noted in the introduction, regression modeling is used
increasingly in the medical literature despite the lack of
training of most healthcare epidemiology personnel in
its use. Published articles using regression models show
numerous omissions, such as lack of documentation of
identification, coding, and selection of potential confound-
ers and effect modifiers, and no investigation of potential
nonlinearity of response (65). Multivariable models can
be validly produced only by those well trained and expe-
rienced. This section is merely an introduction and over-
view. Essential reading is a paper by Sander Greenland (66),
which is a literate description of the use of multivariable
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models in epidemiologic research. For most epidemiolo-
gists, it is more important to understand how to interpret
results of regression models than to actually fit them.
However, some insight into the regression “black box” will
benefit everyone who either collects or interprets data.

Regression models are used to identify confounding and
effect modification, calculate adjusted relative risks and
p values that are free of confounding and reflect the inde-
pendent effects of variables, find which of several poten-
tial variables are independently associated with disease,
and make predictions. Regression analysis makes it much
easier to sift through a large number of variables to find the
few that are significant predictors. Additionally, regression
models produce a more precise result (narrower confi-
dence interval) than other multivariable methods such as
stratification. However, with these advantages come the
potential for abuse: fitting models has become easy enough
that well-meaning but inadequately trained individuals may
easily and efficiently produce incorrect results.

Automated Algorithms for Modeling

Many statistical packages provide the capability for
automated model building. This may occur by forward
selection, starting with the single most highly statistically
significant variable and adding one variable at a time to the
model, or by backward elimination, starting with all vari-
ables in the model and removing nonsignificant variables
one by one. The backward elimination method may produce
poor results if too many variables are under consideration.
Automated methods typically use p values for selecting
variables; human judgment and intervention are required
to consider biologic plausibility, confounding, effect modi-
fication, and nonlinearity of response. Automated methods
may sometimes be used by experienced personnel as a first
step in producing a model, but should never be relied on by
inexperienced personnel to produce a final model.

Practical Aspects of Model Building

Model building requires skill and experience and cannot be
reduced to a cookbook approach. It is not too difficult to fit
a model involving cumulative incidence data and only a few
dichotomous (e.g., yes or no) exposure variables. For this
simple case, a model that controls for potential confounding
can be produced. Complexity is introduced by the presence of
a large number of potential exposure variables, a small num-
ber of cases, multilevel exposure variables (i.e., >3 levels),
continuous (e.g., age, weight) exposure variables, colinearity
among exposure variables, and effect modification. Additional
complications include the need to account for time at risk (as
in incidence density or survival analyses) and study designs
with nonindependent records (see below).

Two variables are collinear if they measure nearly
the same biologic property. An example would be two
severity-of-illness scores that include many of the same
components. It is advisable to identify colinearity by explo-
ration before multivariable analysis. If collinear variables
are introduced into a model, large changes in the regres-
sion coefficients and p values may occur. It may be obvious
that only one of these variables can be in the model, but
there is no statistical test to indicate which to choose.

All variables should be examined by univariable
(e.g., 2 x 2 tables) methods first, and some should be fur-
ther explored in stratified analyses. Continuous variables

should be explored by plotting; for the model, they should
be divided into categories (e.g., quartiles) and represented
by indicator variables (Table 2-11).

Criteria for inclusion of a variable in a model include:

e The variable is statistically significant (usually p < .05)
when in the model.

e The variable is an exposure of primary interest.

e The variable is a confounder of an exposure of primary
interest. An informal rule of thumb would be that the var-
iable produces a change of >10% in the regression coef-
ficient of the variable of primary interest.

e The variable is of special biologic interest, for example,
has been found in previous studies to be an important
predictor.

Variables are introduced into the model one at a time
and retained in the model if they meet one of the criteria
for inclusion listed above. Continuous variables should be
examined in several ways: as a simple continuous variable,
as the continuous variable plus its square, as a transform
(e.g., logarithm, reciprocal) of the continuous variable, and
(most importantly) as a series of indicator variables coding
(Table 2-11) for discrete categories. If the squared value of
a continuous variable is statistically significant, this sug-
gests a curvilinear relationship between the continuous
variable and the outcome variable.

The pool of variables to try in the model includes those
of special biologic interest and those with less than a cer-
tain p value in univariable analysis. It may be advisable
to set this p value at a relatively high level, say .2, since
some such variables may prove to have lower p values
in the model or to be important confounders. Remember
that it is necessary that a confounder be associated with
the outcome, and a very weak association as indicated by
p > .20 cannot result in much confounding effect (67,68).
Thus, if the available automatic algorithms employing
p values are to be used for screening for potential con-
founders, the selection criterion should be set at some
much larger value than .05, for instance, p < .20.

Effect Modification

After variables have been selected for the model, effect
modification should be tested for. Interaction terms can
be created by multiplying the main effect variables by one
another, two at a time. These terms are then introduced
into the model and checked for statistical significance.
A problem is that there may be many interaction terms.
A model with five main effect variables will have nine
potential interaction terms, one or more of which may
be significant by chance alone. If an interaction term
is found to be statistically significant, one must decide
whether to retain it in the final model on much the same
basis as other variables, for example, by considering fac-
tors such as the p value, size of effect, biologic plausibil-
ity, and whether it substantially changes the main effects.
It may be reasonable to report models with and without
interaction terms.

Additional Considerations

In evaluating the validity of a fitted model, a variety of
regression diagnostic tools, including analysis of residuals,
are available (65,66,6 7-74). These diagnostics are extremely
useful when multiple variables appear to carry the same
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basic information (colinearity). When the results of fitting
a multivariable model to estimate relative risk differ sub-
stantively from the results of stratified analysis on the same
data, the results of the multivariable analysis are wrong.
Remember, again, that no analytic scheme can correct
selection bias or misclassification.

Recall that two conditions must be present for an expo-
sure (i.e., exposure,) to be confounded by a second exposure
(exposure,): exposure, must be associated with exposure,
and exposure, must be associated with disease. Retaining
exposure, in a model when it is not a confounder will, by defi-
nition, not change the estimated effect of exposure, and there-
fore will not produce a wrong answer. However, there will be
a statistical penalty in the sense of an increased p value and
wider confidence interval for exposure,. Deciding whether to
retain a confounding variable may be subjective, and in bor-
derline cases models with and without the confounder may
be reported (68).

Multiple Regression Models Commonly Used
in Epidemiology

Many types of regression models have been developed, but
the following four are most commonly used: multiple linear
regression, when the outcome variable is continuous; logis-
tic regression, when the outcome variable is dichotomous;
Poisson regression for incidence density data; and the Cox
model for survival analysis data.

Linear Regression Linear regression or ordinary least
squares regression is used for continuous outcome variables
such as length of hospital stay or cost. The regression
coefficients obtained in the model may be simply interpreted
as in the following example where days of hospital stay is
the outcome variable: if the regression coefficient for male
gender was 2.0, then males on average had a length of stay
2 days longer than females, and if the coefficient for age
>60 was 3.0, then patients >60 had an average stay 3 days
longer than younger patients. The effects of the regression
coefficients are combined by addition.

A number of statistical assumptions underlie this
model, and one of the most important is that the out-
come must be approximately normally distributed. If
the outcome is not normally distributed, then the p val-
ues that arise from fitting a multiple linear regression
model are uninterpretable (69-71). Confidence intervals
for regression coefficients are easily calculated from
standard errors and the distribution of Student’s ttest.
Another very useful quantity that arises from multiple
linear regression is the square of the multiple correlation
coefficient or the multiple R%. The multiple R? represents
the proportion of variation of the outcome variable that
is explained by the model. In contrast to other common
types of regression models, the regression coefficients in
a linear model can be calculated by an exact mathemati-
cal formula.

Logistic Regression Logistic regression, the most
common type of model used in healthcare epidemiology,
is used when the outcome variable is dichotomous
(e.g., disease yes or no). The regression coefficient obtained
for a variable is the natural logarithm of the odds ratios
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for that variable. Therefore, to obtain the odds ratio, the
regression coefficient is exponentiated. Even in a cohort
study, the relative risk cannot be directly determined using
logistic regression, and therefore the odds ratio is used
where logistic regression modeling is required. However,
if data from a cohort study are analyzed using logistic
regression, a simple formula can be used to estimate the
adjusted relative risk from the adjusted odds ratio obtained
from logistic regression (75). The effects of the regression
coefficients are combined by adding the regression
coefficients or multiplying the odds ratios (see Example of
Logistic Regression Model: Healthcare-Associated Infection
and Neonatal Mortality, below).

Logistic regression requires less stringent biostatistical
assumptions than linear regression but does not inherently
adjust for differences in duration of exposure. There is no
exact analog for multiple R? in logistic regression, but the
area under receiver operating curves yields similar infor-
mation. Unlike linear regression models, logistic regression
models do not have exact algebraic solutions, and comput-
ers fit them with iterative approximation procedures. Not
all models converge to a solution. Iterative fits were practi-
cally impossible before the general availability of the com-
puter and still may be difficult for large and complex data
sets (see Chapter 3).

Try study questions 8 and 9 in Appendix 1 at the end of
the chapter.

Poisson Regression Poisson regression uses incidence
density data, that is, the number of cases of disease during
a certain person-time of follow-up. Like the incidence
density approach, Poisson regression does not account
for possible differences in disease incidence during early
versus late follow-up. The regression coefficients obtained
are the natural logarithm of the incidence density rate ratio.
Poisson regression is a valid method to determine the rate
ratio for a variable while accounting for time at risk and
adjusting for potential confounding from other variables.
However, Poisson regression is mainly used when data
on individual subjects are not available; that is, Poisson
regression is used if we know the total number of cases
and the total person-time but do not know the person-time
contributed by individual subjects or whether individual
subjects were cases. If data on individual patients are known,
then survival analysis (Kaplan—-Meier plot or the Cox model)
is used preferentially. Analogous to logistic regression, the
effects of two or more exposures are predicted by adding
the regression coefficients or multiplying the rate ratios.

Cox Proportional Hazards Models Cox models were
created for survival analysis and are used when the
outcome variable is dichotomous and when it is desirable
to account for time at risk (76,77). The terminology and
methods for survival analysis were presented in an earlier
section of this chapter. There are other survival analysis
regression methods available, but these depend on
modeling the shape of the survival curve. The Cox model
represented a breakthrough, because it is not necessary
to model the shape of the survival curve. The regression
coefficients from Cox models are the natural logarithms
of what are called hazard ratios; hazard ratios may be
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interpreted as incidence density rate ratios or relative
risks. The effects of two or more exposures are predicted
in a manner similar to that used in logistic regression. As
with logistic regression models, the Cox model can be fit
only by iterative processes.

The Cox model assumes that the hazard ratio for a
given exposure is constant over time; this is the propor-
tional hazards assumption (76,77). This means that if the
hazard ratio for male gender is 2.0, then throughout all
times of follow-up males have twice the risk of disease
as females. If the hazard ratio for males were 2.0 during
early follow-up but 1.0 (or anything other than 2.0) dur-
ing late follow-up, this data set would not fit the propor-
tional hazard assumption and the Cox model would not
be appropriate. If the hazard ratio for a variable changes
over the time of follow-up, essentially time is an effect
modifier for the variable. The proportional hazards
assumption can be investigated graphically or by creat-
ing a time-dependent covariate with the logarithm of time
and the independent variable (76). If the hazard ratio var-
ies significantly over time, then the proportional hazards
assumption is violated. In the previous investigation of
the use of multivariate models in the medical literature,
checking of the proportional hazards assumption was
not reported in more than 80% of publications that used
Cox models (65).

Cox Regression With Time-Dependent Covariates An
important variant is the Cox model with time-dependent
covariates. Although some exposure variables (e.g., gender)
are inherent characteristics of the subject, others may
vary over a time of follow-up (e.g., neutropenia, Apache Il
score). Most analysis methods would require some type of
compromise for variables that change value; for example,
neutropenia could be coded as never, sometimes, or always
present. However, the Cox model with time-dependent
covariates allows us to actually use different values for
exposure variables at different times of follow-up. For
example, a study of bloodstream infections in home infusion
therapy patients allowed the value of several variables,
such as catheter type, to vary as appropriate over time for
each patient followed (78).

Example of Logistic Regression Model:
Healthcare-Associated Infection
and Neonatal Mortality

The data for this exercise are from Table 2-7. The outcome
variable was dichotomous (died or survived), and so logis-
tic regression was used. Recall that in logistic regression
we always produce odds ratios, even if the data are from
a cohort study. We found in stratified analysis that health-
care-associated infection was a risk factor for death, birth
weight was a confounder of this relationship, and PDA was
an effect modifier.

Our logistic regression starts with model 1 (Table 2-12),
which has only healthcare-associated infection (odds ratio
=3.9). We next add three indicator variables for birth weight
groups (model 2); Table 2-11 shows how these indicator
variables were coded. These indicator variables show the
expected increase in mortality as birth weight decreases,

TABLE 2-12

Logistic Regression Model: Confounding and Effect
Modification in a Study of Neonatal Mortality

-2 x Log Regression Odds Wald

Model Likelihood Variable Coefficient Ratio p Value

1 522.4 HAI 1.37 3.9 .0004

2 506.8 HAI 0.97 26 .02
BW1 1.41 4.1  .0001
BW2 0.79 22 .01
BW3 0.33 14 3

3 506.4 HAI 0.91 25 .03
PDA 0.20 12 6
BW1 1.36 3.9 .0003
BW2 0.75 21 .02
BW3 0.32 1.4 4

4 501.7 HAI 1.65 52 .001
PDA 0.58 1.8 .12
BW1 1.26 35 .001
BW2 0.71 20 .03
BW3 0.26 13 5
HAI_PDA -1.85 0.16 .03

Note: BW1-BW3 are indicator variables for age group (see Table
2-11), and HAI_PDA denotes interaction term between healthcare-
associated infections and patent ductus arteriosus.

HAI healthcare-associated infection; PDA, patent ductus arteriosus.

and also that the effect of healthcare-associated infection
decreases when we control for birth weight (odds ratio
decreases from 3.9 to 2.6, suggesting confounding). We can
do a statistical test for heterogeneity of the birth weight
categories by taking the difference in -2 x log likelihood
between models 1 and 2. This difference is 15.6, which can
be evaluated as a chi-square with three degrees of freedom,
since three variables were added to model 1 to produce
model 2. The resulting p value for heterogeneity of the birth
weight groups =.0014. Next, we add PDA to produce model
3; we note that PDA has a minimal effect on mortality (odds
ratio = 1.2, p = .6). Finally, we create model 4 by adding the
interaction term between healthcare-associated infection
and PDA. This interaction term is not highly significant
(p =.03) but has a substantial effect (odds ratio =0.16).

Model 3 (Table 2-12), without an interaction term,
would indicate that the odds ratio was 1.0 (reference
group) for infants with no PDA and no healthcare-
associated infection, 1.2 for infants with PDA but no
healthcare-associated infection, 2.5 for those with
healthcare-associated infection but no PDA, and 3.0 (the
latter calculated by 1.2 x 2.5 = 3.0) for those with both
PDA and healthcare-associated infection. Model 4 indi-
cates that the risks are 1.0, 1.8, 5.2, and 1.5 (the latter
calculated by 5.2 x 1.8 x 0.16 = 1.5) for these four pos-
sibilities, respectively. The interaction term leads to a
markedly different (in this case, lower) estimate of the
risk in neonates with both PDA and healthcare-associ-
ated infection (3.0 in model 3 vs. 1.5 in model 4) than one
would have predicted based on the separate effects of
these two variables.
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Longitudinal Analysis and Repeated Measures

Standard statistical techniques assume that all observa-
tions in a data set are independent. This assumption may
be violated in various ways. First, since some patients
are more prone to disease than others, most healthcare
studies include patients with more than one episode of
the illness. One approach to this problem is to study only
the first infection for each individual, but this wastes data
and does not represent the reality that patients often have
multiple events. Second, longitudinal follow-up studies
with repeated measurements on individual patients over
time are sometimes necessary.

A third issue involves studies carried out at a limited
number of medical centers. For example, consider a study
done at five hospitals with 100 patients studied at each.
Individual hospitals vary greatly in patient populations and
style of practice. The 500 records from five hospitals are
not independent as would be the case if a random sample
of 500 patients from all US hospitals were studied. Methods
for adjustment for center in multicenter studies, including
the problems of nonindependence, confounding by center,
and effect modification by center, have been reviewed (79).

To use all the data available without violating statisti-
cal assumptions, we can use methods that were developed
specifically for longitudinal or repeated measures studies.
The most popular method is the use of generalized estimat-
ing equations (GEEs) (80). GEE models can be fit by various
statistical packages including SAS; PROC GENMOD uses
GEE to fit linear, Poisson, or logistic regression models (81).
Fitting these models is more complicated than fitting the
other models discussed above. For example, it is necessary
to specify the form of the matrix describing the correlations
to be accounted for. It is worthwhile to compare the results
obtained by standard models including all repeated events,
standard models including only first events in a given
patient, and the robust estimates from GEE models using
various correlation assumptions. If these methods produce
similar results, one can feel confident in drawing conclu-
sions, and if they produce different results, more insight
into the data is obtained. Fitting models using GEE must be
done iteratively for both continuous and discrete data, and
the fitting process will not always converge to a solution.
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APPENDIX 1: STUDY QUESTIONS

Question 1

Reliable information on patient admissions and discharges
is usually available from the hospital administration. From
a list of discharges during a 6-month period, a healthcare
epidemiologist selected all cases that suffered at least
one healthcare-associated urinary tract infection during
hospitalization and an equal number of reference patients
who did not acquire such infection during hospitalization.
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If the healthcare epidemiologist compared the cases of
healthcare-associated urinary tract infection with the ref-
erence subjects for mortality during hospitalization, would
this be a case—control study or a cohort study? (Hint: Care-
fully identify the exposure and the outcome.) Suppose the
noncases were matched to the cases by primary underlying
illness, operation, and age. Would this change your answer?

Question 2

Consider again the situation described in question 1.
Using the same cases of healthcare-associated urinary
tract infection and the same uninfected reference patients,
the healthcare epidemiologist then compared the cases
with the comparison subjects for events that occurred in
the first week of hospitalization prior to the onset of the
healthcare-associated infections. Specifically, the epidemi-
ologist compared placement of indwelling bladder cathe-
ters among cases and reference patients. (Again, carefully
identify the exposure and the outcome.) Would this be a
case—control study or a cohort study?

Question 3

Among the discharges for a 6-month period, the healthcare
epidemiologist in the questions above found 200 patients
who suffered first healthcare-associated urinary tract infec-
tions. Of these infected patients, 30 died. The next sequen-
tial uninfected patient discharged after each of these
infected patients was selected as a comparison subject,
and the administrative records indicated that 10 of the 200
comparison patients died. Fill in the table below and calcu-
late the relative risk of mortality with healthcare-associated
urinary tract infection (refer to Table 2-1).

Disease
Yes No
Exposure Yes
No
%illexposed  a/(a+b)

Relative risk =

% ill nonexposed S/ (c+d)

Optional: If you are interested, compute the value of
chi-square. For a single fourfold table, the value of chi-
square may be computed as:

(ad —bc)*(n-1)

chi-square =
(a+b)(c+d)(a+c)(b+d)

Question 4

If the sampling fraction were changed and 10 times as many
unexposed enrolled, with the same probability of infection,
what would happen to the estimate of the relative risk?
Optional: What would happen to the confidence intervals?

Question 5

Having decided that healthcare-associated urinary tract
infections were a problem, the healthcare epidemiolo-
gist made a first inquiry into the possible causes of these
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infections. The medical records of the above 400 patients
were read, and the frequency of use of indwelling blad-
der catheters in the first week of hospitalization, prior
to the onset of urinary tract infections, was determined.
One hundred of the 200 infected patients had experienced
prior bladder catheterization, but only 10 of the nonin-
fected patients had been catheterized. Fill in the table
below and calculate the odds ratio of exposure to bladder
catheterization among infected and noninfected patients
(see Table 2-1).

Disease
Yes No
Exposure Yes
No
d
Odds ratio = ad
bc
Question 6

Suppose the sampling fraction among the noncases, that
is, those who were outcome-negative, was changed in
question 5, and 10 times as many noncases were enrolled,
but the odds of having a catheter remained the same in
this larger group of noncases. How would this new larger
sample affect the estimate of the odds ratio in question 5?7
Optional: How would it affect the confidence intervals?

Question 7

Suppose you erroneously calculated the relative risk instead
of the exposure odds ratio for the data in question 5. What
would happen to the relative risk if the new larger sample of
noncases were used in this erroneous calculation?

Introduction to Questions 8 and 9

These questions were prepared to entice you to evaluate
your own assumptions. As with many things in life, these
questions have no unique correct answers.

Question 8

This is a question to help you discover how your brainstem
is calibrated with respect to the additive or the multiplica-
tive models in causal inference in epidemiology. Suppose
there are two independent determinants of infection, and
the first has a relative risk of 3.0 and the second has a rela-
tive risk of 5.0. If you use the conceptual framework of rela-
tive risks, this means that the relative risk of infection in
the absence of either determinant of infection is defined
as 1.0; the relative risk of infection with just the first deter-
minant is 3.0; and the relative risk of infection with just the
second determinant is 5.0. Now, in your view, what should
be the relative risk of infection in the presence of both
determinants of infection? Can you defend your choice
of a relative risk of either 8.0 or 15.0 on a biologic basis?
Remember that your selection of regression models makes
this choice for you.

Question 9

After you have decided what the value of the relative risk
should be in the presence of both determinants, consider
the implications if the actual measured value of the rela-
tive risk in the presence of both determinants turns out
to be less than the level you predicted (antagonism) or
more than the level you predicted (synergy). Note that
there are five different values for the relative risk (RR) in
the presence of both determinants on which you should
comment:

RR < 8.0

RR=8.0

RR > 8.0 but <15.0
RR =15.0

RR > 15.0

APPENDIX 2: ANSWERS TO STUDY
QUESTIONS

Question 1

The question is whether this is a case—control study
or a cohort study. Here the outcome is survival sta-
tus at discharge (lived or died), and the exposure is
healthcare-associated urinary tract infection (or not)
prior to discharge. Although individuals who acquired
healthcare-associated urinary tract infections were called
cases, infection is the exposure. Because subjects were
enrolled in this study on the basis of their exposure status
(infected or not) and then compared for subsequent mor-
tality, this is an exposure-selective cohort study with count
data (numbers of persons). Matching may increase statisti-
cal efficiency but has nothing to do with whether this is a
case—control or cohort study.

Question 2

In this example, the situation has been reversed, and
healthcare-associated urinary tract infection is now the
outcome with prior bladder catheterization the exposure.
Because subjects were enrolled in this study by their out-
come status (infected or not) and then compared for prior
exposure to catheters, this is a case-control study.

Question 3
Disease
Yes No
Exposure Yes 30 170 200
No 10 190 200

30/200 15%
10/200 5%

Relative risk =

RR = 3.0; chi-square = 11.08; p < 103

Note: The combination of the relative risk and its
95% confidence interval, 3.00 (1.57-5.73), is much more
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informative than just having the relative risk and the p value
separately.

Question 4

If the sample of the unexposed is increased to 2,000 from
200 but the probability of the outcome remains the same,
the relative risk will remain unchanged, but the value of
chi-square will increase and the confidence intervals will
shrink. The relative risk is 3.00 (2.06-4.37).

Question 5
Disease
Yes No
Exposure Yes 100 10
No 100 190
200 200

(100)(190) _ 4
(100)(10)

Odds ratio =

chi-square = 101.3; p < 108

Question 6

If the sample of noncases is increased 10 times from
200 to 2,000 but the odds of exposure remain the same, the
odds ratio will remain unchanged, but chi-square will again
increase and the confidence interval will shrink. The odds
ratio is 19.0 (14.5-24.9).

Question 7

If one erroneously computes the relative risk from the
above case-control study with the original sample size,
relative risk = 2.64. If one then erroneously computes the
relative risk with the larger sample size, relative risk = 1.82.
The sampling fractions do not change the estimates of
relative risks when they are calculated correctly.

Question 8

If one believes that independent effects are additive, then
the relative risk in the presence of both determinants
would be 3.0 + 5.0 = 8.0. If one believes that independ-
ent effects are multiplicative, then the relative risk in the
presence of both determinants would be 3.0 x 5.0 = 15.0.
Which is applicable depends on your point of view and
the underlying biology.

Question 9

Any value less than your projected estimate would indicate
antagonism between the two determinants, and any value
greater than your projected estimate would indicate syn-
ergy between the two determinants. In either model, a rela-
tive risk of 7.0 in the presence of both determinants would
indicate antagonism, and a relative risk of 16.0 would indi-
cate synergy. However, if you believe in the additive model,
then a relative risk of 10.0 would represent synergy, but if
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you believe in the multiplicative model, then the same rela-
tive risk of 10.0 would indicate antagonism. Effect modifica-
tion is the epidemiologic term for synergy or antagonism.
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Biostatistics for Healthcare Epidemiology

and Infection Control

Elizabeth A. Tolley

It is common knowledge that investigators face challenges
during all phases of planning and implementing research
protocols. Clinical and experimental researchers possess
the necessary expertise for the medical and scientific
aspects of their investigations. Moreover, researchers usu-
ally have some knowledge of elementary statistical meth-
ods. Some researchers find elementary statistics adequate
for their purposes and need only an occasional consulta-
tion with a biostatistician. However, recent trends in clinical
research, especially in healthcare epidemiology and infec-
tion control, indicate increasing complexity that demands
a higher level of statistical expertise. These general trends
are probably going to continue for the foreseeable future—
a situation that may leave a researcher feeling somewhat
overwhelmed by all of the tasks to be handled in addition
to mastery of subject matter. This chapter discusses the
challenges and dilemmas related to statistical issues faced
by the researcher during the various phases of planning
and implementing a research protocol.

Statistics is the science of collecting, analyzing,
interpreting, and presenting data. Descriptive statistical
methods involve data reduction and summarizing many
observations in a few representative numbers. Biostatis-
tics is the application of statistical methods to biologic,
biomedical, or health science problems. Data are numeric
observations or measurements that result from a random
phenomenon or process (1,2). A random process cannot
be controlled, and the data collected can never be repro-
duced exactly. Data from a random process always contain
some natural variation. To identify reasons for observed
differences among groups of observations, the researcher
must sort out the special causes that lead to systematic
variation and separate these from the natural variation
that is always present. Consequently, decisions will be
uncertain. Before making a decision, the researcher uses
statistical inference to objectively evaluate data and quan-
tify the level of uncertainty. In addition, the researcher
uses statistical models to represent data in terms of spe-
cial causes and natural variation; these models aid the
researcher in making inferences and decisions based on
the data.

The numeric observations are in the form of variables,
also called random variables. Certain statistical techniques
apply to each type of random variable (1-4,5,6,7,8,9).
Measurement variables may be continuous, if the number

of values is very large, or discrete, if only few values
(generally <10) are possible. Some measurement variables
are actually computed variables, for example, Acute Physi-
ology and Chronic Health Evaluation III (APACHEIII) scores.
A ranked variable is a measurement variable, the values of
which have been placed in ascending or descending order
and replaced by the ranks. Attributes must translate into
numbers (e.g., frequencies of occurrence or number of
infected patients). Attributes are sometimes called categor-
ical variables. If an attribute can be only present or absent,
the term dichotomous variable is frequently used.

In today’s clinical studies, even the most focused
research protocol can yield enormous amounts of infor-
mation. The typical clinical setting contains a multitude
of measuring devices that can provide exquisitely detailed
measurements. Many measurements are collected because
of availability rather than need. As a consequence, when
a study is concluded, an investigator can be faced with
the task of sorting through a huge amount of data. Certain
measurements or variables are relevant to and necessary
for carrying out the specific objectives of a study. An inves-
tigator determines what type of data to collect based pri-
marily on specialized knowledge.

Two concepts have especially important implications
for investigators. Accuracy is the closeness of the meas-
ure to the true value; lack of accuracy has to do with bias
(1-3,9,10). Before recommending a study or grant for
approval and/or funding, most reviewers insist that an
investigator show how the results will be unbiased. Thus,
the investigator’s responsibility includes demonstrat-
ing the experimental validity of the study. Precision is the
closeness of repeated measurements to each other (2,3,9).
Importantly, precision has no bearing on closeness to the
true value. In fact, precision without accuracy can be a
problem when an investigator is trying to make statistical
inferences.

Most clinical studies involve samples that are chosen
from a population, instead of the entire population
(2-4,8,11,12,13). The term population refers to the reference
or study population. A random sample is a group chosen
from a population such that each member of the sample
has a nonzero probability of being chosen, independent of
any other member being chosen. A simple random sample
is the same as a random sample, except that each member
of the population has the same nonzero probability of
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being chosen. Parameters of the reference population are
usually unknown and unknowable. The investigator uses
statistics from samples to estimate the parameters of the
reference population. Because the sample is smaller than
the population, information obtained from the sample is
partial, and the investigator uses this information to infer
something about the population. Most statistics used in
healthcare epidemiology and infection control require the
investigator to make the assumptions that (a) the reference
population is infinitely large and well defined and (b) the
sample behaves like a simple random sample. In practice,
the population may not be well defined or infinite. Like-
wise, the sample may not be random; for clinical studies,
samples are often composed of those patients who have
been admitted to a particular hospital over a specified
period because of certain underlying diagnoses and who
have undergone various medical and surgical procedures.

DESCRIPTIVE STATISTICS

In published reports, healthcare epidemiologists sum-
marize patient characteristics with descriptive statistics
(1-4,5,6,7,8,9,11,12,13). Typically, a list of patient charac-
teristics includes measures of central tendency and disper-
sion for continuous variables.

During the research process, the clinical investigator
may start exploratory data analysis by obtaining descrip-
tive statistics of important variables. These descriptive sta-
tistics have a variety of other practical uses. For example, a
potentially important determinant of disease, such as age,
may vary only slightly for those patients included in the
study; consequently, the clinical investigator may decide
not to consider this variable as a potential risk factor in
this study. In addition, the researcher may note which vari-
ables have highly skewed distributions and, thus, might
yield spurious results during data analysis. Finally, unu-
sually high or low values can be identified and verified, if
necessary. The following sections describe descriptive sta-
tistics for continuous variables.

Measures of Location or Central Tendency

Location refers to where on an axis a particular group of data
is located relative to a norm or another group. Measures of
central tendency or central location are used to obtain a
number that represents the middle of a group of data.

Mean Mean usually refers to the arithmetic mean or
average. The mean is probably the most commonly used
measure of location. However, the investigator should be
aware that the mean is sensitive to extreme values—both
very high and very low values. Other means exist but are
used less frequently; the geometric mean is an example.
An investigator computes a geometric mean by first tak-
ing the logarithm of a group of numbers, computing the
mean of the transformed values, and then obtaining the
antilog of the mean. Blood pH values are logarithms; how-
ever, in practice, after calculating the mean of pH values,
no one takes the antilog to obtain the mean hydrogen ion
concentration. The Greek letter u is used to represent
the population mean. The sample mean X is an unbiased
estimator of u regardless of the shape of the distribution.
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If the underlying distribution is normal, then the sample
mean is the unbiased estimator with the smallest variance.

Median The median is the 50% point or 50th percentile
and, as such, is insensitive to extreme values. If an odd
number of observations is ranked from smallest to largest,
the median is the middle observation. If an even number of
observations is similarly ranked, the median is the average
of the n/2 and (n/2) + 1 observations where n is the sample
size. For example, if the sample size is 20, after ranking, the
median is the average of the 10th and 11th observations.
For symmetric distributions, the mean and the median
coincide. There is no standard symbol for the median of a
population or a sample; however, M can be used for connot-
ing the population parameter or the sample statistic (4).

Mode The mode, or the value with the highest frequency,
is a measure of concentration. Distributions may have
more than one mode. Distributions with two modes are
called bimodal. Trimodal refers to distributions with three
modes. For symmetric distributions, the mean, median,
and mode have the same value. No standard symbol exists
for the mode of a population or a sample.

Measures of Dispersion or Spread

Range The range is the distance between the highest
(largest) and the lowest (smallest) value. In healthcare
epidemiology, investigators often refer to the interquartile
range, which is the distance between the 25th and 75th
values. Researchers should report ranges with medians;
in this way, information on both location and dispersion
can be conveyed to others. For a sample, the range is
symbolized by R.

Variance The variance is a measure of dispersion that is
often used in calculations. Another name for the variance
is the mean square. For populations, the variance is called
sigma squared and symbolized with the Greek letter ¢ for
samples, the variance is represented by s?. Because of the
availability of inexpensive calculators and spreadsheets
with statistical functions, only definitional formulas for the
variance of a population and a sample are given, where n
is the sample size from a population with N members, and
N is much greater than n. For the population, the variance
is computed as

Ox
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where X is the value of the random variable X, measured
on each member of the population; i is a unique identi-
fier of each member of the population; u is the population
mean for the variable X; ¥ signifies summing the squared
deviations of the individual values from the mean over all
members; and N is the number of members in the popula-
tion. For the sample, the variance is computed as
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where X is the value of the random variable X, measured
on each observation in the sample; i is a unique identifier
of each observation in the sample; X is the sample mean
for the variable X; z signifies summing the squared devia-
tions over all observations; and n is the number of observa-
tions in the sample.

Standard Deviation The standard deviation is the square
root of the variance and is sometimes called the root mean
square. The standard deviation is a measure of the average
distance from the mean. If the standard deviation is small,
the observations are crowded near the mean; if the stand-
ard deviation is large, there is substantial spread in the
data. For populations, the standard deviation is symbol-
ized with the Greek letter o; for samples, the standard devi-
ation is represented by s. Standard deviations correspond
to means. Occasionally, an investigator must approximate
the standard deviation of a future sample. The expected
range (i.e., the largest value that one expects to record
from a future sample minus the smallest value) divided
by 4 provides an approximation when no other information
is available.

Other Descriptive Measures

Measures of Skewness Measures of skewness and kur-
tosis may be computed to evaluate how a distribution devi-
ates from a normal distribution. Most clinical investigators
do not routinely need these measures. In practice, the inves-
tigator may plot the distribution of the data to evaluate the
presence of outliers, those observations with values much
larger or smaller than the rest of the sample. A distribution
that has a few to a moderate number of high values and a
mean that is greater than the median is generally referred
to as right or positively skewed. Conversely, a distribution
that has a few to a moderate number of low values and a
mean that is smaller than the median is generally referred
to as left or negatively skewed. In summary, the direction in
which the tail of the distribution points characterizes the
direction of skew.

Kurtosis Kurtosis refers to how flat or peaked the dis-
tribution is relative to the normal distribution. If a distri-
bution is flatter than the normal distribution, it is called
platykurtotic. On the other hand, if a distribution is more
peaked than the normal distribution, it is called leptokur-
totic. For kurtotic distributions, the mean and the median
coincide, but the standard deviation is either larger or
smaller, respectively, than it would have been if the obser-
vations were sampled from a normal distribution.

Coefficient of Variation The coefficient of variation
allows the researcher to compare two or more standard
deviations, because the standard deviation has been stand-
ardized by the mean. The population coefficient of varia-
tion is (o/1)100%, and the sample coefficient of variation is
(s /X)100%. For most biologic data, the standard deviation
increases as the mean increases. Therefore, the coefficient
of variation of a particular variable tends to be rather sta-
ble over a wide range of values. For experimental studies,
the coefficient of variation is an indicator of the reproduc-
ibility of the observations. The clinical investigator may
use the coefficient of variation to compare variables that

may be potential confounders or effect modifiers. For one
group of subjects, the spread of different variables may
be compared using the coefficient of variation. For two or
more groups of subjects, the coefficient of variation may be
used to compare the groups with respect to the spread of
a particular variable.

PROBABILITY

Many patient characteristics are dichotomous attributes,
which are either present or absent, such as fever. Some
characteristics have the form of categorical variables with
only a few possible states. For example, the investigator
may categorize patients according to the presence of a rap-
idly fatal disease, an ultimately fatal disease, or a nonfatal
disease. In some statistical texts, authors apply the term
discrete variable to a characteristic or attribute with two
or more states. In published reports, healthcare epidemi-
ologists summarize these types of patient characteristics
by indicating the proportion of the total group with each
characteristic of interest.

During the research process, the clinical investigator
often begins exploratory data analysis by considering the
relationships between pairs of categorical variables. The
following sections contain important rules and definitions
that the clinical investigator must master before undertak-
ing a complex study. Dichotomous variables are empha-
sized, because many clinically important risk factors are
dichotomous variables.

Definitions and Rules

Many problems in healthcare epidemiology and infection
control involve analysis of frequencies for various attrib-
utes (e.g., numbers of patients with and without infections).
When only two outcomes are possible, the variable is called
a dichotomous variable. For this example, a patient either
has an infection or does not and cannot be characterized
as being in both states simultaneously. Thus, having an
infection is a dichotomous variable that represents mutu-
ally exclusive states. The infected state is represented by /
and the noninfected state by 7 (i.e., I stricken through with
a line connoting “not”). The probability that an infection is
present is represented by p; the probability that an infec-
tion is not present is represented by (1-p). Some authors
of statistics texts represent (1-p) as g. Mathematically, we
express the probability that a patient has an infection by
the expression, Pr(/) = p. Because the states are mutually
exclusive and only these two states can occur, p and g, or
(1-p), sum to 1.0.

Probability can be expressed as a fraction with a
numerator and denominator, a decimal fraction or propor-
tion, or a percentage. In this chapter, probability is always
a proportion. Probabilities can have any value between 0
and 1.0, inclusive. For dichotomous variables, a probabil-
ity of 0 implies that an event (i.e., one of the two possible
states) cannot occur; a probability of 1.0 implies that the
event will always occur.

Researchers in healthcare epidemiology need a basic
understanding of some concepts related to probability.
After mastering a few easily understood concepts (i.e.,
three rules and six definitions), the researcher can achieve
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a deeper understanding of how and when important
statistics, such as risk ratio (RR), are used.

Unconditional or Total Probability In healthcare epi-
demiology and infection control, researchers must assess
total or unconditional probabilities (1-4,5,8,12,13). The def-
inition of a total probability is illustrated in the following
example. The probability that a patient chosen at random
has an infection may be calculated as the relative frequency
of patients with infections: the numerator is the number of
patients with at least one infection, the denominator is the
total number of patients in the study. If 15 of 45 patients
in the medical intensive care unit (ICU) have at least one
infection, the empirical probability of being infected is .33.
This probability may be symbolized as Pr({) = p =.33. Thus,
the total probability of an event occurring is the number of
times the event occurs divided by the number of times that
it could have occurred.

Empirical Versus Theoretical Probabilities A
clinical investigator obtains empirical probabilities from
the sample of patients in the particular study. A better
method for estimating the true or theoretical probability
of a future patient, 7, having at least one infection would
involve enumerating all infections in all the patients over
a long period. The investigator could continue to expand
the sample size by including other units and other hos-
pitals and so on. Finally, after the investigator had gath-
ered a very large group of patients from many locations,
the empirical probability would approach the theoretical
probability of an average hospitalized patient having an
infection. Thus, the theoretical probability of infected
patients is the relative frequency for cases of infection
over an infinitely large sample. During an investigation
of a possible outbreak of disease, infection control offic-
ers compare empirical probabilities, p, with theoretical
probabilities, .

Conditional Probability In healthcare epidemiology,
researchers are also interested in conditional probabilities
(1,34,5,8,12,13). An example of a conditional probability
is the probability of pneumonia, given that the patient
has been intubated. The condition states the circum-
stances restricting the type of patients of interest to the
researcher. A researcher obtains a conditional probability
of healthcare-associated pneumonia given intubation by
(a) enumerating the number of patients with the two char-
acteristics (i.e., intubated patients with pneumonia) and
(b) dividing by the number of patients who are intubated
(i.e., those at risk for ventilator-associated pneumonia). In
this example, the conditional probability of having pneu-
monia given that the patient is intubated may be symbol-
ized by Pr(PIV), where | indicates given, P symbolizes a
patient with pneumonia, and V symbolizes a patient who
is intubated or on a ventilator. Therefore, if 25 patients are
ventilated and have healthcare-associated pneumonia and
100 patients are ventilated, Pr(P1V) = 25/100 = .25.

Joint Probability and the Product Rule The first
rule of probability considered in this chapter is the prod-
uct rule (1,3,4,5,8,12,13). The product rule states that for
any two events A and B, the joint probability of events
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A and B occurring together is equal to the product of the
conditional probability of A given B times the total prob-
ability of B. In this example, the probability of being intu-
bated and having pneumonia is obtained by multiplying the
conditional probability of having pneumonia given that the
patient is intubated by the probability of the patient being
intubated. In the ICU, the joint probability that a patient
selected at random will be both intubated and have pneu-
monia may be symbolized mathematically by Pr(P and V),
where P indicates a patient with pneumonia and V indi-
cates a patient who is intubated or on a ventilator. In this
example, if Pr(V) = .40 (i.e., 40% of the patients in the study
are ventilated) and Pr(P1V) = .25 (i.e., 25% of the intubated
patients have pneumonia), then Pr(P and V) = Pr(PI1V) x
Pr(V)=.25x.40=.10. Thus, 10% of the patients in the study
have both characteristics.

Independent and Dependent Events Often the
healthcare epidemiologist will want to know if there is an
association between two events (1,3,4,5,8,12). No causal
relationship can be identified without substantially more
evidence than that provided by one investigation. In this
example, the researcher might be looking for an associa-
tion between a patient being intubated and development
of healthcare-associated pneumonia. Therefore, the epide-
miologist wishes to know if the ventilated patients in the
study are more likely to develop pneumonia than expected
based on the theoretical probability of healthcare-associ-
ated pneumonia in the particular ICU. In making this deci-
sion, the epidemiologist determines the probability of an
average patient developing pneumonia and being intubated
under the assumption that these two events are independ-
ent (i.e., they have no association). Under independence,
Pr(P and V) = Pr(P) x Pr(V). If 20% of the patients in the
study have pneumonia, then Pr(P) = .20. Thus, if there is
no association between being on the ventilator and devel-
oping pneumonia, Pr(P and V) = .20 x .40 = .08. This result
implies that one would expect 8% of patients to be venti-
lated and to develop pneumonia if the assumption of inde-
pendence is correct for this situation. Based on previous
computations, the investigator knows that, in this study,
10% of the patients actually have both characteristics.
Because the empirical probability is not the same as the
theoretical probability, the conclusion is that there is evi-
dence of an association between intubation and pneumo-
nia. Determining whether this association is evidence of a
special cause or merely a reflection of natural variability
requires the researcher to use inferential statistics. Inferen-
tial methods appropriate for this example are presented in
other sections.

In this example, the researcher could have reached the
same conclusion by comparing total and conditional prob-
abilities. Under independence, the probabilities are equal;
therefore, Pr(P|V) = Pr(P). For the healthcare epidemiolo-
gist, this statement implies that with respect to a patient
developing pneumonia, the ventilator is neither a risk fac-
tor nor a protective factor; therefore, patients on the ven-
tilator have the same risk of developing pneumonia as any
other patient in the study. For this example, Pr(P 1V) is .25,
a value that is greater than Pr(P) = .20. When these two
probabilities are unequal, there is evidence of an associa-
tion between the two variables of interest.
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Ad(dition or Total Probability Rule The second rule is
called the addition or total probability rule (1,3,4,5,8,13).
This rule states that for any two events A and B, the total
probability of A equals the sum of the joint probability of
A and B plus the joint probability of A and not B: Pr(A) =
Pr (A and B) + Pr(A and not B). For convenience, these
probabilities are often displayed in a 2 x 2 table. Accord-
ingly, the term marginal probability is used interchangeably
with total probability.

Before continuing the discussion of probability, the
layout of a 2 x 2 table is considered. Statistically, no
restriction exists that stipulates placement of exposure
and disease on a particular margin or the order in which
presence and absence are given on a particular margin.
However, the interpretability of some measures of associa-
tion, which specifically apply to epidemiology, depends on
a particular arrangement. When an investigator devises
a 2 x 2 table, the proportion of patients with the two
attributes and those without the two attributes should
be placed on the main diagonal (i.e., cells 1 and 4 of the
following table). Epidemiologists have developed other
conventions, the use of which has helped to standardize
presentation of data. Furthermore, some statistical soft-
ware products have specific requirements for placement
of attributes.

Total or
Marginal
Exposed to  Not Exposed to  Probability
Ventilator  Ventilator of Disease
Pneumonia present P, 2, p,+p,
Pneumonia absent P, P, Py tp,
Total probability of P, +P, p,+p,
exposure

In the previous table, p, p,, p., and p, are joint probabili-
ties. For this example, p, is the joint probability of a patient
having both exposure to the ventilator and pneumonia.
Marginal probability of pneumonia can be calculated as the
sum of the joint probabilities. In this example, the prob-
ability of having pneumonia, Pr(P), equals the sum of the
joint probabilities, Pr(Pand V) and Pr(Pand ¥ (i.e., p, + p,).
The other total probabilities, Pr(#), Pr(V), and Pr(¥), can
be calculated by using the addition rule and are displayed
in the following table.

Total or
Marginal
Exposed to Not exposed to  Probability
Ventilator Ventilator of Disease
Pneumonia present Pr(Pand V) Pr(P and %) Pr(P)
Pneumonia absent Pr(Pand V) Pr(P and %) Pr(P)
Total probability Pr(V) Pr(¥) 1.0

of exposure

Alternatively, using the definition of joint probabil-
ity, the healthcare epidemiologist can replace the joint

probabilities p, and p, with the product of the conditional
probability of disease multiplied by the respective prob-
ability of exposure. The same can be done with p, and
p,- Frequently, the healthcare epidemiologist uses this
approach when the research question involves identifying
risk factors. Typically, the healthcare epidemiologist asks
that question before designing a prospective study.

Total or

Marginal
Exposed to Not Exposed to  Probability of
Ventilator Ventilator Disease

Pneumonia present
Pneumonia absent
Probability

of exposure

Pr(V) x Pr(P1V) Pr(¥) x Pr(P|¥) Pr(P)
Pr(V) x Pr(PIV) Pr(¥) x Pr(PI1¥) Pr(P)
Pr(V) Pr(¥) 1.0

Finally, a healthcare epidemiologist may wish to study
a particular exposure and describe the relationship of that
exposure to the presence of a particular disease. In this
example, the investigator would be interested in the prob-
ability of exposure to the ventilator given that a patient has
pneumonia. Usually, the healthcare epidemiologist asks
this question before designing a retrospective study, often
a case—control study.

Total
Exposed to Not Exposed to  Probability
Ventilator Ventilator of Disease

Pneumonia present Pr(P) x Pr(VIP) Pr(P)xPr(¥#IP) Pr(P)

Pneumonia absent Pr(P) x Pr(VI£) Pr(P) xPr(¥#IP) Pr(P)

Probability of Pr(V) Pr(¥) 1.0
exposure

In the healthcare setting, patients are exposed simulta-
neously to several risk factors. By considering each expo-
sure separately, the healthcare epidemiologist can use
this approach to identify the most likely route of exposure
given a particular disease.

In summary, when the healthcare epidemiologist inves-
tigates the relationship between two dichotomous events
(e.g., exposure and disease), the 2 x 2 table provides a
useful and flexible way of displaying the relative frequen-
cies at which the four possible combinations of exposure
and disease occur in the sample. Depending on the spe-
cific research question, the investigator chooses the most
meaningful way to express p,, p,, p,, and p,.

Applications Relevant to Epidemiology

Epidemiologists measure morbidity in terms of prevalence
and incidence. Several applications of probability to epi-
demiology require the investigator to recognize the dis-
tinction between these two measures. Prevalence is the
proportion of individuals who have the disease. Stated
another way, prevalence is the proportion of individuals
who have the disease out of all individuals in the population
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(i.e., those who are at risk for the disease). Prevalence can
be defined as the probability that an individual has the dis-
ease regardless of the time elapsed since diagnosis. In con-
trast, incidence is the rate at which new cases occur among
individuals who were disease free. Incidence is the num-
ber of new cases that have occurred over a specified time
divided by the number of individuals who were disease free
(i.e., at risk for the disease) at the beginning of the period.
Therefore, incidence can be defined as the probability that
a disease-free individual will develop the disease over a
specified period.

Relative Risk or Risk Ratio RR is the ratio of the inci-
dence of a disease among exposed persons to the incidence
of a disease among unexposed persons (1,3,5,8,12-14,
15,16,17,18,19,20,21,22). Often, epidemiologists use the
term risk ratio interchangeably with relative risk. Values
for RR are positive and range theoretically from zero to
infinity; however, in practice, the denominator probability
(i.e., incidence of disease in the unexposed) determines
the upper limit for RR. For example, if the incidence of dis-
ease in the unexposed is 0.4, then the upper limit for RR is
2.5. This restriction limits the direct comparability of RRs
across locations or studies.

If the probability of disease is equally likely for those
exposed and those not exposed, the RR equals 1.0. When-
ever the RR equals 1.0, exposure and disease are independ-
ent. If the probability of disease is higher for those exposed
than for those not exposed, RR is >1.0 and exposure is a
risk factor. If the probability of disease is lower for those
exposed than for those not exposed, RR is less than 1.0
and exposure is a protective factor. As the RR of disease
increases or decreases from 1.0, there is evidence that
the two events, exposure and disease, are associated or
dependent. Using the information in a tabled display, the
infection control officer can obtain two conditional prob-
abilities: Pr(P1V) = .25 and Pr(P1¥) = .167. Thus, the RR
is 1.497. In this situation, the officer would conclude that
according to these data, a patient on a ventilator is about
1.5 times as likely to develop pneumonia as a patient who
is not on a ventilator.

Odds Ratio When incidence is not known, RR cannot
be obtained. However, the RR can be approximated by
the odds ratio (OR) (1,5,8,12-14,15,16,17,19,20,21,22).
If the proportion of diseased persons (i.e., prevalence)
is small (i.e., <0.1), then the OR is usually a reasonably
good approximator of the RR. Therefore, the investiga-
tor is responsible for carefully evaluating the OR as an
approximator of the RR. In making this evaluation, the
investigator must consider whether the disease is chronic
or acute. Approximation of the RR is biased when only
prevalent cases are used in the analysis. When the dura-
tion is short (because of either rapid fatality or cure), the
numbers of incident and prevalent cases are very nearly
the same; very little bias in approximating RR based on
prevalent cases is likely. However, when duration is long,
bias can be a problem. For example, when serum choles-
terol is used to predict death from heart disease, the OR
from prevalent cases is lower than the RR from incident
cases. This downward bias occurs, because the individu-
als with the highest cholesterol values are more likely to
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have a high fatality rate and thereby to escape detection
as prevalent cases. In addition, the investigator should
be aware that for a particular sample, the OR will have
a more extreme value compared with the RR. If the esti-
mates of the OR and RR based on the sample are >1.0,
the estimated OR will be larger than the estimated RR.
Conversely, if the estimates of the OR and RR based on
the sample are <1.0, the estimated OR will have a value
smaller than the estimated RR.

Both RRs and ORs are very useful statistics and have
many applications for observational and quasi-experimen-
tal studies. Although the clinical investigator often makes
the same inferences from an OR as from an RR, these sta-
tistics are not interchangeable. Therefore, investigators
should be very strict in stipulating whether an estimate is
an RR or an approximation based on an OR. Furthermore,
it is incumbent on the investigator to demonstrate the
validity of any implicit assumption that the approximation
based on an OR is a good approximation of RR. Failure to
do so can have dangerous consequences involving misin-
terpretation of published reports and erroneous clinical
decisions about patient care.

From the first table, the RR may be computed as a
ratio with p /(p, + p,) in the numerator and p,/(p, + p,) in
the denominator. If the number of patients with pneumo-
nia is small, p, will contribute very little to the quantity
(p, + p,); likewise, p, will contribute very little to the
quantity (p, + p,). The OR equals a ratio with p,/p, in
the numerator and p,/p, in the denominator. Statistically,
the OR can always be used to approximate the RR. As
p, and p, become smaller, the OR may become a better
approximator of the RR. Like RR, the OR ranges theoreti-
cally from zero to infinity. However, the OR has a prop-
erty that can make it a more useful statistic than the RR.
The OR is independent of the denominator probability
(i.e., an OR of 2.0 has the same meaning regardless of the
population or sample on which it was based). The OR is
considered the odds of having the disease with the factor
present relative to the odds of having the disease with
the factor absent. The OR may be calculated from a 2 x 2
table by calculating the ratio of cross-products (multiply-

ing diagonally): OR = (p,p)/(p,p,)-

Sensitivity, Specificity, and Predictive Value The
healthcare epidemiologist can use joint, conditional, and
total probabilities for quantifying commonly used labora-
tory tests (5,8,12-14,15,16,17,18,19,20,21,22,23,24,25,26).
The total or marginal probability of disease may be rep-
resented as Pr(D); this probability is an estimate of dis-
ease state prevalence in a population. Prevalence can be
thought of as the underlying probability of disease state
in a particular population. Likewise, Pr(P) can be thought
of as the underlying probability of not having the disease
state; it is not necessarily the probability of wellness or
health.

In terms of conditional probability, the probability of a
positive test result given that a patient has the disease—
that is, Pr(T|D)—refers to test sensitivity. Similarly, the
probability of a negative test result given that a patient
does not have the disease—that is, Pr(¥|5)—refers to test
specificity. The sensitivity and specificity of a test are inde-
pendent of prevalence.
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The healthcare epidemiologist can display the various
possible combinations of disease states and test results in
a2 x 2 table.

Positive Test Negative Test Marginal
Result Result Probability

Disease present Pr(D) x Pr(TID) Pr(D) xPr(¥1D) Pr(D)
Disease absent Pr(B) x Pr(T1B) Pr(P) xPr(¥1B) Pr(B)
Marginal probability Pr(7) Pr(®) 1.0

In contrast, the predictive values of a positive test result
(PV+) and anegative test result (PV-) depend on prevalence.
In terms of conditional probability, the probability of a
patient having the disease given that the test result is posi-
tive—that is, Pr(D | T)—refers to positive predictive value of
the test (PV+). Similarly, the probability of a patient not
having the disease given that the test result is negative—
that is, Pr (B |¥)—refers to negative predictive value of the
test (PV-).

Positive Test Negative Test Marginal
Result Result Probability

Disease present Pr(T) xPr(DIT) Pr(¥)xPr(DIF) Pr(D)
Disease absent Pr(T) xPr(PIT) Pr(¥)xPr(BIF) Pr(bB)
Marginal probability Pr(7) Pr(¥) 1.0

Alternatively, the healthcare epidemiologist may inter-
pret this table in terms of joint probabilities. From this
perspective, the epidemiologist considers the probabil-
ity of an average (or random) patient having a test result
that is considered true positive (TP), true negative (TN),
false positive (FP), or false negative (FN). Specifically, the
probability of a TP test result is a joint probability—that is,
Pr(T and D). The other three outcomes may be expressed
similarly as joint probabilities. The probability of obtain-
ing a TN result is the joint probability of testing negative
and not having the disease. The probability of obtaining an
FP result is the probability that a patient selected at ran-
dom will test positive but not have the disease. Finally, the
probability of obtaining an FN result is the probability of a
patient selected at random testing negative but having the
disease. In practice, these probabilities are often expressed
as percentages. These probabilities may be displayed as
follows.

Test Results

Total
Positive Negative Probability

Disease Pr(TP) = Pr(T and D) Pr(FN) = Pr(¥ and D) Pr(D)
present

Disease Pr(FP) = Pr(T and ) Pr(TN) =Pr(¥ and B) Pr(H)
absent

Total Pr(7) Pr(¥) 1.0
probability

Prevalence is the sum of the probability of a TP result
and the probability of an FN result. Similarly, the probabil-
ity of testing positive is the sum of the probability of a TP

result and the probability of an FP result. The other two
marginal probabilities can be obtained in the same way.

Bayes’ Theorem In more complex situations, the health-
care epidemiologist encounters more than two possible
clinical signs or symptoms (symbolized as T, where i indi-
cates the alternative clinical signs and symptoms) and more
than two possible disease states (symbolized as D,., where
Jj indicates the alternative disease states). The 2 x 2 tables
can be expanded into i columns and j rows, representing
clinical findings and disease states, respectively. Bayes’ the-
orem or rule allows the healthcare epidemiologist to obtain
the conditional probability of a particular disease given
a particular clinical finding (/,3,5,8,12,15,16,18,25). Bayes’
theorem or rule states that the conditional probability of D,
given T, equals the joint probability of 7, and D, divided by
the sum of the joint probabilities of T, and each Dj:

Pr(7, and D))
k ’
Zj:lpr(T1 and D,)

Pr(D,IT)) =

where (a) Pr(Dj) represents the known probabilities of
disease states in a specified population and the sum of all
Pr(D) values equals 1.0 and (b) the various D, values are
mutually exclusive (i.e., a patient cannot have more than
one disease). When healthcare epidemiologists need to
choose the most likely explanation for their clinical find-
ings, they often use Bayes’ rule to assess the conditional
probabilities of several disease states in light of their par-
ticular clinical findings. In published literature, epidemi-
ologists may use conditional probabilities to discuss the
merits of several alternative explanations. Clinicians may
use Bayes’ rule to evaluate a number of diagnostic pos-
sibilities. They realize that although no test is absolutely
accurate, positive test results do tend to increase the prob-
ability that a particular disease is present. The conditional
probability of disease given certain clinical findings pro-
vides a number that quantifies the amount of confidence
that can be placed in stating that a particular disease is
present. Differential diagnosis, decision theory, and deci-
sion making involve applications of Bayes’ rule.

HYPOTHESIS TESTING

Hypothesis testing does have a place in analysis of data
related to healthcare epidemiology and infection control.
One-sample tests can be used to determine whether the
sample is different from the reference population. Clinical
investigators often use two-sample tests during explora-
tory data analysis to identify potentially important risk
factors. The following sections address general definitions
and rules for hypothesis testing for one- and two-sample
tests for categorical and continuous variables using para-
metric and nonparametric methods.

Definitions and Rules

The hypothesis is always formulated about parameters.
H designates the null hypothesis and H, the alternative
hypothesis. Based on sample statistics, the healthcare
epidemiologist chooses which is the true situation. For a
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one-sample hypothesis test, the reasons for this choice are
based on how likely it is that these data could have been
obtained from a specified reference population. Similarly,
for a two-sample hypothesis test, the reasons are based on
how likely it is that the difference between the two groups
obtained from these data could have occurred given that
H, is true. In making this decision, the epidemiologist may
make errors. Naturally, minimizing the probability of mak-
ing an erroneous decision is a paramount concern of the
epidemiologist, even though the truth remains unknown
and unknowable. The decisions that an epidemiologist can
make relative to the truth (7,2,4,5,8,10,25) are displayed in
the following 2 x 2 table.

Unknown But True State of Nature

Decision in Favor of H, True H, True
H, Correct Type Il error
H, Type I error Correct

Traditionally, scientific investigators have agreed on the
principle of keeping the probability of a type I error as
small as possible. Pr(type I error) is the conditional prob-
ability of rejecting H, when H, is correct. Stated another
way, Pr(type I error) is the probability of rejecting H, given
that H, is correct. Statisticians have symbolized Pr(type I
error) as o. Another commonly used name for Pr(type [
error) is the significance level. The interpretation of a
p value is consistent with the definition of the probability
of a type I error; a p value gives the probability of finding a
result that is at least this extreme, assuming that the H is
true. Stated another way, the p value qualifies the rejection
of H with a level of significance. An investigator rejects H
when the p value is less than a. The p value tells others the
statistical significance of the results. Statistical significance
has absolutely nothing to do with the scientific or clinical
importance of findings.

Another type of error is possible—type Il error. Pr(type
Il error) is the conditional probability of not rejecting the
H,when H, is true. Stated differently, Pr(type Il error) is the
probability of deciding in favor of H given that H, is cor-
rect. Statisticians have symbolized Pr(type II error) as S.
In practice, statisticians are more concerned with power,
symbolized as 1-. Power is the probability of discriminat-
ing between H and H , (a) given a specified sample size, a
stipulated difference between the values of the parameter
under H, and H,, and a particular ; and (b) assuming H, is
true. Thus, power is the probability of rejecting H, when H,
is true. Power depends on «, H;and H,, and sample size. As
o decreases, fincreases. As the difference between H;and
H, decreases, power decreases. As sample size increases,
power increases—power is very dependent on sample size.
Investigators want power to be as large as practically possi-
ble, because power represents the probability of correctly
rejecting H,. Typical values for power are 0.80, 0.90, 0.95,
and 0.99. Before recommending a clinical trial for approval
and/or funding, most reviewers insist that the investiga-
tor show that the likelihood of getting conclusive results
(i.e., statistical power) is high. In unplanned clinical stud-
ies, power may be as low as 0.20 or occasionally even lower.
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Sometimes, epidemiologists compute power after a study
has been completed. Under these circumstances, power is
the probability of discriminating between H, and H,, given
the findings of the study.

Hypothesis Tests for Categorical Data

A random variable is a numeric quantity that has different
values, depending on natural variability. A discrete or cate-
gorical random variable is a variable for which there exists
a discrete set of values, each having a nonzero probability.
Many data from biologic and medical investigations have a
common underlying structure.

Cumulative incidence and prevalence of a disease
are distributed binomially (7,8,12). Variables that follow a
binomial frequency distribution are characterized by the
following criteria: (a) a sample is taken of n independent
trials, (b) each trial may have two possible outcomes (e.g.,
success/failure, present/absent, alive/dead), and (c) the
probabilities for the outcomes are a constant p for suc-
cess and (1-p) = g for each failure for every trial. Usually a
healthcare epidemiologist is not concerned with the order
in which the failures occurred; instead the epidemiologist
is interested in the number of failures and the probability
that a number as extreme or more extreme occurred given
that H is true.

Generally, an incidence density variable follows a bino-
mial distribution. For variables such as incidence density,
the Poisson distribution is often an accurate approxima-
tion of the binomial distribution. The Poisson distribution
is a discrete frequency distribution of the number of occur-
rences of rare events (1,8,12). For the Poisson distribution,
the theoretical number of trials is infinite and the number
of possible events is also very large. Incidence density
studies often involve one or more cohorts of disease-free
individuals. A failure is defined as the occurrence of the dis-
ease of interest in a previously disease-free individual. The
probability of & events (i.e., failures) occurring in a period
of time T is defined for a Poisson random variable. Thus,
the Poisson distribution depends on two parameters: the
length of the interval, T, and the underlying A, which repre-
sents the expected number of events per unit of time. Time
may also be defined as a combination of time and level of
exposure (e.g., pack-years of smoking or patient-days in the
ICU). The mean and the variance of a Poisson distribution
are the same. For variables that follow a binomial distribu-
tion, when n is large and p is small, the mean and variance
will be similar; thus, the Poisson may be used as an approx-
imation of the binomial.

The following two sections describe statistical methods
for one- and two-sample tests on binomial proportions or
rates (1,3,4,5,6,7,8,15,18,25,27). Throughout these sections,
unless otherwise stated, the significance level is .05; power
is 0.80; and all tests are two-sided. In power and sample
size formulas, a z-score for the 97.5th percentile is used for
a two-sided test with a significance level of .05: z ... is 1.96.
When power of 0.80 is used to determine sample size, a
z-score for the 80th percentile is used: z , is 0.842.

These sections, describing one- and two-sample tests
for binomial proportions or rates, are not designed as
casual reading material; instead, they provide a concise
reference of commonly used statistical methods. The only
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formulas included are those for the test statistics. Most
clinical investigators use statistical packages for obtaining
sample size estimates or power calculations. For appropri-
ate formulas, the reader is referred to various biostatisti-
cal textbooks, for example, Rosner (8) or Sokal and Rohlf
(2). For a binomial probability, 7 refers to the population
parameter and p refers to the sample statistic, which
approximates the parameter. Each section follows the
same format, which is outlined in the following.

Step 1. Set up H, and H,.

The investigator uses the research question to form H,
and H,. Generally, H, reflects the result that the investiga-
tor expects to find (i.e., that there is a special cause that
differentiates the study group from the norm). For a one-
sample hypothesis test, H, states that the proportion of
events or rate of occurrence () in the study group is the
same as some specified or norm value, 7. The investiga-
tor obtains this value, 7, from some source other than the
current study. Typically, the investigator obtains x, from
theoretically derived values or uses nationally or locally
compiled values. In the one-sample situation, H, states
that the proportion of events or rate of occurrence (7) in
the group being studied differs from the specified value,
m,. The investigator estimates 7 from a sample as p. If the
estimated value is sufficiently close to the specified value,
m,, the investigator decides in favor of H, (i.e., that the data
are consistent with H being true). If the data fail to sup-
port Hj, the conclusion is that the data are not consistent
with H being true; therefore, the investigator rejects the
H,, concluding that the rate or proportion must be some
other value (i.e., higher or lower than 7).

For a two-sample hypothesis test, H, states that the
proportion of events or rate of occurrence (r,) from the
first group is the same as that (r,) from the second group.
For a clinical trial, the groups might reflect those receiv-
ing and not receiving the treatment. For an observational
study, the groups might reflect those subjects with and
without the attribute of interest. Interpretations of failing
to reject and rejecting H, are similar to those described for
the one-sample situation.

Step 2. Choose ¢, power, and the difference between
and 7z, (or x, and =,) that is clinically meaningful. Another
term for the difference between 7 and =, (or 7, and r,) is
effect size. Frequently, investigators overlook this step.
For example, the healthcare epidemiologist may not have
the opportunity to conduct a formal power analysis before
data collection begins. However, whenever the effect size
estimated from the sample is clinically meaningful but
the results are consistent with H, the investigator should
determine power retrospectively. This analysis allows the
investigator to determine how much larger the sample
would have to be to reject H;, given the results of the study.
Even when statistical significance is achieved, a retrospec-
tive power analysis can indicate how cautiously the results
should be interpreted.

Step 3. Using an available computer package, deter-
mine sample size, n. Sample size is extremely sensitive to
the effect size chosen by the investigator.

Step 4. Obtain data.

Step 5. Compute test statistic in terms of parameters
under H,. Obtain the p value associated with the test
statistic, assuming H is correct. The interpretation of the

p value is valid only in terms of H, and H,. By choosing
to make a hypothesis test, the investigator restates the
research question and must decide between H, and H,
based on how consistent or inconsistent the data are
with H. The term consistent connotes having sulfficient
empirical support for the investigator to decide that the
unknown true state of nature is likely to be H instead of
H,. Conversely, the term inconsistent connotes having suf-
ficient empirical support for the investigator to decide
that the unknown true state of nature is likely not to be H,
but rather H,. Therefore, the p value is the probability of
obtaining a result that is at least as extreme as this result,
which the investigator has obtained from these data, given
that H, is true. Stated another way, the investigator rejects
H, when the results from the study could be called unu-
sual if H; were correct. The consensus among statisticians
and scientists is that, if the p value is .05 or smaller, the
investigator should reject H; and decide that H, is correct.
A p value of .05 indicates that this result would occur no
more often than 1 in 20 times if H, were true.

Step 6. Decide whether to reject or fail to reject H,.
Compare the p value to o.

One-Sample Tests for a Binomial Proportion or Rate

Normal Approximation Method The normal approximation
method based on a z-test was selected because the compu-
tation of this test statistic more closely parallels the esti-
mation of confidence limits than any of the other methods.
If the normal approximation to the binomial distribution
is valid (i.e., npg > 5), a two-sided hypothesis test is con-
ducted as follows:
Step 1. Set up H, and H,.

H:rw=m versus H: n=r,

Step 2. Choose «, power, and the difference between &
and r, that is clinically meaningful.

Step 3. Using an available computer package, deter-
mine sample size, n. Sample size is extremely sensitive to
the difference between 7 and 7, and to how close these are
to 0 or 1.0. When no information is available, a pilot study
can be conducted to get some idea of differences that can
be obtained in a particular clinical situation.

Step 4. Obtain data.

Step 5. Compute test statistic z_in terms of parameters
under H,, where z_is a z-score from the standard normal
distribution, and obtain the p value as twice the probability
associated with the z_assuming that H is correct. If the sig-
nificance level is .05, z ;.. is 1.96. With the wide availability
of computer-based packages that contain statistical func-
tions, many clinical investigators can obtain the p value.

(p—m)

=,
Tz (-7) [ m)]

where p is the estimate from the sample of the param-
eter m. One should note that 22:;([21]; the squared
z-score, obtained from the data (i.e., z), equals a chi-
square test statistic with lzdegree of freedom obtained
from the same data (i.e., Xs). Most computer packages
report a chi-square test statistic with 1 degree of freedom
(i.e., Z:) along with the associated p value. If the signifi-
cance level is .05, Z[zo_gs] with 1 degree of freedom is 3.84,
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which equals 1.96% If the normal approximation to the
binomial is not valid, p values may be obtained by the exact
method.

Step 6. Decide whether to reject or fail to reject H,.
Compare the p value to o.

One-Sided Hypothesis Tests If the hypothesis test is one-
sided (i.e., H: #> m), calculate power and estimate sample
size substituting 1-«a for 1-0/2 in the previous formulas
(e.g., 2, is 1.645). In addition, the p value is not multiplied
by 2. It is always easier to reject a one-sided test than a
similar two-sided test. In addition, an effectively larger o
increases power by reducing S.

Two-Sample Tests for Binomial Proportions or
Rates When the random variable under study is classi-
fied into discrete categories, hypothesis testing and meth-
ods of inference should reflect the data structure. For the
two-sample situation, there are two typical study designs:
independent and paired samples. Before formulating the
hypothesis, the investigator must determine whether the
samples are independent or not. Two samples are inde-
pendent when the data points in one sample are unrelated
to the data points in the second sample. Samples that are
not independent are paired. Paired samples may represent
two sets of measurements on the same individuals. Alter-
natively, paired samples may represent measurements on
different individuals chosen or matched such that each
member of the pair is very similar to the other. Statistical
analysis of data from clinical studies is valid only in the
context of the study design; inferences are only valid in the
context of research questions.

When a healthcare epidemiologist investigates the rela-
tionship between two dichotomous variables, the observa-
tions are tabulated in 2 x 2 tables according to attributes.
For example, suppose the epidemiologist classifies obser-
vations according to the following two attributes:

Attribute 1: A, A
Attribute 2: B, B

The results will be classified into four groups that include
all possible combinations of attributes 1 and 2: (A and B),
(#A and B), (A and B), and (4 and B). After tabulation, data
can be presented in the following format, where a, b, ¢, and
d are the frequencies at which the four groups occur in the
sample.

B B Total
A a b a+b
A c d c+d
Total a+c b+d n

The results of studies with either independent or paired
designs may be tabulated according to the frequencies into
the same four groups. Thus, this table can be obtained in
different ways.

Two-Sample Tests for Independent Samples Both
the table and the test statistic are the same regardless of
whether the data are obtained from an observational study

APPLIED EPIDEMIOLOGY AND BIOSTATISTICS

or a clinical trial. However, the research questions, hypoth-
eses, and statistical tests may be different depending on
the type of study. Consequently, the analyses also depend
on study design.

Step 1. Set up H, and H,. In many observational stud-
ies, the investigator can only control the total number of
subjects; the research question involves whether the two
sets of attributes are independent of each other. The statis-
tical test is called a test of independence or association. In
observational studies, the concept of independent samples
stems from the notion that for a given attribute, such as
pneumonia, the patients with pneumonia are unrelated to
those without pneumonia. The null and alternative hypoth-
eses may be written as follows:

H, : = m, for all four groups versus H,: = # 7, for at
leasts one group,

where the null and alternative hypotheses are stated in
terms of joint probabilities, that is, the observed propor-
tion equals the expected proportion. The general approach
is discussed in the earlier section on probability. For exam-
ple, the investigator may record the observed joint prob-
abilities of (a) developing pneumonia and being on the
ventilator, (b) not developing pneumonia and being on
the ventilator, (c) developing pneumonia and not being on
the ventilator, and (d) not developing pneumonia and not
being on the ventilator. The expected joint probabilities are
those that would have occurred under the assumption of
independence. The statistical test for association involves
determining the probability of finding the observed joint
probabilities if the attributes were independent.

For clinical trials, the general research question for
studies with independent samples is whether the propor-
tion of B (and B) is the same for A and A (i.e., the pro-
portion of patients who die is the same for those with
the drug [treated] as for those without the drug [control
subjects]). Usually, the investigator determines not only
the total number of subjects but also the number of sub-
jects in each group. The statistical test is called a test of
homogeneity of two proportions. For example, a clinical
trial of a drug that may reduce the death rate associ-
ated with ventilator-associated pneumonia may be con-
ducted. In this example, the investigator first estimates
the observed conditional probabilities of death depend-
ing on whether the subject is in the treated or the control
group. Next, the investigator estimates the observed mar-
ginal probabilities of death and survival using the addi-
tion rule. Using these observed marginal probabilities,
the investigator then estimates the expected conditional
probabilities of death independent of whether the subject
is in the treated or the control group. These expected (or
theoretical) conditional probabilities are based on the
assumption that the death rate is the same in both groups
(i.e., that A is true). The statistical test involves deter-
mining the probability of finding the observed conditional
probabilities if the probability of death were the same in
both groups. The null and alternative hypotheses may be
stated as follows:

Hy: 7wy, — 75 =0 versus H,: zy, — 7, =0,

Step 2. Choose «, power, and the difference between
m, , and 7, , that is clinically meaningful.
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Step 3. For clinical trials using an available computer
package, determine sample size for each group, n, and n,,.
Sample size is very sensitive to the difference between
r, , and 7, ,. This difference, also called the effect size,
should be that difference which is biologically or clini-
cally meaningful in the opinion of the researcher. When no
information is available, a pilot study can be conducted
to get some idea of differences that can be obtained in
a particular clinical situation. Although the algebra is
not difficult, the formula for determining the sample size
is quite complex; the reader is referred to the formula
in Sokal and Rohlf (2) or Fleiss et al. (15), which mini-
mizes the chances of underestimating the sample size
required to detect the absolute value of the difference
of Iz, ,—m, | at given levels of significance and power.
The formula in Rosner (8) is used in most statistical
packages and yields sample size estimates that are gen-
erally about 5% smaller than those based on the Sokal
and Rohlf or Fleiss formula. Computation of sample size
can be tedious. For step 3, the investigator may wish to
consult a biostatistician. Computer software is available
for making some computations; however, the investiga-
tor should review documentation to determine which
formulas are used and choose a software package that
does not typically underestimate sample size. This pre-
caution is especially important if sample sizes are less
than 50 per group.

Step 4. Obtain data.

Step 5. Compute test statistic in terms of parameters
under H, and obtain the p value. If the sample size is larger
than 20 and no more than 20% of the expected cell frequen-
cies (i.e., the cell frequencies expected under the assump-
tion of independence) are <5, using large sample theory
and the normal approximation to the binomial distribu-
tion is valid. In this situation, the following test statistic is
appropriate for both observational studies and clinical tri-
als. The test statistic is z_, where

2 - (Poir = Paia)
’ \/(pB(l =pg)/m+ps(1-py)/ny) ,

where n, and n, are the numbers of observations in each
group. The p value is twice the probability associated with
the test statistic, z, assuming that H is correct.

Step 6. Decide whether to reject or fail to reject H,.
Compare the p value to o. When the two attributes are
not independent of each other, there exists some form of
association between the attributes. Inspecting the data
will reveal what the association might be. The investiga-
tor must look closely at each of the individual cell chi-
square values before making inferential statements about
the nature of the association. The investigator’s interpre-
tation is based on the fact that the cells with the largest
chi-square values have contributed proportionately more
to the total chi-square test statistic. Note that 2z = % the
squared z-score, obtained from the data (i.e., z), equals a
chi-square test statistic withzl degree of freedom obtained
from the same data (i.e., #s). Most computer packages
report a chi-square test statistic with 1 degree of freedom
(i.e., Xs) along with the associated p value. If the signifi-
cance level is .05, Zg.gs with 1 degree of freedom is 3.84,
which equals 1.962

Fisher’s Exact Test If the normal approximation to the bino-
mial is not valid, Fisher’s exact test must be used to obtain
the exact probability of obtaining a table with cells a, b,
¢, and d. This situation is described by the hypergeomet-
ric distribution. Fisher’s exact test may be used to give the
exact p value for any 2 x 2 table. Many computer packages
for statistical analysis provide results based on Fisher’s
exact test. For a calculator-based method, the reader is
referred to Rosner (8). The interpretation of the p value
from Fisher’s exact test is the probability of obtaining a
table at least as extreme as the observed table, assuming
the two attributes are independent.

Two-Sample Test for Paired Samples

Both the table and the test statistic are the same regard-
less of whether the data are obtained from an observa-
tional study or from a clinical trial. When matched pairs
are the basic experimental unit for a clinical study, pairs
are classified as to whether or not the treatment or placebo
was effective for each member of the pair. Sometimes each
subject is used as its own control, thereby yielding paired
results. In observational studies, the pairs may be classi-
fied as to whether or not the outcome is the same for each
member of the pair.

A matched pair in which the outcome is the same for
both members of the pair is called a concordant pair—
that is, (present, present) or (absent, absent). For exam-
ple, one might consider a study in which the event of
interest is death (as contrasted with survival). If both
members of the pair die, this result might be symbolized
as (Yes, Yes); conversely, if both members live, the result
might be symbolized as (No, No). A matched pair in
which the outcomes are different for the members of the
pair is called a discordant pair—that is, (present, absent)
or (absent, present). Rosner (8) describes a type A dis-
cordant pair is a pair in which the outcome for the mem-
ber from the first group is the event and the outcome for
the member from the second group is not. Using the pre-
vious example, a type A discordant pair would contain
a member from the first group who died and a member
from the second group who survived—that is, (present,
absent). According to the same logic, Rosner describes a
type B discordant pair as a pair in which the outcome for
the member from the first group is not the event and the
outcome of the member from the second group is. Again,
using the previous example, a type B discordant pair
would contain a member from the first group who sur-
vived and a member from the second group who died—
that is, (absent, present). After tabulation, data can be
presented in the following format, where q, b, ¢, and d are
frequencies.

Treatment or Group 2
Treatment or Group 1 Present Absent Total
Present a b a+b
Absent c d c+d
Total a+c b+d n
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Step 1. Set up H, and H,. The null and alternative
hypotheses may be stated as follows:

0 : ”Presem\Group 1= ”Present\Group 2
where the estimate of «, | Groupl = a/(a + b) and the esti-
mate of Tl gesent! Group2 = a/(a + ¢). This test is called McNemar’s
test. The investigator tests whether the “present” propor-
tions for the two treatments or groups are the same. Note
that the only important differences between Prresent|Groupt
and Py, 1 icroup A€ Detween b and c. Testing for differences
between b and c is the same as testing that the “present”
proportion for treatment or group 1 is the same as the
“present” proportion for treatment or group 2. Thus, the
null hypothesis could be restated as the frequency that
the two types of discordant pairs are equal: H:,
= 05 versus le nPresem&Absent # ﬂ:Absem&Presem #U.9,
where the estimated 7, ... 18 b/(b + ¢©) and the esti-
mated 7, .o is c/(b+ ). If the investigator chooses to
state H in terms of either 7, ... and 7, .o . this
becomes a one-sample test with n equaling (b + ¢), the total
number of discordant pairs. For the remainder of the pro-
cedure (i.e., steps 2 through 6), the reader is referred to the
normal approximation method for one-sample tests for a

binomial rate or proportion.

resent&Absent

= ﬂ:Absem&Presem

Two-Sample Test for Incidence-Density Variables In
many epidemiologic studies, the investigator follows sub-
jects for varying lengths of time (e.g., length of stay in the
ICU), and the outcome variable is dichotomous. For exam-
ple, the variable of interest might be whether or not a health-
care-associated infection developed in a sample of patients.
When a subject converts from a negative status to a posi-
tive status, the investigator records the time to failure. The
term failure connotes the event, usually death or a disease
state, that the investigator is studying. In the simplest situ-
ation, the subjects are divided into two groups according to
a single exposure (e.g., receiving or not receiving parenteral
nutritional support). For this simple situation, the investiga-
tor has a choice of several methods for analyzing this type
of data. Three commonly used methods are presented in
this chapter. Two methods are presented in the following,
and the third is discussed later (see the section on survival
analysis). If the situation is more complex, the investigator
must use either survival analysis or stratified analysis.

Rosner (8) presents a method that is appropriate when
the investigator wishes to compare the incidence density
rates of two groups. The investigator must assume that
the incidence remains constant over the assessment time.
Although patients are followed for varying lengths of time,
the investigator knows whether a particular patient has
either failed or not failed. The investigator counts the num-
ber of failures in each group. Then, the investigator com-
putes the total number of person-time units elapsed from
enrollment to the assessment time. After tabulation, data
can be presented in the following format.

Exposed Not Exposed Total
Number of events a b a+b
Person-time {2, i (i 3
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Step 1. Set up H, and H,. The investigator tests whether
the incidence-density (ID) is the same for the two groups of
subjects. Stated another way, the investigator is interested
in whether the rates of healthcare-associated infection per
patient-day in the ICU are the same in the two exposure
groups. The null and alternative hypotheses may be stated
as follows:

H,:ID; =ID; versus H,:ID; #ID,,

where F indicates the exposed group, £ indicates the unex-
posed group, the estimated ID, = a/t; and the estimated
ID, = b/t.. The total number of events in the exposed group
equals a. Similarly, the total number of events in the unex-
posed group equals b.

Step 2. Obtain data. Because most studies of incidence
density are observational, power analyses and sample size
computations are usually not completed.

Step 3. Compute test statistic in terms of parameters
under H; and obtain the p value. If normal approximation
of the binomial is valid (i.e., V; > 5), the test statistic is a
z-score:

— a_((a+b)tg/(t5 +tg))
T Jl(a+ bty /(1)

where the observed number of events in the exposed group
is a; the expected number of events in the exposed group
(given that H is true) is (a + b)t,/ (¢, + t,); and the variance is
(a+b)t.t/(t +t) The p value is twice the probability asso-
ciated with the test statistic z, assuming that H is correct.
If the normal approximation of the binomial is not valid,
exact binomial probabilities must be obtained.

Step 4. Decide whether to reject or fail to reject H,.
Compare the p value to a.

The second method is probably the most commonly
used test for comparing incidence rates. The Mantel-
Haenszel test, also called the log rank test, does not
require the assumption of a constant incidence rate
over time. In this situation, the investigator may place as
much importance on time to an event as on whether or
not the event occurred. For example, suppose a health-
care epidemiologist has a statewide surveillance program
designed to detect new cases of positive tuberculin test
results among nursing personnel during their first year of
employment.

Step 1. H and H, are the same as those described for
the first method.

Step 2. Obtain data.

Step 3. Divide the year into shorter periods (e.g.,
months). Construct a 2 x 2 table for each interval. Note that
subjects who have not experienced an event during a pre-
ceding interval are at risk for experiencing an event during
the current interval; therefore, only the number of subjects
not having the event in the preceding interval will appear
in a given 2 x 2 table. Once a subject has experienced an
event during a given interval, data for that subject does not
appear on any table representing a subsequent interval.

Using these rules, the healthcare epidemiologist con-
structs the table for the first time interval using the follow-
ing format.
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Group
Event 1 2 Total,
Yes 1 bl a,+b,
No G d, G
a +c b +d, n

1

where a, is the number of subjects in the first group who
experienced events in the first interval; ¢, is the number of
subjects in the first group who did not experience events
during the first interval; (a, + c,) is the total number of
subjects in the first group; b, is the number of subjects in
the second group who experienced events during the first
interval; d| is the number of subjects in the second group
who did not experience events during the first interval;
(b, +d)) is the total number of subjects in the second group;
and n, is the total number of subjects in the study. Next,
the healthcare epidemiologist constructs the second table
using the following format.

Group
Event 1 2 Total,
Yes h b, a,+b,
No c, d, c,+d,
a,+c b,+d n

%

where q, is the number of subjects in the first group who
experienced events during the second interval; c, is the
number of subjects in the first group who did not experi-
ence events during the second interval; (a, + c,) equals c,
and is the total number of subjects in the first group who
were at risk during the second interval; b, is the number of
subjects in the second group who experienced events dur-
ing the second interval; d, is the number of subjects in the
second group who did not experience events during the
second interval; (b, + d,) equals d, and is the total number
of subjects in the second group who were at risk during the
second interval; and n, equals (c, + d)) and is the total num-
ber of subjects at risk during the second interval. Continue
constructing tables using the same format.

Step 4. Compute the test statistic over all the 2 x 2
tables in terms of parameters under H, and obtain the
p value. The test statistic is the Mantel-Haenszel statistic,
which may be computed with the following formula:

_ (Z::1ai _Z:zl(ai +bi)(ai+ci)/ni)2
) Z::I(Gf +b)(c; +d)(a, +c)(b +d)/ni(n~1) '

z

where i indicates the individual 2 x 2 tables and the other
values are defined in the discussion on construction of tgle
various tables. Under H, the Mantel-Haenszel statistic Zmu
follows a chi-square distribution with 1 degree of freedom.
Therefore, for a test og significance at the .05 significance
level, H; is rejected if Zwm is greater than 3.84. The p value is
the probability associated with ¥mn assuming that the null
hypothesis is true.

Hypothesis Tests for Continuous Data

Distribution of Sample Means The central limit theo-
rem states that, for a large sample size regardless of the
underlying distribution of the individual observations, the
sample mean, X, follows a normal distribution with mean
u and variance o*/n (1-4,5,8,9,16). The mean of sample
means is the same as the mean of the original popula-
tion of individual values. The variance of sample means is
needed to indicate dispersion or spread among X values.
The standard error is the standard deviation associated
with the population of means (i.e., the standard deviation
of the mean): o; = ¢/ Vn. If the sample size n gets very
large, the standard error approaches zero. What about
the estimate from the one sample an epidemiologist actu-
ally collects? The estimated standard error (usually called
simply the standard error) is s/Vn, which is the standard
deviation of X, regardless of whether original data follow a
normal distribution.

Clinical researchers often find that hypothesis testing
for continuous variables is helpful. One-sample tests can
be used to determine whether the sample differs from the
reference population with respect to continuous variables
such as APACHE III scores. Clinical investigators often use
two-sample tests during exploratory data analysis to iden-
tify potentially important continuous risk factors such as
age and temperature at admission.

The following two sections describe statistical meth-
ods for one- and two-sample tests for continuous variables
(1-4,5,7,8,9,16). These sections are not designed as casual
reading material; instead, they provide a concise reference
of commonly used statistical methods. Each section fol-
lows the same format as has been described for hypothesis
tests for categorical variables.

One-Sample Tests for a Continuous Variable

One-Sample Test for a Mean Provided that the sample
size is adequate (e.g., 20 or more) and the distribution is
approximately normal, a two-sided hypothesis test is con-
ducted as follows.

Step 1. Set up A, and H,.

Hy po=pyversusH,: u# p,

where 1 is the mean of the population from which the sam-
ple is obtained and g is the mean of the norm group.

Step 2. Choose ¢, power, and the difference between u
and y, that is clinically meaningful.

Step 3. Using an available computer package, determine
sample size n. Sample size is very sensitive to the difference
between means, u—u, where u is the mean of the popula-
tion from which the sample is obtained and g, is the mean
of the norm group. This difference, also called the effect
size, should be the difference that is biologically or clini-
cally meaningful in the opinion of the researcher. When no
information is available, a pilot study can be conducted to
get some idea of the difference that can be obtained in a
particular clinical situation.

Computer packages provide easily used algorithms
for obtaining sample size estimates. If the estimated sam-
ple size n is relatively small (i.e., less than 30), that value
should be adjusted by multiplying by the correction
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factor (tw_g?svn_l]/zﬂ_ms)z, where Loorsny 1S the tscore from a
t distribution with (n-1) degrees of freedom and n is the
estimated sample size obtained from a computer package.

Step 4. Obtain data.

Step 5. Compute test statistic in terms of parameters
under H, which follows a t distribution with (n-1) degrees
of freedom, and obtain the p value as twice the probability
associated with the ¢, assuming that H is correct. Like the
standard normal distribution, the ¢ distribution is symmet-
ric; however, for each different degree of freedom, there is a
different distribution. If the sample size is 100 or more, the
t distribution resembles the standard normal distribution.

t:()?_ﬂ())
' sin

where X is the estimate of the mean obtained from the
sample; 4, is the mean if H is true; and s /\/H is the stand-
ard deviation of the mean estimated from the sample. The
p value is twice the probability associated with the test sta-
tistic £, with (n-1) degrees of freedom, assuming that H is
correct.

Step 6. Decide whether to reject or fail to reject H,.
Compare the p value to a.

If the hypothesis test is one-sided (e.g., H: u > u), cal-
culate power and estimate sample size substituting o for
/2 in the previous formulas. In addition, the p value is not
multiplied by 2. It is always easier to reject a one-sided test
than a similar two-sided test. Furthermore, an effectively
larger o increases power by reducing S.

One-Sample Test for a Variance or Standard Deviation The
most frequently used hypothesis test for variances or
standard deviations is the two-sided test, which is con-
ducted as follows.

Step 1. Set up H, and H, in terms of ¢* and ¢,”.

H, o’ = o.versusH,: o° # o,

where ¢ is the variance of the population from which the
sample was chosen and o is the variance of the norm
group.

Step 2. Compute test statistic in terms of parameters
under H, which follows a y* distribution with (n-1) degrees
of freedom, and obtailg the p value as twice the probability
associated with the Zs, assuming that H is correct. Unlike
the standard normal distribution, the y? distribution is not
symmetric. For each different degree of freedom, there is a
different distribution. If the sample size is 100 or more, the
x* distribution resembles the standard normal distribution.

pu (n-1s’ ,

2
Oy

where s? is the sample variance for the variable of interest;
n is the sample size; and o-§ is the variance if H; is true. The
p valuezis twice the probability associated with the test sta-
tistic Xs with (n-1) degrees of freedom, assuming that f is
correct.

Step 3. Decide whether to reject or fail to reject H,.
Compare the p value to o.

If the hypothesis test is one-sided (e.g., H,:0*>0.),
the p value is not multiplied by 2. Sample size and power
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are based on the ratio of the standard deviations that
the healthcare epidemiologist chooses as clinically
important.

Two-Sample Tests for a Continuous Variable When
the random variable under study is a continuous variable,
hypothesis testing and methods of inference should reflect
the data structure. Before formulating the hypothesis, the
investigator must determine whether the samples are inde-
pendent or not.

Two-Sample Paired Test for Means Paired samples are
frequently encountered in biologic and health science
research. For paired samples, a paired ttest is used. In
follow-up or longitudinal studies, paired samples may rep-
resent two sets of measurements on the same individuals.
Alternatively, paired samples may represent measurements
on different individuals, matched such that each member
of the pair is very similar to the other. In analyzing data
from paired samples, the clinical investigator assumes that
for the variable of interest, the mean difference, A, between
paired observations is the same for all pairs.
Step 1. Set up A, and H,.

Hy:A=0 versus H :A=0

Step 2. Choose ¢, power, and the difference, A, that is
clinically meaningful.

Step 3. Using one of the available computer packages,
determine sample size n. Sample size is very sensitive to
the mean difference. This difference, also called the effect
size, should be that difference which is biologically or clini-
cally meaningful in the opinion of the researcher. When no
information is available, a pilot study can be conducted to
get some idea of the mean difference that can be obtained
in a particular clinical situation.

Step 4. Obtain data.

Step 5. Compute test statistic in terms of parameters
under H, which follows a ¢ distribution with (n-1) degrees
of freedom where n is the number of pairs, and obtain the
p value as twice the probability associated with the ¢.

s

* s, /n’

where )?D is the mean of the differences between pairs in
the sample; s, is the standard deviation of the difference
between pairs in the sample; and n is the number of pairs.
The p value is twice the probability associated with the test
statistic 7, (assuming that H is correct) with (n-1) degrees
of freedom where n is the number of pairs.

Step 6. Decide whether to reject or fail to reject H,.
Compare the p value to o.

If the hypothesis test is one-sided (i.e., H;: A > 0), cal-
culate power and estimate sample size substituting o for
/2 in the previous formulas. In addition, the p value is not
multiplied by 2. It is always easier to reject a one-sided test
than a similar two-sided test. Furthermore, an effectively
larger o increases power by reducing S.

Two-Sample (Independent) Test for Means Independent
samples are frequently encountered in biologic and health
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science research. For independent samples, a ttest for
independent samples is used. Continuous variables from
cross-sectional studies involving two groups are often ana-
lyzed with independent #-tests.

Step 1. Set up A, and H,.

Hy:u =p,versusH, :p # 4, and
H|:o? =0} versusH|: o’ # o)

where u, and o’ are the mean and variance of the popula-
tion from which the first sample was chosen and u, and o;
are the mean and variance of the population from which
the second sample was chosen.

Step 2. Choose ¢, power, and the difference between
and u, that is clinically meaningful.

Step 3. Using an appropriate computer package, deter-
mine sample size for each group, n, and n,. Sample size
is very sensitive to the difference between group means.
This difference, also called the effect size, should be that
difference which is biologically or clinically meaningful in
the opinion of the researcher. When no information is avail-
able, a pilot study can be conducted to get some idea of
differences between u, and u, that can be obtained in a par-
ticular clinical situation.

If the variances in the two groups are the same, the
smallest total sample size involves equal sample sizes in
each group. Sometimes it is not possible or practical to
have equal sample sizes and the clinical investigator will
specify different numbers of subjects in each group, usu-
ally in multiples of the smaller group size.

Step 4. Obtain data.

Step 5a. Compute test statistic in terms of parameters
under Hj. If the assumption about equal variances for the
two samples is doubted, the investigator can use an F-test,
commonly called F, to determine the validity of this assump-
tion. Under H;,F!=s? / s; where s is the variance estimated
from the first sample and s; is the variance estimated from
the second sample; F; follows an F-distribution with v, =
(n~1) and v, = (n,~1) degrees of freedom. For practical pur-
poses, most textbooks recommend the following: label the
populations (and hence the samples) such that s’ > s (i.e.,
F/>1.0). Then, reject H; if F> F, o with v, and v, degrees
of freedom, or FO.QS[ULUZ]. This is still a test at the « level of
significance, but the upper tail value is used in determining
the p value. If p < .05, the investigator rejects the assump-
tion of equal variances and uses the Behrens-Fisher ttest,
also called Satterthwaite’s method. If p > .05, the investiga-
tor maintains the assumption of equal variances and uses
Student’s t-test. With general use of computers, restricting
F! to be larger than 1.0 is no longer necessary. Therefore,
the o level of significance for a comparable two-sided test
is 0.10. Computer packages vary in reporting one- or two-
sided p values; the investigator should check documenta-
tion to verify the nature of the p values.

Step 5b. For Student’s ttest, compute test statistic in
terms of parameters under H,.

t = (XI_XZ)
Pos, xJ(Un + Un)'

where X | is the sample mean obtained from the first sample;
X, is the sample mean obtained from the second sample;

and s, is the pooled sample standard deviation. The investi-
gator obtains s, by taking the square root and of the pooled
sample variance, s-.

The difference between two means follows a t distribu-
tion with (n, + n,~2) degrees of freedom. The p value is twice
the probability associated with the test statistic ¢, with (n, +
n,~2) degrees of freedom, assuming that H is correct.

For the Behrens-Fisher #test

X, - X,
==tz
NG/ +s,/m,)

where )_(L is the sample mean obtained from the first
sample; X, is the sample mean obtained from the second
sample; s? is the sample variance from the first sample; s; is
the sample variance from the second sample; n, is the num-
ber of observations in the first sample; and n, is the num-
ber of observations in the second sample. The appropriate
degrees of freedom (d”) must now be calculated based on
st,ss, n,, and n,.

The p value is twice the probability associated with
the test statistic ¢, (assuming that H is correct) with (d")
degrees of freedom.

Step 6. Decide whether to reject or fail to reject H,.
Compare the p value to o.

If the hypothesis test is one-sided (i.e., H: u, > i, or
u,< u,), calculate power and estimate sample size substi-
tuting o for /2 in the previous formulas. In addition, the
p value is not multiplied by 2. It is always easier to reject a
one-sided test than a similar two-sided test. Furthermore,
an effectively larger o increases power by reducing S.

Hypothesis Tests for Ranked Data

If the central limit theorem is not applicable, the clinical
investigator must use nonparametric statistical methods
to analyze data and make inferences (1-4,5,7,8,12). A more
descriptive term for these methods is distribution-free meth-
ods. In general, nonparametric methods are more flexible
than parametric methods, because nonparametric meth-
ods require fewer or no assumptions about the shape of
the underlying distribution.

Distribution-free methods are required when the data
are ordinal. Ordinal data are data that can be ordered but
do not have specific numeric values. Measurement data
are data that lie on a scale wherein common arithmetic
is meaningful. In contrast, ordinal variables cannot be
given a numerical scale that makes sense biologically or
clinically. Essentially, the ranks are arbitrarily assigned;
these could be reversed and still retain the same meaning
for the researcher. Therefore, computation of means and
standard deviations is absurd, because there would be
no universally accepted meaning (outside of a research-
er’s laboratory or clinic). Medians and ranges are used
instead.

A clinical investigator can apply nonparametric tests
to any measurement data. This application may be par-
ticularly appropriate when the assumption of normality
appears to be grossly violated. If the actual underlying
distribution is in fact normal, the clinical investigator will
pay a penalty, because in this situation the nonparametric
counterpart for a parametric test statistic has less power.
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Often, data are not normally distributed, even though a
reasonable assumption has been made that the underlying
(i.e., theoretical) distribution is normal. Parametric meth-
ods are often robust enough to withstand certain depar-
tures from normality. Some statisticians recommend that
investigators analyze continuous data by both parametric
and nonparametric methods. If the results of both analy-
ses are consistent, the researcher is assured that the result
reported from the parametric test is probably not biased.
However, results from these analyses may not be consist-
ent (i.e., the result from one analysis may be significant and
the result from the other be very far from significance). In
this event, the result from the parametric test is probably
biased. After reviewing the data carefully, the researcher
should (a) consider options for transforming the data so
that the parametric test is valid or (b) report the result
from the nonparametric test. Whenever it is appropriate to
use nonparametric methods, these are usually more pow-
erful than their parametric counterparts, and the results of
tests are unbiased.

The following section describes nonparametric statisti-
cal methods for two-sample tests on ordinal (i.e., ranked)
and continuous variables (1-4,5,7,8,12). These sections
are not designed as casual reading material; instead, they
provide a concise reference of commonly used statistical
methods.

Sign Test This test was named because it depends
only on the sign of the differences in responses between
matched subjects in the treatment and control groups (or,
alternatively, exposed and unexposed; survivors and non-
survivors) and not on the magnitude of the actual differ-
ences, A. This test can also be used for paired observations
on the same individual (e.g., before and after treatment).
Under some conditions, we cannot observe an actual dif-
ference, D, between two treatments but can only observe if
the differences are negative or worse (i.e., D < 0), positive
or better (i.e., D > 0), or not apparent or discernible (i.e.,
D =0). The sign test is based on the number of positive (i.e.,
D > 0) differences out of the total number of nonzero dif-
ferences; all differences with a zero outcome are excluded
from analysis. The sign test is a two-sided test. If the num-
ber of nonzero responses is greater than or equal to 20, the
normal approximation to the binomial applies and the sign
test is the same as McNemar’s test (see the section on two-
sample test for paired samples). If the number of nonzero
responses is <20, exact binomial probabilities must be
obtained.

Wilcoxon Signed Rank Test The Wilcoxon sign rank
test may be applied to ordinal or measurement data.
This test is the nonparametric counterpart for the paired
t-test. This test is based on the ranks of the observations
rather than on their actual values. It is more powerful
than the sign test, because both the sign and the magni-
tude of the differences, based on rank, are used in com-
puting the test statistic. If the distribution is normal, this
test has less power than the paired ttest; otherwise, it
is the more powerful test. This test should be used only
when the number of nonzero differences is >16. For com-
putation of the test statistic, see Rosner (8).
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Wilcoxon Rank Sum Test and the Mann-Whitney
U-Test The Wilcoxon rank sum test was developed for
ranked or ordinal data; the Mann-Whitney U-Test was
developed for comparisons that come from underlying
distributions that are continuous. These tests are the non-
parametric counterparts of the ttest for two independent
samples. These tests, based on the ranks of the individual
observations rather than on the actual values, should be
used only when n, and n, are both >10. For computation of
the test statistic, see Rosner (8).

POINT AND INTERVAL ESTIMATION

In the epidemiologic literature, interval estimation is more
common than hypothesis testing. Confidence intervals
from a single sample can be used to determine estimated
upper and lower limits for a parameter from the reference
population. Often, clinical investigators divide the sam-
ple into two or more groups according to certain charac-
teristics and estimate confidence intervals (Cls) for each
group. Using the previous example, the epidemiologist
may be comparing the incidence of healthcare-associated
pneumonia among patients who were ventilated to the inci-
dence of healthcare-associated pneumonia among patients
who were not ventilated. The following sections address
general definitions and rules for estimating Cls, one- and
two-sided Cls for categorical and continuous variables, and
Cls for statistics with special application to epidemiology
(1-4,5,8,9,12,15,16,20).

Definition and Rules

First, an epidemiologist estimates parameters according
to data obtained from the sample. These estimates are
called point estimates. For estimating the CI, the epidemi-
ologist uses the point estimate from the sample and the
standard deviation of that point estimate to compute a
lower confidence limit, L , and an upper confidence limit,
L,. The confidence limits are affected by the level of con-
fidence that the epidemiologist wishes to place in the
statement. Typically, epidemiologists report 95% Cls; 95%,
called the coefficient of confidence, equals (1-&)100%.
Other traditional levels of confidence are 90% and 99%.
It is crucial that the investigator state what level of con-
fidence has been chosen. Often, the clinical investigator
has a conflicting problem between having a high level of
confidence and a CI that is not too large. For a specified
level of confidence, increasing the sample size is the only
option available to the epidemiologist for reducing the
length of a CI. If the sample size must remain reasonably
small, the epidemiologist may have to choose a lower level
of confidence (e.g., 90%). The meaning of a Cl is as follows:
with repeated experiments, for each sample a different
lower limit, L, and an upper limit, L, will be computed,
because both the point estimate and standard deviation
of that point estimate will be different for each sample;
(1-2)100% of the Cls will include the parameter and
a100% will not. Thus, an investigator can state with
(1-)100% confidence that the interval based on the sam-
ple contains the parameter. How does an epidemiologist
obtain confidence limits, L, and L?
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Point and Interval Estimation for a
Continuous Variable

Point and Interval Estimation for Means The point
estimate for y is X. A more informative way of writing
this point estimate is X+ s; where ssg = s/«/ﬁ. The sec-
ond expression tells something about the precision of the
estimate of the mean—the standard error or standard
deviation of X. Thus, it is not sufficient to give only X. A
two-sided 95% CI for u is calculated as follows:

X+ (t[.975,n-1]s)?)

wis fixed; L, and L are variable so that (1-)100% of the
intervals will contain y. X and s both change with each
new sample—thus, both location and length of the CI will
change from one sample to the next. Because the ¢ distribu-
tion is symmetric, £, 1] equals Ly 9750017

Because the length of the CI depends on the sample
through s, the healthcare epidemiologist must know some-
thing about s before making any decisions about sample
size. The length of a two-sided (1-a)% CI, L, is 2 x b ootnn X
s/Nn. If the future value of o can be estimated, sample size
can be determined using an appropriate statistical pack-
age as

n'=[2xt_ 0 xs/LY

This number, n’, underestimates the required sample
size, because b 975(n1) is always larger than z ... Thus, by
multiplying n” by the squared ratio of the t-score with (n’-1)
degrees of freedom to the z-score, the adjusted sample, n_ o
can be obtained.

For observational studies, sample size determination
relies heavily on how well the actual sample reflects the
assumptions used to obtain sample size. Although there are
no guarantees, sample size determination gives the clinical
investigator some general idea of how large a sample may
be needed.

Point and Interval Estimation for Variances and
Standard Deviations The unbiased estimator of o® is
the sample variance, s If the underlying distribution of
the variable is normal, reliable estimates of Cls can be
obtained. If the underlying distribution of the variable is
not normal, the following methods may not be reliable. Var-
iances do not follow a symmetric distribution. The ratio of
s?to o® follows a chi-square distribution with (n—1) degrees
of freedom, y*, . Note that the y* distribution is not sym-
metric; thus, a CI for a variance or a standard deviation is
not symmetric. A CI for a variance can be estimated using
the following formula:

(n-Ds* (n—1)s?
=D ang g =G0
X10.975,n-1] Z10.025,n-1)

where L, and L are always positive. A CI for ¢ is obtained
by taking the square root of L, and L;. As the confidence
increases, the length will increase. Reducing the length
requires a reduction in confidence or an increase in sam-
ple size. As the sample size increases, the CI will become

less skewed. These limits are independent of the estimated
mean.

Point and Interval Estimation for a Binomial
Proportion or Rate
The point estimate of 7 is p, estimated from the sample.
When there is only one group with two outcome possibili-
ties (i.e., survival and nonsurvival), the unbiased estimator
of p is the proportion of the sample with the characteristic.
The standard deviation of p is estimated by /pg / n. For a
large sample, p is distributed normally with mean p and
variance pg/n. Generally, the assumption of normality is
valid when npgq is >5.

Under the assumption of normality, approximate Cls
for m can be obtained as follows:

p+ (Zl—a/Z x \/PQ/TI)

The length of a two-sided (1-0)% CI, L, is 2x z,_,, x+/pq / n.
Sample size can be determined as follows: n = [(2 X
1.96pq)/L]%. Because the standard normal distribution is
symmetric, z, . equals -z ... There are many other formu-
las for computing Cls for proportions and rates; the reader

is referred to Rosner (8) and Fleiss et al. (15).

Point and Interval Estimation for Risk Ratios
and Odds Ratios

For independent samples, a clinical investigator uses data
displayed in 2 x 2 tables to estimate the RR or the OR.
Whether the data reflect incidence or prevalence deter-
mines which statistic is estimated. Throughout this section,
it is assumed that the clinical investigator has displayed the
data such that exposure to the ventilator is the first column
and presence of pneumonia is the first row.

When incidence of disease for the sample is known,
the epidemiologist is interested in estimating the RR of
disease, which is the ratio of two conditional probabilities.
In the previous example, the RR of pneumonia is Pr(PI|V)/

Pr(P1¥).

Total or
Marginal
Exposed to Not Exposed to Probability
Ventilator Ventilator of Disease
Pneumonia Pr(V) xPr(P1V)  Pr(¥) xPr(PI1¥) Pr(P)
present
Pneumonia Pr(V) xPr(P1V) Pr(¥) xPrPl¥) Pr@
absent
Probability of  Pr(V) Pr(¥) 1.0
exposure

Conditional probabilities may be obtained as column
probabilities by dividing the joint probability in each cell
by the respective total probability of exposure. For the
a-cell, Pr(V) x Pr(P1V)/Pr(V) = Pr(PIV).

After completing the process for each of the four cells,
the clinical investigator obtains the following 2 x 2 table
containing only conditional probabilities, that is, probabili-
ties conditioned on exposure:
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Exposed to Not Exposed to

Ventilator Ventilator
Pneumonia present Pr(P1V) Pr(P1¥)
Pneumonia absent Pr(21V) Pr(P1¥)
Probability of exposure 1.0 1.0

From this table, the RR can easily be obtained by
dividing the conditional probability of developing pneu-
monia for those exposed to the ventilator by the condi-
tional probability of developing pneumonia of those who
were not so exposed: Pr(PIV)/Pr(P | ¥). If Pr(P1V) =0.25
and Pr(P1¥) =.167, RR equals 1.497. The interpretation of
the RRis as follows: patients who are ventilated are 1.497
times as likely to have pneumonia as those who are not
ventilated.

Under the assumption of normality, approximate Cls for
RR can be obtained as follows:

L, =RR(exp[ - z;475/Sxx])
L; = RR(exp[zg75 / S ]

where RR is estimated from the sample; z
=e% and

= 1.96; exp(x)

0.975

S = J[(A=Pr(P1V))/ny, + (1-Pr(P1¥))/n,,],

where n,, is the number of patients with pneumonia and
exposure to the ventilator and n , is the number of patients
with pneumonia and no exposure to the ventilator.

When prevalence of disease for the sample is known,
the epidemiologist estimates the odds in favor of disease
based on joint probabilities. In the following table, p,, p,,
p,, and p, are joint probabilities. For example, p, is the
joint probability of a patient having both exposure to the
ventilator and presence of pneumonia. The OR equals a
ratio with p /p, in the numerator and p,/p, in the denomi-
nator. This expression can be simplified as follows: OR =

(,p )/ (P,p.).

Total or
Marginal
Exposed to Not Exposed  Probability of
Ventilator to Ventilator  Disease
Pneumonia present P, p, p,+p,
Pneumonia absent P, P, P, + D,
Total or marginal prob- p, +p, p,+p, 1.0

ability of exposure

Under the assumption of normality, approximate Cls for
OR can be obtained as follows:

L, =OR[exp( — 2 475/S0r )]
L, =0OR[exp(Z475/Sor )]
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where OR is the OR estimated from the sample; z is

1.96; exp(x) = e5; and

Sor = \/[(1/n11 + 1/n12 + 1/’721 + l/nzz)]’

0.975

where n is the number of patients with pneumonia and
with exposure to the ventilator; n , is the number of patients
with pneumonia and without exposure to the ventilator;
n,, is the number of patients without pneumonia and with
exposure to the ventilator; and n,, is the number of patients
without pneumonia and without exposure to the ventilator.
For matched pairs, the clinical investigator can esti-
mate RRs and ORs from stratified analyses. Methods for
point and interval estimation are covered in that section.

Relationship Between Cls and
Hypothesis Testing

Cls give a range of values within which the parameter (e.g.,
U, o, 6%, m, RR, or OR) is likely to fall. When reporting Cls,
the clinical investigator does not use a p value; however, the
parameter estimate, the level of confidence, and the stand-
ard deviation of the estimate (i.e., the standard error) are
reported. Conversely, when a hypothesis has been tested,
the investigator should report the p value, the parameter
estimate, and the standard deviation of the estimate (i.e.,
standard error). Sample size is as important for estima-
tion of Cls as it is for testing hypotheses. In general, if H is
rejected, the corresponding CI does not contain the param-
eter under H. The one-to-one relationship between a Cl and
the corresponding hypothesis test is easiest to represent
with the two-sided case. For completeness, it is a good prac-
tice for clinical investigators to provide enough information
that both CIs and p values are obvious to anyone reading the
report. In practice, editorial policies of various journals may
restrict an investigator’s report to either Cls or p values.

REGRESSION AND CORRELATION
COEFFICIENTS

A clinical investigator uses regression or correlation anal-
ysis when the objective of the study is determining the
functional relationship between two or more variables
measured on the same individual. There are comparable
regression and correlation methods for continuous and
discrete variables.

Uses of Regression Analysis

Regression analysis has several applications that are rele-
vant to epidemiologic studies (7,2,28). The first application
is the study of causation. When looking for causal relation-
ships, an epidemiologist must be aware that, although
a cause-and-effect relationship may exist between two
variables of interest, regression analysis cannot establish
that the relationship is actually causal. Often, the study
of causation will involve the second application of regres-
sion analysis for health science research—prediction.
Nomograms, widely used in the clinical setting, have usu-
ally been developed from regression analysis. Third, the
epidemiologist can use regression analysis to identify eas-
ily measured variables that can be substituted reliably for
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others that may be difficult, expensive, or hazardous to col-
lect. Substituting one variable for another does require a
previous experimental study to establish the relationship
between the variable of interest and the surrogate variable.
A fourth commonly used application is controlling for one
or more extraneous or confounding variables. After con-
trolling statistically for a variable that cannot be controlled
by experimental design, the clinical investigator can make
more precise inferences about the relationship between
the two variables of primary interest, usually exposure and
outcome (or disease). Age, sex, weight, severity of illness,
and type of infection are examples of common confound-
ing variables. In a purely experimental setting, confounding
variables can often be controlled or eliminated. However,
in a naturalistic setting, the investigator must rely on sta-
tistical control. Finally, inverse regression or calibration is
used for obtaining many assay results.

Regression Coefficients

In the simplest situation, the clinical investigator wishes to
quantify the relationship between two variables, X and Y.
For regression analysis, the convention is to call X the inde-
pendent variable and Y the dependent variable. Another
term for X is explanatory variable. Clinical investigators
often call Y the response variable. Generally, the investiga-
tor is trying to predict Y from X (i.e., Y1X, read Y given X).

In regression analysis, the clinical investigator must
describe the functional relationship between X and Y in
terms of an ideal mathematical relationship or model, sym-
bolized as Y = F(X), which states that Y is a function (i.e.,
F) of X. The experienced investigator understands that the
relationship between X and Y can take many forms. If the
relationship is linear, the functional relationship can be
symbolized as F(X) = o + BX. Some relationships are cur-
vilinear, requiring the addition of a quadratic term to the
mathematical model: F(X) = a + X + yX2. Some curvilinear
relationships vary episodically over a day or month and
can be described reasonably well with sinusoidal func-
tions: F(X) = o + ( sin X. Some relationships are not linear;
two examples are F(X)=a+ ,8\/7 and F(X) = o+ B/X.

For the models presented in the preceding paragraph,
the investigator can make these relationships linear by using
transformations of X, Y, or both. Therefore, statisticians
call these relationships intrinsically linear. The term intrin-
sically linear means that the parameters, such as o and f,
are linearly related to X and Y. Some relationships are intrin-
sically nonlinear, meaning that the relationship of Xand Y'to
the parameters is not linear: F(X) = o + e . Special meth-
ods are needed for estimating regression coefficients when
the relationship has a nonlinear functional form.

In nature, the observed relationship is never exact;
because of natural variability, there is always some devia-
tion from the ideal mathematical relationship or model.
Thus, the clinical investigator describes the functional rela-
tionship in terms of a statistical relationship: Y = F(X) + ¢,
where ¢is distributed normally with mean 0 and variance ¢>.
Conceptually, £ is an error term and o represents the vari-
ance of Y for a given X. The investigator assumes that X is
measured or controlled perfectly, thereby not contributing
to the natural variability of Y. Collectively, the error terms
are called the residuals, which are random deviations in Y

from the ideal relationship. Thus, € is a random variable
that measures the deviation of each individual observation,
Y, from . (i.e., the expected value of Y, on the regression
line). Furthermore, &° is independent of X. For example, &
is the same for both small and large values of X. The clini-
cal investigator uses the residuals to determine if there is a
linear relationship based on the data.

Simple Linear Regression Coefficients

Simple linear regression is the term for linear regression
with only one independent variable (1-4,5,6,7,8,9,10,12,16,
28,29,30,31). For a simple linear regression, Y = o + BX + ¢,
the parameters o and f are unknown and must be estimated
from the data with statistics. The line Y = o + X is defined
as the regression line, where o is the intercept (i.e., the value
on the Y-axis that corresponds to X = 0), and f is the slope.
The regression line describes the regression of Y on X. The
slope may be positive, indicating that as X increases, the
expected value of Y increases. Similarly, the slope may be
negative, indicating that as X increases, the expected value
of Y decreases. Finally, the slope may be zero, depicting a
horizontal line and indicating that there is no relationship
between X and Y. By accounting for the systematic rela-
tionship between X and Y, the investigator reduces the
total variability of Y. Even if a linear relationship exists, all
observations could be displayed on one axis (i.e., the Y-axis)
only; however, the variation in Y would be much larger (s?)
, because no attempt has been made to account or adjust
for the variability in the X values that contributes to the
variability of Y.

Estimating the Intercept and Slope Plotting the
data is an important step, because the graph is useful
for suggesting whether there is a linear relationship. The
difference between Y, the actual observation, and the cor-
responding expected value on the line, u, ,, reflects ¢, the
deviation for the particular observation. Some of these dif-
ferences are positive and others are negative. The sum of
the deviations (vertical deviations) is zero (i.e., Z:’:l & =0).
The investigator uses the method of least squares to
minimize the squared deviation between the line and the
observations.

Estimate of the Slope The investigator estimates  from the
data, using the following formula:

b_SXY
=,
Sx

where the numerator is the sample covariance between X
and Y, and the denominator is the sample variance of X.
The covariance can be either negative or positive; the vari-
ance is always positive. One should note that a small value
of B does not necessarily imply that the relationship is not
strong between X and Y. By itself, b (as an estimate of f3)
does not tell whether there is any relationship between X
and Y. An experienced investigator realizes that a change
of units usually makes the size of the regression coefficient
change. To determine whether the relationship is strong,
the investigator has to know b relative to sf, the estimated
variance of the residuals.
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Estimate of the Intercept The estimate of o is a function of
b: &= Y-bX, where Y is the estimated mean of Y and X is
the estimated mean of X. Estimation of « is based on the
premise that two points are necessary to determine a line.
Thus, every regression line goes through the point X,
and the Y-intercept. If the point (X, ¥) and the estimated
slope b are known, then the estimate of o is based on sim-
ple algebra.

Simple Linear Regression Analysis

Interpreting Residuals The assumptions on which linear
regression is based are that the residuals are independently
and identically distributed normally with mean 0 and vari-
ance o-. One or more of these assumptions may be violated.
In practice, a clinical investigator detects any violation of
these assumptions by plotting the residuals and conducting
certain hypothesis tests (1,2,28,29,30,31,32). The investiga-
tor applies diagnostic procedures to various plots of residu-
als and determines how the assumptions may be violated.
Generally, lack of randomness in the residuals has some
implications about possible violations. First, randomness or
lack of randomness can be determined by examining a graph
of the residuals plotted against the values of X. For example,
plotting the residuals may reveal evidence of heteroscedas-
ticity, which means unequal variances. In the clinical set-
ting, heteroscedasticity is often characterized by increasing
residuals as X increases. Second, systematic differences or
deviations from the regression line are often revealed in a
graph with actual values plotted on the X and Y axes and the
predicted values superimposed on the same graph. System-
atic deviations of the actual values from predicted values
may indicate that a straight-line relationship is not the best
fit. Third, plotting of actual values may reveal one or more
points that are outliers and, as such, are influential points.
Influential points often cause spurious results by drastically
changing the estimated slope and intercept from what would
have been expected had the influential points not been
included in the analysis. Finally, the investigator chooses
appropriate ways of dealing with the problem or problems.
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Typically, the investigator can make transformations or
adjust the data in other appropriate ways so that the residu-
als will meet these assumptions. After the investigator has
taken remedial action, the resulting graphs should reveal
that the residuals meet the assumptions.

Prediction or Estimation of Ky =a + bX For a given
value of X, Y is the estimation of U, and is the correspond-
ing point on the estimated regression line. Thus, the esti-
mated regression line is composed of ¥s or expected values
of Y across all values of X included in the study. Hence, Y
is the estimate of the average response for a given X and is
regarded as the predicted value of Y for a particular value
of X. Interpolation within the range of the data is accept-
able. Extrapolation is dangerous. Caution is needed when
we are using any prediction equation outside the range
covered by the X values in the study. Beyond these values,
the relationship may no longer be linear.

Method of Least Squares The numerator of the sam-
ple variance for Y is ZLI(YI. —-Y)?. Another name for this
expression is the total corrected sum of squares where
corrected refers to the deviation of each observation from
the mean (i.e., corrected for the mean). In some statistics
texts, the total corrected sum of squares is abbreviated as
CSS. Frequently, clinical investigators use the method of
least squares to partition the total CSS for Y into two parts:
(a) the sum of squares due to regression (i.e., regression SS
or model SS) and (b) the residual or error sum of squares
(i.e., residual SS or error SS).

As stated previously, the point (X, ¥) always lies on
the regression line. For any sample point, the total verti-
cal deviation of each point (X, Y) from (X, Y) is the verti-
cal distance that Y, lies from the mean Y; thus, measured
on the Y-axis, the total deviation is (¥~ Y) (Fig. 3-1). The
regression component of that point (X, Y) is the vertical
distance from (X, Y) to the predicted value on the regres-
sion line (X, Y) measured on the Y-axis; thus, on the Y-axis,
the regression component is the quantity (Y Y) (Fig. 3-1).
Now, for any sample point, the residual component

Components of Yi - Y
waim  Residual (Yi -?i)
........... Regression (Qi - ?)

FIGURE 3-1 The total vertical
deviation of each sample point
(X, Y) from (X, Y) is divided into
two components; the residual
component (Y~Y) and the regres-

sion component (Y~Y). All three
distances are measured on the
Y-axis.
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(i.e., residual) of that point about the regression line is the
vertical distance from the actual observation (X, Y) to
the predicted value on the regression line (X, )7,.); thus, on
the Y-axis, the residual component is the quantity (Yi—?i)
(Fig. 3-1). Therefore, the total deviation (Yl.—)_’) of each point
from the regression line can be separated into residual and
regression components.

Inusingtheleastsquares method, theinvestigator squares
and sums the total deviations, the regression components,
and the residuals: Y (¥,-Y)*=> (Y, -Y)*+ > (¥, -Y,)*.
The residual sum of squares (SS) tells the investigator how
well the regression line fits the data. However, the investiga-
tor needs a formal goodness-of-fit test to assess whether
this value is large or small. Partitioning the total corrected
SS allows the investigator to construct an analysis of vari-
ance (ANOVA) table. The total deviations, the regression
components, and the residuals correspond to three sources
of variation. These sources of variation are similarly named:
regression (also called model), error (also called residual),
and total. The degrees of freedom for the total variationis the
denominator of the sample variance of Y: (n—1). The regres-
sion SS has 1 degree of freedom for each regression coeffi-
cient estimated; for simple linear regression, the degree of
freedom is 1. The residual degrees of freedom are obtained
by subtracting the regression degrees of freedom from
the total degrees of freedom: for simple linear regression,
(n-1)-1 = (n-2). The mean squares (MSs) are the values
of SS divided by the respective degrees of freedom. The
regression MS has a special interpretation as the vari-
ance attributable to linear regression, sé; conceptually, the
regression MS is the explained variation of Y attributable
to variation in X. The residual MS also has a special inter-
pretation as the variance attributable to Y after adjusting
for X, s}%' v, conceptually, the residual MS is the unexplained
variation of Y.

The formal goodness-of-fit test is an F-test with the
model MS in the numerator and the error MS in the denomi-
nator: MS, . /MS_ = F._.F follows an F distribution with
numerator degrees of freedom equaling 1 and denomina-
tor degrees of freedom equaling (n—2). The p value is the
probability of obtaining a result this extreme, or more so,
assuming that only natural or unexplained variability in Y
exists. If the p value is <0.05, the investigator concludes
that, according to these data, the model does account for a
sufficient amount of the variation in Y to say that the model
has adequate goodness of fit. Conversely, if the p value is
>0.05, the investigator concludes that, according to these
data, the evidence is insufficient to say that the model has
adequate goodness of fit.

ANOVA TABLE
Degrees
Source of of
variation freedom SS MS F,
Regression 1 Y, -V -7 MS,./MS,,,
(or model)
Residual n-2 S -V I -Y)/(n-2)
(or error)
Total n-1 S, -7

Tests of Hypotheses The clinical investigator may wish
to determine if there is a linear relationship between X
and Y. If the slope 8 equals zero, there is no relationship
between X and Y. Note that the magnitude of § does not tell
the investigator whether the slope is different from zero.
Therefore, the investigator forms the null hypothesis as H;:
B =0 and the alternative hypothesis as H: 8 # 0. Single-
sided alternative hypotheses (i.e., B> 0; 8 < 0) are allowed
if there is previous knowledge that the relationship can
only be either positive or negative or if a biologic phenom-
enon, such as growth, excludes one direction. Statistically,
a one-sided test is superior to a two-sided test, because the
probability of rejecting the null hypothesis is greater at the
same level of significance.

Because the assumptions for regression analysis state
that the residuals are normally distributed, the estimate of
B (i.e., b) is also normally distributed with mean f and vari-
ance 0,2 The clinical investigator estimates the variance of
b, 5,7, from the data. The numerator of s,* is the variation
around the regression line (s ?), and the denominator is the
total variation of X.

One should note that the numerator, the variation
around the regression line (s?), is interpreted as the
amount of variation in Y remaining after taking into account
or adjusting for the variation in X. Then, to test H: =0, the
investigator computes the test statistic:

which follows a ¢ distribution with (n-2) degrees of free-
dom. Like all  statistics, the degrees of freedom for this test
statistic are the degrees of freedom associated with the
denominator, in this situation s;. Because s’ is contained in
sZ, the degrees of freedom equal the degrees of freedom for
the residual SS, that is, (n—2). The p value is twice the prob-
ability associated with ¢, assuming that the null hypothesis
is true. For one-sided tests, the investigator uses the same
t. but does not multiply the probability associated with ¢,
by 2. Rejecting H; implies that the data show evidence of
a linear relationship between X and Y. If the investigator
does not reject H, this conclusion implies that the data
show no linear relationship between X and Y.

Confidence Intervals for  The (1-®)100% CI for j is
computed in the usual way:

b+ b 9750 915

Conceptually, this CI is the same as the CI for u. Whenever
the CI does not include zero, the investigator rejects H.
If the (1-0)100% CI includes the hypothesized value, the
results of the study, according to these data, are consistent
with H. The interpretation of the CI is the following: the
estimate of 3 is a random variable; for each sample, there
will be a different estimate 3 and a different s,. The slope
can fluctuate within these bounds with 95% confidence
that the true slope lies there.

R? for Simple Linear Regression R* measures the
proportion of the variance or variation of Y that can be
explained by the variance or variation in X. Stated another
way, R? is the proportion of the total variation in Y explained
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by regression. Mathematically, R? equals the regression SS
divided by the total corrected SS: R* =SS _ g/CSS. Therefore,
R?is a summary measure of goodness of fit for simple linear
regression.

For simple linear regression, the proportion of
explained variance is usually expressed as r?, instead of R>.
If the amount of explained variance is small, * is small and
alarge proportion of the variation is unexplained by regres-
sion. Conversely, if the amount of explained variance is
large, r* is large and a small proportion of the variation in Y
is unexplained by regression. For this reason, r* is referred
to as the coefficient of determination. Similarly, (1-r?) is
called the coefficient of nondetermination.

This concept of * extends to multiple linear regression,
except that 7 is replaced by R?, which is called the sample
multiple correlation coefficient. This concept can be easily
demonstrated if multiple regression is addressed from the
path coefficient perspective. For an excellent explanation,
see Sokal and Rohlf (2). No single quantity is the counter-
part of ¥ or R> when the healthcare epidemiologist uses
logistic regression analysis or survival analysis.

Correlation Coefficients

A correlation coefficient measures the degree (in terms of
both closeness and direction) of association (or relation-
ship) between two random variables that vary together.
Usually, both variables are measured on the same sub-
ject. Unlike a regression coefficient, no distinction is made
between the independent and the dependent variables;
generally, any distinction would be arbitrary or meaning-
less. Furthermore, the correlation coefficient does quan-
tify how strong the linear relationship is between the two
variables of interest. Thus, a clinical investigator reports a
correlation coefficient when there is no obvious outcome
or response variable. Typically, the investigator intends to
describe and quantify the relationship but does not wish to
use one variable to predict another.

The correlation coefficient is a dimensionless value
that ranges between —1.0 and +1.0, inclusive. Therefore, the
investigator may compare correlation coefficients obtained
from different studies. Unlike the regression coefficient, the
correlation coefficient is unaffected by changes in scale.

If the correlation coefficient is —1.0, there is a perfect
negative correlation between the two variables; all the
points lie on a straight line. If the correlation coefficient
is +1.0, there is a perfect positive correlation between the
two variables; all the points lie on a straight line. A cor-
relation coefficient between zero and —1.0 implies that
there is a negative relationship; as one variable increases,
the other decreases. Similarly, a correlation coefficient
between zero and +1.0 implies that there is a positive
relationship between the two variables; as one variable
increases, the other also increases. Finally, if the correla-
tion coefficient is zero, there is no relationship between
the two variables; a graph of the data reveals that the
points are randomly distributed within a circle or a hori-
zontal rectangle.

Linear Correlation Coefficient

Estimate of p The linear correlation coefficient, p, is also
called the Pearson product moment correlation coeffi-
cient (1-4,5,7,8,9,12,16). The sample Pearson correlation
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coefficient is used to estimate p when both variables are
continuous variables that are both normally distributed.
The investigator estimates p from the data using the fol-
lowing formula:

S
r= Y1y2 ,

SYISYZ

where the numerator is the covariance between the two
random variables Y, and Y,, and the denominator is the
square root of the product of the variances of Y, and Y,.
The covariance can be either positive or negative. In the
clinical setting, many more than two variables are meas-
ured on each patient. If more than one correlation coeffi-
cient is estimated, the clinical investigator should indicate
which one is being discussed.

Because the assumptions for correlation analysis state
that both variables are normally distributed, the estimate
of p (i.e., r) follows a t distribution with (n-2) degrees of
freedom with mean p and variance ¢°. Therefore, the clini-
cal investigator estimates the variance of r from the data:
s* = (1-r)/(n-2).

Hypothesis Tests Most often, the clinical epidemiologist is
interested in the question of whether or not Y, and Y, are
correlated (1-4,5,8,9). Therefore, depending on how much
information is known in advance, the epidemiologist forms
the following hypotheses:

H,:p=0versusH,:p# 0.

One-sided alternative hypotheses are allowed if there is
previous knowledge that the relationship can only be either
positive or negative or if a biologic phenomenon, such as
growth, excludes one direction. Testing these hypotheses
requires the assumption that both variables are continu-
ous and distributed normally. The epidemiologist tests H,
according to the following test statistic:

t,=—,

S,

T

where s _is (1-r")/(n-2) . The test statistic follows a
t distribution with (n-2) degrees of freedom. The p value
is twice the probability associated with the test statistic,
assuming that H is true. For one-sided hypothesis tests,
the probability is not multiplied by 2.

Confidence Intervals for p The healthcare epidemiologist
cannot use r directly for estimating Cls (/-4,5,8,9). First,
r is transformed with Fisher’s z-transformation. Then, the
(1-0)100% CI for z, .is computed in the usual way. Finally,
the epidemiologist transforms L, and L, back to the origi-
nal correlation scale. Conceptually, this CI is the same as
the CI for u. Whenever the CI does not include zero, the
investigator rejects H. If the (1-0)100% CI includes the
hypothesized value, the results of the study according to
these data are consistent with /. The Cl is interpreted as
follows: the estimate of p is a random variable; for each
sample, there will be a different estimate r and a different
s. The linear correlation coefficient can fluctuate within
these bounds with 95% confidence that the true value lies
there.
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Relationship Between the Linear Regression
Coefficient and the Linear Correlation Coefficient
For simple linear regression, there is a relationship among
the regression coefficient, the correlation coefficient, and
R2. These relationships do not hold for multiple linear
regression or other forms of regression. Conceptually, two
simple linear regression coefficients exist. Usually, the
investigator regresses Yon X: Y= o + B, X + & However,
the investigator could regress Xon V: X = o + 8, Y + €.
The two estimated regression coefficients, b, and &', ,,
always have the same sign. The estimated Pearson product
moment correlation coefficient, r,,, is the square root of R?
the correlation coefficient also equals the geometric mean
of two estimated regression coefficients (i.e., the square
root of the product of slope from the regression of X on
Y and the slope from the regression of Y on X), where the
sign of the covariance between X and Y determines the sign
of r. Thus, there is a relationship between correlation and
regression. The closer the data points lie to a straight line,
the stronger the relationship becomes and the larger the
correlation coefficient is. The slope of the line has no bear-
ing on the correlation. However, whenever there is a signifi-
cant correlation, there will be a significant regression and
vice versa. The clinical investigator can depict this rela-
tionship graphically by plotting the two estimated regres-
sion lines (i.e., Y=a + b, Xand X =a’ + V', ,Y) on one set
of axes; the correlation coefficient is a measure of the angle
between the two regression lines. As the angle becomes
larger, the correlation coefficient decreases toward zero.
When the angle is 90 degrees, the lines are perpendicular,
the correlation coefficient is zero, and the scatter of data is
circular or rectangular. As the angle between the regression
lines becomes smaller, the correlation coefficient increases
toward —1.0 or +1.0. When the angle is 0 degrees, the lines
coincide, the correlation coefficient is either —1.0 or + 1.0,
and the scatter of the data is a perfectly straight line.

The regression coefficient can also be interpreted as
a rescaled version of the correlation coefficient where the
scale factor is the ratio of the standard deviation of Y to
that of X:

bYIX

r=—2>XX
(sy /sx)

Thus, the correlation coefficient can be regarded as a
standardized regression coefficient (2). The standardized
regression coefficient is a dimensionless value that repre-
sents the predicted change in Y, expressed in the number
of standard deviation units that would be expected for each
change in X by one standard deviation unit. The clinical
investigator can use standardized regression coefficients
to compare regression coefficients obtained from several
studies on a variety of patient groups.

Nonparametric Correlation Coefficients The pri-
mary assumption for estimating linear correlation coef-
ficients is that both variables are distributed normally.
Sometimes the healthcare epidemiologist finds that one
or more of the variables of interest is not distributed
normally. In this circumstance, the epidemiologist can
choose to estimate a nonparametric correlation coefficient
(1-4,5,7,8,9,15,16,33).

Rank Correlation The Kendall coefficient of rank cor-
relation, the Greek letter tau (7), and the Spearman rank
correlation coefficient, p , are nonparametric coefficients.
When these are reported, the clinical investigator makes
no assumptions about the distributions of the variables.

Spearman’s rank correlation coefficient (also called
Spearman’s rho) is a sample correlation coefficient based
on ranks. First, the investigator ranks the values of each
variable from largest to smallest (or vice versa) and then
estimates p_ using the Pearson product moment formula,
substituting ranks for the actual values. The rationale for
this estimator is that if there were a perfect correlation
between the two variables, the ranks for each subject on
each variable would be the same. Thus, the change in rank
(i.e., the rank of the first variable minus the rank of the sec-
ond variable) would be zero for every subject. Spearman’s
rank correlation coefficient can also be used for estimating
the correlation between ordinal (i.e., rank) variables.

Kendall’s 7 provides a measure of reranking. Estimation
of Kendall’s 7 is slightly more difficult than estimation of
Spearman’s rank correlation coefficient. For the method,
see Sokal and Rohlf (2). Usually, if both Kendall’s 7 and
Spearman’s rank correlation coefficient are estimated from
the same data, the estimate of Kendall’s 7 is smaller than
that of Spearman’s rank correlation coefficient. However,
the p values are usually very close to the same value. When
an investigator estimates Kendall’s 7, the Greek letter is
used for the statistic. Kendall’s 7 is one of few examples
of Greek letters being used for both the parameter and the
statistic.

Point Biserial Correlation Coefficient The point bise-
rial correlation coefficient, Py is used when one random
variable is dichotomous and the other is continuous.
Asymptotically, the point biserial correlation coefficient is
the same as a Pearson product moment correlation coef-
ficient estimated for one dichotomous variable and one
continuous variable.

Biserial Correlation Coefficient The biserial correla-
tion coefficient, p,, is used when one random variable has
been forced to be dichotomous (e.g., by dividing a meas-
urement into upper and lower halves) and the other ran-
dom variable is continuous. Asymptotically, the biserial
correlation coefficient is the same as a Pearson product
moment correlation coefficient estimated for one dichoto-
mous variable and one continuous variable.

Phi Fourfold Coefficient The phi (¢) fourfold coefficient
is the special name given to the measure of concordance
for 2 x 2 tables (7,15). Asymptotically, the phi coefficient is
the same as a Pearson product moment correlation coef-
ficient estimated for two dichotomous variables. Thus, this
statistic gives a measure of correlation or concordance for
dichotomous variables. When an investigator estimates ¢,
the Greek letter is used for the statistic; ¢ is another one
of few examples of Greek letters being used for both the
parameter and the statistic.

Contingency Coefficient The contingency coeffi-
cient is used to measure concordance between categori-
cal variables depicted in r x c tables (i.e., tables in which
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the numbers of rows and columns are not necessarily the
same) (7,33). Thus, when one or both of the categorical
variables has three or more levels, the investigator would
choose the contingency coefficient (C) as an estimate of
the correlation coefficient.

The Kappa Statistic

The kappa statistic, «, is used to measure concordance for
2 x 2 and square r x c tables (i.e., tables in which the num-
bers of rows and columns are the same) (8,33). Often, these
tables reflect paired data. When an investigator estimates
K, the Greek letter is used for the statistic; xis another one
of few examples of Greek letters being used for both the
parameter and the statistic.

The healthcare epidemiologist may find many uses for
the kappa statistic. For example, two radiologists may read
radiographs of patients in a particular ICU. On a given day,
which radiologist reviews radiographs often depends on a
staffing schedule. In actuality, each radiograph is reviewed
by only one radiologist. Therefore, one radiologist may
review the radiographs for a particular patient taken on
admission. The next radiograph taken on the same patient
3 days later may be read by the other radiologist. Naturally,
the healthcare epidemiologist would like to know whether
the radiologists are likely to give the same diagnosis to the
same patient based on the same radiograph. Analyzing data
from patients in this ICU may require the epidemiologist
to make the assumption that the diagnoses from the two
radiologists are the same. Rather than making this assump-
tion, the epidemiologist can design a study to measure the
agreement (or concordance) between the two radiologists
when they review the same radiographs. In a hypothetical
study, one might suppose that the various diagnoses avail-
able to the radiologists are (a) definitely not interstitial
disease, (b) probably not interstitial disease, (c) possibly
not interstitial disease, (d) possibly interstitial disease, (e)
probably interstitial disease, and (f) definitely interstitial
disease. Therefore, the epidemiologist needs a measure of
concordance. The epidemiologist forms the hypotheses for
the kappa statistic:

H,:x=0versus H, :x #0.

First, the epidemiologist asks the radiologists each to
review a number of radiographs. For this particular study,
the epidemiologist is not as concerned about the radiolo-
gists agreeing with a gold standard as with their agreement
with each other. After collecting the data, the epidemiolo-
gist tabulates the results in a 6 x 6 table.

Concordance is measured by the proportion of obser-
vations in the cells along the main diagonal. The health-
care epidemiologist compares the observed concordance
rate with that which would be expected if there were no
concordance among the two radiologists. The epidemiolo-
gist estimates xand the variance of x; for specific formulas,
the reader should see Rosner (8). Then, to test H, the epi-
demiologist computes the test statistic, which is a z-score
and follows the standard normal distribution. The p value
is the probability associated with z_, assuming that the null
hypothesis is true. Rejecting H implies that the data show
evidence of concordance between the two radiologists.
Finally, the epidemiologist uses the following guidelines
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for evaluation of the estimated x statistic: (a) an estimated
k>0.75 denotes excellent reproducibility; (b) an estimated
Kk between 0.40 and 0.75, inclusive, denotes good reproduc-
ibility; and (c) an estimated x <0.40 denotes marginal repro-
ducibility (8).

The (1-2)100% CI for x is computed in the usual way.
Conceptually, this Cl is the same as the CI for u. Whenever
the CI does not include zero, the investigator rejects H,.
If the (1-0)100% CI includes the hypothesized value, the
results of the study, according to these data, are consistent
with H. The Clis interpreted as follows: the estimate of xis
arandom variable; for each sample, there will be a different
estimate x and a different s . The concordance can fluctu-
ate within these bounds with 95% confidence that the true
concordance lies there.

MULTIVARIABLE ANALYSIS

Most epidemiologic investigations involve more than one
or two variables of interest. Therefore, clinically based
studies of disease determinants often yield data sets that
require complicated analytic methods. Generally, the
healthcare epidemiologist identifies an outcome variable
(e.g., death, infection, or time to an event). In addition,
there are other selected variables, including the particu-
lar exposure, that are relevant to the investigation. The
primary focus of the study is the relationship between the
particular exposure and the specified outcome; complexi-
ties arise, because the epidemiologist must sort out inter-
relationships among other variables that affect (confound)
the relationship between the outcome and exposure (see
Chapter 2).

Although the epidemiologist has specialized knowledge
about the disease process under investigation, usually a
complete theoretical framework describing the true rela-
tionship between the exposure and the outcome variables
is lacking. Furthermore, the epidemiologist cannot control
or manipulate through experiments the process linking
exposure to outcome in ways that may reveal the true rela-
tionship. Fortunately, statisticians have developed a vari-
ety of multivariable analytic methods that address many
problems encountered in clinically based research.

What does the term multivariable analysis mean? Many
investigators refer to the statistical analysis of one depend-
ent variable and several descriptive or explanatory vari-
ables (i.e., several independent variables) as multivariate
analysis. However, this practice reflects a misuse of a sta-
tistical term that refers to the analysis of more than one
dependent variable. For this reason, I have chosen to use
the term multivariable analysis to encompass the follow-
ing statistical methods: stratified analysis, multiple lin-
ear regression, multiple logistic regression, and survival
analysis.

Model Selection Process

General Problems Dealing with more than one explana-
tory variable is a challenge for many clinical investigators.
Kleinbaum et al. (28) suggest the following four ways in
which multivariable analysis is more difficult than simple
univariate analysis (i.e., one explanatory variable). First,
usually more than one statistical model can be developed
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for the same data set to adequately describe the relation-
ship between the exposure and outcome variable. Choice
of which model is the best is generally somewhat sub-
jective and often sample dependent. Second, on any one
graph, an investigator can depict at most three dimen-
sions. Usually, an investigator considers more than three
variables. In this situation, the investigator must limit each
graphic depiction to two or three variables. Third, when
the model includes more than one or two explanatory vari-
ables, most clinical investigators have difficulty translating
the statistical model into a clinically meaningful explana-
tion. Finally, analysis requires the investigator to use a
computer software package for statistical analysis. When
the number of independent variables is large, the model
selection process can be very time-consuming. Many com-
puter algorithms do not have built-in limits for the number
of dependent or independent variables; the investigator
has the responsibility of setting reasonable limits. The fol-
lowing discussion suggests some reasonable limits. Thus,
in addition to specialized knowledge about the disease
process, the epidemiologist must develop some expertise
in multivariable analysis and acquire related computer
skills.

Model Selection Whenever the research problem involves
determining which explanatory variables should be included
in the analysis, a clinical investigator needs a model selection
strategy. Because some relationships among variables are
specific to a particular sample (i.e., they are sample depend-
ent), many investigators find that adhering to a formal strat-
egy is especially helpful during exploratory data analysis. In
avery real sense, each data set has new information that can
provide the investigator with insight into the exposure-dis-
ease relationship. If some of the intricacies of this relation-
ship, especially those that are unique to the current study,
can be dissected early in the model selection process, the
investigator is more likely to understand the clinical implica-
tions of the final model.

The goal of the model selection process is to identify
a statistical model that reflects important aspects of the
exposure—disease relationship. Therefore, before the pro-
cess begins, the investigator must perceive a theoretical
framework firmly based on considerations of subject mat-
ter. The statistical methods are the mathematical tools that
the investigator uses to derive empirical support for the
framework and discover new aspects of the relationship
that can be used to modify the framework. Both biostatisti-
cians and epidemiologists warn against relying exclusively
on any statistical package to determine the best model
for a data set. Except for pharmacokinetic, pharmacody-
namic, and growth models, almost all statistical models
commonly used in healthcare epidemiology are empirical
rather than mechanistic. This distinction implies that even
though a functional relationship may exist between the
exposure and disease, limited information is available on
the role that other variables have in influencing how the
exposure—disease process is manifested in a given patient
sample. Both biostatisticians and epidemiologists also cau-
tion investigators about literally interpreting the model as
an accurate reflection of the true exposure-disease pro-
cess. Finally, they are adamant in stating that any type of
model selection technique can be abused.

After gaining experience with multivariable analysis, a
clinical investigator may develop a unique style of model
selection. However, until that experience has been gained,
the cautious investigator should strictly adhere to guide-
lines provided by a biostatistician or epidemiologist who
has extensive experience in model selection. Draper and
Smith (29) have summarized, in a very readable chapter,
the process of planning, developing, and validating a sta-
tistical model. In their text, Rothman et al. (34) devoted
several chapters to the modeling process. Other authors
have discussed the process and provided the reader with
annotated examples: Kleinbaum et al. (20,28), Myers (30),
and Myers and Milton (31).

The Planning Stage The model selection process actu-
ally begins with the statement of the problem and identifi-
cation of the research question. During the planning stage,
the clinical investigator selects the response variable. If
there is more than one response variable of interest, the
investigator should limit the number to a few—no more
than five is best. For each response variable, the clini-
cal investigator lists all variables that could possibly be
related to the outcome. This list is usually very long and
may include almost every variable on a patient’s chart.
From this extensive list, the investigator identifies those
variables that can be collected and groups these collectible
variables into broad categories. For example, one category
might contain all demographics, another could include
severity of illness indices or perhaps comorbidities, and so
on. Finally, by the end of the planning stage, the investi-
gator should have a reasonable list of variables that merit
inclusion in the study.

Are there resources available that can help the inves-
tigator in selecting variables for serious consideration?
Resources include (a) reports of similar investigations pub-
lished in the peer-reviewed literature and (b) discussions
with experts in the disease of interest. During the initial
planning stages, the clinical investigator bases decisions
on subject matter expertise not statistics! However, some
statistical considerations become important near the end
of the planning stage.

Toward the end of the planning stage, the investiga-
tor studies the feasibility of the project. Specific items
that require the attention of the investigator include the
number of patients required to address the problem, the
number of patients available, the time needed to accrue
the minimum number of patients necessary for the inves-
tigation, the costs for data collection, other budget-related
issues, and the availability of skilled ancillary personnel to
ensure collection of high-quality data.

Data Collection and Quality Control Once the investi-
gator has decided that the project is feasible, patient enroll-
ment and data collection begin. Quality control of the data
is vital to the success of the entire project. Remarkably, this
is a step that some investigators overlook completely. Plan-
ning what quality control measures are needed for a clini-
cal investigation may require advice from a biostatistician
or epidemiologist. Unfortunately, despite precautions and
the highest level of quality control, most data sets will con-
tain some errors that escape detection. Reasonable goals
for quality control include eliminating systematic errors,
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especially misclassification, and minimizing the impact of
random data entry errors. Therefore, the safeguards are
directed at detecting influential errors, those errors that
can bias results and threaten the validity of statistical infer-
ences. Remember that a single error, such as a 50-lb new-
born human infant, can have a disastrous impact on the
findings of a study.

Model Selection—Univariate Analyses The first explor-
atory step in actual model selection involves obtaining
descriptive statistics for the variables of interest. For con-
tinuous variables, testing for goodness of fit to the normal
distribution may be important. In addition, for continuous
explanatory variables, the range (or some other measure of
variability) is usually an important consideration. For exam-
ple, if the ages of the patients are very similar, age is not
likely to influence the relationship between exposure and
disease regardless of whether other studies have found that
age is an important determinant of the disease of interest.
Including variables with limited variability can compromise
the model because of overparameterization.

The next steps in actual model selection are (a) plotting
relationships between continuous variables, (b) using 2 x 2
and r x c tables to study relationships between discrete var-
iables (i.e., attributes), and (c¢) estimation of Pearson and
Spearman correlation coefficients for all pairs of variables.
During this phase, the investigator is gaining an apprecia-
tion of which variables are associated with other variables
and to what degree. The investigator should be careful
about including explanatory variables in the multivariable
model that are more highly correlated with each other than
with the response variable. Including highly correlated
independent variables in a model can lead to problems of
multicollinearity. Other terms for the same phenomenon
are collinearity and multiple collinearity. Multicollinearity
in a statistical model occurs when two or more independ-
ent variables are strongly correlated with each other. When
the explanatory variables are highly correlated with each
other, the estimated coefficients are also highly correlated,
thereby yielding unreasonable regression coefficients and
an implausible and unusable statistical model.

At the end of the exploratory step, the investigator
should have narrowed the list of potential explanatory
variables to about 20 or fewer. Final models with more than
five or six explanatory variables are difficult to explain.
In narrowing the list, the investigator should be aware of
the following rule: no fewer than 5 to 10 observations are
needed for each potentially important explanatory variable
that will be included in the final model. Having at least 30
observations for each variable included in the final model
is a reasonable target.

Model Selection—Multivariable Analyses Style and
philosophy influence the investigator’s choice of which
analytic procedures to use in developing multivariable
models. Every procedure has strengths and weaknesses;
all can be abused. Initially, most biostatisticians recom-
mend using a rather liberal entrance or deletion crite-
rion for variable selection (e.g., p < .20 or p < .25). As the
final model emerges, traditional levels of significance for
selected explanatory variables can be imposed. Regardless
of what statistical procedure was used for model selection,
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most biostatisticians recommend that the investigator
use appropriate diagnostic procedures to assess various
aspects of the emerging statistical models and subject the
results to the scrutiny of other clinical specialists with
expertise in the exposure-disease process of interest.
Regression diagnostics include examining the residuals
and checking for systematic lack of fit.

Because more than one statistical model can provide
a valid representation of the exposure-disease relation-
ship, the investigator should select the best model and
several competing models. Assessing the best model in
light of competing models is a type of sensitivity analysis.
The objective of this sensitivity analysis is to reveal which
variables are stable in the model, reflecting the average
patient, and which are seemingly sample specific (i.e., sam-
ple sensitive), reflecting small groups of patients with dis-
tinct characteristics.

Problems with Confounding Epidemiologists apply the
term confounder variables to variables that are partially
related to both the exposure and the outcome variables
(20,34). In the statistical sense, a confounder is only par-
tially confounded (i.e., associated or correlated) with both
the exposure and the outcome variables; if a confounder
were completely confounded with either variable, the
confounder would be completely inseparable from that
variable.

Confounders create problems for the investigator. The
investigator’s objective is to show whether a particular
exposure and the outcome are related. If the investigator
ignores an important and influential confounder, the esti-
mates of RRs, ORs, or regression coefficients are biased.
Consequently, the investigator does not know whether
the relationship (or lack of one) is attributable to the con-
founder or to the exposure (see Chapter 2).

Indications of Multicollinearity Sometimes an explan-
atory variable will seem to have an important effect on a
response when the variable is considered by itself with
simple linear regression or correlation analysis. However,
after adjusting for another explanatory variable, no sig-
nificant relationship may remain. This apparent contra-
diction is an indication of multicollinearity. Inclusion of
both variables in the statistical model may or may not be
appropriate. There are rules for inclusion and exclusion,
but their interpretation is subjective. Thus, the investiga-
tor must carefully assess any problems related to multi-
collinearity.

An investigator can learn to recognize some indications
of multicollinearity. As variables are selected for inclusion
or exclusion from the model, coefficients affected by mul-
ticollinearity will appear to be unstable in that their values
will change dramatically. Sometimes multicollinearity can
be severe enough to change the sign of an estimate. Another
concomitant indication of multicollinearity is that affected
coefficient estimates will often have large standard errors;
sometimes the standard errors are several times larger
than the estimates. Statisticians have developed several
methods for detecting multicollinearity (29,30,31,32,35,36).
Condition indices, variance inflation factors, and toler-
ance values can be used to determine which variables in
the current model are affecting the estimates of regression
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coefficients. Whenever multicollinearity appears to be an
important problem, the clinical investigator should seek
advice from a biostatistician experienced with model
selection.

Indications of an Overparameterized Model Includ-
ing explanatory variables that are not statistically signifi-
cant can be considered overparameterizing the model.
Subjective interpretation plays a role in the distinction
between overparameterization and appropriate inclusion
of a variable that is not statistically significant at tradi-
tional levels. Overparameterization and multicollinearity
often occur simultaneously. One serious problem with
highly correlated explanatory variables is that the model
becomes very difficult to interpret in terms of actual clini-
cal applications. After all, one of the reasons for using
multiple linear regression is to allow the investigator to
identify which explanatory variables have a significant
relationship with the response after adjusting for other sig-
nificant explanatory variables. Therefore, the investigator
has to carefully evaluate problems associated with overpa-
rameterizing the model.

Detection of Influential Observations An influential
observation is one that has an unusually large influence on
the estimate of one or more regression coefficients. In gen-
eral, influential observations are unique to a specific sam-
ple. By carefully examining the plots of each explanatory
variable against the response, the investigator can identify
many influential observations during exploratory analysis.
However, in most large data sets, a few influential obser-
vations may emerge during model selection. In addition to
examining plots of residuals, statisticians have developed
several other methods for detecting influential observa-
tions (18,29,30,31,32,35,36). An investigator uses influence
diagnostics for revealing which observations reflect the
average patient and which are seemingly from patients
with distinct characteristics. If possible, the investigator
should determine why an observation has been identified
as influential. Often, this process of examining influential
observations reveals biologically and clinically important
reasons for exclusion. After one or more influential obser-
vations have been identified, biostatisticians usually advise
fitting the model after leaving out the suspect influential
observations. Alternatively, inclusion of a dummy variable
in the model (to designate the main group, X =0, and set of
influential observations, X = 1) may allow for including all
observations in the final model.

Stratified Analysis

As discussed previously, cumulative incidence and preva-
lence of a disease are distributed binomially. An important
assumption is that the probabilities for the outcomes are
a constant p for success and (1-p) = q for each failure for
every trial. Often, in clinical studies, data from samples
of patients fail to meet this assumption; other variables
in addition to exposure influence the probability of the
outcomes. One of the statistical methods for address-
ing confounders is stratified analysis (1,5,6,8,15,20,21,34).
The investigator uses stratified analysis for controlling or
adjusting for the confounder and estimates an adjusted
RR or OR.

Mantel-Haenszel Test Two-way tables can be extended
to multiway tables to accommodate several attributes.
Typically, the Mantel-Haenszel test is used for situations in
which (a) both the exposure and the outcome are dichoto-
mous variables and (b) one or more other attributes are
partially confounded with the relationship between expo-
sure and outcome. The investigator forms a number of
strata based on levels of one or more confounding vari-
ables; the confounding variables must be categorical, dis-
crete, or continuous variables that have been forced to be
categorical (e.g., by dividing into quintiles). The strata are
chosen so that the data within each stratum are as homoge-
neous as possible. Typically, strata reflect patient charac-
teristics (e.g., age category) or institutional characteristics
(e.g., medical and surgical ICUs). The investigator assumes
that the strata are independent. The Mantel-Haenszel test
requires a reasonably large total sample size; however, this
test was developed to accommodate sparse data within
strata. The Mantel-Haenszel test for 2 x 2 tables can be
generalized to r x ¢ tables, but that application is beyond
the scope of this chapter.

Within each stratum, the investigator constructs a
2 x 2 table relating the exposure and outcome variables.
The test statistic does not depend on a particular arrange-
ment of the 2 x 2 tables as long as the arrangement is the
same for all strata. Choice of which variable is designated
as the rows and which is designated as the columns is arbi-
trary. Similarly, the order in which the data for the rows and
columns are coded is arbitrary. However, certain statisti-
cal software packages may require a particular arrange-
ment, particularly when the investigator is estimating ORs
or RRs.

H, states that there is no association between exposure
and outcome after controlling for variables that create
strata; H, states that there is an association after control-
ling fg)r the strata. Under H, the Mantel-Haenszel statis-
tic, Ywn, follows a chi-square distribution with 1 degree of
freedom. Thus, for a test of szigniﬁcance at the .05 signifi-
cance level, H is rejected if ZMH2 is >3.84. The p value is the
probability associated with Xwn, assuming that the null
hypothesis is true.

The investigator should report results based on the
Mantel-Haenszel test only when there is no evidence of
statistical interaction involving the strata. The Mantel-
Haenszel test is still valid statistically; however, the inter-
pretability of the results may be in question. Therefore, the
investigator should not rely exclusively on the p value asso-
ciated with the test statistic but should carefully study the
patterns of association displayed in the various strata with
a particular interest in detecting evidence of a statistical
interaction involving the strata or test for homogeneity of
strata using the Breslow-Day test. For example, if the Man-
tel- Haenszel test statistic is not significant, (a) there may
be no association between the exposure and the outcome
(i.e., Hj is correct) or (b) there may be opposing or incon-
sistent patterns among the strata. An obvious interaction
is present when the pattern exhibited by some strata is in
the opposite direction from the pattern of other strata. In
contrast, even without the presence of opposing patterns,
interaction may be present when Fisher’s exact test indi-
cates significance for some strata and lack of significance
for others; in this situation, determining what constitutes
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an interaction is somewhat subjective. Finally, even if the
Mantel-Haenszel test statistic reaches significance, there
may be evidence of an interaction. In this circumstance, the
issue of interpretability is addressed subjectively, accord-
ing to subject matter considerations. For example, signifi-
cance could be attributable to one or more dominant strata
that have a strong pattern of association in one direction
and overwhelm the lack of association or an opposing pat-
tern in the remaining strata. Regardless of the significance
of the test statistic, evidence of an interaction indicates
that analysis of data over all strata may be inappropriate.
If an investigator encounters evidence of an interaction
involving the strata, he or she should seek the advice of
an experienced biostatistician or epidemiologist (see also
Chapter 2).

Estimates of Adjusted ORs and RRs The Mantel-
Haenszel method can be used to estimate strata-adjusted
ORs and RRs along with respective 95% Cls. The reader
should review the previous discussion of unadjusted ORs
and RRs estimated from 2 x 2 tables. Unlike the RR, the OR
is not constrained by the denominator. This property is
particularly advantageous when estimated ORs are com-
bined over strata.

Strata-adjusted estimation is based on the assump-
tion that the parameter is the same for each stratum and
that the values of estimates differ because of sampling.
When estimating adjusted measures of association, the
investigator should carefully study the pattern of associa-
tion displayed by the various strata. The same problems
of interpretability discussed for the Mantel-Haenszel test
apply to estimation. However, unlike the test statistic, esti-
mates are not valid unless the assumption of homogene-
ity is met. Criteria for what constitutes a violation of this
assumption are somewhat subjective.

Either test-based or precision-based Cls can be esti-
mated. For a discussion of the advantages and disadvan-
tages of these intervals, the reader is referred to Kleinbaum
et al. (20). Sometimes, extreme estimates or confidence
limits are obtained because of very small observed fre-
quencies in some cells (often as few as only one or two
events).

A Special Case—Matched Pairs For matched pairs,
the clinical investigator can estimate RRs and ORs from
stratified analyses with the strata representing the pairs.
Methods for point and interval estimates are the same as
those described previously. Usually, the investigator does
not study the pattern of association for the various strata.

Breslow-Day Test The Breslow-Day test for homogene-
ity tests the null hypothesis that the ORs for all strata are
equal versus the alternative that the OR for at least one of
the strata is different (37). The test statistic is valid only
when every stratum has a large number of observations
(generally more than 20). Under H, the test statistic fol-
lows a chi-square distribution with degrees of freedom
equal to one less than the number of strata included in
the test statistic. Strata with a zero column or row total
are excluded from computation of the test statistic. Regard-
less of whether the investigator uses the Breslow-Day test,
it is incumbent on the investigator to carefully study the
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pattern of association displayed by the various strata.
When the estimates of ORs have opposing patterns, there
is usually no question about the inequality of ORs over
strata. However, evidence of other patterns of interaction
is more subjectively determined.

Multiple Linear Regression

Multiple Linear Regression Analysis A clinical investiga-
toruses multiplelinear regression analysis when the objective
involves studying the relationship between more than two
variables at the same time (1,24, 5,6,7,8,9,18,21,28,29,30,31).
There is a single continuous dependent or response vari-
able, but there are several independent, descriptive, or
explanatory variables. The explanatory variables may be
continuous or dichotomous; in addition, categorical explan-
atory variables can be recoded for inclusion in a multiple
regression model.

The statistical model is Y, = a+ B X, +B,X, +...+ B.X,, +&,
where i is the indicator for each subject and ranges from
1 to n. The data set contains n sets of (k + 1) measurements
where n indicates the number of subjects in the sample; a
complete set of measurements is taken on every patient. Of
these measurements, k values are X values, and oneis a Y
value. The p values are partial regression coefficients with
the intercept, o, corresponding to the intercept in simple
linear regression. A partial regression coefficient quantifies
the relationship between a particular explanatory variable
and the response after adjusting or controlling for all other
effects in the model.

The same assumptions that were necessary for simple
linear regression also apply to multiple linear regression.
Multiple linear regression merely reflects an expansion of
the simple case to p-dimensions, each representing a differ-
ent independent variable. Regardless of form, the explana-
tory variables are assumed to function independently. Most
often, the independent variables have the form of main or
direct effects (e.g., age, days on mechanical ventilation, or
APACHE IIl score). However, some of the independent vari-
ables may represent interactions of two other independ-
ent variables, X X,. As a standard practice, the investigator
should include the direct effects of X, and X, in a model in
which the interaction is included. An example of an inter-
action is the joint effect of age and APACHE III score on a
particular response variable. Independent variables may
represent higher powers of other independent variables,
X? or X;. Generally, when higher powers, such as X}, are
included in the model, the lower powers (X, and X)) are
also included. For example, the relationship between the
response and age may not be completely linear but may
increase at an increasing rate, thereby requiring the inclu-
sion of age and age-squared.

An investigator should always be conservative in inter-
preting a multiple regression model. Other variables, not
included in the model, may actually be the cause of differ-
ences in the response.

Polynomial or Curvilinear Regression Models Poly-
nomial regression is a special case of multiple linear regres-
sion for one independent variable, X, and one continuous
dependent variable, Y. The highest degree polynomial that
may be fit to the data is one less than the number of obser-
vations. For most biologic phenomena, biostatisticians
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recommend limiting the model to a cubic regression. The
general rule for using polynomial regression analysis is
that the investigator use as simple a model as possible but
one that explains as much of the variation of Y as possi-
ble. The investigator should be aware that as the degree of
the polynomial becomes higher, the interpretation of the
curve becomes more difficult. The model for a quadratic
regression is

Y=a+BX +yX +e¢

where i is the indicator for each subject and ranges from
1 to n. Both B and yare partial regression coefficients.

Tests of Hypotheses Methods for regression analysis
and hypothesis testing are similar to those described
for simple linear regression. The same principle of least
squares is used to estimate the regression coefficients by
minimizing the residual sum of squares over all data points.
The clinical investigator tests the overall null hypothesis
that all § values equal zero versus the alternative hypoth-
esis that at least one value does not equal zero. Under the
null hypothesis, the F,, which is the ratio of the model or
regression MS divided by the residual or error MS, follows
an F distribution with p and (n—k-1) degrees of freedom.
The p value is the probability associated with F, assuming
that the null hypothesis is true.

The overall Ftest will not identify which specific
explanatory variables are associated with the response.
The clinical investigator must perform #tests to investigate
the specific association of each independent variable with
the response. For one- or two-sided ttests on individual
partial regression coefficients, the investigator uses a ¢ sta-
tistic with (n—k-1) degrees of freedom. The p value is twice
the probability associated with ¢, assuming that the null
hypothesis is true.

Interval Estimation Generally, the investigator wishes to
estimate partial regression coefficients. The printed results
from most computer software packages include estimates
and standard deviations of the estimates. The standard
deviations of the estimates may be called standard errors.
The clinical investigator obtains the 95% Cls for each par-
tial regression coefficient in the usual way:

bt t915.0 125

Conceptually, this CI is the same as the CI for u. When-
ever the Cl does not include zero, the investigator rejects
H,. If the (1-)100% CI includes the hypothesized value,
the results of the study according to these data are con-
sistent with H. The Cl is interpreted as follows: the esti-
mate of §is a random variable; for each sample, there will
be a different estimate b and a different s,. As the variable
X changes by one unit, the expected response changes
by b units after controlling for all other variables in the
model. Controlling for all other variables implies that
the value of each of the other explanatory variables in
the model has been set to the respective mean value. An
investigator should always be conservative in interpret-
ing a multiple regression coefficient. Other variables, not
included in the model, may actually cause the variability
of response.

Standardized Partial Regression Coefficients The
concept of standardized regression coefficients can be
extended to multiple linear regression; these are called
standardized partial regression coefficients. By using stand-
ardized partial regression coefficients, the clinical investi-
gator can express relative changes that are independent of
any units of measurement. In addition, the investigator can
use standardized partial regression coefficients for ranking
the effects of the explanatory variables in order of impor-
tance.

Partial regression coefficients are standardized by
dividing the estimated partial regression coefficient by the
ratio of the standard deviation of the response variable
to the standard deviation of the respective explanatory
variable:

Thus, the standardized regression coefficient is a
dimensionless value that represents the predicted change
in Y, expressed in standard deviation units that would be
expected for each change in X of one standard deviation
unit after adjusting for all other variables in the model.

Partial Correlation Coefficients The healthcare epi-
demiologist obtains estimates of partial correlation coef-
ficients following analyzing data by multiple regression
methods. Partial correlation coefficients provide an esti-
mate of the remaining correlation after one or more other
variables are held constant (i.e., after adjusting for the
other variables) (2,4,9). Partial correlation coefficients are
used when there are correlations among the explanatory
variables. In practice, the epidemiologist examines both
the total (or unadjusted) correlation coefficients and the
partial (adjusted) correlation coefficients.

Multiple Logistic Regression

A clinical investigator uses multiple logistic regression
analysis when the outcome or response variable follows
a binomial distribution (1,5,6,8,18,20,21,34). Generally, the
objective is similar to that for multiple linear regression and
involves studying the relationship between more than two
variables at the same time. There is a single dichotomous
dependent or response variable and several independ-
ent or explanatory variables. Typically, the investigator
refers to any explanatory variables, other than the speci-
fied exposure, as confounding variables. The investigator
wishes to examine the relationship between the exposure
and the outcome after controlling for the confounding vari-
ables. These confounding variables may be continuous,
dichotomous, or categorical variables. When the strata
used in stratified analysis and the confounding variables
used in logistic regression are defined similarly, the results
from the two methods are identical. By permitting continu-
ous variables and interactions to be included in the model
as explanatory variables, logistic regression is more flex-
ible than stratified analysis. However, logistic regression
does have one potentially serious limitation—only ORs can
be estimated from logistic regression. However, these ORs
can be used as approximators of RRs if the study design
permits.

In logistic regression, the response variable is expressed
as p and is the probability that the response, Y, is an event—
that is, p = Pr(Y = 1). For logistic regression analysis, the
presence of the event is almost always coded as one. Given
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that a subject has certain values for X, to X,, the expected
or average probability of an event is p=Pr(Y=1). The event
or outcome of interest may be a particular disease or death.
For this discussion, the event is disease.

The statistical model is

e“*‘ﬂlxu + Xyt B X 8,

Pi= Qv e AX R pXay

where i is the indicator for each subject and ranges from
1 to n; exp(x) =e*;
Using the logit transformation, this model becomes

In(p, /A=-p)=a+BX,+LXy+ -+ X, +&.

Note that the logit transformation yields a model that is
linear in its parameters, thus incorporating certain proper-
ties of multiple linear regression. The data set contains sets
of (k + 1) measurements on each subject. Of these meas-
urements, k values are X values, and one is the event, Y.
The B values are partial regression coefficients with the
intercept, o, corresponding to the intercept in simple linear
regression. In a logistic regression model, the explanatory
variables are related multiplicatively to each other rather
than additively as they would be in a linear model. Unlike
the errors from the multiple linear regression model that
are distributed normally, the errors of the multiple logistic
model are distributed according to a binomial distribu-
tion. Furthermore, the expected value of Y for a given X lies
between zero and 1.0. Because of complexities that involve
fitting the parameters of this model, clinical investigators
rely on a computer-based iterative algorithm.

Throughout this discussion, note that the natural loga-
rithm of the odds of disease is In[p/(1-p)]. The intercept,
o, represents the natural logarithm of the baseline odds of
disease (i.e., the event). The baseline odds correspond to
the odds of disease among the unexposed—that is, when
all X values are set to zero. The partial regression coef-
ficients quantify the relationships between a particular
explanatory variable and the response after adjusting or
controlling for all other effects in the model. When a partial
regression coefficient quantifies the relationship between a
dichotomous variable and the response, 3 represents the
natural logarithm of the additional odds of disease among
those with the attribute after controlling for all other varia-
bles in the model. For a categorical or continuous variable,
the multiplicative relationship between the explanatory
and outcome variables becomes apparent. § represents
the change in the natural logarithm of additional odds of
disease per unit change in X. Controlling for all other vari-
ables in the model implies that all other attributes occur
at equal frequencies. The reader is referred to Rothman et
al. (34), Kleinbaum et al. (20), and Hosmer and Lemeshow
(35) for additional information on implications for epide-
miologic models.

The same assumptions that were necessary for anal-
ysis of data in 2 x 2 tables and stratified analysis also
apply to multiple logistic regression. In addition, logistic
regression shares many similarities with multiple linear
regression. Multiple logistic regression reflects k-dimen-
sions, each representing a different independent variable.
Regardless of form, the independent variables are assumed
to function independently. Independent variables usually
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have the form of main or direct effects (e.g., presence of
a healthcare-associated infection, age, days on mechani-
cal ventilation, or APACHE III score). However, some inde-
pendent variables may represent interactions of two other
independent variables that should also be included in the
model as direct effects, X, and X,.

An investigator should always be conservative in inter-
preting a multiple logistic regression model. Other vari-
ables, not included in the model, may actually be the cause
of differences in the probability of an event.

Tests of Hypotheses Tests of hypotheses, interval esti-
mation, and interpretation of the results are counterparts
of those for multiple linear regression.

Generally, the clinical investigator does not test an
overall null hypothesis that all of the explanatory vari-
ables in the model are zero. However, this test is usually
available. If competing models for the same data are being
compared, there are test statistics available for assessing
the joint or combined significance of all explanatory vari-
ables included in the model. The Score, Akaike Information
Criterion, and the Schwartz Criterion statistics are used for
this purpose.

The clinical investigator can perform z-tests to investi-
gate the specific association of each independent variable
with the response. Alternatively, for two-sided hypothesis
tests on individual partial regression coefficients, the inves-
tigator can use a Wald chi-square statistic, which follows a
chi-square distribution with 1 degree of freedom under the
null h};pothesis. The p value is the probability associated
with Zs, assuming that the null hypothesis is true. For more
information on hypothesis testing, see Lawless (36).

Interval Estimation Generally, the investigator wishes
to estimate partial regression coefficients and adjusted
ORs. The printed results from most computer software
packages include estimates and standard deviations of
the estimates. The estimates of regression parameters
are maximum likelihood estimates. Standard deviations of
these estimates may be called standard errors. Sometimes
the printed results also contain estimated adjusted ORs
and asymptotic 95% Cls. The clinical investigator obtains
the asymptotic 95% Cls for each partial regression coeffi-
cient in the usual way.

Whenever the CI does not include zero, the investiga-
tor rejects H. If the asymptotic (1-2)100% CI includes the
hypothesized value, the results of the study, according to
these data, are consistent with /. The Cl is interpreted as
follows: the estimate of 8 is a random variable; for each
sample, there will be a different estimate b and a different
s,. As the variable X changes by one unit, the expected nat-
ural logarithm of additional odds of disease changes by b
units after controlling for all other variables in the model.

The interpretation of the OR is illustrated in the fol-
lowing example: after controlling for all other variables in
the model, patients who are ventilated are 1.497 times as
likely to have pneumonia as those who are not ventilated.
Controlling for all other variables implies that the value of
each of the continuous explanatory variables in the model
has been set to the respective mean value and that each of
the dichotomous variables occurs at equal frequencies. An
investigator should always be conservative in interpreting
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an OR estimated from multiple logistic regression analysis.
Other variables, not included in the model, may actually
cause the variability of response.

Matched Case-Control Studies For matched case-
control studies, the investigator can use conditional logis-
tic regression to study the effects of confounders (20). The
reason for matching is that the investigator knows that cer-
tain factors are partially confounded with the relationship
between exposure and outcome. However, there may be
other potential confounders that the investigator wishes to
consider in a multiple regression model. Because of com-
plexities involved in fitting the parameters of this model,
clinical investigators rely on a computer-based iterative
algorithm.

Survival Analysis

A clinical investigator uses survival analysis when the
outcome or response variable is time to an event (/,3,5,6,
8,18,20,25,34,38,39,40). The event is often considered a
failure. Survival analysis is a form of conditional logistic
regression analysis that allows for censored observations.
Some survival analysis is based on parametric models
that allow for left-, right-, or interval-censored observa-
tions. In clinical investigations, the most commonly used
models for survival analysis are nonparametric models
that allow for right-censored observations. In the clinical
setting, a common feature of lifetime or survival data is
the presence of right-censored observations; censoring
arises from either withdrawal of subjects or termination
of the study. For censored observations, the lifetime is
known to have exceeded the recorded value, but the exact
lifetime remains unknown. Survival data should not be
analyzed by ignoring the censored observations. Among
other considerations, the longer lived units are generally
more likely to be censored. Therefore, the analysis must
correctly use the censored observations and the uncen-
sored observations.

The investigator regresses the survival time variable
on one or more independent variables. The survival curve
gives the probability of survival up to time ¢ for each time.
The hazard function is the instantaneous probability of hav-
ing an event at time ¢ given that the subject has survived
up to time ¢. Under Cox’s proportional hazards model, the
hazard is modeled as H(f) = h(H)e®*1 ¥, where X val-
ues are independent variables and h(f) is the baseline
hazard at time t. Cox’s proportional hazards model has
become the method of choice for multivariable analysis of
incidence density variables. By taking logarithmic trans-
formations, the investigator can interpret the regression
coefficients in a way similar to multiple logistic regression.
The investigator uses similar methods for hypothesis tests
and point and interval estimation of regression coefficients
and conditional RR approximations of RRs. Cox’s propor-
tional hazards model can be generalized to accommodate
both time-dependent and constant explanatory variables.
Because of complexities involved in fitting the parameters
of survival models, clinical investigators rely on statistical
software.

Usually, a first step in survival analysis is the estima-
tion of the distribution of the failure times. The survival
distribution function (SDF) is used to describe the lifetimes

of the population of interest. The SDF evaluated at time ¢
is the probability that a subject sampled from the popu-
lation will have a lifetime exceeding t—that is, S(f) = Pr
(T > t) where S(¢) denotes the survival function and ¢ is the
lifetime of a randomly selected subject. A likelihood ratio
test may be used to test for equality of SDF between the
strata. Estimates of some other functions closely related
to the SDF may also be obtained. These related functions
include the cumulative distribution function, the probabil-
ity density function, and the hazard function. The hazard
function indicates when the likelihood of failure is greatest.

Clinical investigators may select other variables for
defining strata. Survival estimates within the strata can
be computed and displayed using Kaplan-Meier plots for
visual comparison of the results. The median survival time
corresponds to that time when half the subjects have failed
and half still survive. The investigator may also be inter-
ested in the times when 25% and 75% of the subjects in the
sample have failed. In addition, rank tests for homogene-
ity can be used to indicate whether there are significant
differences between strata at shorter and/or longer sur-
vival times. The Wilcoxon test places more weight on early
(shorter) survival times. The log rank test places more
weight on larger (longer) survival times.

Often there are additional variables, called covariates,
that may be related to the failure time. These variables can
be used to construct statistics that test for association
between the covariate and the survival time. Two com-
monly used tests are the Wilcoxon and log rank tests.
These tests on covariates are computed by pooling over
any defined strata, thereby adjusting for the strata vari-
ables. These two tests are similar to those used to test for
homogeneity.

Model Selection Techniques for
Regression Analysis

Having selected a set of potential explanatory variables,
the clinical investigator wishes to know which of these
should be included in the final model. If there are only a
few explanatory variables, the investigator can consider
assessing all possible regression equations. With any more
than three or four explanatory variables, the investiga-
tor should consider another technique. Statisticians have
developed several techniques based on objective criteria
for model selection. Before choosing one of these methods,
a clinical investigator should review the section on model
selection and consider consulting an experienced biostat-
istician or epidemiologist.

A forward inclusion procedure begins with no explana-
tory variables in the model. For each potential explanatory
variable, the algorithm computes each variable’s contribu-
tion to the model as if it alone were included in the model.
Generally, for each potential explanatory variable, the
p value associated with the test statistic is compared to a
specified level of significance. That variable, which contrib-
utes the greatest amount of information and has a p value
less than the specified value, is entered into the model. In
the second step, the algorithm computes the contribution
to the model (now containing one explanatory variable) for
each remaining potential explanatory variable. That vari-
able, which contributes the greatest amount of information
and has a p value less than the specified value, is entered
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into the model. If there is none that meets the entrance
criteria, the process stops. If a variable does enter the
model, this process continues until there are no variables
remaining that meet the criteria for entrance. Once a vari-
able has entered the model, it stays. Models selected with a
forward selection technique should be scrutinized for mul-
ticollinearity and overparameterization.

A backward elimination procedure begins with a model
that includes all potential explanatory variables in the
model. For each variable included in the model, the algo-
rithm computes the amount of information contributed
by that variable and the p value associated with the test
statistic. The variable that contributes the least amount of
information and has a p value greater than a specified value
is eliminated from the model. This process continues until
all variables remaining in the model yield test statistics
with associated p values that are smaller than the speci-
fied value. Once a variable has been eliminated, it is gone.
Although this model selection was designed to address
issues of multicollinearity and overparameterization, mod-
els selected with a backward elimination technique should
be scrutinized for underparameterization.

A stepwise algorithm combines the techniques of for-
ward inclusion and backward elimination. As with forward
inclusion, potential explanatory variables are added one
by one to the model. The technique begins with no vari-
ables in the model. The algorithm computes each poten-
tially explanatory variable’s contribution to the model as
if it alone were included in the model. Generally, for each
potential explanatory variable, the p value associated with
the test statistic is compared to a specified level of signifi-
cance. The variable that contributes the greatest amount of
information and has a p value less than the specified value
is entered into the model. However, a stepwise algorithm
differs in that variables that are already in the model do
not necessarily remain there. For each variable included in
the model, the algorithm computes the amount of informa-
tion contributed by that variable and the p value associ-
ated with the test statistic. The variable that contributes
the least amount of information and has a p value greater
than a specified value is eliminated from the model. This
process continues until there are no variables remaining
that meet the criteria for entrance or deletion. Even though
this model selection technique was developed to minimize
problems related to multicollinearity and overparameteri-
zation, models selected with a stepwise algorithm should
be scrutinized.

ROLE OF A CONSULTING
BIOSTATISTICIAN IN CLINICAL
RESEARCH

In some situations, the statistical aspects of a study
become so involved that consulting with a biostatistician
is essential. Throughout this chapter, I have indicated
when, in my opinion, an investigator with a moderate level
of both research experience and analytic skills should
consider seeking the assistance of a biostatistician. Those
with a lower level of either experience or skills should seek
advice earlier in the research process. For some projects,
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a healthcare epidemiologist should consider involving the
biostatistician as a member of the research team. Ideally,
this arrangement requires a high level of commitment on
the parts of both the healthcare epidemiologist and the
biostatistician. Most researchers lack the time and mathe-
matical background required to master complex statistical
issues and methods (e.g., multivariable model selection).
Thus, a progressively more common practice is to include
a biostatistician (or a scientist with specialized training in
statistics) on research teams.

The research goals and objectives of a consulting bio-
statistician are similar to those of researchers in other sci-
entific disciplines: to develop and disseminate high-quality
science through research. However, the biostatistician
focuses on the statistical aspects of research questions.
These aspects include experimental design, statistical anal-
ysis, interpretation of results, and dissemination of results
through publication. As a member of a research team, a
biostatistician should be capable of serving all statistical
needs of the project. Occasionally, a research project pre-
sents some unique feature that has not yet been consid-
ered in the field of applied statistics. Many biostatisticians
will recognize that this feature provides a research topic
in biostatistics and the opportunity for developing a new
statistical technique.

Qualifications, abilities, and available time will limit
a biostatistician’s role on a research project. Obviously,
technical skills and knowledge of statistical methods are
essential. Most biostatisticians have a general knowledge
of many statistical methodologies. However, like most
professionals, biostatisticians have special interests and,
thereby, acquire practical experience in specific types of
analytic methods. For example, if the study involves com-
plex multivariable model development and selection, the
investigator should attempt to seek assistance from a bio-
statistician who has an interest in those analytic methods
and is experienced in multivariable models and model
selection.

Most research questions can be addressed several
ways. Constraints that are independent of the question
usually make one design more desirable than another. In
addition to having the necessary practical experience, pos-
sessing problem-solving abilities allows a biostatistician to
appreciate practical issues and to choose efficient experi-
mental designs and appropriate statistical methods.

Good interpersonal skills are necessary for the bio-
statistician to communicate effectively with the principal
investigator. If the biostatistician becomes a team member,
these skills are needed for communication with coinvesti-
gators, technicians, and other ancillary staff members. Oral
and written communication abilities are important team
traits. Tactfulness is an interpersonal skill that is especially
needed by biostatisticians who interact with individuals
who may feel uncomfortable and vulnerable when they dis-
cuss statistical issues.

Typically, biostatisticians work as consultants on a
large number of projects. The demand for biostatisticians
exceeds the supply. Therefore, researchers will need to
make compromises with biostatisticians regarding their
level of involvement as members of research teams.
From the biostatistician’s perspective, being a member
of a research team represents a long-term investment of
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time and effort. The biostatistician needs time to learn
enough about the health science of the problem so that
he or she can assist the investigator with the interpreta-
tion of results. The biostatistician needs time to complete
the analyses. Because computers complete computations
extremely quickly, investigators can forget that program-
ming and exploratory data analyses can be extremely time-
consuming for the biostatistician.
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Principles of Healthcare Epidemiology

Mary D. Nettleman, Robin L. Roach, and Richard P. Wenzel

Epidemiology is the study of the distribution and
determinants of health and disease in populations. Health-
care epidemiology is the application of epidemiologic
principles to the inpatient, long-term care, and outpatient
environments. Healthcare epidemiology has its roots
in infection control, and this activity remains central to
most healthcare epidemiology programs. In the past two
decades, however, the scope of the field has expanded to
encompass control and prevention of both infectious and
noninfectious adverse events. Concurrently, the reach of
healthcare epidemiology has expanded to include events
that are a result of hospital exposures that do not become
evident until after discharge. The term healthcare-asso-
ciated has come into common usage to encompass all
healthcare-related events and is gradually replacing the
more narrow term, nosocomial. This chapter examines
the background and rationale for healthcare epidemiology
and reviews the characteristics of an effective healthcare
epidemiology program in the hospital.

HOSPITALS IN THE UNITED STATES

The hospital environment is highly complex and continu-
ously presents new challenges to the epidemiology team.
There are currently 5,815 hospitals in the United States,
and this number has been relatively stable over the past
decade (1). Among hospitals, 86% are community based
(including university hospitals), 8% are nonfederal psy-
chiatric hospitals, and 4% are run by the federal govern-
ment. US hospitals have 951,045 staffed beds and handle
more than 37 million admissions each year. In 2006, there
were 119 million visits to hospital emergency rooms and
102 million visits to hospital outpatient departments (2).

Patients move through the hospital environment rap-
idly. In 2006, the average length of stay per inpatient was
only 4.8 days, compared to 5.4 days in 1995 and 6.5 days
in 1985 (2). With this rapid turnover, it is easy for a patient
to acquire an infection in the hospital and be discharged
before the infection is diagnosed or becomes manifest.
This creates a problem in case finding and thus affects the
accuracy of attack rates.

Overall, 7.3% of the US population was hospitalized at
least once in 2006, which is slightly less than the 7.7% figure
for 1997. Although the major discharge diagnoses have

remained relatively static over the past decade, the sever-
ity of illness has increased in many centers. In part, this
is a reflection of advances in the outpatient environment,
which can now handle mild or moderate illnesses without
hospitalization. Third-party payers have also restricted or
eliminated inpatient reimbursement for patients deemed
to have milder illnesses, causing hospitals to try to limit
admissions in this group. In addition, the inpatient popu-
lation is influenced by population demographics. For
example, as Americans have become more obese, type
2 diabetes has become more prevalent in the inpatient and
outpatient settings (3). Diabetes may increase the sever-
ity of many comorbid illnesses and the susceptibility to
healthcare-acquired infections or surgical complications.
Thus, although fewer patients are hospitalized and length
of stay has decreased, severity of illness has increased in
the inpatient population. The result is an increased suscep-
tibility to adverse events and increased difficulty in detect-
ing and preventing such events.

Healthcare is a major part of the US economy, and hos-
pitals contribute a significant proportion of this cost. The
total expenses for US hospitals exceed $690 billion per year
(1), accounting for 31% of all national health expenditures
and rising steadily in the new millennium (2). To the extent
that adverse events are preventable, they represent an
opportunity to reduce cost and improve quality.

The hospital environment includes healthcare work-
ers as well as patients, and both groups have a right to
be protected from harm. Almost six million workers are
employed by hospitals in the United States (2), and many
of the nation’s 1.7 million physicians work at least partially
in an inpatient setting. Hospitals also provide a training site
for the country’s 71,000 medical students (4), 145,000 nurs-
ing students in entry-level baccalaureate programs (5), and
109,000 house staff (6).

RATIONALE FOR HEALTHCARE
EPIDEMIOLOGY

The practice and study of healthcare epidemiology is
founded on the principle of nonmaleficence, as expressed
in the phrase primum non nocere: “first do no harm.” Unfor-
tunately, the hospital environment has great potential to do
harm. In the year 2000, the Institute of Medicine published
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their seminal report To Err is Human (7), demonstrating that
medical errors were a leading cause of death and injury in
the United States. Based on data from previous studies, the
report estimated that 44,000 to 98,000 Americans die annu-
ally in hospitals as a result of potentially preventable medi-
cal errors. As a result, medical errors have become at least
the eighth most common cause of death in this country. In
this context, medical errors are defined as potentially pre-
ventable adverse events, including medication errors (§),
accidental injuries, misdiagnoses, healthcare-associated
infections, and others. Importantly, the goal of healthcare
epidemiology is to improve patient outcomes and not all
errors result in adverse outcomes.

Although the overarching goal of healthcare epidemi-
ology is to improve health outcomes by reducing adverse
events, an effective program can also save money for the
hospital. Preventable adverse events are extremely costly.
For example, one recent review estimated that ventilator-
associated pneumonias cost approximately $23,000 per
case, catheter-associated bloodstream infections cost over
$18,000, and wound infections from coronary bypass surgery
cost approximately $18,000 (9). Another study showed that
wound infections from orthopedic infections cost approxi-
mately $18,000 per case (10). Because there are large num-
bers of healthcare-associated infections, these costs add
up rapidly. It has been estimated that more than 1.7 million
healthcare-associated infections occur each year: 290,000
surgical site infections, 250,000 pneumonias, 250,000 blood-
stream infections, and 561,000 urinary tract infections (11).
Overall, the direct cost of healthcare-associated infections
ranges from $28 billion to $45 billion each year (12). This
total does not include the indirect costs of lost productivity.

Among noninfectious adverse events, medication
errors and misdiagnoses are among the most common
and serious events, respectively (13). Medication errors
include using the wrong dose, providing illegible prescrip-
tion orders, using ambiguous abbreviations, giving the
medication to the wrong patient, not paying attention to
drug interactions or allergies, and using the wrong medi-
cation. It has been estimated that each hospital patient
experiences approximately one medication error per day
(8). Most of these errors do not result in apparent harm,
but some are serious. It is estimated that medication errors
cause 1.5 million adverse outcomes and 7,000 deaths each
year in the United States (8).

Misdiagnoses are particularly problematic, because
they necessarily involve human judgment that is necessar-
ily fallible. Yet judgment can be augmented by systems that
facilitate effective diagnoses. For example, the turnaround
time on tests could be reduced so that clinicians have more
data on which to base their diagnoses. Electronic medical
records reduce errors by ensuring that a complete, legible
record is available instantly to all members of the patient
care team (14). Improved communication among physi-
cians and between the outpatient and inpatient settings
allows decisions to be based on a more complete under-
standing of the patient’s history and condition. Much
remains to be done in these areas. The prevention of wrong
diagnoses and delayed diagnoses represents an important
area for future study (15).

Having established that healthcare-associated adverse
events are common and problematic, the question remains:

PRINCIPLES OF HEALTHCARE EPIDEMIOLOGY m

What proportion is truly preventable? The efficacy of
infection control has been established by several studies.
A 2003 review of these studies (16) found that infection
control measures reduced rates of healthcare-associated
infections by 10% to 70%. This broad range reflects the
varying effectiveness of the interventions that were stud-
ied, the baseline infection rates, and the settings for the
studies. Overall, the authors estimated that at least 20%
of healthcare-associated infections could be prevented by
effective healthcare epidemiology programs. Although this
represents a cost savings of $6 to $7 billion per year (12),
more recent studies suggest that the 20% figure underes-
timates the potential to reduce rates (17,18) even for the
most problematic infections.

Given the large number of medication doses that are
given each day in a busy hospital, eliminating errors may
seem like a daunting task. However, studies have shown
that most errors are due to illegible prescriptions, ambigu-
ous abbreviations, overlooking known drug allergies, or
writing for the wrong dose of drug (19,20,21). A simple but
expensive solution is to use computer-based prescribing
instead of a handwritten record. Studies have shown that
computerized physician order entry of medication orders
consistently reduces errors, although the effect on adverse
outcomes varies among studies (14,22).

Thus, although healthcare in the hospital setting has
the potential to cause harm, much of the harm can be pre-
vented by an effective healthcare epidemiology program.
Hospitals should be motivated to support such programs
to improve outcomes, reduce costs, and comply with regu-
latory requirements (23), even—and some might argue
especially—in an era of limited resources (24,25).

BASIC PRINCIPLES OF HEALTHCARE
EPIDEMIOLOGY

The criteria for the optimal infrastructure and essential
activities for healthcare epidemiology have been published
by expert panels (26) and accreditation organizations such
as the Joint Commission (27-29). Effective healthcare
epidemiology programs are data-driven, evidence-based,
outcome-oriented, and fully engaged throughout the insti-
tution and community (Table 4-1). Data are derived from
active surveillance systems. Passive surveillance, such as
asking physicians to report patient infections, may supple-
ment but not replace active surveillance. The goal of sur-
veillance is to provide data on which to base interventions.
Surveillance data are used to calculate endemic rates for
key infections and to identify outbreaks. Active surveil-
lance traditionally involves review of medical records by
team members. Because this requires significant time and
cost, such active surveillance may be concentrated in
areas that are likely to have the highest yield of infections
or events, such as the intensive care units.

With the rise of electronic health records, active sur-
veillance has become easier and may eventually make
hospital-wide surveillance economically feasible (30,31).
One issue is that most electronic health record programs
are not designed to produce the specific reports that are
needed for surveillance. For example, computer-based
surveillance may be able to provide a list of patients who
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TABLE 4-1

APPLIED EPIDEMIOLOGY AND BIOSTATISTICS

Attributes and Functions of an Effective Healthcare Epidemiology Program

Attribute Function

Data-driven
Evidence-based

Active surveillance is performed for infections and adverse events using standardized case definitions
Data analysis is based on sound statistical principles using appropriate denominators
Data are risk-adjusted when appropriate

Results are compared to internal and external standards
Interventions are based on scientific evidence whenever possible

Outcome-oriented
reduce endemic rates

Programs are both reactive and proactive, responding to increases in event rates and working to

Programs are compliant with regulatory requirements

Fully engaged

Multidisciplinary committees such as the infection control committee review data, provide input,

serve as conduits to disseminate information, and identify ways to leverage resources to improve

patient outcomes

All areas of the hospital, including administration, are engaged in and take responsibility for the

outcomes of the program

Strong liaisons exist with community health officials to facilitate planning and emergency preparedness

had fever after a surgical procedure, but the computer is
unlikely to be able to identify a postoperative wound infec-
tion accurately. Thus, there is still a need for the epidemiol-
ogy team to review the individual patient data to confirm
potential cases. Surveillance data may be augmented from
other computerized sources available in the hospital, such
as microbiology laboratory reports. Optimally, as hospi-
tal information systems become more sophisticated, the
healthcare epidemiology team will be able to focus more
on control and prevention and less on data collection.

To maximize results, surveillance should be evidence-
based and objective. To this end, the Centers for Disease
Control and Prevention (CDC) has established standard
definitions for infections (32). Surveillance data should
include both a numerator (number of cases) and an appro-
priate denominator (hospital inpatient days or device
days). Crude event rates may be calculated from the data
and compared to the hospital’s historical rates. Risk adjust-
ment is used to compare rates between populations or set-
tings (33). It is also important to compare hospital rates
to an external standard or “benchmark.” The National
Healthcare Safety Network (NHSN) is an Internet-based
surveillance system that allows member hospitals to enter
their data securely and compare their rates with other par-
ticipating hospitals. Administered by the CDC, the NHSN
system includes both infectious and noninfectious adverse
events. In return, the network provides hospitals with risk-
adjusted data that can be compared with peer hospitals
and is able to produce reports based on aggregate data
from member hospitals (34,35). Data contained in the sys-
tem are confidential.

Data analysis must be based on sound biostatistical
principles, as described elsewhere in the text. Within this
framework, attention and resources should be focused on
the most clinically relevant findings. Thus, an outbreak of
methicillin-resistant Staphylococcus aureus (MRSA) in the
newborn nursery would provide more fertile ground for
intervention than an increase in contaminated urinary
specimens sent to the laboratory. It is important to note

that relying on statistics alone may provide a false sense
of accomplishment. For example, a hospital that merely
tries to keep its rates within a preestablished confidence
interval compared to historical rates will miss opportuni-
ties to improve endemic problems. Many hospitals previ-
ously tried to keep ventilator-associated pneumonia rates
or catheter-associated bloodstream infection rates within
95% confidence limits of national norms. Recent evidence
shows, however, that many of these institutions can elimi-
nate these infections or achieve near-zero rates (17,18).

Effective healthcare epidemiology programs are both
reactive and proactive. When analysis of surveillance data
indicates an outbreak has occurred, effective programs
respond promptly to locate the source and eliminate the
problem. The healthcare epidemiology team works proac-
tively to prevent adverse events and infections, thus reduc-
ing endemic rates.

Interventions should be logical and evidence-based.
For infectious issues, a strong understanding of microbi-
ology is essential. For example, an outbreak of Legionella
pneumonia should prompt an examination of the water
system and a review of procedures that aerosolize water.
The presence of Aspergillus should raise concern about
dust from nearby construction. Knowledge of the literature
is also essential, because there are likely to be reports of
similar outbreaks. In some cases, randomized controlled
trials have been done and identify an optimal intervention
(18) or show that an intervention does not work (36). When
randomized trials are not available, a meta-analysis or sys-
tematic review may be useful (37-40,41). Finally, if no clear
answer is available from scientific studies, the literature
often contains consensus guidelines based on expert opin-
ion. When there is no good study or consensus guideline to
address a particular topic, top-notch healthcare epidemi-
ology programs will publish their own results or design a
study to address the issue.

Because adverse events occur in every area of the
hospital, effective healthcare epidemiology programs are
hospital-wide efforts, involving multiple disciplines and



CHAPTER 4

functions. Many programs consist of a core team includ-
ing infection preventionists, quality improvement special-
ists, a physician healthcare epidemiologist, an infection
control committee, and a quality committee. This core
team is responsible for organizing an effective surveil-
lance system, analyzing data, producing reports, receiving
input, and designing interventions. However, it is critical
that the entire organization take responsibility for reducing
infections and adverse events. For example, a campaign to
improve hand hygiene would have optimal success if the
director of nursing, the chief of staff, the hospital leader-
ship, and unit directors all took responsibility for ensur-
ing that standards are consistently met. To engage the
entire organization, it is important that multidisciplinary
committees receive regular reports from the healthcare
epidemiology team. An effective infection control commit-
tee provides input to the team, identifies ways to leverage
resources, and helps disseminate information throughout
the hospital. Members should be chosen with these abili-
ties in mind. Committees that specialize in quality improve-
ment or safety play a similar role in managing infectious
and noninfectious adverse events. Depending on the issue
at hand, subcommittees may be formed from members
with special expertise. An effective committee, therefore,
does not simply receive reports. Rather, it assumes a level
of responsibility for the outcome of the healthcare epide-
miology program.

Outreach is a critical component of healthcare epide-
miology. Hospitals have an important and growing role in
the health of their community, especially in emergency
preparedness (42,43,44). Hospital participation is crucial
in community preparedness planning and the community
should be part of hospital planning. In part, this is because
of the resources available within the hospital that might
be required on short notice in the event of a community
emergency. More broadly, a coordinated response to an
emergency is more likely to be effective and to instill public
confidence in the process (44). The hospital also benefits
from close liaisons with emergency providers, resource
managers, and community leaders. Healthcare epidemiol-
ogy programs also can provide expertise, assistance, and
support to public health and community leaders during
community outbreaks as well as during response planning.

UNIQUE ASPECTS OF THE HOSPITAL
ENVIRONMENT

The hospital environment presents several unique chal-
lenges to the epidemiology team. The hospital functions as
a therapeutic milieu where treatments that improve patient
health may simultaneously cause increased susceptibility
to adverse events. Such is the case with treatments that are
known to suppress the immune system, indwelling devices
that serve as conduits for microbes, sedatives that increase
susceptibility to falls, and antibiotics that cause resistant
pathogens to replace normal flora. Moreover, populations
at risk for adverse events may also serve as vectors for the
events. For example, visitors with respiratory infections
may acquire secondary infections in the hospital or may
spread infection to others. Healthcare providers who do
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not observe hand hygiene standards are at risk to acquire
and spread resistant pathogens such as MRSA. The 2009
novel HIN1 influenza pandemic demonstrated this dual
role of victim and vector as providers acquired the virus at
home and at work, providing opportunities to spread the
infection within hospitals (45).

As discussed above, inpatient populations in the hos-
pital are transient. For some adverse events, such as falls
or medication errors, the event is confined to the hospital
stay, and it is relatively easy to attribute the event to the
hospital setting. Because bacterial infections have a 2- to
4-day incubation period, infections acquired in the hospital
may not become manifest until after discharge. This com-
plicates classification of infections as healthcare-associated
or community-associated. Stochastic definitions have been
developed based on whether a patient has been in a hospi-
tal within a certain time frame. Such definitions are useful
for surveillance, but are not necessarily accurate on an indi-
vidual basis. In the past, some highly resistant bacteria were
almost exclusively acquired in the hospital setting, and their
mere presence was enough to identify them as hospital-
associated pathogens. More recently, however, pathogens
like MRSA and Clostridium difficile have begun to spread
within communities, further complicating classification.

Because the hospital environment is so complex and
because resources are limited, healthcare epidemiology
programs often focus on patients at highest risk for adverse
events and on adverse events that are highly likely to cause
mortality and morbidity. It is important to realize that this
is the tip of the iceberg. Thus, high-quality epidemiology
programs will include both initiatives focused on high-risk
settings such as intensive care units and hospital-wide ini-
tiatives such as hand hygiene programs. In some cases,
interventions in a focused population may have the ability
to improve outcomes throughout the hospital.

Healthcare epidemiology programs are increasingly
involved with mitigating environmental hazards related
to buildings, including construction, renovation, mainte-
nance, and housekeeping activities. The facility’s environ-
ment serves as a reservoir for microorganisms that may be
implicated in healthcare-acquired infections and a potential
source of patient or worker injury (46). Healthcare epidemi-
ology has multiple approaches to reducing the risk from the
environment. Isolation precautions have been developed to
restrict the spread of selected pathogens from patient to
patient or from patient to healthcare worker. Barrier precau-
tions such as gowns, gloves, and masks are an integral part
of these measures. In most instances, there are no rigorous
scientific studies to support recommendations for isolation
(36,47,48). Rather, guidelines are based on interrupting the
known means of transmission of pathogens.

The complexity of the hospital environment requires
multifaceted interventions. For example, successful pro-
grams to reduce medication errors usually involve phar-
macists, nurses, physicians, and health information
technology experts, each of whom have one or more roles
in the intervention. At times, a series of actions are com-
bined together to create one unified intervention “bundle.”
In effective bundles, each individual action is evidence-
based and has proven efficacy, and each compliments the
others. Highly effective bundles are an important part of
the modern approach to healthcare epidemiology (18).
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CONCLUSION

As the science and practice of healthcare epidemiology
have advanced, healthcare-associated adverse events are
no longer considered an inevitable result of hospitaliza-
tion. Once an unimaginable goal, zero rates are becoming
a reality for some adverse events. In concert with this new
reality, third-party payers are withdrawing reimbursement
for events that they consider to be wholly preventable (49).
Moreover, regulatory agencies have begun to incorporate
these new expectations into their accreditation standards.
In this sense, regulatory agencies and third parties func-
tion as motivators for hospitals to support healthcare epi-
demiology programs. Optimally, this movement will lead
to the discovery of additional evidence-based interven-
tions that can be incorporated into contemporary prac-
tice standards. This new culture has increased pressure
on healthcare epidemiology programs to perform at the
highest possible level.
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Data Collection in Healthcare

Epidemiology

Stephen B. Kritchevsky and Ronald I. Shorr

Data for healthcare epidemiology come from three sources:
direct ascertainment of information from subjects using
questionnaires or direct observation; review of medical
records; and electronic sources, such as billing records,
laboratory records, and medication administration records.
Although we provide an overview of each of these data
sources, we emphasize the development of questionnaires.
After data from any of these sources are collected, they are
entered and organized (usually in a database) and analyzed,
usually using a statistical package. We offer suggestions
on the preparation and formatting of data to facilitate the
transfer from data collection to data analysis.

QUESTIONNAIRES

Questionnaire Development

Questionnaires are often the most labor-intensive form of
data collection but are required in situations where sur-
veillance using electronic data sources or medical record
review is inadequate.

After deciding what data need to be collected, the inves-
tigator has to decide how to collect it. This means develop-
ing the form(s) to guide data collection, identifying the data
sources (e.g., individuals, proxies, medical records, direct
observation), identifying data gatherers, and deciding on
a mode of data collection. Decisions in each of these areas
affect the others, and investigators should understand the
trade-offs between them in order to make good decisions
when planning an investigation.

Writing the Questions The first step in developing a
data collection form is writing the questions to elicit the
information required by the study. Good questions are
clear and unambiguous and match the verbal skills of pro-
spective participants. Poorly worded questions result in
answers that are unreliable or uninterpretable. Although
writing good questions is something of an art, there are
several common problems that can result in bad questions.

Choosing Verbiage If respondents do not understand
the words used in questions, they will not be able to answer
them (or worse, they will answer them anyway). In general,
the words used in the questions should be ones used by
respondents in their usual conversation (e.g., use “help”

rather than “assist” and “enough” rather than “sufficient”).
Avoid medical jargon and abbreviations that may not be
commonly understood. Be aware of regional or cultural dif-
ferences in the meanings of words and the names of dis-
eases (e.g., diabetes may be called “the sugar” by some
respondents). Avoid using loaded words (i.e., those carry-
ing excessively negative connotations).

Consider these questions:
Should smoking be banned in the hospital?
Should smoking be allowed in the hospital?

The word banned is loaded, and some answers to the
question may be a reaction to the word itself rather than to
the content of the question.

Ambiguous Questions One of the most difficult tasks in
writing a question is asking it in such a way that the respond-
ent has the same concept in mind when answering it as the
investigator did when asking it. The investigator wanting
to identify current cigarette smokers might ask: “Do you
smoke?” Cigar and pipe smokers will answer this affirma-
tively, contrary to the investigator’s intention. There may
also be those who have very recently quit smoking (and
may soon begin the habit again). They would answer no,
but the investigator might want them classified as smokers
for the purposes of the study. “Have you smoked two or
more packs of cigarettes in the past 2 months?” is a better
version of the question. Cigarettes are specifically named,
and the amount of consumption and the period are speci-
fied. In some cases, visual aids such as pictures of products
or models may be helpful in orienting the respondent.

In an outbreak investigation of central line infections,
hospital personnel might be asked, “Did you see patients
on [a particular ward]?” This question has two ambigu-
ous referents. Does “see” mean “care for,” or is the ques-
tion intended to detect less formal contact as well? Also,
does the investigator mean if the respondent has ever seen
patients on a ward, or just during the epidemic period?
A better phrasing might be, “Did you provide care for any
patients on [the ward] since March of this year?”

Causes must precede effects in time. Therefore, when
assessing the relationship between a behavior that may
change over time and disease occurrence, it is important
that the questions refer to the period prior to the onset of
disease symptoms. Failure to make this clear can lead to
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biased results if the behavior changes in the face of symp-
toms. Both the failure to elicit exposure information from
the appropriate period and the inclusion of irrelevant expo-
sure information can lead to bias.

Hypotheticals Avoid hypothetical questions. Consider a
question that might be asked of nurses in an infection con-
trol project: “Is it important to wear gloves when placing
an IV?” The question is problematic, because it may refer
to either what is important in a hypothetical sense or what
is personally important to the respondent. The responses
will be a mixture of these two interpretations, with the
investigator having no way of distinguishing the two.

Asking More than One Question Each question should
try to elicit only one piece of information. Consider the ques-
tion, “Have you experienced nausea, vomiting, night sweats,
or loss of appetite?” This set of symptoms may be useful
in arriving at a diagnosis, but in an epidemiologic investi-
gation, it may be important to document each symptom
individually for later use in applying a consistent case defini-
tion. Furthermore, respondents may focus on the last symp-
tom named. A respondent may have had night sweats but
answer, “No, my appetite’s fine.” A checklist is often used to
systematically identify symptoms of potential interest.

Assumptions in the Questions Answers to questions
that make tacit assumptions can be difficult to interpret.
Consider the example from Kelsey et al. (1): “Do you bring
up phlegm when you cough?” The question assumes that a
cough is present. A negative response might mean that no
phlegm is produced or that the respondent does not have
a cough.

Vague Questions and Answers Avoid the use of words
such as “regularly,” “frequently,” and “often,” both in ques-
tions and as response options. Different responders will
interpret these words differently. The potential for qualita-
tive responses to introduce unwanted variability was viv-
idly demonstrated by Bryant and Norman (2), who asked 16
physicians to assign a numerical probability to qualitative
adjectives such as “probable,” “normally,” and “always.”
The numerical probability assigned to the word “prob-
able” ranged from 30% to 95%. The probability assigned to
“normally” ranged from 40% to 100%, and that to “always”
ranged from 70% to 100%. Whenever possible, try to elicit a
quantitative response.

Threatening Questions Care needs to be taken when ask-
ing questions of a somewhat embarrassing nature. Embar-
rassing questions concern respondent behaviors that may
be illegal or socially undesirable or concern areas of life
that may threaten the respondent’s self-esteem. Research
has indicated that the self-reported frequency of poten-
tially embarrassing behaviors can be increased if long,
open-ended questions are asked. Open-ended questions
are those to which categories of set responses are not sup-
plied by the investigator (as opposed to closed questions,
in which the respondents select answers from a list of sup-
plied alternatives). Bradburn and Sudman (3) contrasted
various question styles ranging from short questions
with fixed response categories to very long questions
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with open-ended responses. They also contrasted using
the respondent’s familiar term for the behavior versus a
term supplied by an interviewer. Respondents were rand-
omized in a 2 x 2 x 2 factorial design into one of eight differ-
ent question formats (i.e., long vs. short response format,
open vs. closed response format, and familiar vs. standard
wording). One short question (with standard wording and
closed response format) read: “In the past year, how often
did you become intoxicated while drinking any kind of bev-
erage?” The respondents picked a response from a list of
eight alternatives. The long form (with respondent’s word-
ing and open response format) read:

Sometimes people drink a little too much beer, wine, or
whiskey so that they act different from usual. What word
do you think we should use to describe people when
they get that way, so that you will know what we mean
and feel comfortable talking about it?

Occasionally, people drink on an empty stomach or drink
a little too much and become [respondent’s word]. In

the past year, how often have you become [respondent’s
word] while drinking any Rind of alcoholic beverage?

The respondents were given no response categories
but asked to supply their own best estimate. The ques-
tion format did not seem to affect the percentage of peo-
ple reporting that they had engaged in an activity. It did,
however, strongly influence the self-reported frequency
of the activity. Those responding to long questions with
open-ended responses using familiar terms reported signif-
icantly higher frequencies of the behavior of interest. The
mean annual consumption of cans of beer calculated using
responses from the long, open format with familiar wording
was 320 cans; that calculated using the short, closed for-
mat with standard wording was 131 cans. Large differences
in responses attributable to question format were seen for
questions dealing with the frequency of sexual activity as
well. Most of the difference was attributable to the use of
an open-ended response format and longer questions. The
effect of using familiar wording was weaker but was asso-
ciated with consistently higher reported frequencies of
potentially embarrassing behaviors.

Asking Questions about Events in the Past Asking
individuals about the occurrence and/or frequency of
specific events in the past is a special measurement chal-
lenge. An investigator whose study depends on the valid-
ity of human recall must be particularly attuned to the
shortcomings of human memory. Respondents to epi-
demiologic questionnaires are often asked to perform
one of three memory tasks: (a) recall whether a particu-
lar event occurred to the individual, (b) recall when the
event occurred, or (¢) recall how frequently it occurred.
Research has shown that it takes some time for people to
access their memory for the occurrence of events. Longer
questions seem to be useful in giving respondents more
time to recall events and may increase the percentage of
events recalled (4). Nevertheless, people frequently forget
specific events in their past. As a rule, an event is harder
to remember if (a) it occurred a long time ago, (b) it is one
of a series of similar events, or (c) the respondent attaches
little significance to it (4).
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People also frequently misplace remembered events in
time. There is a tendency to judge events that are harder
to recall as less recent and, conversely, there is a tendency
to date events about which a lot of detail is recalled as
more recent. This problem is termed “telescoping” in sur-
vey research (4). Consider the question: “Have you been to
a doctor in the past 12 months?” Respondents frequently
answer affirmatively if the visit was 15 months ago. People
may remember the event better than its date and import
the event into the time interval of interest.

Aspects of the design and administration of question-
naires can improve both remembering and dating events.
Questions starting with recent events and working back-
ward in time can improve recall. Also, providing date
cues can help. One common technique is to provide the
respondent with a calendar. Before asking about events
of interest, the respondent identifies personally relevant
dates such as birthdays and holidays. Then, the respond-
ent is walked back through time and assigns dates to the
occurrence of the events of interest with respect to the per-
sonal landmarks. As reported by Means et al. (5), a sample
of George Washington University Health Plan enrollees was
asked to try to recall all health plan visits in the past year.
All study participants had at least four visits in the past
year. Before using the landmarking technique, participants
were able to recall 41% of the health plan visits recorded
in the medical record. After the landmarking, 63% of health
plan visits were remembered. In a separate study group
using only the landmarking technique, 57% of visits were
recalled. The use of landmarking also led to an improve-
ment in dating accuracy.

The frequency of a behavior is often of epidemiologic
interest insofar as it may serve to quantify the amount and/
or rate of an exposure. Humans tend to rely on two strate-
gies for recalling the frequency of events (4). The first is
simply trying to remember every instance of a behavior
over a period. The second is referred to as the event decom-
position method. People first estimate a rate at which a
behavior is performed and then apply it over the period of
interest. For example, if a respondent is asked how many
times she went to a restaurant in the past 2 months, she
may figure that she goes to a restaurant twice a week, and
therefore, she ate at a restaurant eight times in 2 months. In
general, the decomposition method seems to lead to more
accurate estimates than the recall of individual events.
Investigators planning studies to measure the frequency of
exposure may wish to structure questionnaires to explic-
itly elicit these frequency estimates.

PRETESTING THE DATA COLLECTION
INSTRUMENT

Prior to full-scale data collection, it is useful to pretest all
study procedures. This includes pretesting any data col-
lection documents. The pretest may include a number of
steps. An expert in the field should review the data col-
lection forms. This expert should be able to identify any
content omissions. The review by nonexpert colleagues
can be useful to give overall impressions, to identify trou-
blesome questions, and to determine if the skip patterns
flow logically. In the next phase of pretesting, test the data
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collection procedures under study conditions on a number
of potential study subjects (frequently 20-30). In this phase
of pretesting, one can identify questions that don’t work
and whether the needed information is indeed available
from the intended data source. If the data collection form is
being used to elicit information from respondents, debrief
your pretest subjects to discover what they had in mind
while they were answering and how some questions might
be asked better. A pretest also provides the opportunity
to ascertain preferences among varying question wordings
and answer formats.

Schlesselman (6) describes an example indicative of
the kind of problems that a pretest can identify. In a study
involving analgesic use, the following series of questions
were tested:

Q. HAVE YOU EVER HAD FREQUENT HEADACHES?
Yes
No

Q. HAVE YOU EVER HAD VERY SEVERE HEADACHES?
Yes
No

Q. HAVE YOU HAD HEADACHES ONCE A WEEK OR MORE
DURING THE PAST MONTH?

Yes

No

The third question was used as a filter for a series of
questions relating to analgesic use for headache. The pur-
pose of the questions was to identify individuals who were
likely to be frequent analgesics users for headache relief.
Schlesselman states, “The third question was included
under the assumption that recall is better for the most
recent period, and that a person with a history of recurrent
headaches in the past would retain this pattern in the pre-
sent.” In pretesting, however, it was found that there were
many patients who had frequent headaches but for whom
the past month was atypical. Thus, contrary to the inten-
tion of the investigator, a number of study participants
were skipping the series of headache-analgesic questions.
In light of the pretest, the third question was modified to:

Q. HAVE YOU EVER HAD HEADACHES ONCE A WEEK OR
MORE FOR AT LEAST ONE MONTH?

OPTIONS FOR ADMINISTRATION

The primary options for administering a questionnaire are
respondent self-administered and interviewer-administered.
Self-administered questionnaires are usually either given in
a supervised setting or mailed to the respondent; however,
there are an increasing number of questionnaires that are
being administered using e-mail or the Internet. Interviewer-
administered questionnaires can be administered either in
person or over the phone. Each method has its advantages
and drawbacks. Self-administered questionnaires are usu-
ally less expensive to administer but need to be simpler
and shorter than interviewer-administered questionnaires.
Also, when a portion of the study population is of low
literacy, the use of self-administered forms results in unac-
ceptable losses of information. Internet-based surveys can



NN secTion |

be more complex but require that respondents have access
to and are comfortable with computers and the Internet.
Interviewer-administered questionnaires can be more com-
plicated and longer, and the literacy of the respondent is not
an issue. Also, the use of an interviewer permits the probing
of the respondent for clarifications and elaborations. The
major drawback of using an interviewer is the cost.
Differing modes of administration have their advan-
tages and disadvantages. Mailed questionnaires are rela-
tively inexpensive to administer, but response rates tend to
be low (typically 40-60%). Response rates can be increased
by a number of techniques such as hand-addressing the
envelopes, using certified mail, using postage stamps
instead of metered mail, and rewarding the respondent.
Collecting data over the phone is more expensive than
by mail, but the response rates are higher (frequently
75-85%). Completion rates for telephone interviews can
be increased by sending an introductory letter to the
home introducing the study. Using the phone as the sole
mode of contact may introduce subtle biases into a study.
The portion of the study population that does not own a
phone is systematically different from the portion that does.
Also, the ability to contact certain segments of a popula-
tion may differ. For example, young, single, smoking males
are harder to contact by phone than some other segments
of the population. Internet surveys appear to be a reason-
able substitute for mailed surveys given that respondents
have Internet access. Initial response rates can be low but
can be increased with reminder letters/e-mails (7).
Face-to-face interviews have the highest completion
rates (up to 90%), and they are also the most expensive
to conduct. In face-to-face situations, visual aids and more
elaborate questioning techniques can be used, providing
the opportunity to improve the quality of the collected data.

MEDICAL RECORDS

Collecting data from recorded information is a part of
nearly all epidemiologic studies conducted in a hospi-
tal setting. Recorded data sources include diagnostic
reports, physician notes, prescription records, and cul-
ture reports. In addition to routinely collected medical
data, administratively collected data are also available
from billing records, insurance claim files, etc. The advan-
tages of recorded data are clear: they provide a concur-
rent source of information concerning the study subject’s
medical experience. However, the limitations of routinely
recorded data should also be borne in mind. Data are put
in the medical record by a number of different individu-
als who are not standardized in their recording habits,
and they certainly do not record information with a par-
ticular epidemiologic study in mind. Two studies illus-
trate the problems with the medical record as a tool for
epidemiologic research.

Massanari et al. (8) compared the ability of one hos-
pital’s medical records personnel to identify and code the
presence of nosocomial infections to that of an epidemio-
logic surveillance system. They discovered that only 43%
of nosocomial infections identified through epidemiologic
surveillance were reported in the discharge abstract. On
inspection of a sample of incongruent cases, 44% of the
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cases were missed by medical records, because the phy-
sician failed to document an infection. However, medical
records personnel failed to note infections clearly recorded
in the chart about 16% of the time. Other studies concern-
ing the usefulness of the medical chart in infectious dis-
eases investigations in the hospital have documented even
poorer performance (9,10).

Gerbert et al. (11) compared four methods to determine
whether specific drugs had been prescribed to chronic
obstructive pulmonary disease patients. The methods
were a physician interview, a chart review, a patient inter-
view, and a review of a videotape of a physician—patient
encounter. The four methods agreed only 36% of the time in
determining whether the patient had been prescribed theo-
phylline. According to the physician, 78% of patients were
on theophylline, the medical chart indicated that 62% of
patients were on the medication, and the videotape, 69%.
Only 59% of the patients reported themselves to be on the-
ophylline. The investigators determined that each method
had good specificity (i.e., few respondents reported being
on theophylline when they were not) and that the physi-
cian interview had the best sensitivity.

ELECTRONIC DATA

Electronic data come from two sources: administrative
data, which are used by all hospitals primarily for bill-
ing, and clinical data, such as medication administration
records, laboratory, and radiology reports. The richness
of clinical data available to the investigator varies among
hospitals.

Administrative data from hospitals include demo-
graphic information, admission and discharge dates, codes
for principal and other diagnoses, procedure codes, dispo-
sition of the patient, and expected payment source (12).
Although universally available, administrative data should
be used with great caution for healthcare epidemiology,
primarily because of issues relating to sensitivity and
specificity in diagnosis codes (13). In studies examining
the reliability of discharge data forwarded to the Health
Care Financing Administration, data items such as admis-
sion date, discharge date, date of birth, gender, and pay-
ment source were found to agree well with those found in
the medical record (14). However, on review, the reported
principal diagnosis agreed with that found in the medical
record only 57% of the time. Similarly, Johnson and Appel
(15) found that the diagnosis-related group reported to
Medicare matched the one listed in the medical record
approximately half of the time.

Even if data are reliably collected, the failure to under-
stand how administrative databases are maintained can
introduce artifactual findings. For example, lezzoni et al.
(16) found lower death rates among hospital inpatients
with diabetes listed as a comorbidity in an administra-
tive database. The reason was that the database accom-
modated only five comorbidities. Therefore, the relatively
healthy patients (i.e., the ones with fewer acute problems)
were the ones for whom the diagnosis of diabetes made it
into the database.

Clinical data may be more useful for surveillance in
healthcare epidemiology (17,18,19-20). Classen et al. (19)
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described surveillance using the Health Evaluation through
Logical Processing (HELP) system, of LDS Hospital in Salt
Lake City, Utah. This system includes data from pharmacy,
laboratory, surgery, radiology, admitting, microbiology, and
pathology. Furthermore, clinical data (e.g., International
Classification of Disease codes) and charge data are also a
part of this system. Initial studies revealed that a computer
algorithm identified more hospital-acquired infections than
traditional surveillance methods, while requiring only 35%
of the time (20). Several subsequent investigations of infec-
tions (21,22,23) and adverse drug reactions (24,25) have
been conducted using this system.

PREPARING DATA FOR STATISTICAL
ANALYSIS

Organization of Data Collection

Attention to the format of a data collection document can
speed data collection and data entry and increase data
quality. The physical appearance of the data collection
document is also important. A professional-looking tool
can inspire the respondent’s confidence in the investigator.

Formy/Version EIEEIII (FORM)

DATA COLLECTION

IN HEALTHCARE EPIDEMIOLOGY

A data collection form has two sections: the header and
the body. The header should contain a form code, a form
version number, and a unique identifier corresponding to
the participant about whom data are being collected. In
healthcare epidemiology, it is tempting to use a patient’s
medical record number. However, it is necessary to assign
a study identification number to place on the forms instead
of a medical record number to protect patient confidential-
ity should the form become misplaced or lost. The identifi-
cation number allows the data collected on the form to be
linked with data collected from other sources. A code for
the form and its version are useful in establishing the data’s
provenance after computer files have been generated.

The body of the basic data collection form has three
elements: the questions, the responses, and the directions.
In Figure 5-1, each element is typographically distinct. The
questions are in all capital letters, the responses are in
bold, and the directions to the interviewer are in italics.

The questions should flow in some sort of natural
order. For instance, if the data collection form is being used
to abstract a medical record, the questions should appear
in the order that the information is found in the medical
record. If the questionnaire is to be administered to an

Nosocomial Pheumonia Study -- Health Habits Questionnaire

Page 1 of 4
Med. Rec. No [ 1 [ [ [ Jumy : — ; . .
l l l J [ [ l I I I I l ] Interviewer Instructions: Circle Appropriate responses from the lists provided,
Last Name (LNAME) ** means that a skip is required if this response is selected.
First Name CITTELTT] I(FNAME) MID (MT)
Contact Date D:l D:l E]:] (CDATE) 6. DO YOU CURRENTLY SMOKE CIGARS?
Month Day  Year No............. ... i 1
Smoking History R T 2
1. | WOULD LIKE TO START BY ASKING YOU A FEW (HQ8)
QUESTIONS ABOUT YOUR USE OF CIGARETTES AND 7- DO YOU CURRENTLY USE ANY OTHER PRODUCTS
OTHER TOBACCO PRODUCTS. WHICH OF THE THAT CONTAIN TOBACCO?
FOLLOWING STATEMENTS BEST DESCRIBES YOUR NO. v s e e e e 1
CIGARETTE SMOKING HISTORY?
You have never smoked cigarettes . . . . . . . ™ Yes” o “ """"""""""" 2" 5o7)
If "never smoked" go to question 5 - (If "Yes," WHAT DO YOU USE?) -+
Write ifem(s) here:
You currently smoke cigarettes . IR _|2** 1. Alcohol Use
It *current smoker” go to question 3 ~————— 8. THE USE OF ALCOHOL MAY AFFECT WHO DEVELOPS
. . . INFECTIONS IN THE HOSPITAL. | AM NOW GOING TO
::\‘;I‘(‘I‘r‘"; Z’;‘:i',“'"g completely and did not start 3 ASK YOU ABOUT YOUR CONSUMPTION OF ALCOHOL.
"""""""""" ) (HQL)l  DURING THE PAST YEAR, HAVE YOU HAD AT LEAST
2. HOW MANY YEARS AGO DID YOU STOP SMOKING ONE DRINK OF BEER, WINE OR LIQUOR?
CIGARETTES? . . o oottt oot e T No -
(/f respondent is unsure but has stopped for at least 1 (Hozyp Tt P VAR
year code “88." Otherwise, code "99.") (i “No* go to question 14) —eg————t—-1
3. ABOUT HOW MANY CIGARETTES DO OR DID YOU Yes . v v i e e e e e e e 2
SMOKEADAY? . . . .. oo [T1 ABOUT HOW OFTE (HO8)
(1 pack =20 cigarettes. If respondent can't recall (mo3)|® ALGOHOLIC BOEVERI\XDO?YOU DRINK SOME KIND OF
code "XX." If greater than 99 cigarettes, enter "99.") L GE?
4. ABOUT HOW MANY YEARS HAVE YOU OR DID YOU Daily or almosteveryday. . . . . ........ 1
SMOKE THAT AMOUNT ADAY?. . . .. .. . ... ... D:]
(If respondent can't recall, code "XX.") (HQ4) Three or fourtimesaweek . . . ......... 2
5. DO YOU CURRENTLY SMOKE A PIPE 2 Onceortwiceaweek . . . ....... ..... 3
L 1 Lessthanonceaweek . . . ... ........ 4
Yes . . v e e e 2 (Hos) Unknownornoresponse . . .. . ... ... .. 9
(HQ9)
(Go on to page 2)
FIGURE 5-1 A page from a data collection form from a study of nosocomial pneumonia.
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individual, an introduction should be included, questions
on the same topic should be grouped together, and when
the topic of the questions changes, a short transition state-
ment should be included. It may be a good idea to begin
questionnaires with less challenging and personal ques-
tions. This gives the respondent an opportunity to become
familiar with the interview situation and to develop some
rapport with the interviewer.

A different form should be developed for each data
source. This allows data entry to move forward on the sec-
tions of the data collection effort that have been completed.
If multiple data sources are used in a study, consider using
differently colored paper for each data form. This allows
quick identification of misfiled forms and incomplete sets of
data forms. Do not squeeze too much type on a page. Blank
space allows data collectors to make annotations as needed.

Formatting Responses to Questions

Moving a concept to a study result involves three steps:
(a) design of the data collection instrument, (b) data entry
from data collection instrument to an electronic data-
base, and (c) querying the database to obtain “flat files”
suitable for statistical analysis. Because collected data
are ultimately transferred to statistical analysis software,
selecting appropriate formatting in the data collection
instrument saves time and aggravation in the long term.
Thus the adage “begin with the end in mind” is particularly
germane to design of the data collection instrument.

Closed- or Open-Ended Responses Animportant deci-
sioniswhethertohaveopen-endedorclosed-endedresponse
formats. An open-ended response format allows the
respondent to provide any answer (question 1 in Table 5-1)
and is more appropriate for exploratory or hypothesis-
generating research. A closed-ended response format
requires the respondent to select an answer from a list of
possible responses supplied by the investigator (question 2
in Table 5-1). Open-ended formats allow respondents to
elaborate on the answer and to provide details that may
be missed by a closed-ended format. In general, however,
open response formats are to be avoided. Answers can
be lengthy, hard to analyze, and hard to standardize. The
problem with open-ended formats can be seen in question
1 of the table. Respondents could answer “big” or “old.”
The responses provided in the closed-ended format cue
the respondent to the frame-of-reference of the question.
Because of the opportunities for misunderstandings, ques-
tionnaires using open-ended responses often need to be
administered by a trained interviewer to probe incomplete
answers and to lead respondents if they do not understand
the intent of the question.

The answers to open-ended questions need to be assigned
codes for use in data analysis. Closed-ended response for-
mats allow data collection forms to be precoded. This means
that, prior to the administration of the form, responses have
already been assigned the numerical codes to be used in the
data analysis. When respondents pick a response, they actu-
ally mark its code (question 3 in Table 5-1).

If there are a great number of potential responses (e.g., a
respondent’s occupation or place of birth), a closed-ended
response may be impractical. In this case, the response is
recorded for coding at a later time.
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TABLE 5-1

Examples of Three Different Question Response
Formats

A question with an open-ended response format:

1. How would you describe your residence, that is, the
place where you usually live?

(answer here)

A question with a closed-ended response format:

2. How would you describe your residence, that is, the
place where you usually live? (Circle the correct response):
House
Duplex
Condominium
Apartment
Hotel
Other

A question with a precoded closed-ended response format:

3. How would you describe your residence, that is, the
place where you usually live? (Circle the number of the
correct response):
House
Duplex
Condominium
Apartment
Hotel
Other

DU W~

Closed-ended response categories should be exhaus-
tive and mutually exclusive. That is to say, every possible
response should be provided, and no two responses should
be logically possible at the same time. It should be recog-
nized, however, that closed-ended responses impose the
investigator’s preconceptions concerning the universe of
possible responses. There are certain to be unanticipated
responses. A compromise between closed-ended and open-
ended formats can be made.

Coding “Other” Responses One can precode the most
frequently expected responses and include an “other”
category along with a space for recording what is meant
by “other.” These “other” responses can be logged and
assigned codes during the data editing process. The value
of accommodating “other” responses is illustrated by the
experience of Kelsey et al. (1). In a case-control study of the
etiology of lumbar disc rupture, participants were asked
what type of chair they sat in at work. The main differ-
ence between case patients and control subjects was the
selection of the “other” category by the case patients. The
excess of “other” responses was attributable to the omis-
sion of motor vehicle seats as a response option. This led
to the finding that the vibration associated with frequent
motor vehicle use was associated with disc disease, a find-
ing that was subsequently corroborated by further epide-
miologic and biomechanical studies.

A common error is to omit the categories “not applica-
ble,” “unknown,” and “refused” from response lists. Their
omission causes a problem when editing the data. If a “not
applicable” code is omitted, then when an item is indeed
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not applicable, the question will be left unanswered. During
editing, however, it is impossible to tell whether the ques-
tion was skipped inadvertently or purposefully left blank.
For record abstraction forms, a “not found” category is
needed.

Do not try to force actual measurements into a closed-
ended format; this may result in the unintended loss of
information. Take, for example, the following question:

Q8. WHITE BLOOD CELL COUNT ON ADMISSION?
(Circle the appropriate finding)

Less than 10,000
10,000-15,000
More than 15,000
Not ordered

Not found

© 00 W N —

Collecting data in this manner automatically constrains
the investigator to analyze white blood cell (WBC) count
as a categorical variable. Although a categorical approach
may or may not be appropriate, the investigator is further
constrained, because the only categories that can be used
in the analysis are those specified by the form. It is usually
better to collect data in as much detail as the data source
will permit, as this maintains greater flexibility in the data
analysis. For example:

Q8. WHITE BLOOD CELL COUNT ON ADMISSION?
Q8. (code -88,888 if not ordered, code -99,999 if not found)

Again, special codes for “not found” and/or “not appli-
cable” should be included to allow the later identification
of missed items on the data form.

To ease data entry, the responses should be placed
along the right margin of the form and presented as ver-
tical lists (Fig. 5-1). Including question numbers with the
responses helps data entry clerks keep their place when
entering the data into a computer.

Often a number of questions do not apply to every
study subject. Instructions to guide respondents past non-
applicable questions need to be clearly made. In the exam-
ple (Fig. 5-1), in addition to the text instructions, visual
cues are provided to guide the interviewer. Failure to skip
properly can be a frequent source of error in filling out data
collection forms. If the data collection form is to be self-
administered by a study participant, try to keep the num-
ber of skips to a minimum.

Frequent skips are demanding even on experienced
study personnel and can lead to errors in filling out study
forms. Often, if there is only one question to be skipped,
adding an additional response category can avoid the need
for a skip instruction altogether. For example, consider the
two questions:

4. DO YOU NOW SMOKE CIGARETTES?
Yes 1
No 2 (If no, go to question 6)

5. HOW MANY CIGARETTES DO YOU USUALLY SMOKE IN
A DAY?

1to 10 1
11to 19 2
20 or more 3
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In this situation, a skip can be avoided by dropping
question 4 and providing a fourth response option in
question 5: “I do not currently smoke cigarettes.”

Use Numeric Rather Than Text Entry If questions are
to be precoded, codings should be consistent through-
out the form. Pocock (26) suggests using 1 for “No” and
2 for “Yes,” because “No” is the more common response.
Often an 8 is used for “not applicable” and 9 for “missing.”
Sometimes negative integers are used if the “8” and “9”
could be valid responses.

Questions That Require Calculation Avoid questions
that require calculation on the part of either the data col-
lector or the respondent. If the number of days between
two events is important, collect the actual dates of the
events and calculate the difference later. Asking individuals
to calculate introduces an additional opportunity for error.

Multiple Observations Occurring in the Same
Subject It is not uncommon that data collection requires
the management of multiple observations occurring in the
same subject. Examples might be recurrent laboratory val-
ues over time, or the recording of multiple medications at
a single point in time. If the number of measurements per
subject is large or highly variable, it may be useful to have
separate data collection forms for each collection time
point. Forms can get lost or damaged if they are overhan-
dled. The critical issue is to have a unique study identifier
that allows the data to be combined from multiple sources
in a study database.

Users should be aware that the management of data of
this sort requires thought and may benefit from assistance
from persons knowledgeable in database structure and
management. The following example exhibits the issue:

Assume one is studying the response of a WBC count
to the administration of an antibiotic. Counts are collected
multiple times per day until discharge. One might consider
laying out the data as follows:

Patient

ID WBC1 Timel WBC2 Time2 WBC3 Time3 WBC4 Time4
1 X, T h X, T,h — —

2 Y, T h Y, T,h Y, T,h Y, T, h

While this format is not wrong, it is generally more
efficient and flexible to create a second data file, which is
organized listing each WBC observation with the corre-
sponding subject ID as:

ID WBC Time

: T, h
T,h
T, h
T,h
T,h

T,h

X< <

[N
%)

[}
%)

w
w

1
1
2
2
2
2

< | << =<




NZ8 secTion |

This type of database is called a relational database. The
data tables are related to each other through a common
variable, in this case the ID. The advantages of such a
database are (a) they provide a more efficient way to han-
dle multiple observations, especially when the number
of repeated measures is large or highly variable, (b) it is
easier to create subcategories or flag observations, (c) it
may also be easier to collect/enter data into this type of
format, and (d) some statistical packages for modeling
change over time require data in this general format The
disadvantages of using a relational database are (a) it may
require special knowledge of database architecture and (b)
additional manipulation of the data will always be required
prior to merging data back into the “parent” dataset.

CONCLUSION

Hierholzer (27) has called data the epidemiologist’s sand.
A lens maker takes sand, refines it, melts it, and, through
a long process of grinding and smoothing, fashions a lens
with which to see the world more clearly. Similarly, an epi-
demiologist takes data, refines it, and smooths it until a
clearer picture of nature is revealed. If the sand is dirty or
impure, the lens will be cloudy and distorted. If data are
unreliable or invalid, the epidemiologist’s understanding of
nature will be clouded and distorted. By paying close atten-
tion to the data collection process, from the conception of
the data collection document through the editing of the
data after they are collected, the epidemiologist helps keep
his sand pure so that, in the end, nature may be viewed
with as much clarity as possible.

This chapter provided a practical overview of data col-
lection in hospital settings. To find more complete discus-
sions of issues surrounding the strengths and limitations of
various data sources, and the design and administration of
opinion surveys, consult several useful reviews that have
served as the basis of this chapter (11,28,29,30).
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Practical Application of the
Principles of Epidemiology to
Study Design and Data Analysis

Joseph H. Abramson

Suppose that examinations of 200 workers in a hospital
reveal that 24 are carriers of methicillin-resistant Staphylo-
coccus aureus (MRSA). Does this mean a prevalence of 12%
in the hospital’s personnel?

A study of adults undergoing mandatory health exami-
nations (1) revealed that MRSA carriage (based on nasal
swabs) was about twice as high among nonsmokers (4.3%)
as among smokers (2.2%); the difference was statistically
significant (p =.019). Does this mean that smoking protects
against MRSA carriage?

Suppose this study had not found a significant differ-
ence, that is, p > .05, would this mean that smoking has no
effect on the prevalence of MRSA carriage?

Suppose that a program to encourage hand washing by
personnel is followed by a reduced rate of S. aureus infec-
tions among patients. Does this mean that the program
reduced the incidence of these infections?

Suppose we are told that a review of the literature has
found 16 controlled trials that show that a certain treat-
ment for MRSA is efficacious and 4 that do not (a highly
significant difference: p = .007). Can we conclude that the
treatment works?

The answer to all five of these questions is “No.”

Why?

Read on.

MAKING SENSE OF DATA

Bias is the bugbear of epidemiologists (2). Bias does not here
refer only to preconceived opinions and preference but (as
defined by the Dictionary of Epidemiology) to any “error in
the conception and design of a study—or in the collection,
analysis, interpretation, reporting, publication, or review of
data—leading to results that are systematically (as opposed
to randomly) different from truth” (3). Its commonest forms,
in any kind of study, are information bias, which is caused
by shortcomings in the collecting, recording, coding, or pro-
cessing of data, and selection bias, which is the distortion
produced by the manner in which subjects are selected for
study or by the loss of subjects who have been selected. In
an analytical study, bias may also be caused by confounding.

This chapter deals with ways of minimizing or dealing
with biases and uncertainties, both when planning and
conducting a study and when handling its results, in order
to make the study as valid as possible, with reference both
to the study’s soundness (its internal validity) and, when
relevant, to its generalizability or applicability in other con-
texts (its external validity).

The focus is on epidemiological studies, that is, on
studies of the occurrence, distribution, and determinants
of health-related states or events in specified populations.
This is a rubric that embraces all studies in the field of
healthcare epidemiology and infection control, except
maybe some laboratory studies.

Separate consideration will be given to epidemiological
studies of various types, namely, descriptive studies and
analytical observational studies, and (more briefly) eco-
logical and multilevel studies, program reviews, trials, and
meta-analyses. Descriptive studies may be cross-sectional
ones that describe a situation at or around a given time
(“snapshots™) or longitudinal ones (such as surveillance
procedures) that describe changes or events in an ongoing
way or during a given period (“motion pictures”). Descrip-
tive studies of disease occurrence may be termed preva-
lence studies if they are cross-sectional and incidence studies
if they extend over a period. Changes may also be appraised
by comparing the findings of repeated cross-sectional stud-
ies. Analytical observational studies include analytical cross-
sectional studies, which examine the associations between
variables (e.g., between suspected causal factors and their
assumed effects) that exist at or about a given time; cohort
studies, which are follow-up studies of people with various
degrees of exposure to supposed causal factors; case-con-
trol studies, which compare the characteristics and prior
experiences of people with and without a given disease or
other outcome; and ecological and multilevel studies, which
use data about groups or populations as such, unlike other
studies, which are based only on data about the individuals
in the groups that are studied. Program reviews are obser-
vational or analytical studies of the operation and outcome
of healthcare procedures or programs, clinical trials and
program trials may be seen as epidemiological experiments
that test the value of healthcare procedures or programs,
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and meta-analyses are critical reviews and syntheses of dif-
ferent studies of the same topic.

These types of epidemiological studies are not mutually
exclusive. A study may have multiple objectives. It may, for
example, be both descriptive and analytical, as in a study of
colonization of group B streptococcus in pregnant women
and neonates that was not confined to a description of
prevalence and susceptibility to antimicrobial agents, but
extended to an exploration of the effects (on the coloni-
zation rate in the newborn) of possible risk or protective
factors, such as prolonged labor or the administration of
antibiotics to the mother (4).

For each type of study, we consider the main biases
and uncertainties that may arise and briefly enumerate the
steps that can be taken when planning the study and when
analyzing and interpreting the findings, so as to minimize
these biases and uncertainties or permit account to be
taken of their effects.

Although a number of statistical procedures are men-
tioned and numerical examples based on them are cited,
these procedures are not explained. It is assumed that read-
ers either have statistical consultants or collaborators, or
themselves have a sufficient grounding in statistical princi-
ples to be able to make intelligent use of statistical software.
A number of multipurpose commercial programs (such as
those listed on Chapter 15, pp. 216-217) are available, but
they have to be learned and may be difficult for an unversed
nonstatistician to use. The Internet offers many simple inter-
active programs (“Web pages that perform statistical cal-
culations”) (5), and a plethora of shareware and freeware
statistical programs is available for downloading (6). The
user-friendly WinPepi programs (7) for epidemiologists, for
example—which can be downloaded free from www.brixton-
health.com with their extensive and fully referenced manu-
als—can perform all the statistical procedures mentioned in
this chapter (except Cox regression analysis and multilevel
analyses). WinPepi was used to provide all the numerical
examples cited in the text.

There are numerous sets of publication guidelines
for epidemiological studies—witness the title of a recent
review (8)—and these checklists can serve as reminders
of what kinds of data should be collected and what kinds
of analyses should be done. Particularly useful are the
STROBE (Strengthening the Reporting of Observational
Studies in Epidemiology) (9) and (for randomized trials)
CONSORT (Consolidated Standards of Reporting Trials)
(10) guidelines.

Before embarking on a study of any kind, ethical mat-
ters must of course be considered. Confidentiality should
be taken into consideration even if the study is based only
on existing medical records, and informed consent should
be obtained whenever special test procedures—even
questioning—or interventions are required. Approval by
an appropriate ethics committee may be needed.

DESCRIPTIVE STUDIES

Information bias

Epidemiological studies do not always have clear purposes.
It is not always clear why the study was performed; that is,
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what it was hoped to achieve by performing it. But every
epidemiological study should have clearly defined objec-
tives, that is, an answer to the question “What knowledge
is the study planned to yield?” These objectives dictate
the variables to be measured, and these variables must be
clearly defined.

We have been told, at the outset of this chapter, that
a simple descriptive study, whose objective was presum-
ably to measure the prevalence of MRSA carriage, revealed
that 24 of 200 hospital workers were carriers of MRSA (1).
A number of obvious questions come to mind.

What, for example, is meant by “carriers of MRSA”?
First, what is the conceptual definition (the “dictionary def-
inition” of the characteristic that it is hoped to measure)?
Carriers of these bacteria with no evidence of acute infec-
tion, or all carriers? Persistent carriers only, or transient
carriers also? And secondly, how was this concept trans-
lated into an operational (working) definition, expressed in
terms of the method of examination? From what sites were
swabs taken? If from nostrils, one or both? Once only, or
repeatedly? What type of swabs? Were the swabs stored or
used immediately? Which of the available tests for MRSA
was used? Precisely what results, using these methods,
were taken as evidence of MRSA carriage? (And, of course,
were all the workers examined in the same prescribed
manner?)

Once we know the conceptual and (especially) the
operational definition of the variable, we can ask how valid
the measurement was; that is, how well did it measure
what the researcher wanted to measure? The validity of
a measure or a method of measurement can be appraised
by comparing the findings with a criterion (a reference
standard or “gold standard™) that is known or believed to
be close to the truth, if such a criterion is available. For a
“yes—no” (dichotomous) variable, validity can then be cal-
culated (see Chapter 3, pp. 54-55) and expressed as sensi-
tivity and specificity. The sensitivity of the MRSA measure
tells us what proportion of the true carriers (according to
the gold standard) are detected by the examination, and
its specificity tells us what proportion of noncarriers are
correctly classified as noncarriers. The false-positive rate
is 100% minus the specificity. It may also be enlightening to
calculate the predictive value of the findings—when MRSA
is detected by the measure, what is the probability that it
is truly present (positive predictive value)? and when it is
not detected, what is the probability that it is truly absent
(negative predictive value)? But it must be remembered that
these calculated predictive values (unlike sensitivity and
specificity) are dependent on the prevalence of the condi-
tion. For example, if sensitivity and specificity are both 90%,
the positive predictive value can be shown to be 79% if the
true prevalence is 30 per 100, 55% if the true prevalence of
MRSA is 12 per 100, and only 32% if the true prevalence is 5
per 100. If no “gold standard” is available, other methods of
appraising validity can be used (11), for example, by check-
ing the results against other (although not necessarily bet-
ter) measures of the variable (convergent and discriminant
validity), against related variables (construct validity), or
against subsequent events (predictive validity). Often, reli-
ance can be placed on common sense—that is, a judgment
that the measure is obviously valid (face validity). If the
validity of a measure is not known, it is sometimes decided
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to appraise it in the course of the study (e.g., by using a
“gold standard” measure in a subsample) or in a pretest.

It may be helpful, although it is not essential, to also
know how reliable (i.e., repeatable) the measure is; that is,
whether the same result is obtained when the examination
is repeated. High reliability does not necessarily mean that
the measure is valid (what is more reliable—or less useful—
than a broken watch?) But low reliability will always cast
doubt on validity. Many measures of reliability are avail-
able. In this instance, use would probably be made of the
kappa coefficient (see Chapter 3, p. 72) or the apparently
preferable AC1 coefficient, which express the proportion
of subjects who are classified in the same way each time,
after allowing for the effect of chance agreement. If we were
appraising a numerical measure, other indices of reliability
would be appropriate, such as St Laurent’s gold-standard cor-
relation coefficient (12) and the 95% limits of agreement (13).

The question that was asked at the start of this chapter
was “Suppose that examinations of 200 workers in a hospi-
tal reveal that 24 are carriers of methicillin-resistant Staph-
ylococcus aureus (MRSA). Does this mean a prevalence of
12% in the hospital’s personnel?” If there is no misclassifi-
cation, the prevalence is obviously 12% in these workers—
that is, in the very unlikely event that the sensitivity and
specificity of the measure are both 100%. But if there is mis-
classification—and there almost always is—the prevalence
is unlikely to be 12%. Suppose, for example, that only 5 of
the 200 subjects (2.5%) truly have MRSA and that the meas-
ure of MRSA has a sensitivity and specificity of 90%. Then
it can be expected that 90% of the 5 will be found to have
MRSA (4.5 true positives), and so will 10% of the other 195
(19.5 false positives), so that the total number who appar-
ently have MRSA will be 24 (12% of the 200). In other words,
a true prevalence of 2.5% will yield an apparent prevalence
of 12%. And, conversely, an apparent prevalence of 12%
points to a true prevalence of only 2.5%. Taking account
of misclassification, the prevalence of MRSA in these 200
workers would thus be only 2.5%. An appropriate com-
puter program, such as WinPepi, can easily do this reverse
calculation, if fed the sensitivity, specificity, and apparent
prevalence.

Descriptive epidemiological studies are usually con-
cerned with more than one dependent variable and may
involve independent variables as well, since they often aim
to describe the findings in different subgroups, for example,
different age groups or occupational groups, or in patients
with different diagnoses. A failure to define appropriate
working definitions for any of the variables, sufficiently
valid for the purposes of the study, may result in a study
flawed by information bias.

Any deficiencies in the collection of data may bias the
results. The case-finding procedures used in an outbreak
investigation, for example, may be inadequate however
clearly a case is defined. Information bias may also be
caused by missing data and by deficiencies in the record-
ing or management of data, for example, by errors or
omissions in the recording of findings or in the transfer of
data to a computer for analysis.

In a longitudinal descriptive study, information bias
may be caused by any changes that occur with time in dis-
ease definitions, case notification systems, or case-finding
methods.
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Data collected by observation (e.g., clinical or
laboratory examinations) are generally more valid than
data collected by interviewing or questioning (except of
course in studies of feelings or attitudes). Numerous fac-
tors may reduce the validity of data based on questions—
faulty memory (recall bias), a tendency to give socially
acceptable responses, the interviewer’s attitude, the word-
ing of the question, etc. (see Chapter 5, pp. 87-90). Medi-
cal records too are often disappointing as a source of valid
data unless they have been planned and maintained as a
basis for research; a high proportion of the healthcare-
associated infections detected by a surveillance program
may not appear in the diagnostic record (74). All records
maintained solely for administrative purposes may be
problematic with respect to their completeness or accu-
racy. An examination of the feasibility of appraising the
immunization status of hospital workers in England, for
example, revealed that only 85% of hospital trusts knew the
exact number of staff employed, and only 68% had records
of all immunizations (15).

The above considerations apply to all epidemiological
studies, not only to descriptive ones—namely, the need for
defined study objectives, for clear operational definitions
expressed in terms of the methods of study, and (if face
validity does not suffice) for assurance of the validity of
these methods. Information on the validity of methods may
be available from other studies, but this should be han-
dled circumspectly, since sensitivity and specificity may
be affected by the characteristics of the sample in which
validity was appraised and may by chance be different in
different samples.

Selection Bias and Sampling Variation

To return to the MRSA example, we have not been told
how the 200 workers were selected. Can the findings be
validly applied to “the hospital’s personnel,” or do they
apply only to a not necessarily representative group
of 200 workers? Were the 200 a random sample, chosen
from the total personnel by using random numbers or a
computer program that uses an algorithm that makes an
as-good-as-random selection? Or, were they an equally
representative systematic sample, selected (for example)
by taking every fifth person in a list of all personnel? Or,
on the other hand, were they a haphazard and possibly
unrepresentative sample; for example, were they the more
easily persuaded workers encountered in a particular part
of the hospital at the time of the study and possibly only
junior personnel to boot (because what researcher would
want to get up the noses of senior physicians or nurses,
and administrators?).

In whatever way the sample was selected—even if it
was selected randomly—it would be helpful to be assured
that the characteristics of the workers who were studied
were in fact similar to those of the total personnel if the
latter information is available. Was the sample sufficiently
similar in age, sex, occupation, etc. to the population from
which it was drawn to allay concerns about selection bias?

To reduce sampling variation, use is often made of strat-
ified random sampling. Representativeness with regard to
age and sex, for example, can be enhanced if the sample is
made up of separate random samples selected from each
age-sex stratum.
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A common source of selection bias is the loss of sub-
jects, that is, the loss of members of the selected sample,
as a result of refusal, failure to find subjects, mishaps in
the laboratory, etc. Were the 200 workers who were stud-
ied in the MRSA study the total selected sample, or were
they part of a selected sample of (say) 3007 If the latter, it
would be helpful to know whether and how the workers
who were lost differed from those who were included. May
the reasons for noninclusion be connected with the vari-
able under study?

Even if the sample in the MRSA study was a representa-
tive randomly selected one, we cannot be sure of the 12%.
There are a very large number of alternative random sam-
ples that might have been chosen, and the findings in differ-
ent random samples of workers would, by chance (random
sampling variation), obviously differ. We cannot be certain
that the true prevalence in the total personnel is 12%, just
because the prevalence in one representative sample is
12%. The best we can do is to use a computer program to
obtain a confidence interval, which we can interpret, with
a given level of confidence, as expressing the range within
which the prevalence probably falls. In this instance, we
can be 95% sure that the prevalence is between 8% and
17%. If a lesser level of confidence satisfies us, the range is
narrower—the 90% confidence interval is from 9% to 16%.
If we want to be more certain of the result, we can compute
the 99% confidence interval, which is wider, namely, from
7% to 19%. The confidence interval depends on the size of
the sample; it is wider if the sample is small, and narrower
if it is large. If the sample size was only 50, uncertainty
would be greater, the 95% confidence interval being from
5% to 23% instead of from 8% to 17%. If the sample size was
1000, the 95% confidence interval would be narrow—from
10% to 14%.

If the sample was randomly selected and we ignore
possible misclassification, we can thus conclude with 95%
confidence that the prevalence in the hospital’s personnel
is between 8% and 17%. But if we assume a sensitivity and
specificity of 90% (in which instance the adjusted preva-
lence is only 2.5%), the 95% confidence interval for preva-
lence ranges from just above 0% to 9%.

The sample size required in a descriptive study
depends on the desired width of the confidence inter-
val—if a more precise result is wanted, a larger sample
is required. The basic requirements for the calculation of
sample size (or for the computer program that calculates
it) are a guess, a wish, and a precaution. If the aim is to
measure a proportion or rate, a guess must be made at its
expected value; to be on the safe side, a proportion of 0.5,
or 50%, can be assumed—this is a “worst-case scenario”
that maximizes the required sample size. If the aim is to
measure a mean value, the expected standard deviation is
required. The wish is for a narrow confidence interval—
that is, a specified acceptable error (i.e., half the width
of the confidence interval) at a given (say 95%) level of
confidence. The precaution (required by some computer
programs) is allowance for the expected loss of members
of the chosen sample because of refusal or for other rea-
sons; taking this into account ensures an adequate sam-
ple size despite the losses, but of course does not remove
the possibility of bias caused by selective losses. The size
of the population from which the sample is drawn may
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also influence the required sample size, but only if the
population is very small.

In a study that sets out to measure more than one
dependent variable, the sample size requirement will usu-
ally differ for different variables (with different expected
frequencies). It then becomes necessary to either select
the largest sample size or decide on a compromise that will
sacrifice precision with respect to the less important vari-
able or variables.

Planning a Descriptive Study

When planning a descriptive study (or any epidemiological
study, for that matter), thought should be given to both
information bias and selection bias.

To minimize information bias, clear operational defini-
tions are required for all variables and (if categorical scales
are used) for their categories; valid methods of measure-
ment should be used, and they should be applied in a
standard way. Validity should be measured if necessary.
Quality control measures (including checks on correct per-
formance and on reliability) should be built in; and data
cleaning (16), including the correction of errors where pos-
sible, should be performed both before and during or after
entry of data to the computer. Data entry can be made eas-
ier and more accurate by using software, such as the free-
ware programs EpiData (see p. 202) and Epi Info (see pp.
201-202) that provides help in the design of a data entry
form, a data entry screen, and a data set and can apply
rules and calculations during data entry, for example, by
restricting data to legitimate values. A record should be
kept of the amount of missing data.

In a surveillance program (see Chapter 89), which is an
ongoing descriptive study of health data (permitting, inter
alia, the detection of outbreaks) or healthcare data, stand-
ardized working definitions and standardized methods of
reporting and recording are especially important and may
be particularly difficult to enforce because of the involve-
ment of a large and constantly changing body of observers.

Especially in studies that set out to describe beliefs,
perceptions, or practices regarding health or healthcare,
consideration should be given to the use of qualitative
methods, whose findings are described in words rather
than numbers, as well as the usual quantitative methods.
These methods, based on (for example) observations,
conversations and in-depth interviews, or focus group ses-
sions, can provide useful insights concerning beliefs and
behavior (although not their numerical prevalence) and
ways of exploiting or changing them. Reluctance of health
workers or members of the public to be immunized (e.g.,
against swine flu) and unwillingness of parents to have
their children immunized can best be combated if the moti-
vations for and against immunization are understood. If
done properly, qualitative research is as rigorous as quan-
titative research, but it needs special skills and generally
requires the involvement of professionals who have had
the requisite training. The designs used in “mixed-method”
studies that integrate qualitative and quantitative data col-
lection and analysis include the use of qualitative data as
a basis for planning quantitative data-collection methods,
the comparison and integration of qualitative and quanti-
tative findings, and the quantitative analysis of qualitative
data (17).
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If a sample is to be used in a descriptive study, it should
be a representative one (random or systematic), possibly
selected after stratification, and large enough to ensure an
acceptable degree of precision. Sampling generally requires
a sampling frame, for example, a list of the subjects from
whom the sample is to be selected. To sample newly diag-
nosed cases of a disease as they crop up, use may be made
of systematic sampling, for example, every fourth case, or
of a sampling scheme whereby a case is randomly selected
from each successive block of (say, two or four) cases.

Efforts should be made to ensure full coverage of the
sample. If the study is a longitudinal one, entailing repeated
examination of the same subjects, it may be necessary to
plan tracking procedures, including the collection of infor-
mation about addresses, places of employment, and the
whereabouts of family members.

To permit the assessment of sampling bias, so that its
possible effect can be taken into account when interpret-
ing the findings, the characteristics of the sample studied
should be compared with those of the total study popula-
tion, using whatever demographic or other information is
available; and the characteristics of subjects lost from the
sample (or those of a sample of the lost subjects) should, if
possible, be compared with the characteristics of the sam-
ple studied. Records should of course be kept of the rea-
sons for noninclusion in the sample, since they may point
to possible bias.

In addition to these precautions to ensure the internal
validity of the study, thought should be given to the use-
fulness of the results in other contexts, unless there is no
intention to publish the results. There will usually be other
health workers or researchers who will be interested in the
applicability of the findings in their own healthcare services
or populations, even if the study was planned to meet a spe-
cific local need. Care should therefore be taken to collect,
and provide, any information about the group or popula-
tion studied, or about the context, that may help others to
decide on the relevance of the study findings elsewhere.

Analysis of a Descriptive Study

The analysis of a descriptive study is usually simple. The
frequency distribution of each variable in the total study
sample or its subgroups is tabulated; rates or proportions,
preferably with their confidence intervals, are computed
for “yes-no” or other categorical variables; and measures of
central tendency and dispersion (see Chapter 3, pp. 50-51)
are computed for metric (noncategorical) variables. One-
sample significance tests (see Chapter 3, pp. 57-58 and pp.
61-62) can be used to see whether the rate or proportion,
or the mean or median, conforms with some standard value
or with an expected or other hypothetical value. And two-
sample significance tests (see Chapter 3, pp. 58-64) can be
used to make comparisons with findings elsewhere.

The possible effect of misclassification can be
appraised, as in the above MRSA example. Occasionally,
the effect of information bias can be controlled in other
ways. If, for example, there is a constant bias in laboratory
results, due to a mistake in the preparation of a standard
solution, it may be rectified by applying a correction factor.

The possible effect of selection bias should be taken
into account when interpreting the findings, particularly
if there was poor coverage of the sample. Sometimes it is
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possible to control selection bias by statistical manipula-
tions during the analysis. If there was a low response rate
in one sex, for example, the findings can be weighted in
accordance with the sex composition of the total study
population to obtain an estimate that compensates for
this selectivity. A disadvantage is that this is based on the
assumption that, in each sex, the subjects included and
excluded are similar, which is not necessarily true.

In a longitudinal study, such as a surveillance program,
the analysis is complicated by the need to describe changes
with time. Numerous statistical procedures are available
for the appraisal of trends (18), with or without controlling
for seasonal variation and with or without controlling for
deviations that may be caused by extraneous factors, such
as fluctuations in diagnostic criteria. Outbreaks may be
detected by changes from the “endemic” baseline values.
But algorithms for the early detection of outbreaks usually
use surveillance data from multiple sites.

A need sometimes arises to combine the results of
two or more case-finding methods that yield different and
incomplete, but overlapping, lists of cases. An estimate
of overall prevalence can then be obtained by feeding the
numbers, including the numbers of overlaps, into a com-
puter program that can use the capture-recapture (or a
similar) technique (19). This procedure, which is based on
assumptions that are not always met (20), takes its name
from its original use in estimating animal populations by
capturing, marking, and releasing a batch of animals and
then seeing how many of them are recaptured in the next
batch of animals caught. Its earliest use in healthcare epi-
demiology was to estimate the number of hospital patients
using methicillin (21), followed by its use in the surveil-
lance of healthcare-associated infections (22), and it has
since been used in many other studies of incidence or prev-
alence and of the effectiveness of ascertainment systems
(23). In a capture-recapture study based on notifications
of invasive neonatal group B streptococcus infections,
made separately by pediatric wards and by microbiological
laboratories, for example, the analysis led to the conclu-
sion that the total number of cases was about double the
total notified number (24). The capture-recapture tech-
nique may yield an overestimate if all cases have in fact
been found or an underestimate if some types of case are
“uncatchable” by any procedure.

ANALYTICAL OBSERVATIONAL STUDIES

The key feature of an analytical study is the examination
and interpretation of associations between variables. This
brings new possible biases and uncertainties in its train in
addition to those besetting descriptive studies.
Associations between variables are usually detected by
observing that the value of the dependent variable (e.g., the
mean value, proportion, or rate) is different when the value
of the independent variable (e.g., a suspected causal factor)
is different. The difference in the values of the dependent
variable may lie in the same direction as the difference in the
values of the independent variable (a positive association) or
in the opposite direction (a negative or inverse association).
The strength of the association is measured by the extent of
the discrepancy between the two values of the dependent



FEE section |

variable (say, the two rates), as measured by the ratio
of the two values or by the difference between the two val-
ues. The further the ratio is from 1, the stronger the associa-
tion. The discrepancy can be in either direction, depending
on whether the association is positive or negative; ratios of 8
and 0.125 (i.e., one-eighth) point to associations of the same
strength but different in direction. If the difference between
means, rates, or proportions is used, the further it is from
zero (in either direction), the stronger the association.

These two methods of measurement (using a ratio or a
difference) do not necessarily lead to similar conclusions
about the strength of the association or the factors affect-
ing it. Etiological studies generally use ratios and assume
that exposure to a risk or protective factor has a multipli-
cative effect; that is, exposure multiplies the risk of the
condition under study by a given amount. The effects of
different exposures can then be combined by multiply-
ing them by each other. A multiplicative model is used
in logistic regression analysis (see Chapter 2, p. 44) and
Cox regression analysis (see Chapter 2, pp. 44-45). On
the other hand, if a study is concerned with the absolute
magnitude of a problem or with the resources needed to
deal with it, it is more appropriate to use the absolute dif-
ference between risks or mean values and assume that an
exposure has an additive effect; that is, exposure increases
(or decreases) the risk or mean value by a given absolute
amount. The effects of different risk factors can then be
combined by adding them. This is the model used in linear
regression analysis.

The ratios commonly used as measures of the strength
of an association are rate ratios, risk ratios, odds ratios,
and hazard ratios.

A rate ratio is the ratio of two rates that have person-
time denominators (e.g., rates per 1,000 patient-days or
per 1,000 person-years). A subject who was observed for
10 days would contribute 10 patient-days to the total
denominator, as would 2 subjects who were each observed
for 5 days or 10 subjects who were each observed for 1
day. Incidence and mortality rates (sometimes referred to
as incidence density or mortality density) are of this type.

A risk ratio (confusingly, often also called a rate ratio)
is the ratio of risks, which are measures that use count
denominators, that is, the size of the population at risk
(e.g., 10 cases per 1,000 subjects), and not person-time
denominators. Prevalence (the number of cases at a given
time) and cumulative incidence (the number of new cases
during a given period) are measures of this type, as are sim-
ple proportions and percentages (which express the num-
ber of cases or episodes per 1 subject or per 100 subjects,
respectively).

An odds ratio (see Chapter 2, pp. 23-24) is the ratio
of two odds. An odds is the probability that something is
present or will occur, divided by the probability that it is
not present or will not occur. If the proportion of people
exposed to a risk factor who develop a disease is 0.8, the
odds in favor of the disease in this group is 0.8 divided by
0.2, or 4 (4 to 1). If the proportion of people not exposed
to the risk factor who develop the disease is 0.2, the odds
in favor of the disease in this group are 0.2 divided by 0.8,
or 0.25. The odds ratio expressing the strength of the asso-
ciation is the ratio of these two odds, that is, 4 divided by
0.25, or 16.
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Odds ratios have useful statistical properties, but may
be hard to understand and are easily misunderstood. In the
above example, use of the odds ratio, which is 16, gives an
impression of a much stronger association than would be
indicated by the risk ratio of 4 (0.8 in the exposed group
divided by 0.2 in the nonexposed group).

Case—control studies yield odds ratios only (unless
ancillary information is available), and not rate ratios or
risk ratios. But if the condition under study is rare, there is
little difference between the odds ratio and the risk ratio,
and the odds ratio can be used as a substitute for the risk
ratio. Under certain conditions, depending on the man-
ner of selection of controls, the odds ratio observed in
a case—control study can also be used as a proxy for the
rate ratio (25).

Odds ratios are the ratios that are generally used in stud-
ies that employ logistic regression analysis, since the logis-
tic coefficients provided by the analysis are the logarithms
of odds ratios and can be converted to odds ratios by taking
their antilogarithms. Some computer programs (like Win-
Pepi) can use the logistic regression results to estimate risk
ratios, risk differences, and other measures of effect that are
less misleading than odds ratios sometimes are.

Hazard ratios are used in studies based on person-time
denominators, particularly those using Cox regression
analysis, where the hazard ratios are the antilogarithms of
the computed coefficients.

Information Bias

As in a descriptive study, information bias may result from
inadequate operational definitions of variables, inade-
quately standardized methods, errors in the recording or
management of data, and (in a longitudinal study) from
changes in disease definitions, case notification systems,
or case-finding methods.

An especially insidious type of information bias, with
effects that are not always easy to predict or control, may
occur in an analytical study if the validity of a measure dif-
fers in different groups. For a “yes—-no” variable, this effect
is referred to as differential misclassification, as opposed to
the nondifferential misclassification that occurs if validity,
although not perfect, does not differ.

As an illustration, suppose that 20 of 100 men and 5
of 100 women report that they have had sexually trans-
mitted diseases (STD). The observed risk ratio express-
ing the association between sex and a history of STD is
then 4. If the sensitivity of the STD information is 80% in
both sexes (with a faultless specificity of 100%)—that is,
if most cases are reported and there are no false posi-
tives, and misclassification is the same in both sexes—
our trusty software tells us that a true risk ratio of 5
would produce the observed risk ratio of 4. If there is
nondifferential misclassification, the observed associa-
tion is generally weaker than the true association. But
now suppose that sensitivity is 80% in men and 40% in
women. The true risk ratio that would give rise to an
observed risk ratio of 4 would then be computed as 2.
But if, on the other hand, sensitivity is 40% in men and
80% in women, the true risk ratio would be computed as 8.
Differential misclassification can bias the result in either
direction, and (without the aid of a computer) its effect is
difficult to predict and difficult to compensate for.
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In studies of the effect of a supposed risk factor on a
disease, differential validity can express itself as diagnostic
or exposure suspicion bias. Diagnostic suspicion bias can
occur if the information about the disease comes from a
subject, interviewer, or examiner whose report about the
presence of the disease is colored by knowledge that there
has been exposure to the risk factor and who is more likely
to report the disease if there has been exposure. This is
possible in a cohort study or a cross-sectional analytical
study. Exposure suspicion bias can occur if the informa-
tion about exposure comes from a subject, interviewer, or
examiner whose report about the presence of the exposure
is colored by knowledge of the presence of the disease.
This is possible in a case-control study or a cross-sectional
analytical study. Both forms of bias are less likely if there is
effective blinding and if subjects, interviewers, or examin-
ers are not aware of the study hypothesis.

Clearly, information on validity in different subgroups
of the study population would be helpful when interpreting
the findings.

In cohort studies, where information about exposure to
risk factors is obtained at the outset of a follow-up period,
this information may be biased if there are changes of
exposure status during the follow-up period. Smokers may
not remain smokers. This bias can be reduced by seeking
and using information about these changes.

Selection Bias and Sampling Variation

The strength of associations observed in analytical studies
is subject to sampling variation, and confidence intervals
must be computed for the rate ratios, differences, or other
measures used. The sample size required in order to obtain
acceptably precise results can be calculated manually or
by a computer program. If strength is measured by the
ratio of two rates or proportions or odds, the calculation
is based on the known or assumed value of one of the rates
or proportions, the value of the ratio that it is wished to
detect (at a given confidence level), and either the desired
width of its confidence interval or the required power of
a test to determine statistical significance. If strength is
measured by a difference between two values, the calcu-
lation is based on the known or assumed standard devia-
tions of the two values, the difference that it is wished to
detect (at a given confidence level), and either the desired
width of its confidence interval or the required power of a
test to determine statistical significance. The expected loss
of members of the chosen sample can also be taken into
account. In a case-control study, the number of controls
per case influences the required number of cases. Calcula-
tion of the required sample size is less simple if there are a
number of independent variables.

The same possibilities of selection bias resulting from
inappropriate sampling or incomplete coverage of the sam-
ple exist in analytical studies as in descriptive studies.

In addition, there are special issues to be considered in
case—control studies and in cohort studies.

Case-Control Studies The study of associations in
case—control studies is based on a comparison of cases
(generally of a disease) with controls (who are free of the
disease), with respect to their prior exposure to suspected
risk or protective factors. To avoid bias, the controls

PRACTICAL APPLICATION OF THE PRINCIPLES OF EPIDEMIOLOGY m

should be drawn from the same population as the cases.
They should represent the people who, if they had the dis-
ease in question, could have become cases in the study.

But many case—control studies are vitiated by the inap-
propriate selection of controls.

If the study includes all the cases occurring in a defined
population, or a representative sample of them, suitable
controls can be found by taking a representative sample
of the individuals without the disease in the same popula-
tion. This is relatively easy to do in a primary healthcare
service that caters for a defined population, but it is not
easy in a hospital-based study. Hospital cases with a given
disease, for example, are usually drawn from an ill-defined
catchment population. Even if the study is restricted to
hospital cases living in a defined neighborhood, and it is
practicable to select “community controls” drawn from the
same neighborhood, it cannot be certain that the controls
would have been treated in the same hospital if they had
the disease. Population controls who are selected because
of their relationship with the cases, for example, friends,
neighbors, spouses, siblings, fellow workers, or classmates,
may tend to resemble the cases in their circumstances, life-
styles, or (for blood relatives) genetic characteristics. In
other words, there may be similarities between the cases
and controls that have nothing to do with the disease and
can lead to false conclusions about associations with the
disease. Controls drawn from other patients in the same
hospital also present problems. They do not have the dis-
ease in question, but they have other diseases, which may
have their own associations with the risk or protective fac-
tors under consideration. Moreover, bias may be caused
by differences between the hospital admission rates for
different diseases (Berkson’s bias, admission rate bias). To
minimize these problems, controls with similar diseases
or clinical pictures may be selected (e.g., cancer controls
for cancer cases, or women referred for breast biopsies of
suspicious nodules, but not found to have breast cancer,
as controls for cases found to have cancer or precancer-
ous conditions). Patients admitted after traffic accidents
or for elective surgery, blood donors, or hospital visitors
are sometimes used as controls, in the hope that they
represent the population base. It is usually found that the
use of community controls overestimates the association
between the disease and the risk factor, and the use of hos-
pital controls underestimates it (26).

It is seldom easy to find a source of controls that is both
convenient and free of possible bias. Each instance must
be considered on its merits, and a careful choice made of
the least of the alternative evils. It is sometimes decided to
use two or more control groups (of different kinds) and to
see whether different comparisons yield the same conclu-
sion; discrepancies may throw light on the study’s biases.

Cohort Studies A cohort study examines the asso-
ciations between selected risk or protective factors and
diseases (or other selected outcomes) by following up a
sample (cohort) of subjects whose exposure is known and
determining whether the outcomes occur. In a prospective
cohort study, information about the status at the outset is
obtained by examinations or interviews; and in a historical
(“retrospective”) cohort study, information about the initial
status of the cohort is obtained from records of past exami-
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nations or interviews. In both instances, loss of members
of the cohort to follow-up can cause serious selection bias
(follow-up bias). Bias is particularly likely if the reasons for
loss to follow-up are illnesses, deaths, or other events or
circumstances that may be connected with the outcomes
under study.

Unless loss to follow-up is negligible, the lost subjects
should be compared with the subjects remaining in the
study to see whether they differ with respect to whatever
demographic or other information is available, as well as
their initial exposure status.

Confounding Effects

Confounding, or confounding bias, can be defined as the
distortion of an association between variables by the
influence of another variable. As a simple example, all
studies show that children with larger feet tend to know
more words. This is of course explained by the influence
of an extraneous variable, namely, age, which is associated
both with foot size and with vocabulary size. Older chil-
dren have larger feet, and because they are older, they also
know more words. If we studied children of the same age,
we would probably find no association between foot size
and vocabulary size.

An extraneous variable can have a confounding effect
on the association between an independent variable A
(e.g., hypertension) and a dependent variable B (e.g., a
healthcare-associated infection)—that is, it is a potential
confounder—iftwo conditions are met: (a) it must influence B
(or be a stand-in for something that influences B); and (b)
it must be associated with A in the population, but not
because it is affected or caused by A; if it is caused by A,
it is an intermediate cause in the causal chain connecting
A and B, rather than a potential confounder. Diagrammati-
cally, A - C — B, where C (the confounder) is linked with A
and influences B, but not A - C — B.

Only if the associations of C with A and B are strong can
there be a confounding effect of any importance.

If potential confounders are identified and measured
in the study, a number of ways may be used to determine
whether they actually have appreciable confounding
effects or to control these effects in the analysis.

Methods used to control for confounding in observa-
tional studies include the following (see the illustrative
studies described in Chapter 88, pp. 1322-1324):

1. Restriction of the study to a homogeneous group, with
no variation in the potential confounder, for example,
restriction of the study to a specific narrow age group.

2. Matching, for example, by selecting controls of the
same age and sex as the cases in a case—control study.
Matching alone does not prevent confounding, but may
introduce bias by making the cases and controls unduly
similar in their exposure to possible causal factors; but
if matching is followed by stratification or a neutrali-
zation procedure, the bias is removed and the results
are more precise than without matching. Matching on a
variable that is affected by the exposure or by the dis-
ease may also introduce bias (25).

3. Stratification, that is, division of the study sample into
strata in accordance with the categories of the sus-
pected confounder (e.g., age-sex strata), followed by
separate analysis of the association in each stratum.
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4. Neutralization of the confounder by a statistical tech-
nique that holds the suspected confounder constant
and thus nullifies its effect and computes an adjusted
measure of the strength of the association. The adjusted
measure is a fictional value, a “counterfactual” estimate
of how strong the association would be if the suspected
confounder were neutralized. The difference between
the adjusted measure and the corresponding crude
measure (i.e., without controlling for confounding) is
an indication of the degree of confounding; small differ-
ences (say, of <10%) are often ignored. Methods of neu-
tralization include standardization (see Chapter 2, pp.
32-33), the Mantel-Haenszel (see Chapter 2, p. 31) and
similar stratification-based procedures, and linear, logis-
tic, Poisson, and Cox regression analysis.

5. Use of a rather elaborate propensity score that expresses
the effect of a set of possible confounders on the prob-
ability of inclusion in the treatment group (in a nonran-
domized trial) or the group exposed to the suspected
causal factor (in an observational study) and that can
be held constant in the analysis (27).

6. Use of an instrumental variable, which, in an appraisal of
an A — B relationship, is a variable Z that does not share
a common cause with B and can affect B because of, and
only because of, its effect on A; that is, Z — A — B. If the
study shows an effect of Z on B, this can be taken as evi-
dence for an effect of A on B, whatever confounders may
be affecting the observed A-B relationship (25,28). An
instrumental variable has been likened to a coin flipped
to decide whether a subject in a trial will be put in a treat-
ment or control group—it determines the treatment, but
has no independent effect on the outcome (29). To be use-
ful, the instrumental variable must be strongly associated
with the causal factor under consideration. As an exam-
ple, if the day of symptom onset can influence a health
outcome because of, and only because of, its effect on
the quality of hospital care, an association between day
of onset and the health outcome can be taken as uncon-
founded evidence for the effect of the quality of care on
the health outcome. Similarly, meteorological data on
sunlight exposure during pregnancy and the health of
the neonate may provide unconfounded evidence for
the effect of maternal vitamin D status (30); and distance
from a hospital has been used as an instrumental variable
in appraising the effect of intensive treatment for myocar-
dial infarction on the (possibly unfounded) assumption
that geographical location is not in itself associated with
severity of illness (31). In one study setting, the doctor’s
prescribing preference (inferred from prior prescrip-
tions) was found to be a useful instrumental variable in
examining the effect of various drugs on mortality (32).

It is also possible to explore the possible effect of
unmeasured confounders by “external adjustment,” that is,
by using a set of assumptions that are not based on the
study data (28,33). A sensitivity analysis (i.e., a compari-
son of the results when different assumptions are made)
can show the strength of the association in scenarios
that differ with respect to the assumed strength of the
unmeasured confounder’s association with the dependent
variable and its prevalence in the two groups (cases and
controls, or exposed and unexposed) that are compared.
If the adjustment renders the association negligible or
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nonsignificant, or reverses its direction, and the scenario
is a plausible one, this points to a need to be circumspect
when drawing conclusions or to measure and take account
of extra variables. For example, if the observed odds ratio
is 2 (with a 95% confidence interval of 1.2 to 2.9) and an
odds ratio of 3 is assumed for the effect of the confounder,
an appropriate computer program would indicate that the
adjusted odds ratio becomes nonsignificant if the unmeas-
ured confounder’s prevalence is greater by 20% or more in
one group than in the other (or by 30% or more if the preva-
lence in both groups is above 50%). If either of these sce-
narios is plausible, it can be concluded that confounding
by an unmeasured confounder or confounders may explain
the association’s statistical significance.

Modifying Effects and Intermediate Causes

An analytical study is usually concerned not only with the
existence and strength of associations but also with the
factors that influence the associations. If the association
between some factor and healthcare-associated infections is
stronger in men than in women, sex is an effect modifier; or in
statistical terms, there is interaction between the factor and
the sex in their effect on healthcare-associated infections.

Effect modifiers are of obvious interest in studies con-
cerned with causes and effects, since they are among the
factors that influence (or “cause”) the outcome that is
under study, and their detection may point to new avenues
of investigation. Information about effect modifiers may
also have practical implications, for example, by identi-
fying high-risk groups or pointing to possible practical
healthcare procedures. Unlike confounding, which is an
unwanted effect that we try to prevent or remove, effect
modification is an effect that it is useful to find and report
and investigate.

Effect modification may be detected and measured
by stratification, that is, by comparing the strength of the
association in different strata of the suspected modifier
(e.g., in the two sexes) or by including interaction terms in
linear, logistic, or Cox regression models. If there is inter-
action between factors X and Y in their effect on B, this
means that X modifies the association between Y and B
and Y modifies the association between X and B.

There may also be interest in studying intermediate
causes. In a study concerned with the effect of A on B, for
example, C might be an intermediate cause that is influ-
enced by A and, in turn, influences B. Diagrammatically,
A — C — B. Information about intermediate causes too
may have practical implications, since a healthcare proce-
dure might target C rather than A.

Planning an Analytical Observational Study

Every study design has its advantages and disadvantages.
Case—control studies are generally easier, faster, and less
costly than cohort studies and require much smaller
samples if the outcome is uncommon. However, they deal
with only a single outcome, provide no direct measures of
risk, and are particularly subject to recall bias and exposure
suspicion bias and, if unsuitable controls are used, to selec-
tion bias. Cohort studies, on the other hand, are prone to
diagnostic suspicion bias and follow-up bias.

In any analytical study, the list of variables to be stud-
ied should extend beyond the dependent and independent
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variables whose associations are the focus of the study. It
should also include possible confounders and maybe pos-
sible effect modifiers and intermediate causes. These vari-
ables can be selected from a list of all the factors that are
known or suspected to be appreciably associated with the
dependent variables and that it is practicable to measure.
Consideration should always be given to the possible inclu-
sion of the “universal variables” that are so often of rele-
vance in epidemiological studies, namely, sex, age, parity,
ethnic group, religion, social class and related variables,
and place.

The same precautions to minimize information bias
should be taken as in descriptive studies: clear operational
definitions for all variables and their categories; valid meth-
ods of measurement, applied in a standard way; quality
control measures; data cleaning; computerized data entry;
and a record of missing data. Blinding of anyone who may
influence the findings may be advisable to minimize expo-
sure suspicion bias and diagnostic suspicion bias.

If samples are to be used in an analytical study, they
should be representative ones, large enough to ensure an
acceptable degree of precision. In a case-control study,
incident (i.e., new) cases are generally preferred to preva-
lent (i.e., existing) cases, both because they are closer in
time to their causal factors and because this prevents bias
caused by the absence of deceased or recovered cases
(Neyman'’s bias, incidence-prevalence bias). To sample
newly diagnosed cases of a disease as they crop up, use
may be made of systematic sampling, for example, every
fourth case, or of a sampling scheme whereby a case is ran-
domly selected from each successive block of (say, two or
four) cases.

In a case-control study where duration of exposure is
taken into account by the use of person-time denomina-
tors, controls should be selected at the same time as the
cases, rather than at a single point in time.

Efforts should be made to ensure full coverage, espe-
cially in studies entailing repeated examination of the
same subjects, where it may be necessary to plan tracking
procedures.

As in descriptive studies, the characteristics of the
samples studied should be compared with those of the
populations from which they are drawn and the character-
istics of lost subjects (or of a sample of the lost subjects)
should, if possible, be compared with those of the sample
studied. Records should be kept of the reasons for nonin-
clusion in the sample.

Thought should be given to the external validity of the
study and its applicability in other contexts. Care should
be taken to collect, and provide, any information about the
group or population studied, and about the context, that
may help others to decide whether the findings can be
applied elsewhere.

To facilitate decisions on the practical usefulness of
the findings, ways should be found of expressing them in
terms—when it is appropriate and practicable to do so—
of costs and of estimates of potential impact. Easily calcu-
lated estimates of the impact of exposure to a given factor
on the incidence or prevalence of a given disease, for exam-
ple, include the population attributable fraction (the propor-
tion of cases attributable to the factor; see Chapter 88,
pp- 1320-1321) and (if the factor can be eliminated) the pre-
ventable fraction.
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Analysis of an Analytical Observational Study

The exploration of associations between variables provides
the knowledge that an analytical study sets out to gain. But
simple descriptive results are usually sought first. Exami-
nation of the frequency distributions of all relevant vari-
ables (in the total study sample or its subgroups) enables
the investigator to find gaps, patterns, and inconsistencies,
and “get to know” the data. As in a descriptive study, rates
or proportions, preferably with their confidence intervals,
may be computed for “yes-no” or other categorical vari-
ables and measures of central tendency and dispersion for
metric (noncategorical) variables.

The next step is usually bivariate analyses, that is,
the examination of relevant associations between pairs of
variables—particularly relationships with the dependent
variable or variables. In some studies, this may yield all
the information that is required. In others, this process of
“screening for associations” may facilitate decisions about
the variables that should be included in subsequent analy-
ses. (Bivariate analyses are sometimes called univariate
analyses because a single independent variable is consid-
ered each time.)

Statistical significance and estimates of confidence
intervals for measures of association should (at this and
subsequent stages of the analysis) be computed by appro-
priate statistical procedures whose selection is determined
by (for example) the variables’ scales of measurement
(dichotomous, nominal, ordinal, or metric), whether obser-
vations are paired or independent, whether count denomi-
nators or person-time denominators are used, and whether
a normal distribution can be assumed.

The selection of variables that may act as confounders,
and that should therefore be incorporated in subsequent
analyses, may be based on the strength of their associa-
tions with the dependent variable or variables as demon-
strated in the bivariate analyses. The selection may also
be based on significance tests, eliminating the variable as a
possible confounder only if p exceeds, say, .2 (25).

Multivariate Analyses The bivariate analyses are usu-
ally followed by multivariate analyses that involve more
than two variables. There may be a temptation to jump
in at the deep end and start with a multivariate analysis
(e.g., multiple logistic regression), knowing that this will
provide the main results required to meet the study’s
objectives, but most experts would consider it unwise to
skip the prior examination of the data and their bivariate
associations.

The simplest multivariate method of analysis is strati-
fication. The sample is divided into strata, in accord-
ance with the categories of a suspected confounding or
modifying variable, so that the relationship between an
independent variable and the dependent variable can be
examined separately in each stratum, and the comparison
of the results in the strata can be based on, say, risk ratios
or odds ratios. Each analysis may have a single stratifying
variable (e.g., sex), or there may be more than one stratify-
ing variable (e.g., by stratifying by both sex and age).

The analysis of the stratified data generally uses the
Mantel-Haenszel procedure (see Chapter 3, pp. 75-76) or
a similar procedure. Different formulations are used for
dichotomous, nominal, ordinal, and numerical dependent
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variables, for measures based on count denominators and
person-time denominators, and for matched and independ-
ent observations. The Mantel-Haenszel analysis does two
things. First, it provides a heterogeneity test that com-
pares the associations observed in the different strata and
may hence point to effect modification by the stratifying
variable or variables. And secondly, it brings together the
findings in the different strata by computing an adjusted
odds ratio (“summary odds ratio,” “underlying odds ratio”)
or an adjusted rate ratio or other measure that controls
for the effect of the stratifying variable or variables. The
adjusted measure can then be compared with the crude
measure (based on unstratified data, and thus not control-
ling for the effect of the stratifying variable or variables).
A discrepancy will suggest confounding by the stratifying
variable or variables.

Here is a fictional example to make this clear. Imagine
a cross-sectional epidemiological study that finds that
MRSA carriage is associated with infrequent hand wash-
ing (<7 times a day), with an odds ratio of 2.8, and also
with overweight (body mass index above 25), with an odds
ratio of 3 (a crude association between MRSA infection and
overweight has in fact been reported in a study of prison
inmates) (34). Suppose that we wish to see whether over-
weight has a confounding or modifying effect on the hand
washing-MRSA association, using stratification and the
Mantel-Haenszel method. To this end, we would stratify
the sample by overweight, using two strata (overweight
absent or present) or more than two strata (with different
degrees of overweight). First, we would compare the odds
ratios (expressing the association between infrequent
hand washing and MRSA carriage) in the various strata. If
these are all 2.8 or close to 2.8, overweight is not a modi-
fying factor. But if they differ and the heterogeneity test
gives a significant result, we would regard overweight as
an effect modifier. But a word of caution: these heterogene-
ity tests have a low power to detect significant differences,
and it is usually recommended that a p level of .1 or higher
should be used as a cut-point for significance. Because of
the low power of the tests, use may instead be made of
indices of heterogeneity, namely, Higgins and Thompson’s
H (a value of 1.5 or more suggesting notable heterogene-
ity) and Isquared (the proportion of variation attributable
to heterogeneity) (35). In this instance, let us imagine that
the odds ratio for the hand washing—-MRSA association is
1.5 in the “not overweight” stratum and 12 in the “over-
weight” stratum. This would clearly show that overweight
has a modifying effect. (Remember that these findings are
imaginary.)

Now let us look at the adjusted odds ratio computed
by the Mantel-Haenszel procedure. This odds ratio should
be compared with the unadjusted ratio (2.8). If there is an
appreciable difference, this is evidence that overweight has
a confounding effect on the hand washing-MRSA associa-
tion. The adjusted measure then provides a better measure
of the direction and strength of the association than the
unadjusted measure, which is confounded by the effect of
overweight. It should be noted however that if overweight
is also a strong effect modifier, the adjusted measure may
not be a very helpful basis for practical healthcare pro-
cedures. It is a kind of average and would obscure the
information that the association between infrequent hand
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washing and MRSA is very strong only in the overweight
subjects, who might be selected as a high-risk group requir-
ing special attention. The Mantel-Haenszel odds ratio in
our fictional study is 2.9, very close to the unadjusted value
of 2.8; in other words, in this case overweight is a modifier
but not a confounder.

Stratification is unwieldy if there are more than one
or two stratifying variables. Stratifying by age (say five
age categories) and sex would mean 10 strata, and the
addition of two more stratifying variables would boost
the number of strata to 40 or more. Except in very sim-
ple studies, the multivariate method of choice is gener-
ally the use of a mathematical model that permits the
simultaneous examination of relationships involving a
number of independent variables, permitting estimation
of the strength and statistical significance of their asso-
ciations with the dependent variable, the identification
of confounding and modifying effects, and the control
of confounding effects. The available procedures, which
use different models, include multiple linear regression,
which assumes that effects are additive, and multiple
logistic regression, which assumes that effects are multi-
plicative, as do multiple Poisson regression and Cox pro-
portional hazards regression (which are appropriate for
person-time data).

A decision must be made about the variables to be
included in the regression analysis. Variables that are of
interest as possible effect modifiers should obviously be
included, and all potential confounders should be consid-
ered for inclusion. The selection of potential confounders
may be based on the strength of the associations demon-
strated in bivariate analyses and by comparisons of the
findings in different strata. Sometimes it is decided to base
the selection on a series of stepwise multivariate analyses
in which a single variable is eliminated or added at each
step. In stepwise “backward deletion” all the potential con-
founders are initially included; the variable with the small-
est effect is then deleted, and this process is repeated until
the removal of a further variable produces an appreciable
difference (say of 20%) in the total effect. In stepwise “for-
ward selection,” one or two variables, e.g., age and sex, are
included in the first analysis, and the potential confounder
with the strongest effect is then added; this process is
repeated until the addition of extra variables makes no
important impact on the effect.

In some circumstances, the inclusion and neutraliza-
tion of a variable that is not a confounder may introduce
rather than remove bias (25). “Overadjustment” should be
avoided.

The regression methods usually used are logistic
regression analysis or (if duration of exposure to the
suspected risk or preventive factor has to be taken into
account) Cox proportional hazards regression analysis.
If we apply logistic regression analysis in our fictional
study of hand washing and MRSA carriage, using a model
that includes infrequent hand washing, overweight, and
the interaction between infrequent hand washing and
overweight, the computer program will provide coeffi-
cients that can be transformed into odds ratios that are
identical or very similar to those provided by the Mantel-
Haenszel procedure, together with confidence intervals
and significance tests.
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Three precautions (often ignored) are worth noting
with respect to logistic and Cox regression analysis. First,
the analysis is invalid if the model is inappropriate in that
it does not conform with reality—that is, if the effects of the
various variables are not in fact multiplicative. For logistic
regression analysis there is a simple goodness-of-fit test,
comparing the observed findings with those predicted
by the mathematical model, which should always be per-
formed. Secondly, unless there is no interest in effect modi-
fication, interactions between variables should always
be specified in the model; if the interactions turn out to
be insignificant they can then be removed. And thirdly, a
choice must be made between alternative analysis proce-
dures—for example, conditional logistic regression should
be used for matched data, and unconditional logistic
regression in other instances.

Interpretation: Making Sense of Associations

Most analytical studies in the health field aim either to
throw light on causal processes or to provide the means for
predicting outcomes. They examine associations between
variables and seek evidence that variables that are asso-
ciated with the disease or other condition under study
are risk factors (or preventive factors) that influence the
development or severity of the condition, or, if they do not
play an etiological role, that they can be used as predic-
tors of the outcome (risk markers). Healthcare procedures
directed at risk and preventive factors may, if these are
modifiable, modify the outcome; and risk markers may
identify individuals or groups at whom these procedures
should be directed.

The first questions to be asked about an observed
association concern the possible effects of bias. Is the asso-
ciation a true one, or may it be an artifact—a bogus asso-
ciation—attributable to information bias, selection bias, or
confounding bias? May these biases have influenced the
strength and direction of the association? And, on the other
hand, if no association is observed, may biases account for
its absence? If marked bias is strongly suspected and there
is no way of correcting or controlling its effects, further
examination of the observed association is usually point-
less. Confounding should, if possible, be controlled by one
of the methods mentioned above.

An association may be misleading for other reasons
also. For example, in a follow-up study of persons selected
because of their extreme values, they will tend, by chance,
to have less extreme values the second time (regression
toward the mean) if there is any degree of random varia-
tion. Hypertensives will tend to have lower pressures the
second time they are measured. In an uncontrolled study
this reduction might be spuriously attributed to treatment.
An appropriate computer program can assess this effect or
neutralize it in the analysis.

The strength of an association may be a measure of
its importance—the stronger it is, the more likely that it
is important. Attention should of course be paid to the
confidence interval. Appraisals of strength are best delayed
until possible confounders and modifiers have been incor-
porated into the analysis. Multivariate analysis can reveal
that an association is stronger than it initially seems.

If effect modification is detected, its possible reasons
should be considered.
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Statistical Significance Anything may happen by chance.
However strong the association that is observed between
two variables, it may be fortuitous, unlikely though this
may be. The absence of an association may also be a fortui-
tous occurrence. The question is not whether an observed
association may have occurred by chance—the answer
to which is almost always “Yes”—but whether we are pre-
pared to regard it as nonfortuitous.

Significance tests (see Chapter 2, pp. 26-27) generally
appraise the probability that there is no association (i.e.,
no difference in either direction); this is the null hypothesis.
And the study hypothesis (the alternative to the null hypoth-
esis) is that there is an association (a difference in either
direction). A two-sided test should then be used. But if the
study hypothesis is that there is difference in a particular
direction, a one-sided significance test can be used. A one-
sided test is more likely to give a significant result than a
two-sided test, but it should be used only if it is warranted
by a one-sided null hypothesis, stated before the test is
performed.

If the probability that there is no association (p) is low,
we can be reasonably sure that the association is not for-
tuitous. If the p value is under .05, for example, we can be
95% sure. But we can never be quite sure that the finding
is not due to chance. And, on the other hand, if the test
result is “not statistically significant,” this does not neces-
sarily mean that the association is fortuitous (any more
than a negative sputum test for the tubercle bacillus nec-
essarily means that a patient does not have tuberculosis).
The verdict is “not proven.” If samples are large, however,
a “not significant” result may be taken to mean that there
is unlikely to be a nonfortuitous association of any great
strength.

We should mention that for some significance tests, the
null hypothesis is that the means, proportions, or rates
that are compared are different, not that they are the same,
and its alternative (the study hypothesis) is that they are
the same. These are equivalence tests and noninferiority
tests that are conducted in order to decide, for example,
whether a new treatment is as good as, or at least not
worse than, an established treatment. In these tests, a low
p value points to similarity and not (as in most significance
tests) to a difference.

One of the questions asked at the start of this chap-
ter was if a study of MRSA carriage showed no significant
association with smoking (p > .05), this would mean that
smoking has no effect on the prevalence of MRSA carriage.
The answer is obviously “No,” since even if there are no
biases (and we do not know this), the negative significance
test tells us only that there is no convincing evidence that
there is no relationship, not that there is no relationship.
“Absence of evidence is not evidence of absence” (36).
Even a strong association may be statistically nonsignifi-
cant if the sample is small, and we do not know the size of
the sample in this study. Only if the study was based on a
very large sample might we be reasonably safe in conclud-
ing that smoking has no effect.

Significance tests have “built-in errors.” Using a signifi-
cance level of 5%, purely random processes will produce a
verdict of “statistically significant” in about 5 of every 100
significance tests performed, even if no real associations
exist. This may be an important consideration if many
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tests are performed on the same body of data, and statis-
tical procedures that take account of multiple testing are
available.

Confidence intervals can be used to provide an indica-
tion of statistical significance. If, for example, the 95% confi-
dence interval for a difference between two rates or means
does not include 0, or if the 95% confidence interval for a
rate ratio or odds ratio does not straddle 1, this usually
means a significant difference (by most two-sided tests) at
the 5% level.

Useful though it may be to know whether an associa-
tion is significant, it must be remembered that it tells us
nothing about the strength or importance of the associa-
tion. A very weak association can be significant if the sam-
ple is large, and a strong association can be nonsignificant
if the sample is small.

Significance tests should not be done when they are
not needed. In some studies, especially in simple descrip-
tive studies not based on random or systematic samples,
the issue of fortuitousness may have little importance. For
practical purposes it may be enough to know that patients
with MRSA infections are concentrated in certain hospital
wards or that these infections are much more prevalent in
patients with certain disorders, without worrying about
deciding whether these associations might have occurred
by chance. In Bradford Hill’s words, “there are innumerable
situations in which (tests of significance) are totally unnec-
essary because the difference is grotesquely obvious,
because it is negligible, or because, whether it be formally
significant or not, it is too small to be of any practical impor-
tance” (37). There is little point in doing a significance test
on an association that is likely to be an artifact or on one
that is so weak that it would be of no consequence even if
it were regarded as nonfortuitous.

Causal Inferences The question of causality is a knotty
one. Using the findings of an observational study, how can
we infer that the association between A and B is a cause—
effect one? How can we infer that A (or a factor for which
A is a proxy measure) produces or influences B—or, of
course, that B (or a factor of which B is a proxy measure)
produces or influences A? How can we infer that exposure
to the one variable, or a change in its amount or quality,
results in an alteration in the amount or probability or qual-
ity of the other variable?

There are two obvious prerequisites, without which
an observed association cannot be regarded as definitely
causal. First, the assumed cause must precede the assumed
outcome. Time relationships are, of course, always known
in trials. In an interesting impeccably performed rand-
omized controlled trial of the effect of intercessory prayer
on hospitalized patients with bloodstream infections, in
which there was perfect blinding of patients and staff not
only to the allocation of patients but even to the existence
of the trial, it was found that patients who were prayed for
had a significantly shorter duration of fever, a significantly
shorter hospital stay, and a (nonsignificantly) lower mor-
tality (38). But the inference that this was a cause—effect
relationship was somewhat vitiated by the fact that the
praying took place 4 to 10 years after the patients’ hospi-
talization. Time relationships may also be known in longitu-
dinal observational studies and some case-control studies.
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They may be uncertain in cross-sectional and in other
case—control studies. However, it is essential that there
should be at least a possibility that the assumed cause
preceded the assumed outcome.

Secondly, the observed association must not be wholly
attributable to selection bias, sampling bias, or confound-
ing bias. The effects of bias are usually uncertain, and even
in the best-planned and best-performed study there may be
doubts about possible unknown or unmeasured confound-
ers. Hence there is usually a degree of uncertainty about
the validity of causal inferences.

All we can hope for is reasonable evidence for a causal
relationship, strong enough to be used as a basis for deci-
sion and action. Basically, what we can do is see how well
the facts fit in with what we might expect to find if the
association was causal. This is not quite the same thing
as “proving” a causal association, but it is the best we can
do. The following additional criteria, taken together, may
strengthen or weaken the case for causality, although none
of them is essential or conclusive:

1. Statistical significance does not necessarily support the
case for a causal association, but its absence weakens
the case if the test is sufficiently powerful (which usu-
ally means “if the sample is large enough”).

2. Strength of the association—the stronger it is, the more
likely that it is causal, and not produced by bias or con-
founding. But a weak association may also be (weakly)
causal.

3. Dose-response relationship—the case for causality is
supported if there is a correlation between the amount,
intensity, or duration of exposure to the “cause” and the
amount or severity of the “effect.” But a dose-response
relationship does not “prove” causality, and nor does
its absence disprove it; there may, for example, be an
“all-or-none” response that appears only when a caus-
ative factor reaches a threshold level, or a relation-
ship between cause and effect that is U- or J-shaped
(or inverted U- or J-shaped) rather than linear.

4. Time-response relationship—if the incidence of the
“effect” (e.g., the rate of new cases of a disease) peaks
some time after a brief exposure to the “cause” and then
decreases, this supports the case.

5. Predictive performance—if the study results provide new
knowledge supporting an a priori hypothesis concern-
ing a predicted effect, this supports the case; a failed
prediction weakens the case.

6. Specificity—the finding that the “effect” is related to only
one “cause,” or that the “cause” is related to only one
“effect,” may be regarded as supporting the case. But a
lack of specificity in no way negates a causal relationship.

7. Consistency—if the same association is found repeat-
edly, in different subgroups of the study population and
in other populations or circumstances and in studies by
other investigators or methods, this strongly supports
the case. If results are inconsistent and the variation
cannot be explained, this weakens the case.

8. Coherence with current theory and knowledge—in par-
ticular, the availability of a satisfactory explanation of the
mechanism by which A may affect B—supports the case.
But investigators can usually think up a plausible causal
explanation for any association. If no plausible explana-
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tion can be suggested, a cause—effect relationship may be
difficult to accept, but should probably not be ruled out.
Incompatibility with known facts weakens the case.

These are not clear-cut hard-and-fast “rules of evi-
dence.” In the words of Bradford Hill's seminal paper on
“association or causation”: “None ... bring indisputable evi-
dence for or against the cause-and-effect hypothesis and
none can be required as a sine qua non. What they can do,
with greater or less strength, is to help us to make up our
minds on the fundamental question, is there any other way
of explaining the set of facts before us, is there any other
answer equally, or more, likely than cause and effect?” (37).
The appraisal of causality is thus a matter of judgment,
which means that experts may differ in their conclusions.
But there is no substitute for considered judgments based
on the available evidence, as the basis for decisions about
healthcare in situations where (as almost always) there is
no completely valid answer.

At this point, let us return to one of the questions asked
at the start of this chapter: “A study of adults undergoing
mandatory health examinations revealed that MRSA car-
riage was about twice as high among nonsmokers (4.3%)
as among smokers (2.2%); the difference was statistically
significant (p = .019). Does this mean that smoking pro-
tects against MRSA carriage?” The answer must of course
be “No” if only because the association may be attribut-
able to confounding. We might think of age as a possible
confounder, since (in many countries) the proportion of
smokers is higher among younger than among older adults,
and both healthcare-associated and community-associated
MRSA infections have been found to be much less prevalent
in younger than in older adults (39). Actually, confound-
ing by age could not have caused this association since
although age was not controlled in the study that found the
association, age was not associated with MRSA carriage in
that study, which was conducted in Taiwan. The authors of
the study suggested that “it might be that smoking creates
a microenvironment in the nose that protects against the
growth of S. aureus.” But it might also be that the association
was a chance occurrence, a fluke—significance tests may be
misleading if many tests are done on the same body of data,
and the test for the association with smoking in this study
was 1 of 21 tests for associations. We should agree with the
authors that this “requires further study,” and wait and see
whether the association is replicated in other studies.

ECOLOGICAL AND MULTILEVEL STUDIES

Ecological studies are studies in which the units of analysis
are populations or groups of people, rather than individuals
(3). In other words, the variables whose associations are
examined are the characteristics of the groups that are
studied, and not the characteristics or experiences of the
individual members of the groups. Analytical ecological
studies may be cross-sectional or longitudinal.

Ecological studies permit the examination of factors
that affect a whole group. These factors include aggregate
measures (or derived measures) that summarize the attrib-
utes of individuals, such as the level of herd immunity or
the prevalence of carriage of a microorganism, or global
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measures that do not, for example, the accessibility of
health services, or cultural norms affecting interpersonal
contacts. In the context of healthcare-associated infec-
tions, ecological studies may aim to determine the effects
of characteristics of the unit or ward in which the patient
is treated, including the use of infection-control measures,
personnel size, and personnel functioning, or characteris-
tics of the hospital.

Examples of ecological studies are a 2-year study of
two neonatal intensive care units in New York, where a
multivariate analysis revealed an inverse relationship (in
one of the units) between the number of hours of nurs-
ing care per day in the unit and the risk of bloodstream
infections (40); a Spanish study that found that the ris-
ing prevalence of Clostridium difficile infection in a large
number of hospitals between 1999 and 2007 was strongly
correlated with the rising prevalence of use of antimicrobi-
als in the hospital (41); and a study of a Danish hospital,
where the incidence of healthcare-associated bloodstream
infection remained stable during a 4-year period despite a
significant increase in the amount of alcohol-based hand
rub used (42).

If operational definitions and methods of a study are
in the investigators’ control, ecological studies require the
same precautions to prevent information bias as do indi-
vidual-based studies. Unfortunately, it is often necessary
to use information of questionable accuracy or appropri-
ateness, collected for administrative or fiscal purposes by
hospital administrations or obtained from statistical offices
or other official sources. In such instances, circumspection
in its use is essential.

The analysis should follow the same lines as in other
analytical studies. Use is frequently made of the correla-
tions between variables, so that ecological studies are
sometimes called correlation studies. Possible confound-
ing by other group-based variables should be, if possible,
appraised and controlled.

Multilevel studies use both group-based and individual-
based variables. They examine the effects of both sets of
variables and can explore the relationships between their
effects. Group-level factors may not only change the risk
of an infection but also modify the association between
individual-level risk factors and risk of an infection. Exam-
ples cited in a review of the potential value of multilevel
studies (43), with respect to the association between num-
ber of sex partners and the risk of an STD, are the effects
of the prevalence of STD in the population, the degree of
assortative (within-group) mating, and the availability of
STD clinics. The effects of group-level factors can be esti-
mated after adjustment for individual-level variables, and
vice versa. Multilevel studies can thus pinpoint the pos-
sible value of interventions directed both at groups and
at individuals.

An example in the field of hospital-associated infec-
tions is a Finnish study performed in 60 wards in 6 hos-
pitals, which collected individual-level data concerning a
number of risk factors, together with hospital-level data
(a university hospital or not?), and ward-level data that
emphasized work hours and measures of work stress
and collaboration between personnel. Multilevel logistic
regression analyses, controlling for hospital factors and
patient-level risk factors, showed that the risk of infections
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was raised if the staff had long work hours or a high level of
work stress, as expressed in a low trust of other unit mem-
bers, a perceived imbalance between efforts and rewards,
a poor collaboration between ward supervisors, and other
indicators (44).

PROGRAM REVIEWS

Evaluative studies of healthcare programs can be usefully
categorized as program reviews or program trials (11).

Program reviews are studies that evaluate specific
healthcare programs and are motivated by concern with
the welfare of the patients, community, or population to
whom care is given, with the intention of helping whoever
runs and makes decisions about the program. They do not
question or test the assumptions on which the program
is based, for example, the assumption that certain proce-
dures will have beneficial effects. They examine the opera-
tion and outcomes of the program, but are not concerned
with cause-effect hypotheses or inferences.

Program reviews are basically descriptive epidemio-
logical studies, and in principle they require the same pre-
cautions to avoid information bias and selection bias as do
other descriptive epidemiological studies. However, there
are two constraints: to be useful, a review must usually be
rapid and (if possible) ongoing, that is, performed in real
time; and the review is usually conducted in a service-
oriented setting, where evaluation is not seen as a major
priority, and little time and resources may be available for
special information-collecting procedures. Very rigorous
definitions, elaborate methods, and extensive lists of vari-
ables may therefore not be practicable.

Some associations between variables may be relevant
and therefore examined in a program review. But, since no
hypotheses are tested, attention need not be paid to con-
founding or to causal inferences. If there are hypotheses to
be tested, the more rigorous methods appropriate in pro-
gram trials (see below) should be used.

Like other evaluative studies, program reviews aim to
collect objective facts that provide a basis for subjective
decisions on the value of the program. The topics to be
considered when defining the study objectives include the
following (11):

1. The requisiteness of the program—to what extent is it
needed? What is the extent and severity of the problems
that the program aims to solve?

2. The outcomes of the program—the occurrence of desira-
ble effects (effectiveness) and undesirable effects (harm-
lessness).

3. The process—the performance of planned activities by
the program’s personnel, and compliance and the utili-
zation of services by the recipients of care.

4. The structure—the availability of personnel and facili-
ties, and geographic and economic accessibility.

5. Efficiency—the cost incurred in achieving results: in
monetary terms (the study of which requires special
expertise) or in nonmonetary terms, for example, the
number of nurses, hours of work, hospital days, hospi-
tal beds, waiting time, or screening tests required for a
particular purpose.
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6. Differential value—differences in the above features in
different categories or groups or in different circum-
stances.

One of the questions asked at the start of this chapter
was: “Suppose that a program to encourage hand washing by
personnel is followed by a reduced rate of S. aureus infections
among patients. Does this mean that the program reduced
the incidence of these infections?” The answer is “No,” since
the reduction in the rate might well have other causes. A
“Yes” answer would require a controlled study, using the
stringent methods of a program trial. However, in a review of
a program that does not question the assumption that hand
washing by personnel can reduce the probability of S. aureus
infections among patients, this would be regarded as a satis-
factory outcome, indicative of the program’s effectiveness.

Unless there is no intention to publish the results, there
will always be other health workers or researchers who
will be interested in the applicability of the findings in their
own healthcare services or populations, even if the study
was planned to meet a specific local need. Care should
therefore be taken to collect, and provide, any information
about the group or population studied, or about the con-
text, that may help others to decide on the relevance of its
findings elsewhere.

TRIALS

Clinical trials and program trials may be seen as epide-
miological experiments designed to evaluate healthcare
procedures or programs. Clinical trials evaluate therapeu-
tic, preventive, rehabilitative, or educational procedures
applied to individuals, and program trials evaluate interven-
tion programs applied at a group level (i.e., in a total hos-
pital or other care unit), possibly including, but not limited
to, procedures applied to individuals.

Unlike program reviews, both clinical and program tri-
als generally aim to produce generalizable results, appli-
cable in settings other than that in which the trial was
conducted. In addition to the precautions required to
ensure the internal validity of the study, thought should be
given to its usefulness in other contexts, and full informa-
tion should be collected and provided about the character-
istics of the samples, and the context in which the trial is
performed.

To facilitate decisions on the usefulness of the findings,
ways should be found of expressing them, when it is appro-
priate to do so, in terms of impact (such as attributable
or preventable fractions) or the number needed to treat in
order to cure or prevent one case, or cost.

Clinical Trials

Clinical trials are generally parallel studies, which compare
outcomes (both desired and undesired), in independent
groups of individuals who have been exposed and not
exposed to the procedure being tested or exposed to dif-
ferent procedures. They may also be externally controlled
studies, in which the exposed group is compared with data
obtained from other sources, or “self-controlled” studies,
in which the subjects are their own controls (before-after
studies and crossover studies).
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Uncontrolled trials are obviously of limited usefulness.

Externally controlled studies have obvious limitations
because of possible differences between the experimen-
tal and control subjects with respect to their character-
istics or management or manner of appraisal or the time
at which they were treated. Even patients treated in the
same way, but at different times, may have very different
outcomes; variations of up to 46% have been reported in
the death rates of control groups (who had the same treat-
ment) used by the same investigators in different cancer
chemotherapy trials (45). This is an important considera-
tion in studies using historical controls (patients treated
in the past).

“Self-controlled” before-after studies avoid many pos-
sible confounding effects but are subject to biases con-
nected with extraneous events, time-related changes, and
other factors. “Self-controlled” crossover studies are prac-
ticable only for interventions that do not have protracted
“carryover” effects, and their analysis requires special sta-
tistical procedures.

The following remarks apply to parallel studies.

Selection Bias and Confounding Bias A key feature of
well-designed clinical trials is their avoidance of selection
bias and confounding bias in order to ensure internal valid-
ity. This is accomplished by comparing groups that are ini-
tially similar, or have only chance differences, with regard
to prognostic factors (factors that may affect the out-
come), and it is generally achieved by randomization, that
is, by a random allocation of individuals who are eligible
and have given their informed consent. To make the groups
even more similar, randomization may be performed after
stratifying the subjects by chosen prognostic factors; or
use may be made of minimization (46,47), a technique that
permits the control of more variables. The same eligibility
and exclusion criteria are applied in each group.

If randomization or minimization is not used, the trial
will have the same selection biases as an analytical obser-
vational study.

But even in the best run of clinical trials, the subjects
may not all remain in their assigned groups throughout the
study. Nor only may losses occur due to death or other rea-
sons, but subjects may switch from one group to another,
for example, because of noncompliance or a decision that,
in the interests of their health, treatment should be stopped,
changed, or started. These changes should be documented,
and the resultant possible bias should be taken into account
when the findings are analyzed and interpreted.

Whatever the internal validity of the trial, the general-
izability of its results depends on who is studied and the
circumstances of the study. External validity may be com-
promised by the study’s eligibility and exclusion criteria or
by selection bias, for example, the unreadiness of eligible
subjects to participate. Internal and external validity may
be inversely related—the more stringent the eligibility and
exclusion criteria, the less generalizable the results may be.
The trial’s results may be applicable only to persons simi-
lar to the study’s subjects, and then only if the setting is
similar (48). The results of a trial of selective decontamina-
tion of the digestive tract in critically ill patents, for exam-
ple, might be generalizable only to intensive care units with
a low prevalence of antibiotic-resistant bacteria (49). An
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assessment of the applicability of the results requires infor-
mation not only about eligibility and exclusion criteria but
about ethnic, socioeconomic, and other characteristics
that may influence the outcomes, the proportion of eligible
subjects who were included in the trial, treatment facilities
and settings, etc. (48).

Information Bias As in observational studies, precau-
tions should be taken to avoid information bias. Standard-
ized operational definitions and methods of measurement
and ongoing monitoring of the performance of the study are
particularly important in multicenter trials. If there is reason
to believe that there may be bias if the subject or observer
knows to which group a subject has been assigned, blinding
(e.g., of subjects, clinicians, technicians, or other observ-
ers) is advisable; this may entail the use of placebo treat-
ments and concealment of the allocation scheme.

Analysis The analysis should commence with a compari-
son of the groups (usually treatment and control groups)
with respect to characteristics that may affect the out-
come, in order to provide assurance that the groups are
indeed similar, and that confounding by these characteris-
tics need not be considered.

The main thrust of the analysis is a comparison of the
outcome and (if known) the intermediate effects in the
treatment and control groups. The effects of modifiers can
be appraised by the same methods as those used in analyti-
cal observational studies.

If there were subjects who switched groups during the
study, that is, by moving from a treatment to a no-treatment
group, or vice versa, two sets of analyses are advisable.
First, intention-to-treat analysis, that is, a comparison of
the outcomes in the subjects originally allocated to each
group. This minimizes confounding but may underestimate
the efficacy of the procedure that was tested. And secondly,
per-protocol (or on-randomized treatment) analysis, which
compares the experience of subjects while they were still
in their allotted groups. This generally overestimates the
efficacy of the procedure and has the disadvantage that it
is not based on randomized groups, so that possible con-
founding must be considered.

The easily calculated NNT or number needed to treat
(to produce, avoid, or cure one case) may he a helpful
yardstick for the value of the intervention, although it
expresses only the results of a particular trial conducted
on selected subjects over a particular time period and
is easily misinterpreted as a measure of the probability
that an individual person will benefit from the interven-
tion (50,51). Different NNT measures are appropriate for
different purposes (52,53)—expressing, for example, the
effect in the total population of a treatment or exposure to
some factor, the hypothetical benefit in subjects who are
exposed to the treatment or factor (EIN, or exposure impact
number, expressing the effect of removing the exposure),
or the hypothetical benefit in subjects who are not exposed
(NNE, or number needed to be exposed).

Program Trials

Trials of healthcare programs are important and may have
far-reaching implications. They are unfortunately beset
with difficulties. The distinctive feature of an experiment
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designed to study the effects of an intervention is that it is
the researcher who decides to whom the intervention will
or will not be applied. Many trials of healthcare programs
are not true experiments, but quasi-experiments, where the
decision to run a program was not made by the researcher.
The outcomes in a unit where the program is applied may
be compared with those in a control unit, but the units can-
not necessarily be regarded as similar, and such trials must
be analyzed as if they were analytical observational stud-
ies. Before-after comparisons may be used, but it may be
difficult to know to what extent the outcome is attributable
to the program rather then to other causes.

Randomization would seem to be the answer, but even
if a random allocation of two units is feasible, randomiza-
tion is here irrelevant—the same differences will exist, and
there will be the same possibility of confounding, which-
ever of the two units is exposed to the program. Again, the
trial would have to be analyzed as if it was an analytical
observational study.

For randomization to be effective, a reasonably large
number of entities must be available for allocation. In a
study of the use of disposable thermometers instead of
electronic thermometers to prevent C. difficile infections,
for example, 20 nursing units were randomly divided into
two groups, one of which used single-use disposable ther-
mometers exclusively and the other electronic thermo-
meters, with a switchover after 6 months (54). A number of
program trials have been done by running a program in ran-
domly chosen healthcare units, and not in others. For exam-
ple, randomized controlled trials of the effects (on patients)
of programs to encourage the immunization of personnel
against influenza have been conducted in samples of long-
term hospitals (55) and primary-care community clinics
(56). Villages, or groups of adjacent villages, can also be
randomized, as in African studies that tested the value of
community programs for the control of an STD as a means
of preventing AIDS (57,58). The validity of trials based on
randomly allocated clusters of subjects can be enhanced
if the clusters are stratified before randomization and the
same inclusion and exclusion criteria and methods of study
are used in each cluster (59), and if the analysis uses special
statistical procedures that take account of the tendency of
members of a cluster to be similar to one another.

Randomization of individuals is sometimes practicable
if the individuals cared for can be randomly allocated to an
intervention program or to a control group or other pro-
gram. The trial is then essentially a clinical trial, performed
in order to evaluate a program. As an example, in three hos-
pitals in Denmark a smoking intervention program, applied
6 to 8 weeks before elective hip or knee replacement, was
tested by randomly allocating patients to this program or
to a control group (60). The rates of wound infection (with
a positive culture) were 4% in the program group and 23%
in the control group (p = .002).

If the evaluation of a program is based on a before-
after comparison (a “self-controlled” study), attribution of
the outcome to the program rather than to other causes
can be reinforced by information about intermediate
outcomes. The evaluation of an educational program for
intensive care unit nurses concerning venous catheter
insertion and care, aimed at decreasing the rate of blood
stream infections, for example, would be strengthened by
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information on changes in actual behavior, such as the
frequency of inspections of the catheter site for tender-
ness, and prior hand washing (61). With some programs,
it would also be helpful to know what happens if the
program is withdrawn.

Externally controlled program trials, which compare
the outcome of a program with national or other data
obtained from other sources, may have questionable
validity, since definitions and study methods may be dif-
ferent, the populations may have different characteristics
or circumstances, and the data may refer to different time
periods.

Case-control studies can sometimes be used to evalu-
ate programs, by comparing people who have experi-
enced an undesirable outcome (cases) with controls,
to see whether they differ in their prior exposure to the
program. In the Netherlands, for example, the value of a
cancer screening program was confirmed by a study of
women who died of breast cancer and matched survivors,
comparing their history of participation in the screening
program (62).

Meta-analyses

A meta-analysis (see Chapter 7) is a critical review and
integration of the results of separate studies of the same
topic (63). To avoid bias, it requires an exhaustive search
for studies, clear criteria for their inclusion, and possibly
(when appraising the quality of studies and extracting their
findings) blinding to authors, institutions, and journals.

Google and Google Scholar, although handy and
extraordinarily useful tools for most searches, are not suf-
ficiently accurate, thorough, or up-to-date for this purpose
(64), and the searches are usually conducted in PubMed,
which currently provides access to almost 20 million cita-
tions, and other special databases. The possible effect of
unfound studies should be assessed, since publication bias
is an established fact in the health field—negative or incon-
clusive studies are often “tucked away in desk drawers” or
rejected by editors. A fail-safe N is therefore computed by
WinPepi and other computer programs that perform meta-
analyses; this is the number of unfound negative studies
that would suffice to render the overall finding of the meta-
analysis nonsignificant or trivial; if it is small, the results
may be questioned.

When the studies have been found, the first step is to
appraise their quality, using clear and objective criteria
(this is a qualitative meta-analysis). This may lead to a deci-
sion to exclude some studies from the statistical analysis
of results, to perform separate analyses of studies of higher
and lower quality, to incorporate a measure of each study’s
quality in the analysis, or even to a decision to abandon
the meta-analysis as fruitless and issue a call for better-
designed studies.

The next step is comparison of the study results. This
may be based on a significance test for heterogeneity
or (since such tests have a low power) on indices of
heterogeneity (Higgins and Thompson’s H or I-squared)
(35). Heterogeneity may be caused by (for example) dif-
ferences in study design and performance (including dif-
ferences in working definitions), differences between the
characteristics of the subjects, and differences in the
circumstances of the studies. The reasons for differences
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should be explored. This may yield information on modify-
ing effects, which may be the most important benefit of the
meta-analysis.

The optional next step is integration of the results, to
produce an overall measure of the association. This may
be done for all the studies together (an analysis that may
be deemed unnecessary and not very meaningful if they
are very heterogeneous), or, if they are not all regarded as
“combinable,” for subgroups of the studies. Analyses that
exclude specific studies, one by one (sensitivity analyses),
may help to pinpoint those that have an especial influence
on the overall measure. The results of individual stud-
ies are usually measures of association—rate ratios, risk
ratios, odds ratios, hazard ratios, differences, or standard-
ized differences (“effect sizes”). These individual results
can be combined by statistical procedures (offered by
WinPepi and other software) that take account of sample
sizes and avoid confounding caused by imbalances in sam-
ple sizes. Use is generally made of the Mantel-Haenszel
method or other procedures that assume that the various
individual results are estimates of the same fixed effect, or
the DerSimonian-Laird random effects procedure, which
assumes that the effects in the various studies differ and
are randomly positioned about some central value. These
procedures compute summary measures of association and
estimate their confidence intervals. The results of studies
of different types can be brought together in this process,
provided that they used the same measures of association.

Interpretation of the findings and their practical impli-
cations must take account of the quality of the studies,
possible biases, and generalizability.

The following final comments center on the last ques-
tion asked at the start of this chapter, namely, “Suppose
we are told that a review of the literature has found 16 con-
trolled trials that show that a certain treatment for MRSA is
efficacious and 4 that do not (a highly significant difference:
p=.007). Can we conclude that the treatment works?”

Why is the answer “No”?

First, we are told that 20 trials were found. But trials
are not easy to find. Were there in fact only 20? How were
these 20 found? We do not know. Was the search system-
atic, and if so, what database or databases and what search
terms were used? According to the Cochrane Handbook
(65), an exhaustive hunt for randomized controlled trials in
PubMed’s computerized database requires 26 search terms
over and above those specifying the topic of the trials.

Publication bias—that is, a tendency for negative or
inconclusive trials to be “tucked away in file drawers”—is a
bugbear of meta-analysis. Were any registers of controlled
trials searched? Were unpublished studies sought in con-
ference proceedings? Was a statistical test done for asym-
metry of the funnel plot (a test indicative of a paucity of
small negative studies)?

What is the fail-safe N?7—That is, how many unpublished
negative findings would suffice to make the difference
nonsignificant or negligible?—Would a mere handful of
studies do this if they were found?

Secondly, the statistical test comparing the figures 16 and
4, and yielding a p value of .007, gives the same weight to
each study. But maybe the 16 positive studies were very
small ones, whereas the 4 negative studies may have been
large ones, whose results should carry more weight. Also,
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no attention was paid to the strength of the associations.
“Vote counting” (how many for? how many against?) is not
an appropriate method. A Mantel-Haenszel analysis, based
on the strength of the effect and sample sizes in each study,
and yielding an overall measure of strength, with its confi-
dence intervals, would be more convincing.

Thirdly, we know nothing about the quality of the
positive and negative studies. What, for example, does
“controlled” mean? How were the controls selected? Was
randomization used?

Without extra information, we certainly cannot con-
clude that the treatment works.

Further investigation is needed (a recommendation by
no means unfamiliar in epidemiological research).

PRACTICAL IMPLICATIONS

The findings of all epidemiological studies—descriptive or
analytical, but especially those of analytical observational
studies and trials—may point to a need for action as well
as a need for further research. But whether it is the epi-
demiologist’s job to make practical recommendations is a
matter of opinion. Probably most epidemiologists would
consider it a dereliction of duty if they did not do so and
if they abstained from calling for the specific interventions
whose potential value is indicated by their findings. They
usually undertake their studies with the stated or unstated
purpose of improving health or healthcare, and they wish
to see their findings translated into action. If A was found
to be arisk marker, then screening for A is advocated. If Bis
arisk factor, this calls for appropriate action to deal with it.
If C is a preventive factor, then an appropriate educational
or other prophylactic program is needed. If D is an effective
and safe treatment, it should be used. If program E is effec-
tive, it should be introduced as a routine. And so on. These
recommendations may extend beyond the healthcare facil-
ities in which the studies were conducted. Many hospital
studies of the burden of gastroenteritis, for example, have
led to calls for the routine vaccination of children against
rotavirus (66).

But there is an opposite view. Not all epidemiological
researchers really understand the process of policymaking.
The respected epidemiological journal Epidemiology dis-
courages policy recommendations in research reports,
saying “it is simply too facile to toss off a policy recom-
mendation in the closing paragraph of a scientific paper
without giving the implicit decision analysis the due
consideration it deserves. Making good health policy is
complicated.... Our editorial policy is intended to avoid
trivializing a complex process and to increase the likelihood
that policy discussions are treated with the seriousness
and depth of understanding that they deserve” (67). An
invited commentator on this decision said that he himself
would make a policy recommendation only in the unlikely
instance that he had information on all its potentially
important consequences, including economic benefits and
costs, and could conduct a formal decision analysis (68).
But another commentator dissented and cited examples in
which he believed the inclusion of policy comments in sci-
entific reports had had a material influence (69).
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For investigators who are not skilled in policy making
and decision analysis, a prudent compromise is probably
best: Sufficient details should be provided to facilitate deci-
sions on feasibility and applicability—the characteristics
of the subjects who were studied, the circumstances in
which the study was performed, and the efforts required
to achieve effects. Appropriate lines of action may then be
suggested, but in a cautious and “iffy” manner, that is, with
such provisos as “if this is feasible” or “if resources are
available.” Take care to translate the study findings, if pos-
sible, into quantitative indicators of cost and benefit that
will be meaningful to decision makers (e.g., the number of
screening tests required to detect one case, the number
needed to treat in order to prevent or cure one case, or the
attributable or preventable fraction of the disease or mor-
tality load that can be attributed to a given factor or pre-
vented by a given action) and do not hesitate to estimate
and mention possible savings on hospitalizations or other
costly procedures. Point to the lines of action suggested by
the evidence and provide evidence-based motivation. But
do not pontificate—leave the decision making to the deci-
sion makers. Softly, softly, catchee monkey.
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the Literature in Healthcare Epidemiology

and Infection Control

Nasia Safdar, Sanjay Saint, and Mary A.M. Rogers

With the growing use of evidence-based medicine and the
increase in medical information available in both print
and online sources, it has become increasingly difficult to
keep up-to-date on medical advances. Systematic reviews
and meta-analyses are important tools for summarizing
the literature and critical appraisal, providing a valuable
framework for medical decision making. Beyond their role
in clinical medicine, systematic reviews and meta-analyses
also may be used by researchers to synthesize evidence for
specific hypotheses and by policymakers to examine ben-
efits and harms of healthcare-related interventions. Recent
data suggest that at least 2,500 new systematic reviews
reported in English are indexed in MEDLINE annually (7).
This chapter summarizes the key features of systematic
reviews and meta-analyses, including general steps on how
to undertake these methods, interpret the results, and crit-
ically appraise a published systematic review. In general,
examples used will be relevant to healthcare epidemiolo-
gists, infection preventionists, and others with an interest
in healthcare epidemiology and infection control.

DEFINITIONS

A systematic review is a synthesis of all evidence that
addresses a specific research question. By using system-
atic, transparent methods to identify the relevant litera-
ture, with a view to minimizing bias, this method provides
reliable findings from which conclusions can be drawn and
decisions made (2,3).

The key characteristics of a systematic review are out-
lined in the Cochrane Handbook for Systematic Reviews (4).
They are:

e A clearly framed research question with explicitly stated
predefined eligibility criteria for studies

e A detailed description of methodology

e A comprehensive systematic literature search to identify
all studies meeting the eligibility criteria

¢ An assessment of the quality and internal validity of the
included studies

e A systematic analysis, presentation, and interpretation of
the characteristics and findings of the included studies

A meta-analysis is a type of systematic review in which
statistical methods are employed to summarize the results
of independent studies (5). By combining information from
all relevant studies, meta-analyses can often produce more
precise estimates of the effects of healthcare than those
derived from individual studies. Meta-analyses may also
provide an assessment of the consistency of the evidence
and an exploration of reasons behind the variation in
effects across studies.

STEPS FOR UNDERTAKING
A SYSTEMATIC REVIEW OR
META-ANALYSIS

The general steps for conducting a systematic review or
meta-analysis are:

Defining an appropriate healthcare question
Searching the literature

Assessing the studies

Synthesizing (or combining) the results
Placing the findings in proper context

G W

FORMULATING THE RESEARCH
QUESTION

Formulating a specific, answerable question is a critical
first step when initiating a systematic review. Importance
of the topic is consequential. If a research question is not
worth answering, it is not worth answering well. One rec-
ommended approach is using the acronym “PICOS” to help
formulate the research question (Table 7-1): the patient
population, the intervention of interest, the compara-
tor group, the outcome of interest, and the study design
chosen. The more precise the definition of these five com-
ponents, the easier it is to apply the systematic review
framework (6).

The patient population of interest should be clearly
defined in terms of age, characteristics of interest
(disease or condition, such as mechanically ventilated
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TABLE 7-1

Formulating a Research Question for a Systematic Review

Comparison
Patient or Problem  Intervention Intervention Outcomes Study Design

Tips for building  Starting with your  Ask “Which main Ask “What is the Ask “What can Ask “What are
patient, ask intervention main alternative [ hope to methodologically
“How would am [ to compare with accomplish?” rigorous study
I describe a considering?” the intervention?” designs?”
group of patients
similar to mine?”

Example In mechanically Does oral care Compared Reduce the Randomized
ventilated with topical chlo- with placebo incidence of controlled trial
patients in the rhexidine ventilator-

ICU associated
pneumonia

(Adapted from http://www.cebm.net/index.aspx?o = 1036. Accessed December 15, 2009. Asking Focused Questions.)

patients), and the setting, such as an intensive care
unit (ICU). The interventions must be clearly and trans-
parently reported. For example, for a question regard-
ing the association between topical oral chlorhexidine
and ventilator-associated pneumonia, it is important
to detail the dose, frequency, method, and site of appli-
cation. It is equally important to present details of the
comparator under consideration, such as placebo or
standard care. Definitions of standard care may differ
among the primary studies in the systematic review.
The outcomes of interest should also be clearly speci-
fied. For example, if ventilator-associated pneumonia is
an outcome, a validated standardized definition should
be used. Finally, study design considerations should be
explicitly addressed. Many systematic reviews include
only randomized trials, while others may choose to
include both experimental and observational studies.
The study question to be answered may drive the deci-
sion regarding what types of studies are to be included.
Whatever the rationale may be, decisions regarding the
population, intervention, comparison group, outcome,
and study design should be clearly stated in the system-
atic review or meta-analysis.

DEVELOPING CRITERIA FOR
INCLUDING STUDIES

A key component of a systematic review is the prespecifica-
tion of criteria—the eligibility criteria—for including and
excluding studies in the review (4). The patient population,
interventions, comparisons, and outcomes laid out in the
research question are used to derive the eligibility criteria.
For the patient population, the definition should be suf-
ficiently broad to avoid unnecessary exclusion of studies
but should be narrow enough that a meaningful result is
expected when they are considered in aggregate. Depend-
ing upon the condition of interest, the study population
may be defined in the context of other characteristics

such as sex, race, age, educational status, or venue of care
(e.g., ICU, nursing home). Any restrictions with regard to
population characteristics should be explicitly defined
and the rationale provided. Table 7-2 provides a list of rel-
evant questions to be addressed when evaluating the study
subjects.

The intervention should also be described in detail.
For those reviews in which there are slight variations in
the intervention across studies, a table describing the
elements of each intervention is helpful. Important con-
siderations include decisions regarding trials with multi-
ple interventions. The arms of the trial should be clearly
stated and the comparison groups specified. This is of
particular importance when the results will be pooled for
meta-analysis. For example, the pooling of relative risks
for septicemia that compare an intervention with usual
care should be separate from the pooling of such relative
risks when comparing an intervention with a placebo. Rel-
evant questions regarding the intervention are listed in
Table 7-3.

TABLE 7-2

Factors to Consider When Developing Criteria
for “Types of Participants”

How is the disease/condition defined?

What are the most important characteristics that describe
the participants?

Are there any relevant demographic factors (e.g., age, sex)?

What is the setting?

Should the participants be defined by a specific diagnosis?

Are there types of people who should be excluded?

How will studies involving only a subset of relevant
participants be addressed (e.g., studies containing
both pediatric and adult populations for age-specific
systematic reviews)?
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TABLE 7-3
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TABLE 7-4

Factors to Consider When Developing Criteria
for "Types of Interventions”

Factors to Consider When Developing Criteria
for "Types of Outcomes”

What are the experimental and control interventions of
interest?

Does the intervention have variations (e.g., dosage/
intensity, mode of delivery)?

Are all variations to be included?

How will trials including only part of the intervention be
handled?

How will trials containing the intervention of interest com-
bined with other therapies be handled?

A clinically useful review will address clinically relevant
outcomes. The outcomes for each study should be exam-
ined to determine the extent to which they are common
across all studies. A decision is often necessary regarding
handling of studies that have composite outcomes. For
example, if the desired outcome is catheter-related blood-
stream infection, should a study that fails to distinguish
between catheter colonization and catheter-related blood-
stream infection be included? Measurement of the out-
come is also an important consideration, both in terms of
the scale and timing. For example, if ventilator-associated
pneumonia is an outcome, it would be important to take
into account the variability in definitions used by inves-
tigators. Some studies may use a combination of clinical,
radiographic, and lower respiratory tract sampling, while
others may choose to use clinical and radiographic data
alone or in combination with a sputum or tracheal aspi-
rate specimen. In general, surrogate outcomes should be
included with caution, because they may not always pre-
dict clinical outcomes accurately. Table 7-4 lists several
outcome-related questions to be evaluated when conduct-
ing a systematic review.

The types of studies to be included in the review
should be specified a priori. Most systematic reviews
address evidence produced from randomized controlled
trials. Randomized controlled trials are less likely to have
selection bias, because proper randomization should pre-
vent systematic differences between baseline character-
istics of participants. Randomization of large groups of
patients tends to equalize the distributions of subjects
for both known and unknown potential confounders; such
trials provide the best evidence of an unbiased treatment
effect. Therefore, a systematic review of randomized trials
has a distinct advantage. Even within randomized trials,
however, there may be considerations related to study
design such as whether cluster-randomized trials or cross-
over trials should be included (4). Importantly, there are
some research questions in which a trial is not ethical or
feasible. In these instances, a review of observational stud-
ies may be appropriate. Although estimates of treatment
effectiveness obtained from observational studies—rather
than randomized trials—are more likely to suffer from inter-
nal bias, the results may be more generalizable to broad
patient populations due to the restrictive eligibility criteria
usually inherent within randomized controlled trials.

What are the main outcomes—those that are essential for
decision making and clinically relevant?

What is the primary outcome that the review could
address if sufficient studies were identified in order to
reach a meaningful conclusion?

What are the secondary outcomes of interest that could
provide clinical insight?

[s it important to collect information regarding side effects
or other adverse effects?

Are there outcomes relevant to potential decision makers,
including economic data?

Should data be collected regarding the type and timing of
outcome measurements?

The scope of the research question—either broad or
narrow—is important at the outset. For example, a meta-
analysis that targets whether topical oral chlorhexidine
can prevent ventilator-associated pneumonia is narrower
in scope than a meta-analysis that seeks to answer if oral
decontamination (antibiotics and antiseptics) can reduce
the risk of ventilator-associated pneumonia. Factors that
should be considered when defining the scope of a review
originate with underpinnings of the problem at hand,
whether purely clinical, biological, and/or epidemiological.
Extremely broad questions—for example, what is the epi-
demiology, clinical manifestations, diagnostic approach,
treatment, and preventive options for ventilator-associated
pneumonia—are often best addressed through a traditional
narrative review.

Finally, a research question may need to be revisited
over time. As evidence accumulates regarding a particular
clinically relevant topic, it is important to update system-
atic reviews and meta-analyses with the results from the
newly published studies. Therefore, systematic reviews
are always time dependent and are most useful in clinical
medicine when they contain all the most relevant literature
available.

LITERATURE SEARCH

Systematic reviews require a comprehensive, objective,
and reproducible search of multiple sources to ensure that
all relevant studies are included. Healthcare bibliographic
databases such as MEDLINE are a good place to start,
although MEDLINE alone is not considered sufficient and
should be supplemented with additional data sources.
Currently, 5,200 journals in 37 languages are indexed in
MEDLINE, and fortunately, PubMed provides free online
access to MEDLINE. EMBASE is another electronically
searchable database that is available only by subscription
and has over 12 million records since 1974. While there
is some overlap between EMBASE and MEDLINE, of the
4800 journals indexed in EMBASE, 1,800 are not indexed in
MEDLINE, and of the 5,200 indexed in MEDLINE, 1,800 are
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not indexed in EMBASE. Access to MEDLINE via PubMed is
located at www.pubmed.gov and for EMBASE at www.info.
embase.com.

The Cochrane Central Register of Controlled Trials
(CENTRAL) is an excellent source of reports of controlled
clinical trials. CENTRAL, published as part of the Cochrane
Library, is updated quarterly. Although many of the records
in CENTRAL overlap with MEDLINE or EMBASE, CENTRAL
includes reports of clinical trials that are not part of MED-
LINE or EMBASE, which may have been published only in
specialized registers and other resources. If other reviews
are of interest, Centre for Reviews and Dissemination is an
excellent resource (http://www.york.ac.uk/inst/crd/).

Besides these key international databases, there are
several national and regional databases that are useful to
examine for additional studies. Many are available free of
charge on the Internet. Table 7-5 lists examples of regional
electronic databases (4).

When designing the search strategy, important con-
siderations include whether the review is limited to rand-
omized trials, whether the language of the publications will
be inclusive or restrictive, the time period of the literature
search, and whether data from unpublished studies are to
be included. Assistance from an experienced healthcare
librarian is highly recommended.

A balance between sensitivity and precision may
need to be struck when undertaking searches to identify
potentially relevant articles. Sensitivity is defined as the
number of relevant reports identified divided by the total
number of relevant reports in existence. Precision is defined
as the number of relevant reports identified divided by the
total number of reports identified. Article abstracts iden-
tified through a literature search can be quickly scanned
for relevance to the research question; sensitivity is usu-
ally preferred over precision to ensure that the systematic
review includes all potentially relevant articles.

In general, electronic databases can be searched using
standardized subject terms assigned by indexers (MeSH

TABLE 7-5
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for MEDLINE). The goal of the standardized subject terms
is to ensure that articles using different words to describe
the same concept are easy to retrieve. However, often the
subject terms may not retrieve articles corresponding to
the terms of interest. An additional challenge is that stand-
ardized subject terms may differ from one electronic data-
base to the other; thus, a search must be customized to
each database being searched.

The Cochrane Handbook for Systematic Reviews rec-
ommends that one way to identify controlled vocabulary
terms for a database is to retrieve articles that meet the
inclusion criteria and to note which subject terms have
been applied to them. Those subject terms can then be put
into the search to identify additional relevant articles. The
“Explode” feature in MEDLINE searches narrower terms
that are “under” the searched term in the MeSH hierarchy.
The “Explode” feature in MeSH does not search related
terms. For instance, using Explode with the MeSH term
“Hepatitis” will find all articles indexed with more specific
terms beneath it as well as general articles that are indexed
simply, “Hepatitis.” In MEDLINE, it is important to note
that a report of a randomized controlled trial would be
indexed as “Randomized controlled trial” while an article
about randomized controlled trials would be indexed with
the term “RANDOMIZED CONTROLLED TRIALS AS TOPIC.”
A comprehensive search strategy often includes, in addi-
tion to subject terms, a wide range of free-text terms such
as pressure sore OR decubitus ulcer. Boolean operator
terms such as “AND,” “OR,” and “NOT” are applied in
searches to refine the search strategy by joining each
search concept to the next. Figure 7-1 provides an exam-
ple of combining search concepts to identify relevant
records (4).

As most systematic reviews focus on randomized con-
trolled trials, it is instructive to become familiar with a
highly sensitive search strategy for identifying randomized
trials in MEDLINE. There are two versions: a sensitivity- max-
imizing version and a sensitivity- and precision-maximizing

Examples of Regional Electronic Bibliographic Databases

Country

Web site

Africa: African Index Medicus

Australia: Australasian Medical Index

China: Chinese Biomedical Literature Database

Eastern Mediterranean: Index Medicus for the eastern
Mediterranean region

Europe: PASCAL

India: IndMED

Korea: KoreaMed

Latin America and the Caribbean: LILACS

South-east Asia: Index Medicus for the South East Asia
Region (IMSEAR)

Ukraine and the Russian Federation: Panteleimon

Western Pacific: Western Pacific Region Index Medicus
(WPRIM)

www.indexmedicus.afro.who.int/
www.nla.gov.au/ami/
www.imicams.ac.cn/cbm/index.asp
www.emro.who.int/his/vhsl/

International.inist.fr/article21/html

Indmed.nic.in/

www.koreamed.or/searchbasic.php

Bases.bireme.br/cgi-bin/wxislind.exe/iah/online/?IsisScript = iah/
iah.xis&base = LILACS&lang = i&form = F

Library.searo.who.int/modules.php?op = modload&name =
webis&files = imsear

www.panteleimon.org/maine.php3

Wprim.wpro.who.int/searchbasic.php
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Sepsis concept

Sepsis; bacteremia; fungemia; viremia;
Septic shock; endotoxemia;
Hemorrhagic septicemia.

RCTs in
sepsis

Elderly with sepsis

Relevant Records

Elderly concept RCTs concept

randomized controlled trial
or controlled clinical trial

Aged; frail elderly;
age factors.

FIGURE 7-1 Combining concepts as search sets. RCT, rand-
omized clinical trial.

RCT in the elderly

version. These were developed by the Cochrane Collabora-
tion and are shown in Tables 7-6 and 7-7.

Bibliographic software such as EndNote is useful to
keep track of references. It is important to ensure that any
fields that relate to subsequently published comments,
retractions, updates, or errata be included in the down-
load of references from electronic databases to EndNote or
another reference manager program.

Detailed documentation of the search process is essen-
tial so that it can be reproduced. For purposes of publica-
tion, the detailed search strategy may best be reported in
an online appendix to save space. The steps for reporting
the search strategy in the systematic review include listing
all databases searched, with dates of the last search and
the period searched. Language restrictions, if any, should
be noted. If additional information has been requested

TABLE 7-6

Cochrane Highly Sensitive Search Strategy for
Identifying Randomized Trials in MEDLINE:
Sensitivity-Maximizing Version: PubMed Format

#1 Randomized controlled trial [pt]
#2 Controlled clinical trial [pt]

#3 Randomized [tiab]

#4 Placebo [tiab]

#5 Drug therapy [sh]

#6 Randomly [tiab]

#7 Trial [tiab]

#8 Groups [tiab]

#9 #1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8
#10 Animals [mh] NOT humans [mh]
#11 #9 NOT #10

Note: PubMed Search syntax: [pt] denotes a publication-type term;
[tiab] denotes a word in the title or abstract; [sh] denotes a sub-
heading; [mh] denotes a medical subject heading; [mesh: noexp]
denotes a medical subject heading (MeSH) term (not exploded); [ti]
denotes a word in the title.
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TABLE 7-7

Cochrane Highly Sensitive Search Strategy
for Identifying Randomized Trials in MEDLINE:
Sensitivity- and Precision-Maximizing Version:
PubMed Format

#1 Randomized controlled trial [pt]

#2 Controlled clinical trial [pt]

#3 Randomized [tiab]

#4 Placebo [tiab]

#5 Clinical trials as topic [mesh: noexp]

#6 Randomly [tiab]

#7 Trial [ti]

#8 #1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7
#9 Animals [mh] NOT humans [mh]

#10 #8 NOT #9

from authorities in the field or the authors of the included
studies, the names of people contacted and what infor-
mation was obtained from them should be provided. Any
conference proceedings should be listed as well as addi-
tional sources found through Internet search engine que-
ries. The number of studies identified by each of the above
approaches should be reported.

STUDY SELECTION

The study selection process requires an accounting of the
articles that will be included, as well as a record of the
number and reasons for exclusion of studies that do not
meet the eligibility criteria. Depending upon the specific-
ity of the search criteria, it is possible that a large number
of records will be retrieved. Final selection should main-
tain the eligibility criteria as originally specified when the
systematic review was initiated. It is possible that several
reports detailing different aspects of the same study may
be found, in which case, one should carefully assess the
interventions and outcomes reported in each publication
and the degree to which the eligibility criteria are satisfied.
Duplicate publications may exist and often correspond-
ence with the authors is required to clarify any uncertain-
ties regarding the data presented. Reference management
software also may assist in the identification of duplicate
records.

Decisions regarding study inclusion should not rest
on the opinion of a single reviewer. Rather, it is advanta-
geous to include an expert in the area of clinical content as
well as an authority in a related field or methodologist to
avoid subconscious introduction of bias in study selection.
Moreover, initial review should be blinded across the two
reviewers. Disagreement between reviewers may require
arbitration by a third independent expert, especially if
the disagreement involves interpretation of study results.
Agreement between authors can be measured using the
kappa statistic; values of kappa between .40 and .59 reflect
fair agreement, between .60 and .74 reflect good agreement,
and between .75 and 1.00 reflect excellent agreement (7,8).
The calculations necessary for determining kappa are given
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TABLE 7-8

Data for Calculation of a Simple Kappa Statistic?

Review Author 2

Review Author 1  Include Exclude Unsure Total
Include A B C A
Exclude D E F Iz
Unsure G H I U,
Total 4, E, U, K

“Kappa = (PO-PE)/(1-PE), where PO (the proportion of studies for
which there is agreement) = (a + e + i)/K and PE (the proportion of
studies for which one would expect there to be agreement based on
chance alone = [(/, x I,) + (E, x E,) + (U, x U,)]/K*.

in Table 7-8. Authors of systematic reviews should prepare
a list of studies that, on first inspection, were thought to be
eligible but later were excluded after careful review.

DATA EXTRACTION

Developing a data collection form is essential prior to data
extraction. The form serves multiple functions; it provides
arecord of study eligibility and chronicles the steps in deci-
sion making—including agreements and disagreements
regarding data collection. For those reviews in which a
meta-analysis will be performed, it is the extraction tool
for tabulating the estimates of effect, measures of variation,
number of subjects, and other numerical data necessary
for statistical pooling. Therefore, considerable thought and
effort should be put into developing this collection form,
also referred to as an “abstract” form. While details of the
form may slightly vary, the basic template often stays the
same and can be easily modified as necessary. Either elec-
tronic or paper forms may be used; the decision often rests
on the preference of the author, accessibility to prepro-
grammed forms, and the number of studies to be included
in the review. Regardless of which type is chosen, the data
collection form should be piloted to identify areas of uncer-
tainty and inconsistency.

When considering the data elements that need to be col-
lected, authors should make an effort to eliminate unneces-
sary data and to focus on the key elements needed for the
analysis. These key elements include author(s); date of
publication; date(s) when data were collected on study par-
ticipants; study design; particular features of certain designs
such as single blinding, double blinding, and concealment of
the randomization procedure; a description of the treatment/
exposure in each of the study groups including whether a
placebo or usual care was used as a comparator; and vari-
ables that describe the study population such as mean age,
percentage of men/women, and other pertinent factors.

Numerical data should be recorded exactly as pub-
lished in the original article; if additional calculations are
warranted, these should be performed later. For studies in
which both treatment and outcomes are binary, the num-
bers of subjects in each cell of a 2 x 2 table can be recorded.
For studies that report odds ratios, relative risks, or mean
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differences, it is necessary to record measures of variability
for these effects such as 95% confidence intervals or stand-
ard errors. For reviewers of randomized controlled trials, it
is important to include the number of subjects randomized
to each group, the number lost to follow-up, as well as
whether the results reflect an intent-to-treat or compliance
analysis. It is recommended that the guidelines established
in the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) serve as a guide regarding the
types of information necessary for collection (6).

Similar to the process used for decisions regarding
study inclusion, more than one author should extract data
and disagreement should be resolved by discussion. The
kappa statistic may also be applied to key elements of data
extraction to determine the extent of agreement.

ASSESSMENT OF BIAS

Just as in primary research, the validity of the studies
within a systematic review should be assessed. Two gen-
eral categories of validity are internal and external validity.
Internal validity refers to whether a study has answered
its research question in a manner that is free from both
systematic error (i.e., bias) and nonsystematic error (i.e.,
random error or chance). External validity refers to the
generalizability and applicability of a study’s findings
to a larger group of subjects. For purposes of system-
atic reviews and meta-analysis, an evaluation should be
conducted of internal validity and the extent to which bias
may affect each study’s results.

Bias is the presence of systematic error. While some
bias may be trivial, systematic error can also be of such
magnitude as to invalidate study findings. A treatment
effect may be either underestimated or overestimated if
bias exists. Examining each study for methodologic flaws
is a reasonable way to ascertain whether or not bias may
be present. The risk of bias differs among study designs
and is generally greater for studies without randomization.
Important categories of bias are listed below.

Selection Bias

This bias occurs when there are systematic differences
among the characteristics of the subjects in each group (or
arm) at the beginning of the study. When randomization
is correctly conducted on large numbers of people, selec-
tion bias should be avoided. However, when randomized
trials are small or nonrandomized designs are utilized, this
type of bias is a possibility. For evaluation of randomized
designs, the reviewer should check the methods used for
sequence generation during randomization and whether
the allocation to study groups was concealed. Examples of
studies at a higher risk of selection bias include those in
which sequences were generated by odd or even date of
birth or allocation was by the preference of physician or
participant. A lower risk of selection bias would be likely if
a computer random number generator or a random num-
ber table were used. Similarly, studies with higher risks
of selection bias include those that incorporate alternat-
ing assignment or unsealed nonopaque envelopes. Allo-
cation concealment yielding a lower risk of bias includes
those instances whereby central telephone, Web-based, or
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pharmacy-controlled randomization was utilized. Often it
is preferable to employ a statistician who is not directly
involved with the treatment or assessment of the outcome
within the study, to design and conduct the randomization
procedure. For evaluation of nonrandomized designs, the
reviewer should check whether the patient characteristics
were balanced across study groups or if such differences
were accounted for during the analyses.

Performance Bias

This type of bias may occur when there are systematic
differences in how the treatment or exposure is applied
among the study groups. If one group is inadvertently
given additional medications or procedures compared
to another group, such differences may exacerbate the
study’s findings. Randomized controlled trials may utilize
a placebo arm in which both the patient and the physi-
cian/investigator do not know the specific treatment; this
element of study design is known as double blinding and
it may suppress performance bias. If the study does not
incorporate blinding or if blinding of the treatment is not
feasible, the reviewer should evaluate whether the authors
gathered additional information regarding possible differ-
ences among study groups and the degree to which these
differences were addressed in the analyses.

Attrition Bias

When a study is conducted prospectively, it is possible that
there may be withdrawals of patients over time. Systematic
error due to differences in withdrawals among the study
groups is known as attrition bias. The reviewer should care-
fully review the numbers of subjects initially randomized to
each group as well as the numbers in each group at the
end of the trial. How did the authors deal with the individu-
als who were lost to follow-up? Occasionally, authors will
attempt to contact those persons who withdrew in order
to assess the reasons for such withdrawal. When the study
focuses on evaluating a pharmaceutical agent, sometimes
this additional contact may give clues regarding the side
effects of medications, which are often reasons for with-
drawal. If enough information is available, the authors may
compare the characteristics of the subjects for the initial
group to the subset of patients who followed through to
the end of the study. This may provide information regard-
ing possible differences in treatment effects.

Detection Bias

This type of systematic error may occur when the outcome
is assessed differently in the study groups. The definition of
the outcome and how it was measured should be the same
in all study groups, regardless of the type of treatment the
subjects received. In some studies, it is possible to “blind”
the persons who measure the outcome of the treatment
status of the participants. For example, if the outcome is a
positive blood culture for Staphylococcus aureus, the labo-
ratory personnel are often blinded to what treatments the
patients may have received.

There are other biases as well, including selective
reporting of only certain outcomes. This type of bias is dif-
ficult to assess when only the published article is available
for review, without additional information from the authors.
It is also problematic to evaluate, because it is customary
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to publish multiple papers on different outcomes in vari-
ous journals for a particular study. If the systematic review
includes clinical trials, details regarding the entire study
may be available on publicly available registration sites.

While widely used, it is not uniformly accepted that
scales be used for assessing quality. Often such scales
were developed for use in areas other than to which they
are applied (e.g., Jadad score, developed to assess quality
of trials in pain research), and moreover, they have been
found to yield unreliable results (9,10). Because of these
limitations, it is preferable to evaluate the extent to which
bias was averted within each study. When incorporating
bias assessments into analyses, the results may be graphed
according to the risk of bias; pooled measures may be pre-
sented with subgroup analyses to examine the effect of the
treatment at various levels of probable bias. Alternatively,
studies at high risk of bias may be excluded from the meta-
analysis.

STATISTICAL PROCEDURES
IN A META-ANALYSIS

Initial Considerations

The mechanics of meta-analysis begins with the assess-
ment of whether pooling, or summarizing a measure across
different studies, is possible. Calculation of a pooled meas-
ure is contingent upon the availability of similar estimates
of effect in each of the studies. It also requires that some
measure of variability for these estimates are known, such
as standard error, variance, or confidence intervals. For
example, if there were 14 clinical trials testing the same
hypothesis in which relative risks with their corresponding
95% confidence intervals were reported, then pooling may
be attempted.

The most common types of measures to be pooled
are comparisons between two groups that are expressed
by a ratio—relative risk or an odds ratio. That is, within
each study, the risk of the outcome (e.g., infection) in the
exposed (e.g., immunosuppressed) would be divided by
the risk of the outcome in the unexposed. For an odds
ratio, the odds of the outcome in the exposed would be
divided by the odds of the outcome in the unexposed. Haz-
ard ratios may also be pooled, when available.

For meta-analyses of infectious diseases, considera-
tions often involve recognition of the common methods by
which infectious disease rates are expressed. Sometimes
these are reported as the number of infectious disease epi-
sodes per 1,000 patient-days in the hospital or the num-
ber of infections per 1,000 device-days of observation. In
other instances, the outcome may be expressed by cumu-
lative risk such as the percentage of patients who experi-
enced infection during their hospital stay. Since risk is time
dependent and the length of hospital stay varies, it is pref-
erable to use similar time periods for evaluating the risk
of infection. For example, the risk of hospital readmission
due to pneumonia in the 30 days postdischarge could be
pooled if there were multiple studies with this outcome.
The use of common measures such as episodes per 1,000
patient-days or infections per 1,000 catheter-days incor-
porates time in the denominator and, therefore, could be
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pooled across studies. It is important to pool measures
that express similar underlying quantities.

General Theoretical Considerations

In general terms, a pooled measure is a weighted sum.
The estimates of effect from each study are arithmetically
summed using weights:

R
2 WY
k )

iV

where W indicates the weights and Y indicates the esti-
mates of effect across all i through k studies. The weights
often incorporate some derivative of the variation of the
effect such as standard error or variance. Although the
weights can incorporate the variation of the effect inher-
ent within each individual study, these weights can also
incorporate the variation of the effect across the vari-
ous studies. This first approach, incorporation of within-
studies variation (only), is known as a fixed effects model.
The second approach, incorporation of both within- and
between-studies variation, is known as a random effects
model. The fixed effects approach makes the assumption
that there is one true underlying effect in the reference
population. The random effects approach assumes that
there is a known underlying distribution of effects in the
reference population.

Fixed Effects Models

The Mantel-Haenszel method of weighting may be used
for summing a risk ratio, an odds ratio, or a risk difference
(11,12). The calculations depend upon the study design and
the characteristics of the variables, which determine the
exposure and the outcome. In infectious diseases epidemiol-
ogy, it is not uncommon to measure the incidence or risk of
infection in one group of patients and compare this with the
risk of infection in another group. As such, a 2 x 2 table may
be constructed, where a indicates the number of patients
exposed who developed an infection, b indicates the number
of unexposed who developed an infection, ¢ indicates the
number of exposed who did not develop an infection, and d
indicates the number of unexposed who did not develop an
infection. In this situation, the Mantel-Haenszel method for
pooling relative risks across studies is defined as such:

ko (b+d;
zi:l( m; )(I,-

k a; +¢; b ’
21:1( n ) i

where n indicates the total number of subjects in each i
through k study.

Another fixed effects pooling method was developed by
Peto and coworkers (13). Known as the Peto method, it is
appropriate for odds ratios only and utilizes the expected
versus observed number of events for calculation. Both the
Peto and the Mantel-Haenszel methods perform well when
outcome rates are rare, although unbalanced numbers of
subjects in each arm (or in the exposed versus unexposed
groups) are better assessed with the Mantel-Haenszel
method. A more traditional method for pooling effects

RR,, =
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across studies is the inverse variance method, in which
the inverse of the variance is incorporated as the weight.
Since variance is calculable for many different types of sta-
tistics, this method has been utilized widely. In particular,
mean differences may be summarized by incorporating the
inverse of within-study variance as weights.

Random Effects Models

The random effects model assumes that, in addition to
variability within studies, there are also real differences
between studies. The weighting factor is more complex to
include both these sources of variation. A common method
utilized for pooling was described by DerSimonian and
Laird and can be used to pool risk ratios, odds ratios, or risk
differences (14). The inverse variance method may also be
used in a random effects model to include both within- and
between-studies variance. For example, mean differences
in injury severity scores may be pooled using weights that
incorporate within- and between-study variance. Since a
random effects model considers both sources of variation,
the results from a random effects model will, in general,
yield more conservative results, and therefore wider con-
fidence intervals, than a fixed effects model. When there is
minimal variation between studies, the results from fixed
effects and random effects models will be similar.

The Choice Between Fixed Effects and
Random Effects Models

The choice of method initially involves a consideration of
the underlying assumptions of fixed versus random effects
models. A fixed effects model assumes that there is a sin-
gle true underlying effect. For example, when repeated
samples are taken from the same population, the pooled
measure can be calculated using a fixed effects model.
A random effects model assumes that the underlying effect
follows a distribution of values and is often considered
when the studies are conducted in populations with differ-
ent characteristics.

It is not uncommon to calculate summary measures
using both fixed and random effects models. If the results
lead to similar conclusions, this can be directly stated. The
Peto method (fixed effect) performs quite well when the
outcome is rare, the numbers of patients in the treatment
arms are balanced, and odds ratios are calculated as the
estimates of effect. The Mantel-Haenszel method (fixed
effect) is preferred when there are few studies with limited
numbers of subjects within each study and when there
is an imbalance in the numbers of subjects in treatment
arms. For studies in which the outcome is continuous, the
traditional weighting method of inverse variance is often
used. If the purpose of the investigation is to explore the
differences among studies, then a random effects model
is appropriate. The reasons behind the variability across
studies should be explored with consideration of the differ-
ences in the types of patients, design, and analyses of the
individual studies. Often subgroup or stratified analyses
may serve as a first step for this investigation, with more
advanced statistics used secondarily.

Forest Plots

A useful technique for displaying the results of meta-
analysis is the forest plot. A forest plot is a graphic depiction
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Odds ratio No. of events
Study (95% ClI) Kinetic Bed Control
Gentilello (1988) |. 0.44 (0.13, 1.42) 5/27 13/38
Demarest (1989) L : 0.17 (0.02, 1.72) 1/16 4/14
Summer (1989) E L 0.53 (0.14, 1.95) 4/43 7143
Fink (1990) . : 0.24 (0.09, 0.65) 7/51 19/48
deBloisbanc (1993) ‘ 0.35(0.12, 1.01) 6/69 11/51
Traver (1995) ; L 0.55 (0.21, 1.42) 8/44 17/59
Whiteman (1995) | L 0.68 (0.25, 1.86) 10/33 14/36
Macintyre (1999) i . 0.61 (0.24, 1.59) 9/52 13/51
Kirschenbaum (2002) L : 0.21 (0.05, 0.98) 3/17 10/20
Ahrens (2004) _._E_ 0.28 (0.14, 0.53) 14/118  45/137
Overall <> 0.38 (0.28, 0.53) 67/470  153/497

Odds ratio
Kinetic Bed Better

Control Better

FIGURE 7-2 Forest plot showing the effect of kinetic bed therapy on the incidence of healthcare-
associated pneumonia. (From Delaney A, Gray H, Laupland KB, et al. Kinetic bed therapy to prevent
healthcare-associated pneumonia in mechanically ventilated patients: a systematic review and

meta-analysis. Crit Care 2006;10(3):R70.)

of the estimates of effects and their variation within each
study, as well as the summary measure. Figure 7-2 shows
a typical forest plot. The results from each of the studies
are displayed with the estimate of effect (in this instance,
odds ratio) shown as a box, with its size proportional to
the weights. The horizontal line indicates the 95% confi-
dence interval. The null value (i.e., 1 for the odds ratio) is
depicted with a solid vertical line and the pooled estimate
of effect is shown with a dashed vertical line. Usually, the
95% confidence interval for the pooled summary measure
is placed at the bottom of the plot in the shape of a dia-
mond. There are variations to the appearance of the forest
plot, depending upon the statistical programs chosen for
generation.

Cumulative Meta-Analysis

Cumulative meta-analysis is a variation of traditional meta-
analysis in which the individual studies are first sorted,
usually by date (2). Each study-specific estimate of effect is
included in the calculations one at a time so that the ensu-
ing measure includes all studies before that date. This tech-
nique is often displayed via a forest plot and can signify
trends over time. The final pooled measure using cumula-
tive meta-analysis is the same as the pooled measure when
using the traditional approach, but the forest plot will yield
a different appearance. Since smaller trials for a given
hypothesis tend to be published first and more definitive
larger trials tend to be published at later dates, cumula-
tive meta-analysis can visualize these effects over time. An
example of such trends is shown in Figure 7-3 in a study
which compared methods of rehydration in children with
gastroenteritis.

HETEROGENEITY

In meta-analysis, heterogeneity refers to the variation in the
estimate of effect across the studies. There are instances
whereby the heterogeneity is so great that pooling the
study-specific measures would not be appropriate. When
this occurs, an investigation of the sources of heterogene-
ity is often conducted. Therefore, when study-specific esti-
mates of effect are pooled in meta-analysis, this should be
accompanied by an assessment of heterogeneity. Various
quantitative measures and graphical techniques have been
used to evaluate heterogeneity.

Quantifying Heterogeneity

Heterogeneity is commonly quantified by using Cochran’s
Q, I?, or 7? (between studies variance). Cochran’s Q is a sta-
tistical test in which weighted differences between study-
specific measures and the pooled measure are summed
(15). The test statistic follows a chi-square distribution and
is calculated as follows:

Q=Y w(8-9),

where 6, is the estimate of effect for each i study, 0 is the
pooled estimate of effect, degrees of freedom = k-1, and &
is the number of studies. Because the number of studies
tends to be limited in many meta-analyses, the power to
detect differences among studies is often poor when using
the Cochran’s Q test. Therefore, the alpha level may be set
at .10 instead of the traditional .05. If the resultant p value
is <0.10, one would conclude that there is heterogeneity in
the estimate of effect across the various studies.
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Study year N RD (95% ClI)
Singh 1982 100 0(-0.04,0.04)
Santosham 1982a 194 0(-0.03,0.03)
Santosham 1982b 246 0(-0.03,0.03)
Sharifi 1985 716 0(-0.01,0.02)
Tamer 1985 813 0(-0.01,0.02)
Listernick 1986 842 0.01(0,0.02)
Vesikari 1987 879 0.01(0,0.02)
de Pumarejo 1990 910 0.01(0,0.02)
Mackenzie 1991 1014 0.01(0,0.02)
Issenman 1993 1054 0.01(0,0.02)
El-Mougi 1994 1115 0.01(0,0.02)
Gremse 1995 1139 0.01(0,0.02)
Atherly-John 2002 1173 0.01(0,0.02)
Nager 2002 1266 0.01(0,0.02)

*Gonzalez-Adriano 1998 study omitted
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FIGURE 7-3 Example of a forest plot using cumulative meta-analysis that compares oral rehydration
therapy-nasogastric with intravenous therapy in children with gastroenteritis. (From Bellemare S,
Hartling L, Wiebe N, et al. Oral rehydration versus intravenous therapy for treating dehydration due
to gastroenteritis in children: a meta-analysis of randomized controlled trials. BVC Med 2004;2:11.)

Another measure of heterogeneity is P, which indicates
the percentage of total variability in effect size that is due
to between-studies variation (16,17). I is expressed as a
percentage, with a minimum of 0% and a maximum of 100%;
negative values are set at 0%. An advantage of P is that it
can be assessed across meta-analyses, so that the degree
of variation found in one meta-analysis may be compared
with that for a different meta-analysis. ? may be calculated
as follows:

_Q-df
Q ,

where Q indicates Cochran’s Q test statistic, df = k-1, and &
is the number of studies.

Between-studies variance is denoted by 72 and can be
directly calculated and reported as well. Cochran’s Q, 72,
and/or I? may be presented on the forest plot as shown in
Figure 7-4, which describes the effect of prophylactic flu-
conazole on patients with fungal infections. In a review of
various graphical approaches, the forest plot was found to
be more reliable than other types of graphs and a reasona-
bly valid technique for the evaluation of heterogeneity (18).
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EVALUATING PUBLICATION BIAS

While the initial steps of a meta-analysis involve a com-
pilation of all studies that were conducted to evaluate a
given hypothesis, it is possible that some studies may not
be published. Such studies are more likely to be smaller
with differences that are not statistically significant. With
the establishment of registries of clinical trials and the

requirement that trials be registered as a prior condition to
publication, some of the earlier concerns regarding publi-
cation bias in meta-analyses of trials have been somewhat
attenuated (79,20). Nevertheless, the possibility of publica-
tion bias should be addressed. There are several ways of
evaluating publication bias, by either statistical testing or
graphical techniques.

Funnel plots are the most common graphs used for
evaluating publication bias. These entail plotting the
study-specific estimates of effect against some measure
of variability for each effect. Although there are variations
to this approach, often the estimates of effect are plotted
horizontally on the x axis and the measure of variation
plotted vertically on the y axis. The plot gives an appear-
ance of a funnel when the measure of variation is plotted
inversely, so that the smaller studies will splay on the
lower portion of the plot. Without publication bias, the fun-
nel plot should appear symmetrical as shown in Figure 7-5.
Contour-enhanced funnel plots include areas that denote
contours or areas showing statistical significance and help
the reader to assess whether small, nonsignificant studies
may be systematically excluded (21). Asymmetry may indi-
cate publication bias, although it does not provide defini-
tive proof. Note that the location of the studies on the plot
should splay from the true underlying estimate of effect,
not necessarily the null.

Several statistical tests are available for assessing pub-
lication bias since visual inspection of funnel plots is sub-
jective. If the estimate of effect is the odds ratio, Peters’
test or Harbord’s modification of Egger’s test is appropriate
for use (22,23). For meta-analyses in which the outcome
is measured as a mean difference, Egger’s test may be
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Study Treatment Control RR (random) Weight RR (random)
or sub-category n/N n/N 95%ClI % 95% ClI
Eggimann [17] 223 7120 —— 12.06 0.25 [0.06, 1.06]
Garbino [15] 6/103 16/101 —a— 31.62 0.37 [0.15, 0.90]
Jacobs [13] 0/14 1/20 2.60 0.47 [0.02, 10.69]
Pelz [16] 7/130 16/130 —— 34.88 0.44 [0.19, 1.03]
He [19] 2/22 7123 —a1 11.96 0.30 [0.07, 1.28]
Sandven [18] 2/53 2/56 —_ 6.88 1.06 [0.15, 7.23]
Total (95% Cl) 345 350 <@ 100.00 0.39 [0.24, 0.65]
Total events: 19 (Treatment), 49 (Control)
Test for heterogeneity: Ch2 =1.63, df=5 (P=0.90), 1?=0%
Test for overall effect: Z=3.63 (P=0.0003)

001 01 1 0 100

Favours treatment

Favours control

FIGURE 7-4 Forest plot showing the effect of prophylactic fluconazole on the proportion of patients
with fungal infections. RR, relative risk; CI, confidence interval. (From Ho KM, Lipman J, Dobb GJ, et al.
The use of prophylactic fluconazole in immunocompetent high-risk surgical patients: a meta-analysis.

Crit Care 2005;9(6):R710-R717.)

used (24). Such tests may be conducted when there are at
least 10 studies within the meta-analysis, but should not
be considered conclusive evidence of the absence of pub-
lication bias. In this regard, a thorough initial search of the
literature is superior to any posterior testing in a subset of
studies.

PLACING THE FINDINGS IN CONTEXT

The results of the review should be interpreted in the
context of the quality of evidence that was available for
developing the systematic review. The GRADE (Grades of
Recommendations, Assessment, Development and Evalua-
tion) Working Group has developed a system for grading
the overall quality of evidence (25). Factors that, if noted in

a systematic review, would be considered to decrease the
quality of the evidence are shown in Table 7-9. Common
errors that are made in reaching conclusion include con-
fusing “no evidence of effect” with “evidence of no effect.”
A true “no effect” is best observed by a fairly narrow con-
fidence interval for the pooled measure that is centered
around the null. When the data are inconclusive, it is rec-
ommended that it be stated as such. Conclusions should
not extend beyond the results driven by the data and cau-
tion should be exercised when making recommendations
for clinical practice.

Factors that are important for decision making beyond
the results of the systematic review should be considered
when making recommendations for clinical practice. These
include patient values and preferences, and economic con-
siderations. The external validity of the systematic review

00—
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FIGURE 7-5 Contour-enhanced funnel
plot.
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TABLE 7-9

Factors that may Decrease the Quality Level
of a Body of Evidence

Limitations in the design and implementation of available
studies suggesting high likelihood of bias

Indirectness of evidence (indirect population, intervention,
control, outcomes)

Unexplained heterogeneity or inconsistency of results
(including problems with subgroup analysis)

Imprecision of results (wide confidence intervals)

High probability of publication bias

should also be taken into account when extrapolating the
conclusions to populations not included in the systematic
review.

A review should point out directions for future research.
The acronym EPICOT has been proposed for reporting
research recommendations (26):

E (Evidence): What is the current evidence

P (Population): (Such as) diagnosis, disease stage, risk
factor

I (Intervention): Type, frequency, dose, duration

C (Comparison): Placebo, routine care

O (Outcome): Which clinical or patient-related outcomes
will the researcher need to measure

T (Time stamp): Date of literature search or recommendation

For example, a review of chlorhexidine for preventing
ventilator-associated pneumonia might conclude with
“Current evidence suggests that topical chlorhexidine may
be useful for preventing ventilator-associated pneumonia.
However, variation in studies regarding the duration, dose
and frequency of application creates heterogeneity mak-
ing it difficult to draw robust conclusions. Future stud-
ies should examine, using a randomized controlled study
design, the optimum dose and frequency of chlorhexidine
oral care compared with oral care without chlorhexidine in
all mechanically-ventilated patients, using invasive lower
respiratory tract sampling for diagnosing ventilator-asso-
ciated pneumonia.”

PREPARING THE MANUSCRIPT

The PRISMA checklist can be useful when preparing the
manuscript describing the systematic review (6). The fol-
lowing general principles serve as guidelines. The title
should contain the words systematic review or meta-analysis,
if possible, since this will distinguish the work from a tradi-
tional narrative review and will make it easier to retrieve in
an electronic search. The abstract should be crafted with a
great deal of thought since this may be the only part that
many readers will peruse. The introduction section of the
manuscript should describe the importance of the research
question, existing gaps in the literature, and the rationale for
undertaking the study. In the Methods section, in general,
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the following headings may be useful (unless the target
journal has specific headings that are traditionally used for
these types of manuscripts): data sources, data selection,
data abstraction, assessment of study quality, data synthe-
sis/statistical analyses, and proposed subgroup analyses.
The Results section should describe the outcome of the lit-
erature search in a flow sheet and have a table describing
the characteristics of the included studies. The main sum-
mary of results is usually represented as a forest plot. If a
meta-analysis is not done, the summary estimate (usually
shown as a diamond on the forest plot) may be omitted.
The result of subgroup analyses may be placed in a table or
figure. In the Discussion section, the authors should place
their findings in the context of other studies that have been
undertaken, explain how their results add to the current
body of knowledge, and assess the implications for policy
and future research. It is important to describe the limita-
tions and how they were addressed within the review. The
conclusions should be driven by the results and should
take into account the limitations of the studies included in
the systematic review. Finally, sources of funding and con-
flict of interest for all authors should be clearly described
somewhere in the manuscript.

USEFUL READING AND RESOURCES

The Cochrane Handbook for Systematic Reviews of Interven-
tions is an excellent resource for researchers undertaking
a systematic review or meta-analysis. The handbook is
available free online at http://www.cochrane-handbook.
org/. For updates, see the following URL: http://www.
cochrane.org/resources/handbook/.
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Investigation of Outbreaks

William R. Jarvis

Although the majority of healthcare-associated infections
(HAIs) in a given healthcare facility are endemic (1), out-
breaks of HAIs may occur, usually in a specific group
of patients or location. In addition, healthcare workers
(HCWs) are exposed to numerous infectious agents and
may be at risk of spreading pathogens to patients and other
HCWs (2—9).

An outbreak is an increase in occurrence of an event
(infectious or noninfectious) above the background rate.
This assumes that surveillance for such complications
exists, so that a background rate is known or can be calcu-
lated from existing data. If such data do not exist, then a ret-
rospective review must be performed to obtain these data
to calculate the rate of these adverse events to compare to
the “outbreak” rate. An outbreak may be one episode of a
rare occurrence (e.g., group A streptococcal surgical site
infection [SSI], anthrax, and vancomycin-resistant Staphylo-
coccus aureus) or many episodes of a common occurrence
(e.g., methicillin-resistant S. aureus [MRSA] infection).
Outbreaks in healthcare facilities, although infrequent,
can cause great concern, require extensive personnel and
financial resources to investigate and control, generate
adverse publicity, negatively impact on patient safety, and
can be very time-consuming.

This chapter helps healthcare epidemiologists, infec-
tion preventionists, and others to determine when a clus-
ter of infections or other adverse events among patients
or HCWs merits an epidemiologic investigation and how
to conduct such an investigation. Although the methods
described can be applied to infectious diseases, chronic
diseases, community outbreaks, occupational diseases or
injuries, or any complication of healthcare delivery, this
chapter focuses on outbreak investigations of HAls.

IDENTIFICATION OF A POTENTIAL
OUTBREAK

Routine surveillance for HAls provide the data to enable
infection control personnel to calculate infection or other
adverse event rates, determine secular trends, and iden-
tify unusual pathogens or events, or increased infection or
adverse event rates in patients or HCWs (see Chapter 88).
The key to effective surveillance is to use common,

accepted definitions and to calculate rates that permit
valid interfacility or intrafacility comparisons (5-9) (http://
www.cdc.gov/nhsn/PDFs/pscManual/17pscNosInfDef_
current.pdf). Rate calculations using an inappropriate
denominator may be misleading and suggest an outbreak
is occurring when only a change in the population at risk
has occurred. Similarly, the use of variably defined numer-
ator events may lead to an apparent increase in the rate
secondary to surveillance artifact. Outbreaks of infectious
diseases that are not included in routine surveillance or
that occur among patients in areas where routine surveil-
lance may not be conducted may be identified in a variety
of ways. Clinical nursing or medical staff may recognize
that a number of patients have the same type of infection
or regular examination of microbiology or other records
may reveal an increase in the isolation of a particular
microorganism, thus leading to the identification of a
potential outbreak.

REASONS TO INVESTIGATE
A POTENTIAL OUTBREAK

Objectives

Although any cluster of patients with HAls can be investi-
gated, the constraints of time and resources require that
each investigation has specific objectives. The most impor-
tant of these is the control of further transmission (10).
Other important objectives may be to advance the field of
healthcare epidemiology and infection control by describ-
ing etiologic agents, host, risk factors, virulence, or envi-
ronmental factors; to assess prevention interventions; or
to determine the quality of epidemiologic surveillance at
the healthcare facility (11).

Evidence of HAI Transmission of Infectious
Diseases

HAI transmission should be considered when (a) a cluster
of similar infections occurs on one hospital unit or among
similar patients, (b) a cluster of infections associated with
invasive devices occurs, (¢c) HCWs and patients develop
the same type of infection, or (d) a cluster of infections
with microorganisms typically associated with HAls (e.g.,
multidrug-resistant or opportunistic microorganisms)
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occurs. These clusters merit investigation to determine
if HAI transmission really is occurring and to institute
appropriate control measures to terminate pathogen trans-
mission. Selection bias frequently occurs in identifying
outbreaks because unusual pathogens, or common micro-
organisms with unusual antimicrobial susceptibility pat-
terns, are more easily recognized. For example, although
Escherichia coli urinary tract infection outbreaks probably
occur, they are either not recognized or not investigated,
because the microorganism is the most common cause
of urinary tract infection and typing of the genotying of
strains—to document clonal transmission—usually is not
performed. In contrast, a small cluster of unusual patho-
gens or common pathogens with unusual antimicrobial sus-
ceptibility patterns are easily and frequently recognized.

Determination of Risk Factors for Disease

Known host risk factors for HAI include the presence of
invasive devices, severity of illness, or underlying diseases
(12-14). In addition, environmental sources of pathogens
can play a role, especially among immunocompromised
patients (15-19). Investigation of outbreaks can further
define both host and environmental risk factors for HAL
Infection control personnel should be constantly vigilant
for complications associated with new technologies or
changes in previously safe technologies (20,21-23).

Institution of Appropriate Control Measures

In outbreak situations, one often must introduce preven-
tive interventions to control pathogen transmission and
adverse outcomes before an investigation is initiated or
completed. Control measures that have proven effective
in similar HAI outbreaks in the past can be implemented
immediately. This could include measures ranging from the
simple (e.g., enhancing hand hygiene through in-service
education sessions for personnel) to the complex (e.g.,
closing a unit to new admissions or removing a product
or device). The potential benefit of more drastic measures
should be carefully weighed against the potential harm to
patients currently residing in the facility. Subsequently, the
formal epidemiologic investigation of the outbreak may
help focus control measures on specific infection control
or procedural techniques (10).

FIRST STEPS

Once an outbreak is suspected and an investigation is con-
templated, all levels of the healthcare facility’s personnel
(e.g., the chief of the affected service, head nurse for the
unit, director of microbiology, and hospital administration)
should be informed and must be committed to the investi-
gation. The cooperation of a variety of healthcare profes-
sionals is essential to efficiently conduct an investigation
and to implement control measures.

A second consideration during the early stages of an
outbreak investigation is the availability of microbiologic
isolates for antimicrobial susceptibility testing or molecu-
lar or nonmolecular typing. Unlike community outbreaks,
typing of microorganisms in HAI outbreaks may be essen-
tial to proving chains of transmission because of the ubiqui-
tous nature of microorganisms in the hospital environment
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(18,24). For this reason, microbiology laboratory personnel
should be informed early in the investigation so that they
can save requested specimens or isolates and be alert for
additional isolates that may be part of the outbreak. Labo-
ratory personnel also may suggest other specimens that
should be collected from current or future patients who
develop the adverse event being studied.

Finally, before beginning an investigation, available
resources (e.g., personnel, supplies, and laboratory), the
lead investigator, and the person to be responsible for
statistical analysis of the data should be identified. Taking
these steps before initiating an investigation will allow it to
proceed smoothly later.

THE INVESTIGATION

A complete investigation involves many steps; the order
of steps may vary and multiple steps may be performed
simultaneously. These steps, although not specific to the
healthcare setting, are a useful guide in conducting an out-
break investigation (Table 8-1).

Case Definition

One of the first tasks of the investigative team is to develop
a working case definition based on the known facts of
the outbreak. The case definition should include, at a
minimum, the time, place, and person. In addition, other
important factors, such as clinical and laboratory param-
eters (e.g., date of onset of illness, symptoms, signs, and

TABLE 8-1

Guidelines for Epidemiologic Field Investigations

1. Prepare for field work (e.g., administration, clearance,
travel, contacts, and designation of lead investigator)
2. Confirm the existence of an epidemic
. Verify the diagnosis
4. Identify and count cases or exposures
¢ Create a case definition
¢ Develop a line listing
5. Tabulate and orient the data in terms of time, place,
and person
. Take immediate control measures (if indicated)
. Formulate hypotheses
. Test hypotheses through epidemiologic studies
. Plan an additional systematic study (or studies)
. Culture environment and personnel based on epide-
miologic data
11. Implement and evaluate control and preventive
measures
12. Initiate surveillance
13. Communicate findings
e Summarize investigation for requesting authority
e Prepare written report(s)

w

S © 0N

(Modified from Goodman RA, Buehler JW, Koplan JP. The epidemio-
logic field investigation: science and judgement in public health
practice. Am J Epidemiol 1990;132:9-16.)
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TABLE 8-2

Examples of Case Definitions from Hospital
Outbreaks Investigated by the CDC's Hospital
Infections Program/Division of Healthcare Quality
Promotion

1. “A case of multidrug-resistant tuberculosis was defined
as any patient diagnosed with active tuberculosis from
January 1989 through March 1991 whose
M. tuberculosis isolate was resistant to at least isonia-
zid and rifampin” (35).

2. “An [anaphylactic reaction] was defined as hypo-
tension (=230 mm Hg fall in systolic blood pressure
from the preinduction blood pressure) and at least
one of the following during a general anesthesia
procedure at hospital A from January 1989 through
January 1991: rash, angioedema, stridor, wheezing, or
bronchospasm” (21).

CDC, Centers for Disease Control and Prevention.

specific laboratory or diagnostic findings), epidemiologic
parameters (e.g., a patient’s presence on a specific ward or
service during a specified time) may be included. In certain
instances, one may include confirmed, possible, or proba-
ble cases of disease. The process of developing case defini-
tions is an iterative one and should be based on balancing
the need for an all-inclusive (sensitive) case definition at
the beginning of the investigation and more specific case
definition as the investigation proceeds and more data are
acquired. Case definitions may vary from the relatively sim-
ple to very complex (21,25) (Table 8-2). Occasionally, the
case definition may need to be refined as the investigation
proceeds and more data are acquired.

Case Finding

Once an initial case definition has been developed, addi-
tional case finding can be conducted. The case definition
should be applied to the source population without bias
as to known or potential underlying host or environmen-
tal risk factors. Sources most commonly used for finding
cases are discharge diagnosis or International Classifica-
tion of Disease codes; microbiology, infection control, or
transfusion records; emergency room, outpatient clinic, or
dialysis clinic logs; or patient medical records in a cohort
study—if the cases are limited to a single ward/unit or if the
healthcare facility is very small (i.e., where charts can be
reviewed in a short period).

Confirming an Outbreak

Confirming an outbreak begins with calculating the back-
ground rate of infection or adverse event and then com-
paring the outbreak period rate with the background rate.
The outbreak period should include the time period from
the possible incubation period for the first case of adverse
event until the last case or time of the investigation. The
background rate of the adverse event should be based
on existing data, which can be collected from a variety
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of resources, including microbiology, infection control,
or patient records. Data may have to be collected for a
period of many months to years preceding the outbreak to
determine an accurate background rate, particularly if the
adverse event has a seasonal periodicity. Comparison of
the outbreak period attack rate to the background rate can
be performed using the rate ratio:

Attack rate during epidemic period
Attack rate during background period

Rate ratio=

Pseudo-outbreaks are increases in the incidence of
infections or adverse events that are not real. This can
be due to false clusters of real infections/adverse events
or real clusters of false infections/adverse events. Pos-
sible causes can be (a) clusters of positive cultures in
patients without evidence of infection/disease (e.g., posi-
tive cultures for Mycobacterium tuberculosis in a patient
with no clinical evidence of tuberculosis) or (b) a per-
ceived increase in infections/adverse events because
either the specific laboratory test had not been used
(e.g., introduction of polymerase chain reaction testing
for MRSA or Clostridium difficile) or surveillance was not
previously being conducted for that particular problem
or surveillance definitions, intensity, or methods have
changed. Pseudo-outbreaks usually are due to either
increased surveillance of an area or type of infection or
laboratory errors (i.e., extrinsic or cross-contamination)
(26-29). Hypotheses developed during the investigation
of a presumed outbreak should include the possibility of
a pseudo-outbreak, particularly if laboratory clustering of
the positive cultures occurs (see Chapter 9).

Chart Review

Before beginning the lengthy process of reviewing medical
records, one should determine which data are important
to collect for each case-patient or case-HCW and design a
questionnaire for ease of data collection (see Chapter 5 for
details on questionnaire design). Some important catego-
ries of information to consider in most investigations are
demographic variables (e.g., age gender, race, or ethnic-
ity), underlying illnesses, severity of illness indicators (e.g.,
Acute Physiology and Chronic Health Evaluation or Pedi-
atric Risk of Mortality scores) (30,31), ward/unit, duration
of hospitalization; exposures to invasive devices or pro-
cedures, personnel or other patients, or medications; and
clinical aspects of the disease/adverse event being studied
(e.g., date of onset of illness, symptoms, and signs). For SSI
outbreaks, surgical risk factors (e.g., procedure, operating
room, surgeon, or surgical team members) or surgical risk
index (7,32) must also be determined in addition to the
other categories.

Descriptive Epidemiology

A line listing of the case-patients and pertinent demo-
graphic and clinical information serves as a useful tool
to begin the process of describing the outbreak in terms
of time, place, and person. Describing an outbreak in
this way helps determine who is at particular risk for the
adverse event that is being studied. In turn, knowing which
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FIGURE 8-1 Epidemic curve from a common source outbreak with subsequent person-to-person
transmission. (From Gordon SM, Oshiro LS, Jarvis WR, et al. Foodborne Snow Mountain agent
gastroenteritis with secondary person-to-person spread in a retirement community. Am J Epidemiol

1990;131:702-710.)

population of patients or HCWs is at risk determines who
should be included in further analytic studies.

Describing the outbreak over time is most easily done
by graphing the case-patients or case-HCWs by onset of
disease; the cases can be graphed by time (e.g., hours,
days, months, or quarters), as appropriate. These graphs,
often called epidemic or epi curves, can provide a great
deal of information about possible sources and modes of
transmission. For example, a common-source outbreak
with subsequent person-to-person transmission is well
illustrated by a foodborne outbreak in a retirement com-
munity (33) (Fig. 8-1). A high initial peak of onset of illness,
indicating a point source of infection, followed by contin-
ued cases of illness is typical of an outbreak of gastroin-
testinal illness caused by a viral agent. Person-to-person

11 =

transmission, on the other hand, usually is illustrated
by an epidemic curve of longer duration with few, if any,
peaks. A typical epidemic curve illustrating person-to-
person transmission would be an outbreak of M. tuberculo-
sis HAIs (34) (Fig. 8-2).

The epidemic curve of an outbreak caused by poor
adherence to recommended infection control practices
(e.g., poor hand hygiene compliance) or contaminated
patient-care equipment also usually are spread over a long
period. For example, an Acinetobacter baumannii outbreak
related to reusable intravascular transducers that were not
adequately sterilized between uses on different patients
continued for over a year until the problem was recognized
and the decontamination and disinfection technique was
corrected (I8) (Fig. 83). If HCWs and patients are both
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FIGURE 8-2 Epidemic curve illustrating person-to-person transmission. (From Edlin BR, Tokars JI,
Grieco MH, et al. An outbreak of multidrug-resistant tuberculosis among hospitalized patients with
the acquired immunodeficiency syndrome. N Engl J Med 1992;326:1514-1521.)
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FIGURE 8-3 Epidemic curve of an outbreak caused by contaminated patient-care equipment. (From
Beck-Sague CM, Jarvis WR, Brook JH, et al. Epidemic bacteremia due to Acinetobacter baumannii in
five intensive care units. Am J Epidemiol 1990;132:723-733.)

affected by the outbreak, the dates of onset of disease/
adverse event for patients and HCWs should be plotted
both together and separately to determine if transmission
occurred from patient to patient, patient to HCW, HCW to
patient, or HCW to HCW.

At times, the location of the outbreak is limited to a
certain ward, unit, or operating room and at other times
to a certain type of ward (e.g., general surgical units). The
location of the outbreak may provide a clue to the mode
of transmission or to certain risk factors or exposures of
particular patients.

For example, an investigation in a hospital with high
tuberculin skin test (TST) conversion rates among patients
and HCWs revealed that many of the TST converters were
patients of or workers in the outpatient human immunode-
ficiency virus (HIV) clinic (35). The clinic had a large room
with reclining chairs for patients with acquired immunode-
ficiency syndrome (AIDS) to receive intravenous medica-
tions on an outpatient basis. This room was immediately
adjacent to two rooms with floor-to-ceiling sliding glass
doors, in which aerosolized pentamidine was adminis-
tered to patients with Pneumocystis carinii pneumonia;
some of these patients had active tuberculosis. Because
these treatment rooms were under positive pressure rela-
tive to the intravenous medication room, patients receiv-
ing intravenous medications, and HCWs administering the
medications, were exposed to patients with M. tuberculosis
infection when HIV-infected patients with active tuberculo-
sis received aerosolized pentamidine. This occurred even
if the isolation room doors were closed. In addition, air
in the isolation rooms and waiting area was recirculated,
causing a mixture of clean and potentially M. tuberculosis
contaminated air to be circulated through the room. Thus,

the location of a number of the cases led to identification of
risk factors for acquisition of the disease (i.e., new onset of
tuberculosis or TST conversion among AIDS clinic patients
or HCWs exposed to patients with active tuberculosis) and
to mode of transmission (airborne spread caused by poor
isolation practices and inadequate ventilation systems).
By describing the case-patients in terms of demograph-
ics and underlying disease, one can define the at-risk popu-
lation and determine possible exposures. Certain patient
populations may be at risk because of either age or under-
lying disease-specific exposures. The entire population
that meets these identified criteria is the group of patients
that would have been identified as case-patients had they
developed disease (36). This is the population from which
controls or the cohort to be studied should be chosen for
epidemiologic studies. The comparison population (con-
trols or noncases) should have the same opportunity for
infection/disease or adverse event as the case-patients.

Developing Hypotheses

Once cases are identified, and pertinent information from
the medical records is abstracted, hypotheses about the
cause of the outbreak can be generated. These hypotheses
should be based on the available information, previously
published literature, and expert opinion. Then, epidemio-
logic studies can be conducted to test the hypotheses.

In many situations, the number of cases in the cluster
is very small (less than five cases) or personnel or finan-
cial resources are not sufficient to conduct epidemiologic
hypothesis testing studies. Thus, a different approach,
sometimes called “quick and dirty,” is followed. In this sit-
uation, the line listing of the case-patients, which flowed
from the case definition and case finding, is examined,
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commonalities identified, and hypothesis generated about
the most probable sources and mode of transmission. Then,
a variety of control measures are implemented aimed at
the most probable source and mode of transmission. After
implementing these control measures, one continues to
conduct surveillance for additional case-patients and one
hopes that the outbreak is terminated. If the outbreak con-
tinues, either additional control measures may be imple-
mented or it may be necessary to conduct the hypothesis
testing epidemiologic studies.

Testing Hypotheses

Investigation of outbreaks is by nature retrospective to
the development of the adverse event. Two types of retro-
spective analytic studies can be performed to test hypoth-
eses formed in an outbreak investigation: case-control or
cohort studies. Recently, such studies have been called
“quasi-experimental” studies, as they are not prospec-
tive, randomized, placebo-controlled studies. The majority
of recommendations for prevention of HAls are based on
such quasi-experimental studies. Each type of study (e.g.,
case—control or cohort) has inherent advantages and dis-
advantages, which should be taken into account before
embarking on the study. A major consideration is whether
the number of case-patients is sufficient to statistically
identify or confirm the source and risk factors for infection/
disease or adverse event (i.e., the statistical power of the
study). If the number of cases is small, an epidemiologic
study may be fruitless, as one may not identify a source or
risk factor that is responsible (type Il or beta error) or erro-
neously identify a source or risk factor that is not responsi-
ble (type I or alpha error).

Case—Control Studies The case-patients for a case-
control study have already been selected by the occur-
rence of the outbreak. Choosing the appropriate controls
is the next step. Case—control studies require the selection
of study participants on the basis of disease/infection/
adverse event status. For example, if 25 affected patients or
HCWs (case-patients) are enrolled, a proportional number
(25, 50, 75, etc.) of unaffected members of the at-risk popu-
lation should be enrolled as controls. Specific risk factors
for disease/adverse event then can be compared between
case- and control-patients. Care should be taken to ensure
that case-patients and control subjects have equal likeli-
hood of the exposure (e.g., presence on the unit/ward for
minimum lengths of time during which the potential source
may have been present).

The main advantage of case—control studies is that they
require a small number of subjects (cases [n] and controls
[1n, 2n, or 3n]) and can, therefore, be conducted relatively
quickly. In addition, because subjects are chosen on the
basis of their disease/adverse event status (i.e., cases
being ill and controls being well), case—control studies are
well suited for infrequent or rare diseases/adverse events
or diseases/adverse events with long latency periods. In
addition, multiple exposures can be examined in the course
of one study. This same feature, however, means that the
design is backward (i.e., one selects subjects on the basis
of disease/adverse event status and then looks backward
in time to look at potential exposures). This may lead to
uncertainty that the exposure actually preceded the onset
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of disease/adverse event. In addition, this backwardness
may subject the study to both selection and recall bias.
Another disadvantage of case—control studies is that they
are unsuitable for rare exposures (disease/adverse event
incidence rates cannot be measured because the popula-
tion at risk has not been proportionately sampled) (see also
Chapter 2). Most outbreak investigations use the case-con-
trol study design because of its efficiency (smaller number
of case- and control-patients medical records to review)
while still being able to assess multiple exposures/poten-
tial risk factors in one study. One disadvantage of the case-
control study is that one cannot determine the relative risk
(RR) of the identified exposures, but rather estimates this
risk by calculating the odds ratio (OR) (see also Chapter 2).

Cohort Studies In contrast to case-control studies,
cohort studies require the selection of study participants
on the basis of exposure status. Such status can be deter-
mined on the basis of known facts about the case-patients
or case-HCWs. Exposures that often are used to determine
the cohort to be studied are underlying disease, being hos-
pitalized on a particular ward, having a particular physi-
cian, or having undergone a particular surgical or invasive
procedure. Once the cohort of diseased (cases) and non-
diseased (noncases) patients is selected, specific risk fac-
tors for development of disease can be evaluated among
the cases and noncases.

Because cohort study subjects are selected on the basis
of an exposure and followed forward through time (albeit
historical time) for the occurrence of disease, cohort stud-
ies have the advantage of a logical temporal sequence. The
selection of subjects on the basis of exposure also facili-
tates studying rare exposures or the many effects of one
exposure. Another major advantage of the cohort study
design is the ability to calculate disease incidence rates
for the affected population and the RR associated with the
identified risk factors (see also Chapter 2).

Study Design The type of study that should be done
and the population from which study subjects should be
chosen depend on the particular hypotheses to be tested,
the frequency of the adverse event, the duration of the out-
break, the number of case-patients identified, and so forth.
Often, it is necessary to conduct several studies, each test-
ing hypotheses from the different levels of the outbreak.
Most of the data for the case-patients or case-HCWs for
either type of study have already been collected in the ini-
tial data collection and chart review procedure. The same
data should be collected for the control subjects (case-
control study) or non-case-patients (cohort study), so that
particular risk factors can be evaluated. Data should be
collected similarly for cases and for controls or noncases.

Data Analysis

Descriptive Statistics Initial data analysis should con-
sist of descriptive statistics (e.g., frequency tables for
each independent or exposure variable). For example, if
information collected for cases and controls or noncases
includes age, gender, hospital ward, attending physician,
and surgical procedure performed, the frequency of all of
the values of those variables should be examined for the
study population. This type of descriptive information is
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TABLE 8-3

Frequency Distribution of Attending Physicians
for Cases and Controls, Outbreak of Unknown
Disease, Hospital X

Physician Number of Cases Number of Controls
A 14 (93%) 7 (47%)

B 0 (0%) 0 (0%)

C 1(7%) 8 (53%)
Total 15 (100%) 15 (100%)

very useful to direct further analyses. For example, if the
study population was exposed to attending physicians
A, B, and C as shown in Table 8-3, further analyses might
be conducted around events associated with attending-
physician A.

Univariate Analysis: Categorical Variables Categorical
variables (i.e., variables with values that can be sorted into
categories such as ill or well, yes or no, male or female)
are compared using the 2 x 2, or cross-tabulation, table. If
a case—control study design has been used, ORs should be
calculated by using the following formula:

OR=ad /bc

The OR is the odds that a person with the disease/
adverse event was previously exposed to the risk factor of
interest compared with the odds that a person without the
disease/adverse event was not previously exposed to the
risk factor of interest. Usually, the further away from 1.0
in either direction, the stronger the association between
the variables. The OR estimates the RR (see later) when a
case—control study design has been used. To continue with
the previous example, if exposure to physicians A and C is
compared with case or control status, exposure to physi-
cian A is associated with illness (Table 8-4).

When using a cohort study design, RR estimates can be
calculated for the population, using the following equation:

RR = probability of being exposed divided by probabil-
ity of being nonexposed or

a/(a+b)
c/(c+d)

TABLE 8-4

Two-by-Two Table Comparing Physicians A and
C to Case—Control Status, Outbreak of Unknown
Disease, Hospital X2

Cases Controls Total
Physician A 14 7 21
Physician C 1 8 9
15 15 30

“0dds ratio = ad/bc = (14)(8)/(7)(1) = 16.
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The RR is the risk of development of the disease/adverse
event if the exposure has occurred compared with the risk
of development of the disease/adverse event if the expo-
sure has not occurred. As with the OR, the further away
from 1.0 the RR is, the stronger the association is between
the variables. This calculation assumes that the study sub-
jects have been selected on the basis of exposure; there-
fore, this calculation can only be used with a cohort study
design.

Most statistical software packages also calculate 95%
confidence limits (95% CI) around the OR or the RR. This
calculation indicates that if the population were resampled
a number of times, the OR or RR would fall within the cal-
culated confidence limits 95% of the time. If the confidence
limits surround 1.0, it is likely that for any given sample of
the population, the real odds of disease/adverse event or
RR could equal 1.0, indicating no association between the
variables. Thus, 95% Cls are one indication of the signifi-
cance of the OR or RR (see also Chapter 2).

Most statistical software packages also calculate a
chi-square test from the 2 x 2 table to test the association
between the variables. More commonly reported in the sci-
entific literature than the chi-square value is the p value,
which is based on the chi-square value. If the expected
value in any of the cells of the 2 x 2 table is <5, the Fish-
er’s exact test (FET) is calculated instead of the chi-square
value. The p value for the FET is calculated directly from
the 2 x 2 table in this instance, rather than by using chi-
square tables. For either the chi-square test or the FET,
the p value indicates the level of certainty one has that
the association between the variables is not occurring by
chance alone. Both the chi-square test and the FET require
that the variables be mutually exclusive and independent.

Univariate Analysis: Continuous Variables Continuous
variables, such as age or severity of illness measurement,
are compared among the case- and control-patients or
noncases by using measures of central tendency, most
frequently the mean or median. If the data are normally
distributed (i.e., plotting the values on a graph yields a
bell-shaped, or normal, curve), the mean and its standard
deviation should be calculated. If the data are not nor-
mally distributed, the median and range of the data values
should be used.

Stratified and Multiple Variable Analysis Because
many HAI are multifactorial, often it is necessary to con-
trol for one or more variables while testing another. For
instance, SSIs frequently are related to the surgeon’s skill
(usually measured as the duration of surgery), the condi-
tion of the surgical site at the time of the operation (meas-
ured by a standard surgical site classification score), and
the patient’s underlying health status (measured by a vari-
ety of risk factor scores).

Analytic techniques to control for all of these factors
usually start with simple stratification of the data. Other
techniques include logistic or linear regression models
(for categorical and continuous outcome variables, respec-
tively), which require advanced statistical software and
training. In some outbreaks, the number of case-patients
may be too small to do either stratified or regression anal-
ysis. Furthermore, two or more variables may be linearly
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associated so that the independent importance of each risk
factor cannot be determined. Details on the use of univari-
ate, stratified, and multivariate statistical techniques can
be found in Chapter 3.

Use of Microcomputers The analytic techniques descri-
bed in this section can be accomplished with the use of
microcomputers. Statistical software packages, such as
Statistical Analysis System (SAS Institute Inc., Cary, NC),
Epilnfo Software (Centers for Disease Control and Preven-
tion [CDC], Atlanta, GA), and others, offer a wide variety of
features. Particularly useful is the Statcalc feature of Epi-
Info. It allows calculation of the necessary sample size to
find significant associations; direct input of data into cross-
tabulation tables for calculation of ORs or RRs and their
respective chi-square, FET, and p values; and direct input
of data into a trend analysis model for continuous variables
(37). Calculation of the power of the study or the sample
size necessary to detect significant associations is essen-
tial before embarking on any outbreak investigation or epi-
demiologic study. Details on the use of microcomputers in
hospital epidemiology can be found in Chapter 15.

MICROBIOLOGY LABORATORY ASPECTS
OF THE INVESTIGATION

Once a potential outbreak has been identified, the microbi-
ology laboratory should be notified immediately, so that all
appropriate specimens and positive cultures can be saved.
Because of the ubiquitous nature of microorganisms in
the healthcare facility environment, typing of microorgan-
isms thought to be related to an outbreak may be essential
to determine if the infected patient is indeed part of the
outbreak. The first line of typing of microorganisms is spe-
cies identification. This is followed by biotyping and then
antimicrobial susceptibility testing. For example, during
an outbreak of SSIs caused by MRSA, a patient thought to
be involved in the outbreak would be excluded as a case-
patient if antimicrobial susceptibility testing revealed that
he or she was infected with a methicillin-sensitive strain of
S. aureus.

When antimicrobial susceptibility testing is insufficient
to determine the relatedness of two microorganisms, other
methods of typing can be used, including serotyping, phage
typing, isoenzyme electrophoresis, and genetic finger-
printing techniques (e.g., pulsed-field gel electrophoresis,
plasmid analysis, or restriction fragment polymorphism).
These methods are further detailed in Chapter 94.

Although some research-oriented hospital laboratories
may be capable of very sophisticated typing techniques,
most infection control professionals require assistance
in typing microorganisms from an outbreak. University,
state health department, the CDC, or other laboratories
may be able to assist with typing of isolates from an out-
break. It should be remembered that genetic or other typ-
ing of isolates can determine whether the isolates are the
same strain (clonal) or not (nonclonal), but it cannot tell
whether there is an outbreak or not. Outbreaks can be
caused by clonal (common source) or nonclonal (intermit-
tent person-to-person transmission because of inadequate
hand hygiene) isolates.
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ENVIRONMENTAL INVESTIGATION

A thorough investigation of an infectious disease/adverse
event outbreak should include some inspection of the envi-
ronment, particularly if an inanimate object is epidemio-
logically implicated as a possible means of transmission.
For example, investigation of an outbreak of Serratia marc-
escens SSIs following breast reconstruction revealed that
expandable breast implants were associated with a greater
risk of infection than were nonexpandable implants. Fur-
thermore, infections were more likely when the expansion
procedure was performed in the surgeon’s office (38). This
led the investigators to sample solutions, water sources,
and personnel from the surgeon’s office that was involved in
the expansion procedure. Positive cultures were obtained
only from a specimen of saline taken from a partially used
bag in the procedure room, allowing investigators to
remove the contaminated solution and other bags with the
same purchase date. Environmental cultures should not be
taken randomly, because many surfaces are contaminated
with numerous microorganisms, perhaps including the
microorganism being investigated. Positive culture results
from such random sampling may be misleading, difficult to
interpret, and