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xiii

This introductory-level biostatistics text is designed for upper-level undergraduate 
or graduate students interested in medicine or other health-related areas. It requires 
no previous background in statistics, and its mathematical level assumes only a 
knowledge of algebra.
	 Fundamentals of Biostatistics evolved from notes that I have used in a biostatistics 
course taught to Harvard University undergraduates, Harvard Medical School, and 
Harvard School of Public Health students over the past 30 years. I wrote this book 
to help motivate students to master the statistical methods that are most often used 
in the medical literature. From the student’s viewpoint, it is important that the 
example material used to develop these methods is representative of what actually 
exists in the literature. Therefore, most of the examples and exercises in this book 
are based either on actual articles from the medical literature or on actual medi-
cal research problems I have encountered during my consulting experience at the 
Harvard Medical School.

The Approach
Most introductory statistics texts either use a completely nonmathematical, cookbook 
approach or develop the material in a rigorous, sophisticated mathematical frame-
work. In this book, however, I follow an intermediate course, minimizing the amount 
of mathematical formulation but giving complete explanations of all important 
concepts. Every new concept in this book is developed systematically through com-
pletely worked-out examples from current medical research problems. In addition, I 
introduce computer output where appropriate to illustrate these concepts.
	 I initially wrote this text for the introductory biostatistics course. However, the 
field has changed dramatically over the past 30 years; because of the increased power 
of newer statistical packages, we can now perform more sophisticated data analyses 
than ever before. Therefore, a second goal of this text is to present these new tech-
niques at an introductory level so that students can become familiar with them without 
having to wade through specialized (and, usually, more advanced) statistical texts.
	 To differentiate these two goals more clearly, I included most of the content for 
the introductory course in the first 12 chapters. More advanced statistical techniques 
used in recent epidemiologic studies are covered in Chapter 13, “Design and Analysis 
Techniques for Epidemiologic Studies,” and Chapter 14, “Hypothesis Testing:  
Person-Time Data.” 

Preface
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xiv              Preface

Changes in the Eighth Edition
For this edition, I have added three new sections and added new content to three 
other sections. Features new to this edition include the following:

■	 The data sets are now available on the book’s Companion Website at www 
.cengage.com/statistics/rosner in an expanded set of formats, including Excel, 
Minitab®, SPSS, JMP, SAS, Stata, R, and ASCII formats.

■	 Data and medical research findings in Examples have been updated.

■	 New or expanded coverage of the followings topics has been added:

	 ■	 The Bootstrap (Section 6.11)

	 ■	 One-sample inference for the Binomial Distribution (Section 7.9)

	 ■	 Permutation Tests (Section 9.6)

	 ■	 Sample size estimation for logistic regression (Section 13.9)

	 ■	 Estimation of survival curves: The Kaplan-Meier Estimator (Section 14.9)

	 ■	 Derivation of selected formulas (Sections 7.12, 8.11, 10.9, 11.14, 12.11, 
13.17, 14.15)

The new sections and the expanded sections for this edition have been indicated by 
an asterisk in the table of contents.

Exercises
This edition contains 1,490 exercises; 171 of these exercises are new. Data and medical 
research findings in the problems have been updated where appropriate. All problems 
based on the data sets are included. Problems marked by an asterisk (*) at the end of 
each chapter have corresponding brief solutions in the answer section at the back of 
the book. Based on requests from students for more completely solved problems, ap-
proximately 600 additional problems and complete solutions are presented in the 
Study Guide available on the Companion Website accompanying this text. In addition, 
approximately 100 of these problems are included in a Miscellaneous Problems section 
and are randomly ordered so that they are not tied to a specific chapter in the book.  
This gives the student additional practice in determining what method to use in what 
situation. Complete instructor solutions to all exercises are available at the instructor 
companion website at cengage.com/statistics/rosner.

Computation Method
The method of handling computations is similar to that used in the seventh edi-
tion. All intermediate results are carried to full precision (10+ significant digits), 
even though they are presented with fewer significant digits (usually 2 or 3) in the 
text. Thus, intermediate results may seem inconsistent with final results in some 
instances; this, however, is not the case. 

Organization
Fundamentals of Biostatistics, Eighth Edition, is organized as follows.
	 Chapter 1 is an introductory chapter that contains an outline of the develop-
ment of an actual medical study with which I was involved. It provides a unique 
sense of the role of biostatistics in medical research.
	 Chapter 2 concerns descriptive statistics and presents all the major numeric and 
graphic tools used for displaying medical data. This chapter is especially important 
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Preface                    xv

for both consumers and producers of medical literature because much information 
is actually communicated via descriptive material.
	 Chapters 3 through 5 discuss probability. The basic principles of probability are 
developed, and the most common probability distributions—such as the binomial 
and normal distributions—are introduced. These distributions are used extensively 
in later chapters of the book. The concepts of prior probability and posterior prob-
ability are also introduced.
	 Chapters 6 through 10 cover some of the basic methods of statistical inference.
	 Chapter 6 introduces the concept of drawing random samples from popula-
tions. The difficult notion of a sampling distribution is developed and includes an 
introduction to the most common sampling distributions, such as the t and chi-
square distributions. The basic methods of estimation, including an extensive discus-
sion of confidence intervals, are also presented. In addition, the bootstrap method for 
obtaining confidence limits is introduced for the first time.
	 Chapters 7 and 8 contain the basic principles of hypothesis testing. The most 
elementary hypothesis tests for normally distributed data, such as the t test, are also 
fully discussed for one- and two-sample problems.
	 Chapter 9 covers the basic principles of nonparametric statistics. The assump-
tions of normality are relaxed, and distribution-free analogues are developed for the 
tests in Chapters 7 and 8. The technique of permutation testing, which is widely used in 
genetic studies, is introduced for the first time.
	 Chapter 10 contains the basic concepts of hypothesis testing as applied to cat-
egorical data, including some of the most widely used statistical procedures, such as 
the chi-square test and Fisher’s exact test.
	 Chapter 11 develops the principles of regression analysis. The case of simple lin-
ear regression is thoroughly covered, and extensions are provided for the multiple-
regression case. Important sections on goodness-of-fit of regression models are also 
included. Also, rank correlation is introduced, including methods for obtaining 
confidence intervals for rank correlation.
	 Chapter 12 introduces the basic principles of the analysis of variance (ANOVA).  
The one-way analysis of variance fixed- and random-effects models are discussed.  
In addition, two-way ANOVA, the analysis of covariance, and mixed effects mod-
els are covered. Finally, we discuss nonparametric approaches to one-way ANOVA.  
Multiple comparison methods including material on the false discovery rate are also 
provided.  
	 Chapter 13 discusses methods of design and analysis for epidemiologic studies.  
The most important study designs, including the prospective study, the case-control 
study, the cross-sectional study, and the cross-over design are introduced. The con-
cept of a confounding variable—that is, a variable related to both the disease and 
the exposure variable—is introduced, and methods for controlling for confound-
ing, which include the Mantel-Haenszel test and multiple-logistic regression, are 
discussed in detail. Extensions to logistic regression models, including conditional 
logistic regression, polytomous logistic regression, and ordinal logistic regression, are 
discussed. Methods of estimation of sample size for logistic regression models are provided 
for the first time. This discussion is followed by the exploration of topics of current 
interest in epidemiologic data analysis, including meta-analysis (the combination 
of results from more than one study); correlated binary data techniques (techniques 
that can be applied when replicate measures, such as data from multiple teeth from 
the same person, are available for an individual); measurement error methods (use-
ful when there is substantial measurement error in the exposure data collected); 
equivalence studies (whose objective it is to establish bioequivalence between two 
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treatment modalities rather than that one treatment is superior to the other); and 
missing-data methods for how to handle missing data in epidemiologic studies.  
Longitudinal data analysis and generalized estimating equation (GEE) methods are 
also briefly discussed.
	 Chapter 14 introduces methods of analysis for person-time data. The methods 
covered in this chapter include those for incidence-rate data, as well as several meth-
ods of survival analysis: the Kaplan-Meier survival curve estimator, the log-rank test, 
and the proportional-hazards model. Methods for testing the assumptions of the 
proportional-hazards model have also been included. Parametric survival analysis 
methods are also discussed.
	 Throughout the text—particularly in Chapter 13—I discuss the elements of 
study designs, including the concepts of matching; cohort studies; case-control 
studies; retrospective studies; prospective studies; and the sensitivity, specificity, 
and predictive value of screening tests. These designs are presented in the context 
of actual samples. In addition, Chapters 7, 8, 10, 11, 13, and 14 contain specific 
sections on sample-size estimation for different statistical situations.
	 There have been two important organizational changes in the presentation of 
material in the text. First, the derivation of more complex formulas have either been 
moved after the statement of an equation or to separate derivation sections at the 
end of the chapter, to enable students to access the main results in the equations 
more immediately. Second, there are numerous subsections entitled “Using the 
Computer to Perform a Specific Test” to more clearly highlight use of the computer 
to implement many of the methods in the text.
	 A flowchart of appropriate methods of statistical inference (see pages 895–900) 
is a handy reference guide to the methods developed in this book. Page references 
for each major method presented in the text are also provided. In Chapters 7 and 8 
and Chapters 10–14, I refer students to this flowchart to give them some perspective 
on how the methods discussed in a given chapter fit with all the other statistical 
methods introduced in this book.
	 In addition, I have provided an index of applications, grouped by medical spe-
cialty, summarizing all the examples and problems this book covers.
	 Finally, we provide for the first time, an index of computer software to more clearly 
identify the computer commands in specific computer packages that are featured in the text.
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1

1General Overview

Statistics is the science whereby inferences are made about specific random phe-
nomena on the basis of relatively limited sample material. The field of statistics 
has two main areas: mathematical statistics and applied statistics. Mathematical 
statistics concerns the development of new methods of statistical inference and 
requires detailed knowledge of abstract mathematics for its implementation.  
Applied statistics involves applying the methods of mathematical statistics to spe-
cific subject areas, such as economics, psychology, and public health. Biostatistics 
is the branch of applied statistics that applies statistical methods to medical and bio-
logical problems. Of course, these areas of statistics overlap somewhat. For example, 
in some instances, given a certain biostatistical application, standard methods do 
not apply and must be modified. In this circumstance, biostatisticians are involved 
in developing new methods.

A good way to learn about biostatistics and its role in the research process is to 
follow the flow of a research study from its inception at the planning stage to its com-
pletion, which usually occurs when a manuscript reporting the results of the study  
is published. As an example, I will describe one such study in which I participated.

A friend called one morning and in the course of our conversation mentioned 
that he had recently used a new, automated blood-pressure measuring device of the 
type seen in many banks, hotels, and department stores. The machine had measured 
his average diastolic blood pressure on several occasions as 115 mm Hg; the highest 
reading was 130 mm Hg. I was very worried, because if these readings were accurate, 
my friend might be in imminent danger of having a stroke or developing some other 
serious cardiovascular disease. I referred him to a clinical colleague of mine who,  
using a standard blood-pressure cuff, measured my friend’s diastolic blood pressure 
as 90 mm Hg. The contrast in readings aroused my interest, and I began to jot down 
readings from the digital display every time I passed the machine at my local bank. 
I got the distinct impression that a large percentage of the reported readings were in 
the hypertensive range. Although one would expect hypertensive individuals to be 
more likely to use such a machine, I still believed that blood-pressure readings from 
the machine might not be comparable with those obtained using standard methods 
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2              C H A P T E R  1      General Overview

of blood-pressure measurement. I spoke with Dr. B. Frank Polk, a physician at Harvard  
Medical School with an interest in hypertension, about my suspicion and succeeded 
in interesting him in a small-scale evaluation of such machines. We decided to send 
a human observer, who was well trained in blood-pressure measurement techniques, 
to several of these machines. He would offer to pay participants 50¢ for the cost of 
using the machine if they would agree to fill out a short questionnaire and have 
their blood pressure measured by both a human observer and the machine.

At this stage we had to make several important decisions, each of which proved 
vital to the success of the study. These decisions were based on the following  
questions:

(1)	 How many machines should we test?

(2)	 How many participants should we test at each machine?

(3)	 In what order should we take the measurements? That is, should the human 
observer or the machine take the first measurement? Under ideal circumstances 
we would have taken both the human and machine readings simultaneously, 
but this was logistically impossible.

(4)	 What data should we collect on the questionnaire that might influence the 
comparison between methods?

(5)	 How should we record the data to facilitate computerization later?

(6)	 How should we check the accuracy of the computerized data?

	 We resolved these problems as follows:

(1) and (2) Because we were not sure whether all blood-pressure machines were 
comparable in quality, we decided to test four of them. However, we wanted to 
sample enough subjects from each machine so as to obtain an accurate comparison 
of the standard and automated methods for each machine. We tried to predict how 
large a discrepancy there might be between the two methods. Using the methods of 
sample-size determination discussed in this book, we calculated that we would need 
100 participants at each site to make an accurate comparison.

(3) We then had to decide in what order to take the measurements for each 
person. According to some reports, one problem with obtaining repeated blood- 
pressure measurements is that people tense up during the initial measurement, yield-
ing higher blood-pressure readings. Thus we would not always want to use either the 
automated or manual method first, because the effect of the method would get con-
fused with the order-of-measurement effect. A conventional technique we used here 
was to randomize the order in which the measurements were taken, so that for any 
person it was equally likely that the machine or the human observer would take the 
first measurement. This random pattern could be implemented by flipping a coin or, 
more likely, by using a table of random numbers similar to Table 4 of the Appendix.

(4) We believed that the major extraneous factor that might influence the results 
would be body size (we might have more difficulty getting accurate readings from 
people with fatter arms than from those with leaner arms). We also wanted to get 
some idea of the type of people who use these machines. Thus we asked questions 
about age, gender, and previous hypertension history.

(5) To record the data, we developed a coding form that could be filled out on 
site and from which data could be easily entered into a computer for subsequent 
analysis. Each person in the study was assigned a unique identification (ID) number 
by which the computer could identify that person. The data on the coding forms 
were then keyed and verified. That is, the same form was entered twice and the two 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



General Overview              3

records compared to make sure they were the same. If the records did not match, the 
form was re-entered.

(6) Checking each item on each form was impossible because of the large 
amount of data involved. Instead, after data entry we ran some editing programs 
to ensure that the data were accurate. These programs checked that the values for 
individual variables fell within specified ranges and printed out aberrant values for 
manual checking. For example, we checked that all blood-pressure readings were at 
least 50 mm Hg and no higher than 300 mm Hg, and we printed out all readings 
that fell outside this range. We also ran programs to detect outliers as discussed later 
in this book.

After completing the data-collection, data-entry, and data-editing phases, we 
were ready to look at the results of the study. The first step in this process is to get 
an impression of the data by summarizing the information in the form of several 
descriptive statistics. This descriptive material can be numeric or graphic. If numeric, 
it can be in the form of a few summary statistics, which can be presented in tabular 
form or, alternatively, in the form of a frequency distribution, which lists each value 
in the data and how frequently it occurs. If graphic, the data are summarized pictori-
ally and can be presented in one or more figures. The appropriate type of descriptive 
material to use varies with the type of distribution considered. If the distribution is 
continuous—that is, if there is essentially an infinite number of possible values, as 
would be the case for blood pressure—then means and standard deviations may be 
the appropriate descriptive statistics. However, if the distribution is discrete—that 
is, if there are only a few possible values, as would be the case for gender—then 
percentages of people taking on each value are the appropriate descriptive measure. 
In some cases both types of descriptive statistics are used for continuous distribu-
tions by condensing the range of possible values into a few groups and giving the 
percentage of people that fall into each group (e.g., the percentages of people who 
have blood pressures between 120 and 129 mm Hg, between 130 and 139 mm Hg,  
and so on).

In this study we decided first to look at mean blood pressure for each method at 
each of the four sites. Table 1.1 summarizes this information [1].

You may notice from this table that we did not obtain meaningful data from 
all 100 people interviewed at each site. This was because we could not obtain valid 
readings from the machine for many of the people. This problem of missing data is 
very common in biostatistics and should be anticipated at the planning stage when 
deciding on sample size (which was not done in this study).

	 Table 1.1 	 Mean blood pressures and differences between machine  
and human readings at four locations

Location
Number  

of people

Systolic blood pressure (mm Hg)

Machine Human Difference

 
Mean

Standard 
deviation

 
Mean

Standard 
deviation

 
Mean

Standard 
deviation

A 98 142.5 21.0 142.0 18.1 0.5 11.2
B 84 134.1 22.5 133.6 23.2 0.5 12.1
C 98 147.9 20.3 133.9 18.3 14.0 11.7
D 62 135.4 16.7 128.5 19.0 6.9 13.6

Source: Based on the American Heart Association, Inc.
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Our next step in the study was to determine whether the apparent differences in 
blood pressure between machine and human measurements at two of the locations 
(C, D) were “real” in some sense or were “due to chance.” This type of question falls 
into the area of inferential statistics. We realized that although there was a differ-
ence of 14 mm Hg in mean systolic blood pressure between the two methods for 
the 98 people we interviewed at location C, this difference might not hold up if we 
interviewed 98 other people at this location at a different time, and we wanted to 
have some idea as to the error in the estimate of 14 mm Hg. In statistical jargon, 
this group of 98 people represents a sample from the population of all people who 
might use that machine. We were interested in the population, and we wanted to
use the sample to help us learn something about the population. In particular, we 
wanted to know how different the estimated mean difference of 14 mm Hg in our 
sample was likely to be from the true mean difference in the population of all peo-
ple who might use this machine. More specifically, we wanted to know if it was still 
possible that there was no underlying difference between the two methods and that 
our results were due to chance. The 14-mm Hg difference in our group of 98 people 
is referred to as an estimate of the true mean difference (d) in the population. The 
problem of inferring characteristics of a population from a sample is the central con-
cern of statistical inference and is a major topic in this text. To accomplish this aim, 
we needed to develop a probability model, which would tell us how likely it is that 
we would obtain a 14-mm Hg difference between the two methods in a sample of 
98 people if there were no real difference between the two methods over the entire 
population of users of the machine. If this probability were small enough, then we 
would begin to believe a real difference existed between the two methods. In this 
particular case, using a probability model based on the t distribution, we concluded 
this probability was less than 1 in 1000 for each of the machines at locations C and D. 
This probability was sufficiently small for us to conclude there was a real difference 
between the automatic and manual methods of measuring blood pressure for two of 
the four machines tested.

We used a statistical package to perform the preceding data analyses. A package 
is a collection of statistical programs that describe data and perform various statisti-
cal tests on the data. Currently the most widely used statistical packages are SAS, 
SPSS, Stata, R, MINITAB, and Excel.

The final step in this study, after completing the data analysis, was to compile 
the results in a publishable manuscript. Inevitably, because of space considerations, 
we weeded out much of the material developed during the data-analysis phase and 
presented only the essential items for publication.

This review of our blood-pressure study should give you some idea of what 
medical research is about and the role of biostatistics in this process. The material in 
this text parallels the description of the data-analysis phase of the study. Chapter 2  
summarizes different types of descriptive statistics. Chapters 3 through 5 present 
some basic principles of probability and various probability models for use in later 
discussions of inferential statistics. Chapters 6 through 14 discuss the major topics 
of inferential statistics as used in biomedical practice. Issues of study design or data 
collection are brought up only as they relate to other topics discussed in the text.

[1] Polk, B. F., Rosner, B., Feudo, R., & Vandenburgh, M. 
(1980). An evaluation of the Vita-Stat automatic blood pres-
sure measuring device. Hypertension, 2(2), 221−227.

R e f e r e n c e
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2
	 2.1	 I n t r o d u c t i o n

The first step in looking at data is to describe the data at 
hand in some concise way. In smaller studies this step can be 
accomplished by listing each data point. In general, however, 
this procedure is tedious or impossible and, even if it were 
possible, would not give an overall picture of what the data 
look like.

Descriptive Statistics

	 Example 2.1 	 Cancer, Nutrition  Some investigators have proposed that consumption of vitamin A 
prevents cancer. To test this theory, a dietary questionnaire might be used to collect 
data on vitamin-A consumption among 200 hospitalized cancer patients (cases) and 
200 controls. The controls would be matched with regard to age and gender with the 
cancer cases and would be in the hospital at the same time for an unrelated disease. 
What should be done with these data after they are collected?

Before any formal attempt to answer this question can be made, the vitamin-A 
consumption among cases and controls must be described. Consider Figure 2.1. The 
bar graphs show that the controls consume more vitamin A than the cases do, par-
ticularly at consumption levels exceeding the Recommended Daily Allowance (RDA).

	 Example 2.2 	 Pulmonary Disease  Medical researchers have often suspected that passive smokers—
people who themselves do not smoke but who live or work in an environment in 
which others smoke—might have impaired pulmonary function as a result. In 1980 
a research group in San Diego published results indicating that passive smokers did 
indeed have significantly lower pulmonary function than comparable nonsmokers 
who did not work in smoky environments [1]. As supporting evidence, the authors 
measured the carbon-monoxide (CO) concentrations in the working environments 
of passive smokers and of nonsmokers whose companies did not permit smoking in 
the workplace to see if the relative CO concentration changed over the course of the 
day. These results are displayed as a scatter plot in Figure 2.2.

Figure 2.2 clearly shows that the CO concentrations in the two working environ-
ments are about the same early in the day but diverge widely in the middle of the 
day and then converge again after the workday is over at 7 p.m.

Graphic displays illustrate the important role of descriptive statistics, which 
is to quickly display data to give the researcher a clue as to the principal trends in 
the data and suggest hints as to where a more detailed look at the data, using the 
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6              C H A P T E R  2      Descriptive Statistics

methods of inferential statistics, might be worthwhile. Descriptive statistics are also 
crucially important in conveying the final results of studies in written publications. 
Unless it is one of their primary interests, most readers will not have time to criti-
cally evaluate the work of others but will be influenced mainly by the descriptive 
statistics presented.

What makes a good graphic or numeric display? The main guideline is that 
the material should be as self-contained as possible and should be understandable 
without reading the text. These attributes require clear labeling. The captions, units, 
and axes on graphs should be clearly labeled, and the statistical terms used in tables 
and figures should be well defined. The quantity of material presented is equally 
important. If bar graphs are constructed, then care must be taken to display neither 
too many nor too few groups. The same is true of tabular material.

Many methods are available for summarizing data in both numeric and graphic 
form. In this chapter these methods are summarized and their strengths and weak-
nesses noted.

	 2.2	 Me  a s u r e s  o f  L o c at i o n

The basic problem of statistics can be stated as follows: Consider a sample of data  
x1, . . . , xn, where x1 corresponds to the first sample point and xn corresponds to the 

	 Figure 2.1 	 Daily vitamin-A consumption among cancer cases and controls
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nth sample point. Presuming that the sample is drawn from some population P, 
what inferences or conclusions can be made about P from the sample?

Before this question can be answered, the data must be summarized as succinctly 
as possible; this is because the number of sample points is often large, and it is easy 
to lose track of the overall picture when looking at individual sample points. One 
type of measure useful for summarizing data defines the center, or middle, of the 
sample. This type of measure is a measure of location.

The Arithmetic Mean
How to define the middle of a sample may seem obvious, but the more you think 
about it, the less obvious it becomes. Suppose the sample consists of the birth-
weights of all live-born infants born at a private hospital in San Diego, California, 
during a 1-week period. This sample is shown in Table 2.1.

One measure of location for this sample is the arithmetic mean (colloqui-
ally called the average). The arithmetic mean (or mean or sample mean) is usually 
denoted by x.

	 Figure 2.2 	 Mean carbon-monoxide concentration (± standard error) by time of day as measured 
in the working environment of passive smokers and in nonsmokers who work in a 
nonsmoking environment
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	 Definition 2.1 	 The arithmetic mean is the sum of all the observations divided by the number of 
observations. It is written in statistical terms as
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∑∑
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	 Example 2.3 	  If	 x1 = 2	 x2 = 5	 x3 = -4

find	 x x x xi
i

i
i

i
i

i
i= = = =

∑ ∑ ∑ ∑
1

3

2

3
2

1

3

1

3

2

	 	 Solution: 

	 	 x x

x

i
i

i
i

i
i

= + − = = − =

= + + =

= =
∑ ∑2 5 4 3 5 4 1

4 25 16 45

1

3

2

3

2

== ==
∑ ∑∑ = =

1

3

1

3

1

3

2 2 6x xi i
ii	 	

x x

x

i
i

i
i

i
i

= + − = = − =

= + + =

= =
∑ ∑2 5 4 3 5 4 1

4 25 16 45

1

3

2

3

2

== ==
∑ ∑∑ = =

1

3

1

3

1

3

2 2 6x xi i
ii

It is important to become familiar with summation signs because they are used 
extensively throughout the remainder of the text.

	 Table 2.1 	 Sample of birthweights (g) of live-born infants born at a private hospital in San Diego, 
California, during a 1-week period

i	 xi	 i	 xi	 i	 xi	 i	 xi

1	 3265	 6	 3323	 11	 2581	 16	 2759
2	 3260	 7	 3649	 12	 2841	 17	 3248
3	 3245	 8	 3200	 13	 3609	 18	 3314
4	 3484	 9	 3031	 14	 2838	 19	 3101
5	 4146	 10	 2069	 15	 3541	 20	 2834
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	 2.2      Measures of Location              9

	 Example 2.4 	 What is the arithmetic mean for the sample of birthweights in Table 2.1?

		  x = + + + =( ) .3265 3260 2834 20 3166 9L g

The arithmetic mean is, in general, a very natural measure of location. One 
of its main limitations, however, is that it is oversensitive to extreme values. In 
this instance, it may not be representative of the location of the great majority 
of sample points. For example, if the first infant in Table 2.1 happened to be a 
premature infant weighing 500 g rather than 3265 g, then the arithmetic mean 
of the sample would fall to 3028.7 g. In this instance, 7 of the birthweights would 
be lower than the arithmetic mean, and 13 would be higher than the arithmetic 
mean. It is possible in extreme cases for all but one of the sample points to be on 
one side of the arithmetic mean. In these types of samples, the arithmetic mean 
is a poor measure of central location because it does not reflect the center of the 
sample. Nevertheless, the arithmetic mean is by far the most widely used measure 
of central location.

The Median
An alternative measure of location, perhaps second in popularity to the arithmetic 
mean, is the median or, more precisely, the sample median.

Suppose there are n observations in a sample. If these observations are ordered 
from smallest to largest, then the median is defined as follows:

	 Definition 2.2 	 The sample median is

(1)	 The 
n +





1
2

th largest observation if n is odd

(2)	 The average of the 
n
2







th and 
n
2

1+





th largest observations if n is even

The rationale for these definitions is to ensure an equal number of sample points 
on both sides of the sample median. The median is defined differently when n is 
even and odd because it is impossible to achieve this goal with one uniform defini-
tion. Samples with an odd sample size have a unique central point; for example, 
for samples of size 7, the fourth largest point is the central point in the sense that 
3 points are smaller than it and 3 points are larger. Samples with an even sample size 
have no unique central point, and the middle two values must be averaged. Thus, 
for samples of size 8 the fourth and fifth largest points would be averaged to obtain 
the median, because neither is the central point.

	 Example 2.5 	 Compute the sample median for the sample in Table 2.1.

	 	 Solution:  First, arrange the sample in ascending order:

�2069, 2581, 2759, 2834, 2838, 2841, 3031, 3101, 3200, 3245, 3248, 3260, 3265, 
3314, 3323, 3484, 3541, 3609, 3649, 4146

Because n is even,

Sample median = average of the 10th and 11th largest observations
	 = (3245 + 3248)/2 = 3246.5 g

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



10              C H A P T E R  2      Descriptive Statistics

We can also use a computer package to compute the mean and median. We 
have used the computer package R for this purpose. We first enter the data from 
Table 2.1 into a spreadsheet and save it as a text file with the names of the variables 
(in this case two variables called id and birthwt) in the first row. We then read the 
data into R using the read.xlsx command and assign the data set the name bwt. 
We then use the attach command to refer to the variables in the data set by name. 
We also use the names command to determine what the names are in the data set. 
Finally, we use the mean and median commands to compute the arithmetic mean 
and the median, respectively. The results are given in Table 2.2.

	 Table 2.2 	 Use of R to compute the mean and median for the birthweight data in Table 2.1

> bwt<-read.xlsx(“E:/Rosner/DataCh2/fob.8thedition.
table2.1.xlsx”,2, header=TRUE)

> attach(bwt)

> names(bwt)

[1] “id”      “birthwt”

> birthwt

[1] 3265 3260 3245 3484 4146 3323 3649 3200 3031 2069 2581 2841 
3609 2838 3541

[16] 2759 3248 3314 3101 2834

> mean(birthwt)

[1] 3166.9

> median(birthwt)

[1] 3246.5

	 Example 2.6 	 Infectious Disease  Consider the data set in Table 2.3, which consists of white-blood 
counts taken upon admission of all patients entering a small hospital in Allentown, 
Pennsylvania, on a given day. Compute the median white-blood count.

	 Table 2.3 	 Sample of admission white-blood counts 	
(× 1000) for all patients entering a hospital 	
in Allentown, Pennsylvania, on a given day

i	 xi	 i	 xi

1	 7	 6	 3
2	 35	 7	 10
3	 5	 8	 12
4	 9	 9	 8
5	 8		

	 	 Solution:  First, order the sample as follows: 3, 5, 7, 8, 8, 9, 10, 12, 35. Because n is 
odd, the sample median is given by the fifth largest point, which equals 8 or 8000 
on the original scale.

The main strength of the sample median is that it is insensitive to very large 
or very small values. In particular, if the second patient in Table 2.3 had a white 
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	 2.2      Measures of Location              11

count of 65,000 rather than 35,000, the sample median would remain unchanged, 
because the fifth largest value is still 8000. Conversely, the arithmetic mean would 
increase dramatically from 10,778 in the original sample to 14,111 in the new sample.  
The main weakness of the sample median is that it is determined mainly by the 
middle points in a sample and is less sensitive to the actual numeric values of the 
remaining data points.

Comparison of the Arithmetic Mean and the Median
If a distribution is symmetric, then the relative position of the points on each side 
of the sample median is the same. An example of a distribution that is expected to 
be roughly symmetric is the distribution of systolic blood-pressure measurements 
taken on all 30- to 39-year-old factory workers in a given workplace (Figure 2.3a).

If a distribution is positively skewed (skewed to the right), then points above 
the median tend to be farther from the median in absolute value than points below 
the median. An example of a positively skewed distribution is that of the number of 
years of oral contraceptive (OC) use among a group of women ages 20 to 29 years 
(Figure 2.3b). Similarly, if a distribution is negatively skewed (skewed to the left), 
then points below the median tend to be farther from the median in absolute value 
than points above the median. An example of a negatively skewed distribution is 
that of relative humidities observed in a humid climate at the same time of day over 
a number of days. In this case, most humidities are at or close to 100%, with a few 
very low humidities on dry days (Figure 2.3c).
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Figure 2.3 	 Graphic displays of (a) symmetric, (b) positively skewed, and (c) negatively skewed distributions
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12              C H A P T E R  2      Descriptive Statistics

In many samples, the relationship between the arithmetic mean and the 
sample median can be used to assess the symmetry of a distribution. In particular, 
for symmetric distributions the arithmetic mean is approximately the same as the 
median. For positively skewed distributions, the arithmetic mean tends to be larger 
than the median; for negatively skewed distributions, the arithmetic mean tends to 
be smaller than the median.

The Mode
Another widely used measure of location is the mode.

	 Definition 2.3 	 The mode is the most frequently occurring value among all the observations in a 
sample.

	 Example 2.7 	 Gynecology  Consider the sample of time intervals between successive menstrual 
periods for a group of 500 college women age 18 to 21 years, shown in Table 2.4. The 
frequency column gives the number of women who reported each of the respective 
durations. The mode is 28 because it is the most frequently occurring value.

	 Table 2.4 	 Sample of time intervals between successive menstrual periods (days) 	
in college-age women

Value	 Frequency	 Value	 Frequency	 Value	 Frequency

24	 5	 29	 96	 34	 7
25	 10	 30	 63	 35	 3
26	 28	 31	 24	 36	 2
27	 64	 32	 9	 37	 1
28	 185	 33	 2	 38	 1

	 Example 2.8 	 Compute the mode of the distribution in Table 2.3.

	 	 Solution:  The mode is 8000 because it occurs more frequently than any other white-
blood count.

Some distributions have more than one mode. In fact, one useful method of 
classifying distributions is by the number of modes present. A distribution with one 
mode is called unimodal; two modes, bimodal; three modes, trimodal; and so 
forth.

	 Example 2.9 	 Compute the mode of the distribution in Table 2.1.

	 	 Solution:  There is no mode, because all the values occur exactly once.

Example 2.9 illustrates a common problem with the mode: It is not a useful 
measure of location if there is a large number of possible values, each of which 
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occurs infrequently. In such cases the mode will be either far from the center of the 
sample or, in extreme cases, will not exist, as in Example 2.9.

The Geometric Mean
Many types of laboratory data, specifically data in the form of concentrations of 
one substance in another, as assessed by serial dilution techniques, can be expressed 
either as multiples of 2 or as a constant multiplied by a power of 2; that is, outcomes 
can only be of the form 2kc, k = 0, 1, . . . , for some constant c. For example, the data 
in Table 2.5 represent the minimum inhibitory concentration (MIC) of penicillin 
G in the urine for N. gonorrhoeae in 74 patients [2]. The arithmetic mean is not 
appropriate as a measure of location in this situation because the distribution is 
very skewed.

However, the data do have a certain pattern because the only possible values 
are of the form 2k(0.03125) for k = 0, 1, 2, . . . . One solution is to work with the 
distribution of the logs of the concentrations. The log concentrations have the prop-
erty that successive possible concentrations differ by a constant; that is, log(2k+1c) 
− log(2kc) = log(2k+1) + log c − log(2k) − log c = (k + 1) log 2 − k log 2 = log 2. Thus the 
log concentrations are equally spaced from each other, and the resulting distribu-
tion is now not as skewed as the concentrations themselves. The arithmetic mean 
can then be computed in the log scale; that is,

	 Table 2.5 	 Distribution of minimum inhibitory concentration (MIC) 	
of penicillin G for N. gonorrhoeae

Concentration (µg/mL)	 Frequency	 Concentration (µg/mL)	 Frequency

0.03125 = 20(0.03125)	 21	 0.250 = 23(0.03125)	 19
0.0625    = 21(0.03125)	 6	 0.50    = 24(0.03125)	 17
0.125      = 22(0.03125)	 8	 1.0      = 25(0.03125)	 3

Source: Based on JAMA, 220, 205–208, 1972. 

	 log logx
n

xi
i

n

=
=
∑1

1

and used as a measure of location. However, it is usually preferable to work in the 
original scale by taking the antilogarithm of log x to form the geometric mean, 
which leads to the following definition:

	 Definition 2.4 	 The geometric mean is the antilogarithm of log x, where

	
log logx

n
xi

i

n

=
=
∑1

1

Any base can be used to compute logarithms for the geometric mean. The geometric 
mean is the same regardless of which base is used. The only requirement is that the 
logs and antilogs in Definition 2.4 should be in the same base. Bases often used in 
practice are base 10 and base e.
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14              C H A P T E R  2      Descriptive Statistics

	 Example 2.10 	 Infectious Disease  Compute the geometric mean for the sample in Table 2.5.

	 	 Solution:  (1) For convenience, use base 10 to compute the logs and antilogs in this 
example.

		  (2) Compute

=
+ +

+ + +








 = −xlog

21log (0.03125) 6 log (0.0625) 8log (0.125)

19log (0.250) 17log (0.50) 3log (1.0)
74 0.84610 10 10

10 10 10

	 	 (3) The geometric mean = the antilogarithm of −0.846 = 10−0.846 = 0.143.

	 	 Similarly, we can also perform these computations in R as follows

> mic<-na.omit(read.xlsx(“E:/Rosner/DataCh2/fob.8thedition.
table2.4.xlsx”,1, header=TRUE))

> names(mic)

[1] “Concentration” “Frequency”    

> logs<-sum(mic$Frequency*log10(mic$Concentration))/
sum(mic$Frequency)

> geo_mean=10^logs

> geo_mean

[1] 0.1425153

	 2.3	 S o m e  P r o p e r t ie  s  o f  t h e  A r i t h m e t i c  Me  a n

Consider a sample x1, . . . , xn, which will be referred to as the original sample. To 
create a translated sample x1 + c, . . . , xn + c, add a constant c to each data point. 
Let yi = xi + c, i = 1, . . . , n. Suppose we want to compute the arithmetic mean of the 
translated sample. We can show that the following relationship holds:

	 Equation 2.1 	 If     yi = xi + c,    i = 1, . . . , n

		  then  y x c= +

Therefore, to find the arithmetic mean of the y’s, compute the arithmetic mean of 
the x’s and add the constant c.

This principle is useful because it is sometimes convenient to change the 
“origin” of the sample data—that is, to compute the arithmetic mean after the trans-
lation and then transform back to the original origin.

	 Example 2.11 	 To compute the arithmetic mean of the time interval between menstrual periods in 
Table 2.4, it is more convenient to work with numbers that are near zero than with 
numbers near 28. Thus, a translated sample might first be created by subtracting  
28 days from each outcome in Table 2.4. The arithmetic mean of the translated 
sample could then be found and 28 added to get the actual arithmetic mean. The 
calculations are shown in Table 2.6.
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	 Table 2.6 	 Translated sample for the duration between successive menstrual 	
periods in college-age women

Value	 Frequency	 Value	 Frequency	 Value	 Frequency

−4	 5	 1	 96	 6	 7
−3	 10	 2	 63	 7	 3
−2	 28	 3	 24	 8	 2
−1	 64	 4	 9	 9	 1
  0	 185	 5	 2	 10	 1

Note: y  = [(−4)(5) + (−3)(10) + . . . + (10)(1)]/500 = 0.54

	 x  = y  + 28 = 0.54 + 28 = 28.54 days 

Similarly, systolic blood-pressure scores are usually between 100 and 200. 
Therefore, to obtain the mean of the original sample, it is easier to subtract 100 from 
each blood-pressure score, find the mean of the translated sample, and add 100.

What happens to the arithmetic mean if the units or scale being worked with 
changes? A rescaled sample can be created:

		  yi = cxi,	 i = 1, . . . , n

	 	 The following result holds:

	 Equation 2.2 	 If       yi =  cxi, i = 1, . . . , n

		  then  y cx=

Therefore, to find the arithmetic mean of the y’s, compute the arithmetic mean of 
the x’s and multiply it by the constant c.

	 Example 2.12 	 Express the mean birthweight for the data in Table 2.1 in ounces rather than grams.

	 	 Solution:  We know that 1 oz = 28.35 g and that x = 3166 9. g. Thus, if the data were 
expressed in terms of ounces,

		  c y= = =1
28 35

1
28 35

3166 9 111 71
. .

( . ) .and oz

Sometimes we want to change both the origin and the scale of the data at the 
same time. To do this, apply Equations 2.1 and 2.2 as follows:

	 Equation 2.3 	 �Let x1, . . . , xn be the original sample of data and let yi = c1xi + c2, i = 1, . . . , n  
represent a transformed sample obtained by multiplying each original sample 
point by a factor c1 and then shifting over by a constant c2.

	 	 If       yi = c1xi + c2,	 i = 1, . . . , n

		  then  y = c1x + c2           
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16              C H A P T E R  2      Descriptive Statistics

	 Example 2.13 	 If we have a sample of temperatures in °C with an arithmetic mean of 11.75°C, then 
what is the arithmetic mean in °F?

	 	 Solution:  Let yi denote the °F temperature that corresponds to a °C temperature of xi. 
The required transformation to convert the data to °F would be

		  y x i ni i= + =9
5

32 1, , . . . ,

so the arithmetic mean would be

		  y = + =9
5

11 75 32 53 15( . ) . °F

	 2.4	 Me  a s u r e s  o f  S p r e a d

Consider Figure 2.4, which represents two samples of cholesterol measurements, 
each on the same person, but using different measurement techniques. The samples 
appear to have about the same center, and whatever measure of central location is 
used is probably about the same in the two samples. In fact, the arithmetic means 
are both 200 mg/dL. Visually, however, the two samples appear radically different. 
This difference lies in the greater variability, or spread, of the Autoanalyzer method 
relative to the Microenzymatic method. In this section, the notion of variability is 
quantified. Many samples can be well described by a combination of a measure of 
location and a measure of spread.

The Range
Several different measures can be used to describe the variability of a sample. Per-
haps the simplest measure is the range.

	 Definition 2.5 	 The range is the difference between the largest and smallest observations in a sample.

177 193 195 209 226

209202197

200

192

x = 200

Autoanalyzer method
(mg/dL)

Microenzymatic method
(mg/dL)

	 Figure 2.4 	 Two samples of cholesterol measurements on a given person using the Autoanalyzer 
and Microenzymatic measurement methods
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	 Example 2.14 	 The range in the sample of birthweights in Table 2.1 is

	 4146 − 2069 = 2077 g

	 Example 2.15 	 Compute the ranges for the Autoanalyzer- and Microenzymatic-method data in 
Figure 2.4, and compare the variability of the two methods.

	 	 Solution:  The range for the Autoanalyzer method = 226 − 177 = 49 mg/dL. The 
range for the Microenzymatic method = 209 − 192 = 17 mg/dL. The Autoanalyzer 
method clearly seems more variable.

One advantage of the range is that it is very easy to compute once the sample 
points are ordered. One striking disadvantage is that it is very sensitive to extreme 
observations. Hence, if the lightest infant in Table 2.1 weighed 500 g rather than 
2069 g, then the range would increase dramatically to 4146 − 500 = 3646 g. Another 
disadvantage of the range is that it depends on the sample size (n). That is, the larger 
n is, the larger the range tends to be. This complication makes it difficult to compare 
ranges from data sets of differing size.

Quantiles
Another approach that addresses some of the shortcomings of the range in quantify-
ing the spread in a data set is the use of quantiles or percentiles. Intuitively, the pth 
percentile is the value Vp such that p percent of the sample points are less than or 
equal to Vp. The median, being the 50th percentile, is a special case of a quantile. As 
was the case for the median, a different definition is needed for the pth percentile, 
depending on whether or not np/100 is an integer.

	 Definition 2.6 	 The pth percentile is defined by

(1)	� The (k + 1)th largest sample point if np/100 is not an integer (where k is the 
largest integer less than np/100).

(2)	� The average of the (np/100)th and (np/100 + 1)th largest observations if np/100 
is an integer.

Percentiles are also sometimes called quantiles.

The spread of a distribution can be characterized by specifying several percen-
tiles. For example, the 10th and 90th percentiles are often used to characterize 
spread. Percentiles have the advantage over the range of being less sensitive to 
outliers and of not being greatly affected by the sample size (n).

	 Example 2.16 	 Compute the 10th and 90th percentiles for the birthweight data in Table 2.1.

	 	 Solution:  Because 20 × .1 = 2 and 20 × .9 = 18 are integers, the 10th and 90th percen-
tiles are defined by

	 	 	 10th percentile: average of the second and third largest values
		  	 = (2581 + 2759)/2 = 2670 g

	 	 	 90th percentile: average of the 18th and 19th largest values
	 	 	 = (3609 + 3649)/2 = 3629 g

We would estimate that 80% of birthweights will fall between 2670 g and 3629 g, 
which gives an overall impression of the spread of the distribution.
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18              C H A P T E R  2      Descriptive Statistics

	 Example 2.17 	 Compute the 20th percentile for the white-blood-count data in Table 2.3.

	 	 Solution:  Because np/100 = 9 × .2 = 1.8 is not an integer, the 20th percentile is 
defined by the (1 + 1)th largest value = second largest value = 5000.

To compute percentiles, the sample points must be ordered. This can be difficult 
if n is even moderately large. An easy way to accomplish this is to use a stem-
and-leaf plot (see Section 2.8) or a computer program.

We have used the quantile function of R to compute the 10th and 90th percen-
tiles of the birthweight data in Table 2.1 and the 20th percentile of the white count 
data in Table 2.3. The results are presented below in Table 2.7.

	 Table 2.7 	 Use of R to compute sample quantiles in Examples 2.16 and 2.17

> quantile(birthwt,probs = c(0.1, 0.9),na.rm = TRUE, type = 2)

10%   90%

2670  3629

> quantile(white.count, probs = 0.2, na.rm = TRUE, type = 2)

20%

   5

The results are the same as those in Examples 2.16 and 2.17. The option na.rm = 
TRUE means that missing values are excluded from calculating quantiles. Note that 
there are several (9) different algorithms available in R for calculating quantiles that 
are obtained by specifying type = 1, . . .  , type = 9. The type = 2 option is, in my 
opinion, the most common and agrees with Definition 2.6.

There is no limit to the number of percentiles that can be computed. The most 
useful percentiles are often determined by the sample size and by subject-matter 
considerations. Frequently used percentiles are tertiles (33rd and 67th percentiles), 
quartiles (25th, 50th, and 75th percentiles), quintiles (20th, 40th, 60th, and 80th per-
centiles), and deciles (10th, 20th, . . . , 90th percentiles). It is almost always instruc-
tive to look at some of the quantiles to get an overall impression of the spread and 
the general shape of a distribution.

The Variance and Standard Deviation
The main difference between the Autoanalyzer- and Microenzymatic-method data 
in Figure 2.4 is that the Microenzymatic-method values are closer to the center of 
the sample than the Autoanalyzer-method values. If the center of the sample is 
defined as the arithmetic mean, then a measure that can summarize the difference 
(or deviations) between the individual sample points and the arithmetic mean is 
needed; that is,

		  x x x x x xn1 2− − −, , . . . ,

One simple measure that would seem to accomplish this goal is

	 	 d
x x

n
ii

n

=
−

=∑ ( )
1

Unfortunately, this measure will not work, because of the following principle:
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	 Equation 2.4 	 �The sum of the deviations of the individual observations of a sample about the 
sample mean is always zero.

	 Example 2.18 	 Compute the sum of the deviations about the mean for the Autoanalyzer- and 
Microenzymatic-method data in Figure 2.4.

	 	 Solution:  For the Autoanalyzer-method data,

		  	 d = (177 − 200) + (193 − 200) + (195 − 200) + (209 − 200) + (226 − 200)
	 	 	 = −23 − 7 − 5 + 9 + 26 = 0

	 	 For the Microenzymatic-method data,

		  	 d = (192 − 200) + (197 − 200) + (200 − 200) + (202 − 200) + (209 − 200)
	 	 	 = −8 − 3 + 0 + 2 + 9 = 0

	 	 Thus, d does not help distinguish the difference in spreads between the two methods. 
	 	 	 A second possible measure is

	 | | /x x ni
i

n

−
=
∑

1

which is called the mean deviation. The mean deviation is a reasonable measure 
of spread but does not characterize the spread as well as the standard deviation  
(see Definition 2.8) if the underlying distribution is bell-shaped.

A third idea is to use the average of the squares of the deviations from the sam-
ple mean rather than the deviations themselves. The resulting measure of spread, 
denoted by s2, is

	 	 s
x x

n
ii

n
2

2
1=

−
=∑ ( )

The more usual form for this measure is with n − 1 in the denominator rather than 
n. The resulting measure is called the sample variance (or variance).

	 Definition 2.7 	 The sample variance, or variance, is defined as follows:

		  s
x x

n
ii

n
2

2
1

1
=

−
−

=∑ ( )

A rationale for using n − 1 in the denominator rather than n is presented in the  
discussion of estimation in Chapter 6.

Another commonly used measure of spread is the sample standard deviation.

	 Definition 2.8 	 The sample standard deviation, or standard deviation, is defined as follows:

s
x x

n
ii

n

=
−

−
==∑ ( )2

1

1
samplevariance

	 Example 2.19 	 Compute the variance and standard deviation for the Autoanalyzer- and 
Microenzymatic-method data in Figure 2.4.
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20              C H A P T E R  2      Descriptive Statistics

	 	 Solution:  Autoanalyzer Method

		

s2 2 2 2
177 200 193 200 195 200 209= −( ) + −( ) + −( ) + −−( ) + −( )





= + + + +

200 226 200 4

529 49 25 81 6

2 2

776 4 1360 4 340

340 18 4

( ) = =

= =

/ /

.s

	 	 Microenzymatic Method

		

s2 2 2 2
192 200 197 200 200 200 202= −( ) + −( ) + −( ) + − 2200 209 200 4

64 9 0 4 81 4 1

2 2( ) + −( )





= + + + +( ) =/ 558 4 39 5

39 5 6 3

/ .

. .

=

= =s

Thus the Autoanalyzer method has a standard deviation roughly three times as large 
as that of the Microenzymatic method.

	 Example 2.20 	 Use Microsoft Excel to compute the mean and standard deviation for the Autoana-
lyzer and Microenzymatic-method data in Figure 2.4.

	 	 Solution:  We enter the Autoanalyzer and Microenzymatic data in cells B3–B7 and 
C3–C7, respectively. We then use the Average and StDev functions to evaluate the 
mean and standard deviation as follows:

	 Autoanalyzer	 Microenzymatic

	 Method	 Method

	 177	 192

	 193	 197

	 195	 200

	 209	 202

	 226	 209

Average	 200	 200

StDev	 18.4	 6.3 

In Excel, if we make B8 the active cell and type = Average(B3:B7) in that cell, 
then the mean of the values in cells B3, B4, . . . , B7 will appear in cell B8. Similarly, 
specifying = Stdev(B3:B7) will result in the standard deviation of the Autoanalyzer 
Method data being placed in the active cell of the spreadsheet.

	 2.5	 S o m e  P r o p e r t ie  s  o f  t h e  V a r i a n c e  

a n d  S ta n d a r d  Devi    at i o n

The same question can be asked of the variance and standard deviation as of the 
arithmetic mean: namely, how are they affected by a change in origin or a change in 
the units being worked with? Suppose there is a sample x1, . . . , xn and all data points 
in the sample are shifted by a constant c; that is, a new sample y1, . . . , yn is created 
such that yi = xi + c, i = 1, . . . , n.

In Figure 2.5, we would clearly expect the variance and standard deviation to 
remain the same because the relationship of the points in the sample relative to one 
another remains the same. This property is stated as follows:
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	 Equation 2.5 	 Suppose there are two samples

			   x1, . . . , xn    and    y1, . . . , yn

		  where yi = xi + c,  i = 1, . . . , n

		  If the respective sample variances of the two samples are denoted by

			       sx
2 and sy

2

		  then  sy
2 = sx

2

	 Example 2.21 	 Compare the variances and standard deviations for the menstrual-period data in 
Tables 2.4 and 2.6.

	 	 Solution:  The variance and standard deviation of the two samples are the same 
because the second sample was obtained from the first by subtracting 28 days from 
each data value; that is,

		  yi = xi − 28

Suppose the units are now changed so that a new sample, y1, . . . , yn, is created 
such that yi = cxi, i = 1, . . . , n. The following relationship holds between the variances 
of the two samples.

	 Equation 2.6 	 Suppose there are two samples

		  x1, . . . , xn    and    y1, . . . , yn

		  where  yi = cxi,   i = 1, . . . , n,  c > 0

		  Then   sy
2 = c2sx

2  sy = csx

This can be shown by noting that

	

s
y y

n

cx cx

n

c x

y
ii

n
ii

n

i

2
2

1
2

1

1 1
=

−
−

=
−

−

=
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	 Figure 2.5 	 Comparison of the variances of two samples, where one sample has an origin shifted 
relative to the other
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	 Example 2.22 	 Compute the variance and standard deviation of the birthweight data in Table 2.1 in 
both grams and ounces.

	 	 Solution:  The original data are given in grams, so first compute the variance and 
standard deviation in these units.

		

s2
2 23265 3166 9 2834 3166 9

19
3 768

= − + + −

=

( . ) ( . )

, ,

L

1147 8 19 198 323 6
445 3

2. / , .
.

=
=

g
gs

	 	 To compute the variance and standard deviation in ounces, note that

	 	 	
1 28 35

1
28 35

.
.

oz g or= =y xi i

		  Thus, 	s s2
2

2 21

28 35
246 8( )

.
( ) .oz g oz= =

			 
s s( )

.
( ) .oz g oz= =1

28 35
15 7

Thus, if the sample points change in scale by a factor of c, the variance changes 
by a factor of c2 and the standard deviation changes by a factor of c. This relation-
ship is the main reason why the standard deviation is more often used than the 
variance as a measure of spread: the standard deviation and the arithmetic mean 
are in the same units, whereas the variance and the arithmetic mean are not. Thus, 
as illustrated in Examples 2.12 and 2.22, both the mean and the standard deviation 
change by a factor of 1/28.35 in the birthweight data of Table 2.1 when the units are 
expressed in ounces rather than in grams.

The mean and standard deviation are the most widely used measures of location 
and spread in the literature. One of the main reasons for this is that the normal (or 
bell-shaped) distribution is defined explicitly in terms of these two parameters, and 
this distribution has wide applicability in many biological and medical settings. The 
normal distribution is discussed extensively in Chapter 5.

	 2.6	 T h e  C o e f f i c ie  n t  o f  V a r i at i o n

It is useful to relate the arithmetic mean and the standard deviation to each other 
because, for example, a standard deviation of 10 means something different concep-
tually if the arithmetic mean is 10 versus if it is 1000. A special measure, the coef-
ficient of variation, is often used for this purpose.

	 Definition 2.9 	 The coefficient of variation (CV) is defined by

	 100% ( )× s x/

This measure remains the same regardless of what units are used because if the units 
change by a factor c, then both the mean and standard deviation change by the  
factor c; while the CV, which is the ratio between them, remains unchanged.
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	 2.6      The Coefficient of Variation              23

	 Example 2.23 	 Compute the coefficient of variation for the data in Table 2.1 when the birthweights 
are expressed in either grams or ounces.

	 	 Solution:  CV s x= × = × =100 100 445 3 3166 9 14% ( ) % ( . . ) ./ g/ g 11%

	 	 If the data were expressed in ounces, then

		  	 CV = 100% × (15.7 oz/111.71 oz) = 14.1%

The CV is most useful in comparing the variability of several different samples, 
each with different arithmetic means. This is because a higher variability is usually 
expected when the mean increases, and the CV is a measure that accounts for this 
variability. Thus, if we are conducting a study in which air pollution is measured at 
several sites and we wish to compare day-to-day variability at the different sites, we 
might expect a higher variability for the more highly polluted sites. A more accurate 
comparison could be made by comparing the CVs at different sites than by compar-
ing the standard deviations.

The CV is also useful for comparing the reproducibility of different variables. 
Consider, for example, data from the Bogalusa Heart Study, a large study of cardio-
vascular risk factors in children [3] that began in the 1970s and continues up to the 
present time.

At approximately 3-year intervals, cardiovascular risk factors such as blood pres-
sure, weight, and cholesterol levels were measured for each of the children in the 
study. In 1978, replicate measurements were obtained for a subset of the children 
a short time apart from regularly scheduled risk factor measurements. Table 2.8 
presents reproducibility data on a selected subset of cardiovascular risk factors. We 
note that the CV ranges from 0.2% for height to 10.4% for HDL cholesterol. The 
standard deviations reported here are within-subject standard deviations based on 
repeated assessments of the same child. Details on how within- and between-subject 
variations are computed are covered in Chapter 12 in the discussion of the random-
effects analysis-of-variance model.

	 Table 2.8 	 Reproducibility of cardiovascular risk factors in children, 	
Bogalusa Heart Study, 1978–1979

	 n	 Mean	 sd	 CV (%)

Height (cm)	 364	 142.6	 0.31	 0.2
Weight (kg)	 365	 39.5	 0.77	 1.9
Triceps skin fold (mm)	 362	 15.2	 0.51	 3.4
Systolic blood pressure (mm Hg)	 337	 104.0	 4.97	 4.8
Diastolic blood pressure (mm Hg)	 337	 64.0	 4.57	 7.1
Total cholesterol (mg/dL)	 395	 160.4	 3.44	 2.1
HDL cholesterol (mg/dL)	 349	 56.9	 5.89	 10.4

R E V I E W  QU  E ST  I ONS    2 A

1	 When is it appropriate to use the arithmetic mean as opposed to the median?

2	 How does the geometric mean differ from the arithmetic mean? For what type of 
data is the geometric mean used?

3	 What is the difference between the standard deviation and the CV? When is it 
appropriate to use each measure?

R
 E

 V
 I 

E 
W
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	 2.7	 G r o u p e d  D ata

Sometimes the sample size is too large to display all the raw data. Also, data are 
frequently collected in grouped form because the required degree of accuracy to 
measure a quantity exactly is often lacking due either to measurement error or 
to imprecise patient recall. For example, systolic blood-pressure measurements 
taken with a standard cuff are usually specified to the nearest 2 mm Hg because 
assessing them with any more precision is difficult using this instrument. Thus, a 
stated measurement of 120 mm Hg may actually imply that the reading is some 
number ≥119 mm Hg and <121 mm Hg. Similarly, because dietary recall is gener-
ally not very accurate, the most precise estimate of fish consumption might take 
the following form: 2–3 servings per day, 1 serving per day, 5–6 servings per week, 
2–4 servings per week, 1 serving per week, <1 serving per week and ≥1 serving per 
month, never.

Consider the data set in Table 2.9, which represents the birthweights from 100 
consecutive deliveries at a Boston hospital. Suppose we wish to display these data for 
publication purposes. How can we do this? The simplest way to display the data is to 
generate a frequency distribution using a statistical package.

	 Definition 2.10 	 A frequency distribution is an ordered display of each value in a data set together 
with its frequency, that is, the number of times that value occurs in the data set. 
In addition, the percentage of sample points that take on a particular value is also 
typically given.

A frequency distribution of the sample of 100 birthweights in Table 2.9, generated 
using the SAS package, is displayed in Table 2.10.

The SAS FREQ procedure provides the Frequency, relative frequency (Percent), 
Cumulative Frequency, and Cumulative Percent for each birthweight present 
in the sample. For any particular birthweight b, the Cumulative Frequency is 
the number of birthweights in the sample that are less than or equal to b. The 
Percent = 100 × Frequency/n, whereas Cumulative Percent = 100 × Cumulative 
Frequency/n = the percentage of birthweights less than or equal to b.

	 Table 2.9 	 Sample of birthweights (oz) from 100 consecutive deliveries at a Boston hospital

  58	 118	 92	 108	 132	 32	 140	 138	 96	 161
120	 86	 115	 118	 95	 83	 112	 128	 127	 124
123	 134	 94	 67	 124	 155	 105	 100	 112	 141
104	 132	 98	 146	 132	 93	 85	 94	 116	 113
121	 68	 107	 122	 126	 88	 89	 108	 115	 85
111	 121	 124	 104	 125	 102	 122	 137	 110	 101
  91	 122	 138	 99	 115	 104	 98	 89	 119	 109
104	 115	 138	 105	 144	 87	 88	 103	 108	 109
128	 106	 125	 108	 98	 133	 104	 122	 124	 110
133	 115	 127	 135	 89	 121	 112	 135	 115	 64
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	 Table 2.10 	 Frequency distribution of the birthweight data 	
on Table 2.9 using the FREQ procedure of SAS

			   Cumulative	 Cumulative 
Birthweight	 Frequency	 Percent	 Frequency	 Percent

  32	 1	 1.00	 1	 1.00
  58	 1	 1.00	 2	 2.00
  64	 1	 1.00	 3	 3.00
  67	 1	 1.00	 4	 4.00
  68	 1	 1.00	 5	 5.00
  83	 1	 1.00	 6	 6.00
  85	 2	 2.00	 8	 8.00
  86	 1	 1.00	 9	 9.00
  87	 1	 1.00	 10	 10.00
  88	 2	 2.00	 12	 12.00
  89	 3	 3.00	 15	 15.00
  91	 1	 1.00	 16	 16.00
  92	 1	 1.00	 17	 17.00
  93	 1	 1.00	 18	 18.00
  94	 2	 2.00	 20	 20.00
  95	 1	 1.00	 21	 21.00
  96	 1	 1.00	 22	 22.00
  98	 3	 3.00	 25	 25.00
  99	 1	 1.00	 26	 26.00
100	 1	 1.00	 27	 27.00
101	 1	 1.00	 28	 28.00
102	 1	 1.00	 29	 29.00
103	 1	 1.00	 30	 30.00
104	 5	 5.00	 35	 35.00
105	 2	 2.00	 37	 37.00
106	 1	 1.00	 38	 38.00
107	 1	 1.00	 39	 39.00
108	 4	 4.00	 43	 43.00
109	 2	 2.00	 45	 45.00
110	 2	 2.00	 47	 47.00
111	 1	 1.00	 48	 48.00
112	 3	 3.00	 51	 51.00
113	 1	 1.00	 52	 52.00
115	 6	 6.00	 58	 58.00
116	 1	 1.00	 59	 59.00
118	 2	 2.00	 61	 61.00
119	 1	 1.00	 62	 62.00
120	 1	 1.00	 63	 63.00
121	 3	 3.00	 66	 66.00
122	 4	 4.00	 70	 70.00
123	 1	 1.00	 71	 71.00
124	 4	 4.00	 75	 75.00
125	 2	 2.00	 77	 77.00
126	 1	 1.00	 78	 78.00
127	 2	 2.00	 80	 80.00
128	 2	 2.00	 82	 82.00
132	 3	 3.00	 85	 85.00
133	 2	 2.00	 87	 87.00
134	 1	 1.00	 88	 88.00
135	 2	 2.00	 90	 90.00
137	 1	 1.00	 91	 91.00
138	 3	 3.00	 94	 94.00
140	 1	 1.00	 95	 95.00
141	 1	 1.00	 96	 96.00
144	 1	 1.00	 97	 97.00
146	 1	 1.00	 98	 98.00
155	 1	 1.00	 99	 99.00
161	 1	 1.00	 100	 100.00
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If the number of unique sample values is large, then a frequency distribution 
may still be too detailed a summary for publication purposes. Instead, the data could 
be grouped into broader categories. Here are some general instructions for categoriz-
ing the data:

(1)	 Subdivide the data into k intervals, starting at some lower bound y1 and ending 
at some upper bound yk+1.

(2)	 The first interval is from y1 inclusive to y2 exclusive; the second interval is from y2 
inclusive to y3 exclusive; . . . ; the kth and last interval is from yk inclusive to yk+1 ex-
clusive. The rationale for this representation is to make certain the group intervals 
include all possible values and do not overlap. In some published work, grouped 
data are presented, but the group boundaries are ambiguous (e.g., 0–5, 5–10, etc.).

(3)	 The group intervals are generally chosen to be equal, although the appropriateness 
of equal group sizes should be dictated more by subject-matter considerations. 
Thus, equal intervals might be appropriate for the blood-pressure or birthweight 
data but not for the dietary-recall data, where the nature of the data dictates  
unequal group sizes corresponding to how most people remember what they eat.

(4)	 A count is made of the number of units that fall in each interval, which is  
denoted by the frequency within that interval.

(5)	 Finally, the group intervals and their frequencies, fi, are then displayed concisely 
in a table such as Table 2.11.

For example, the raw data in Table 2.10 might be displayed in grouped form as 
shown in Table 2.12.

	T able 2.11 	 General layout of grouped data

	Group interval	 Frequency

	 y1 ≤ x < y2	 f1

	 y2 ≤ x < y3	 f2

	 .	 .
	 .	 .
	 .	 .
	 yi ≤ x < yi+1	 fi

	 .	 .
	 .	 .
	 .	 .
	 yk ≤ x < yk+1	 fk

	 Table 2.12 	 Grouped frequency distribution of the birthweight (oz) from 100 consecutive deliveries

	 The FREQ Procedure

			   Cumulative	 Cumulative 
Group_interval	 Frequency	 Percent	 Frequency	 Percent

29.5 ≤ x < 69.5	 5	 5.00	 5	 5.00
69.5 ≤ x < 89.5	 10	 10.00	 15	 15.00
89.5 ≤ x < 99.5	 11	 11.00	 26	 26.00
99.5 ≤ x < 109.5	 19	 19.00	 45	 45.00
109.5 ≤ x < 119.5	 17	 17.00	 62	 62.00
119.5 ≤ x < 129.5	 20	 20.00	 82	 82.00
129.5 ≤ x < 139.5	 12	 12.00	 94	 94.00
139.5 ≤ x < 169.5	 6	 6.00	 100	 100.00
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	 2.8	 G r a p h i c  Me  t h o d s

In Sections 2.1 through 2.7 we concentrated on methods for describing data in 
numeric and tabular form. In this section, these techniques are supplemented 
by presenting certain commonly used graphic methods for displaying data. The 
purpose of using graphic displays is to give a quick overall impression of data, which 
is sometimes difficult to obtain with numeric measures.

Bar Graphs
One of the most widely used methods for displaying grouped data is the bar graph.

	 	 A bar graph can be constructed as follows:

		  (1)	 The data are divided into a number of groups using the guidelines provided 
in Section 2.7.

		  (2)	 For each group, a rectangle is constructed with a base of a constant width 
and a height proportional to the frequency within that group.

		  (3)	 The rectangles are generally not contiguous and are equally spaced from 
each other.

A bar graph of daily vitamin-A consumption among 200 cancer cases and 200 age-
and gender-matched controls was shown in Figure 2.1.

Stem-and-Leaf Plots
Two problems with bar graphs are that (1) the definition of the groups is somewhat 
arbitrary and (2) the sense of what the actual sample points are within the respective 
groups is lost. One type of graphic display that overcomes these problems is the stem-
and-leaf plot.

	 	 A stem-and-leaf plot can be constructed as follows:

		  (1)	 Separate each data point into a stem component and a leaf component, re-
spectively, where the stem component consists of the number formed by all 
but the rightmost digit of the number, and the leaf component consists of 
the rightmost digit. Thus, the stem of the number 483 is 48, and the leaf is 3.

		  (2)	 The smallest stem in the data set is displayed in the upper left-hand corner of 
the plot.

		  (3)	 The second stem, which equals the first stem + 1 is displayed, below the 
first stem.

		  (4)	 The procedure in step 3 is repeated until the largest stem in the data set is 
reached.

		  (5)	 A vertical bar is found to the right of the column of stems.

		  (6)	 For each number in the data set, the appropriate stem is found and the 
leaves are displayed to the right of the vertical bar.

The collection of leaves thus formed takes on the general shape of the distribution 
of the sample points. Furthermore, the actual sample values are preserved and yet 
there is a grouped display for the data, which is a distinct advantage over a bar graph. 
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Finally, it is also easy to compute the median and other quantiles from a stem-and-
leaf plot. Figure 2.6 presents a stem-and-leaf plot using R for the birthweight data 
in Table 2.9. Thus, the point 5  8 represents 58, 11  8 represents 118, and so forth. 
Notice how this plot gives an overall feel for the distribution without losing the 
individual values. Also, the cumulative frequency count from either the lowest or 
the highest value is given in the first column. For the 11 stem, the absolute count is 
given in parentheses (17) instead of the cumulative total because the highest or low-
est value would exceed 50% (50).

In some variations of stem-and-leaf plots, the leaf can consist of more than one 
digit. This might be appropriate for the birthweight data in Table 2.1 because the 
number of three-digit stems required would be very large relative to the number of 
data points. In this case, the leaf would consist of the rightmost two digits and the 
stem the leftmost two digits, and the pairs of digits to the right of the vertical bar 
would be underlined to distinguish between two different leaves. The stem-and-leaf 
display for the data in Table 2.1 is shown in Figure 2.7.

Another common variation on the ordinary stem-and-leaf plot if the number of 
leaves is large is to allow more than one line for each stem. Similarly, one can posi-
tion the largest stem at the top of the plot and the smallest stem at the bottom of 
the plot. In Figure 2.8 some graphic displays using the SAS UNIVARIATE procedure 
illustrate this technique.

Notice that each stem is allowed two lines, with the leaves from 5 to 9 on the upper 
line and the leaves from 0 to 4 on the lower line. Furthermore, the leaves are ordered 
on each line, and a count of the number of leaves on each line is given under the # 
column to allow easy computation of the median and other quantiles. Thus, the num-
ber 7 in the # column on the upper line for stem 12 indicates there are 7 birthweights 
from 125 to 129 oz in the sample, whereas the number 13 indicates there are 13 birth-
weights from 120 to 124 oz. Finally, a multiplication factor (m) at the bottom of the 
display allows for representing decimal numbers in stem-and-leaf form. In particular, if 
no m is present, then it is assumed all numbers have the actual value stem.leaf; whereas 

	 Figure 2.6 	 Stem-and-leaf plot for the birthweight data (oz) in Table 2.9 using R

> stem.leaf(bwt$birthweight, unit=1, trim.outliers=FALSE)

1 | 2: represents 12

leaf unit: 1

n: 100

1

2
5

15
26
45

(17)
38
18

6
2
1

3
4
5
6
7
8
9
10
11
12
13
14
15
16

2

8
478

3556788999
12344568889
0123444445567888899
00122235555556889
01112222344445567788
222334557888
0146
5
1

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



	 2.8      Graphic Methods              29

if m is present, then the actual value of the number is assumed to be stem.leaf × 10m.  
Thus, for example, because the multiplication factor is 101, the value 6  4 on the  
stem-and-leaf plot represents the number 6.4 × 101 = 64 oz.

Box Plots
In the section beginning on page 6 we discussed the comparison of the arithmetic 
mean and the median as a method for looking at the skewness of a distribution. 
This goal can also be achieved by a graphic technique known as the box plot. A box 
plot uses the relationships among the median, upper quartile, and lower quartile to 
describe the skewness of a distribution.

The upper and lower quartiles can be thought of conceptually as the approxi-
mate 75th and 25th percentiles of the sample—that is, the points 3/4 and 1/4 along 
the way in the ordered sample.

How can the median, upper quartile, and lower quartile be used to judge the 
symmetry of a distribution?

(1)	 If the distribution is symmetric, then the upper and lower quartiles should be 
approximately equally spaced from the median.

(2)	 If the upper quartile is farther from the median than the lower quartile, then the 
distribution is positively skewed.

(3)	 If the lower quartile is farther from the median than the upper quartile, then the 
distribution is negatively skewed.

	 Figure 2.7 	 Stem-and-leaf plot for the birthweight data (g) in Table 2.1
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These relationships are illustrated graphically in a box plot. In Figure 2.8 the top 
of the box corresponds to the upper quartile, whereas the bottom of the box cor-
responds to the lower quartile. A horizontal line is also drawn at the median value. 
Furthermore, in the SAS implementation of the box plot, the sample mean is indi-
cated by a + sign distinct from the edges of the box.

	 Example 2.24 	 What can we learn about the symmetry properties of the distribution of birthweights 
from the box plot in Figure 2.8?

	 	 Solution:  In Figure 2.8, because the lower quartile is farther from the median than 
the upper quartile, the distribution is slightly negatively skewed. This pattern is true 
of many birthweight distributions.

In addition to displaying the symmetry properties of a sample, a box plot 
can also be used to visually describe the spread of a sample and can help identify 

	 Figure 2.8 	 Stem-and-leaf and box plot for the birthweight data in Table 2.9 as generated by the 
SAS Univariate Procedure
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possible outlying values—that is, values that seem inconsistent with the rest of 
the points in the sample. In the context of box plots, outlying values are defined 
as follows:

	 Definition 2.11 	 An outlying value is a value x such that either

(1)	 x > upper quartile + 1.5 × (upper quartile − lower quartile) or

(2)	 x < lower quartile − 1.5 × (upper quartile − lower quartile)

	 Definition 2.12 	 An extreme outlying value is a value x such that either

(1)	 x > upper quartile + 3.0 × (upper quartile − lower quartile) or

(2)	 x < lower quartile − 3.0 × (upper quartile − lower quartile)

The box plot is then completed by

(1)	 Drawing a vertical bar from the upper quartile to the largest nonoutlying value 
in the sample

(2)	 Drawing a vertical bar from the lower quartile to the smallest nonoutlying value 
in the sample

(3)	� Individually identifying the outlying and extreme outlying values in the sample 
by zeroes (0) and asterisks (*), respectively

	 Example 2.25 	 Using the box plot in Figure 2.8, comment on the spread of the sample in Table 2.9 
and the presence of outlying values.

	 	 Solution:  It can be shown from Definition 2.6 that the upper and lower quartiles are 
124.5 and 98.5 oz, respectively. Hence, an outlying value x must satisfy the following 
relations:

	 x > 124.5 + 1.5 × (124.5 − 98.5) = 124.5 + 39.0 = 163.5
or	 x < 98.5 − 1.5 × (124.5 − 98.5) = 98.5 − 39.0 = 59.5

Similarly, an extreme outlying value x must satisfy the following relations:

	 x > 124.5 + 3.0 × (124.5 − 98.5) = 124.5 + 78.0 = 202.5
or	 x < 98.5 − 3.0 × (124.5 − 98.5) = 98.5 − 78.0 = 20.5

Thus, the values 32 and 58 oz are outlying values but not extreme outlying values. 
These values are identified by 0’s on the box plot. A vertical bar extends from 64 oz 
(the smallest nonoutlying value) to the lower quartile and from 161 oz (the largest 
nonoutlying value = the largest value in the sample) to the upper quartile. The 
accuracy of the two identified outlying values should probably be checked.

The methods used to identify outlying values in Definitions 2.11 and 2.12 
are descriptive and unfortunately are sensitive to sample size, with more outliers 
detected for larger sample sizes. Alternative methods for identifying outliers based 
on a hypothesis-testing framework are given in Chapter 8.

Many more details on stem-and-leaf plots, box plots, and other exploratory data 
methods are given in Tukey [4].
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R E V I E W  QU  E ST  I ONS    2 B

1	 What is a stem-and-leaf plot? How does it differ from a bar graph?

2	 Consider the bar graph in Figure 2.1. Is it possible to construct a stem-and-leaf plot 
from the data presented? If so, construct the plot.

3	 Consider the stem-and-leaf plot in Figure 2.6. Is it possible to construct a bar graph 
from the data presented? If so, construct the plot.

4	 What is a box plot? What additional information does this type of display give that 
is not available from either a bar graph or stem-and-leaf plot?

	 2.9	 C a s e  S t u d y  1 :  E f f e c t s  o f  Le  a d  E x p o s u r e 

o n  Ne  u r o l o g i c a l  a n d  P s y c h o l o g i c a l 

F u n c t i o n  i n  C h i l d r e n

The effects of exposure to lead on the psychological and neurological well-being of 
children were studied [5]. Complete raw data for this study are in Data Set LEAD.
DAT, and documentation for this file is in Data Set LEAD.DOC. Dr. Philip Landrigan, 
Mount Sinai Medical Center, New York City, provided this data set. All data sets can be 
accessed at www.cengagebrain.com.

In summary, blood levels of lead were measured in a group of children  
who lived near a lead smelter in El Paso, Texas. Forty-six children with blood-lead 
levels ≥ 40 µg/mL were identified in 1972 (a few children were identified in 1973); 
this group is defined by the variable GROUP = 2. A control group of 78 children were 
also identified who had blood-lead levels < 40 µg/mL in 1972 and 1973; this group 
is defined by the variable GROUP = 1. All children lived close to the lead smelter.

Two important outcome variables were studied: (1) the number of finger–wrist 
taps in the dominant hand (a measure of neurological function) and (2) the Wechsler 
full-scale IQ score. To explore the relationship of lead exposure to the outcome vari-
ables, we used MINITAB to obtain box plots for these two variables for children in 
the exposed and control groups. These box plots are shown in Figures 2.9 and 2.10, 
respectively. Because the dominant hand was not identified in the database, we used 
the larger of the finger–wrist tapping scores for the right and left hand as a proxy for 
the number of finger–wrist taps in the dominant hand.

We note that although there is considerable spread within each group, both 
finger–wrist tapping scores (MAXFWT) and full-scale IQ scores (IQF) seem slightly 
lower in the exposed group than in the control group. We analyze these data in more 
detail in later chapters, using t tests, analysis of variance, and regression methods.

	 2.10	 C a s e  S t u d y  2 :  E f f e c t s  o f  T o b a c c o  U s e  

o n  B o n e - Mi  n e r a l  De  n s i t y  i n  Mi  d d l e - A g e d 

W o m e n

A twin study was performed on the relationship between bone density and cigarette 
consumption [6]. Forty-one pairs of middle-aged female twins who were discordant 
for tobacco consumption (had different smoking histories) were enrolled in a study 
in Australia and invited to visit a hospital in Victoria, Australia, for a measurement 
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 Data set available
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of bone density. Additional information was also obtained from the participants via 
questionnaire, including details of tobacco use; alcohol, coffee, and tea consump-
tion; intake of calcium from dairy products; menopausal, reproductive, and fracture 
history; use of oral contraceptives or estrogen replacement therapy; and assessment 
of physical activity. Dr. John Hopper, University of Melbourne, School of Popula-
tion Health, Australia, provided the data set for this study, which is available at 
www.cengagebrain.com under the file name BONEDEN.DAT with documentation 
in BONEDEN.DOC.

Tobacco consumption was expressed in terms of pack-years. One pack-year is 
defined as 1 pack of cigarettes per day (usually about 20 cigarettes per pack) con-
sumed for 1 year. One advantage of using twins in a study such as this is that genetic 
influences on bone density are inherently controlled for. To analyze the data, the 
investigators first identified the heavier- and lighter-smoking twins in terms of pack-
years. The lighter-smoking twin usually had 0 pack-years (indicating she had never 
smoked) or occasionally either smoked very few cigarettes per day and/or smoked 
for only a short time. The researchers then looked at the difference in bone-mineral 
density (BMD) (calculated by subtracting the BMD in the lighter-smoking twin from 
the BMD in the heavier-smoking twin, expressed as a percentage of the average bone 
density of the twins) as a function of the difference in tobacco use (calculated as 
pack-years for the heavier-smoking twin minus pack-years for the lighter-smoking 
twin). BMD was assessed separately at three sites: the femoral shaft (femur), the 
femoral neck (hip), and the lumbar spine (lower back). A scatter plot showing the 
relationship between the difference in BMD versus the difference in tobacco use is 
given in Figure 2.11.

Note that for the lumbar spine an inverse relationship appears between the dif-
ference in BMD and the difference in tobacco use (a downward trend). Virtually all 
the differences in BMD are below 0, especially for twins with a large difference in 
tobacco use (≥30 pack-years), indicating that the heavier-smoking twin had a lower 
BMD than the lighter-smoking twin. A similar relationship holds for BMD in the 
femoral neck. Results are less clear for the femoral shaft.
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Figure 2.9  � Number of finger–wrist taps in the 
dominant hand for exposed and control 
groups, El Paso Lead Study

Figure 2.10  � Wechsler full-scale IQ scores 
for exposed and control 
groups, El Paso Lead Study

 Data set available
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This is a classic example of a matched-pair study, which we discuss in detail begin-
ning in Chapter 8. For such a study, the exposed (heavier-smoking twin) and control 
(lighter-smoking twin) are matched on other characteristics related to the outcome 
(BMD). In this case, the matching is based on having similar genes. We analyze this 
data set in more detail in later chapters, using methods based on the binomial distri-
bution, t tests, and regression analysis.
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	 Figure 2.11 	 Within-pair differences in bone density at the femoral shaft, femoral neck, 	
and lumbar spine as a function of within-pair differences in pack-years of 	
tobacco use in 41 pairs of female twins. Monozygotic (identical) twins are 
represented by solid circles and dizygotic (fraternal) twins by open circles. 	
The difference in bone density between members of a pair is expressed as 	
the percentage of the mean bone density for the pair.

Source: Based on “The bone density of female twins discordant for tobacco use,” 
by J. H. Hopper and E. Seeman, 1994, The New England Journal of Medicine, 330, 
387–392.
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	 2.11	 O b ta i n i n g  De  s c r i p t ive    S tat i s t i c s 

o n  t h e  C o m p u t e r

Numerous statistical packages can be used to obtain descriptive statistics as well as 
for other statistical functions used in probability, estimation, and hypothesis testing 
that are covered later in this book. Detailed explanations for how to use Microsoft 
Excel to perform these functions can be found at www.cengagebrain.com. Read the 
first chapter at www.cengagebrain.com for details on obtaining descriptive statistics 
using Excel. Functions available include Average (for the arithmetic mean), Median 
(for the median), Stdev (for the standard deviation), Var (for the variance), Geo-
Mean (for the geometric mean), and Percentile (for obtaining arbitrary percentiles 
from a sample).

	 2.12	 S u m m a r y

This chapter presented several numeric and graphic methods for describing data. 
These techniques are used to

(1)	 quickly summarize a data set

(2)	 present results to others

In general, a data set can be described numerically in terms of a measure of 
location and a measure of spread. Several alternatives were introduced, including 
the arithmetic mean, median, mode, and geometric mean, as possible choices 
for measures of location, and the standard deviation, quantiles, and range as 
possible choices for measures of spread. Criteria were discussed for choosing the 
appropriate measures in particular circumstances. Several graphic techniques for 
summarizing data, including traditional methods, such as the bar graph, and more 
modern methods characteristic of exploratory data analysis (EDA), such as the 
stem-and-leaf plot and box plot, were introduced.

How do the descriptive methods in this chapter fit in with the methods of statis-
tical inference discussed later in this book? Specifically, if, based on some prespeci-
fied hypotheses, some interesting trends can be found using descriptive methods, 
then we need some criteria to judge how “significant” these trends are. For this 
purpose, several commonly used probability models are introduced in Chapters 3 
through 5 and approaches for testing the validity of these models using the methods 
of statistical inference are explored in Chapters 6 through 14.

S
u

m
m

a
r

y

P r o b l e m s

Infectious Disease
The data in Table 2.13 are a sample from a larger data set 
collected on people discharged from a selected Penn-
sylvania hospital as part of a retrospective chart review of 
antibiotic usage in hospitals [7]. The data are also given 
in Data Set HOSPITAL.DAT with documentation in HOS-
PITAL.DOC at www.cengagebrain.com. Each data set at 
www.cengagebrain.com is available in six formats: ASCII, 

MINITAB-readable format, Excel-readable format, SAS-
readable format, SPSS-readable format, and Stata-readable 
format, and as a text file (R-readable format).

2.1  Compute the mean and median for the duration of 
hospitalization for the 25 patients.

2.2  Compute the standard deviation and range for the 
duration of hospitalization for the 25 patients.

 Data set available
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2.3  It is of clinical interest to know if the duration of hos-
pitalization is affected by whether a patient has received 
antibiotics. Answer this question descriptively using either 
numeric or graphic methods.

Suppose the scale for a data set is changed by multiplying 
each observation by a positive constant.

*2.4  What is the effect on the median?

*2.5  What is the effect on the mode?

*2.6  What is the effect on the geometric mean?

*2.7  What is the effect on the range?

*Asterisk indicates that the answer to the problem is given in 
the Answer Section at the back of the book.

Health Promotion
A man runs 1 mile approximately once per weekend. He re-
cords his time over an 18-week period. The individual times 
and summary statistics are given in Table 2.14.

Table 2.13   Hospital-stay data

					     First		  Received 
	 Duration			   First 	 WBC	 Received	 bacterial 
	 of		  Sex	 temp.	 (× 103)	 antibiotic?	 culture?	 Service 
ID	 hospital		  1 = M	 following	 following	 1 = yes	 1 = yes	 1 = med.  
no.	 stay	 Age	 2 = F	 admission	 admission	 2 = no	 2 = no	 2 = surg.

  1	 5	 30	 2	 99.0	 8	 2	 2	 1
  2	 10	 73	 2	 98.0	 5	 2	 1	 1
  3	 6	 40	 2	 99.0	 12	 2	 2	 2
  4	 11	 47	 2	 98.2	 4	 2	 2	 2
  5	 5	 25	 2	 98.5	 11	 2	 2	 2
  6	 14	 82	 1	 96.8	 6	 1	 2	 2
  7	 30	 60	 1	 99.5	 8	 1	 1	 1
  8	 11	 56	 2	 98.6	 7	 2	 2	 1
  9	 17	 43	 2	 98.0	 7	 2	 2	 1
10	 3	 50	 1	 98.0	 12	 2	 1	 2
11	 9	 59	 2	 97.6	 7	 2	 1	 1
12	 3	 4	 1	 97.8	 3	 2	 2	 2
13	 8	 22	 2	 99.5	 11	 1	 2	 2
14	 8	 33	 2	 98.4	 14	 1	 1	 2
15	 5	 20	 2	 98.4	 11	 2	 1	 2
16	 5	 32	 1	 99.0	 9	 2	 2	 2
17	 7	 36	 1	 99.2	 6	 1	 2	 2
18	 4	 69	 1	 98.0	 6	 2	 2	 2
19	 3	 47	 1	 97.0	 5	 1	 2	 1
20	 7	 22	 1	 98.2	 6	 2	 2	 2
21	 9	 11	 1	 98.2	 10	 2	 2	 2
22	 11	 19	 1	 98.6	 14	 1	 2	 2
23	 11	 67	 2	 97.6	 4	 2	 2	 1
24	 9	 43	 2	 98.6	 5	 2	 2	 2
25	 4	 41	 2	 98.0	 5	 2	 2	 1

Table 2.14   �One mile running time for an individual, 	
over 18 weeks

	WK	 Time (min)(xi )	 WK	 Time (min)(xi )

	 1	 12.80	 10	 11.57
	 2	 12.20	 11	 11.73
	 3	 12.25	 12	 12.67
	 4	 12.18	 13	 11.92
	 5	 11.53	 14	 11.67
	 6	 12.47	 15	 11.80
	 7	 12.30	 16	 12.33
	 8	 12.08	 17	 12.55
	 9	 11.72	 18	 11.83

2.8  What is the mean 1 mile running time over 18 weeks?

2.9  What is standard deviation of the 1 mile running time 
over 18 weeks?
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Suppose we construct a new variable called time_100 = 
100 × time (e.g., for week 1, time_100 = 1280).

2.10  What is the mean and standard deviation of time_100?

2.11  Construct a stem and leaf plot of time_100 using the 
first 3 most significant digits for the stem and the least sig-
nificant digit for the leaf. So, for week 1, time_100 = 1280 
which has a stem = 128 and a leaf = 0.

2.12  Suppose the man does not run for 6 months over the 
winter due to snow on the ground. He resumes running 
once a week in the spring and records a running time = 
12.97 minutes in his first week of running in the spring.

ls this an outlying value relative to the distribution of running 
times recorded the previous year in Table 2.14? Why or 
why not?

Hint: Construct a Box plot based on the data in Table 2.14, 
and assess whether this new point is an outlier based on 
Definition 2.11.

Cardiovascular Disease
The data in Table 2.15 are a sample of cholesterol levels 
taken from 24 hospital employees who were on a standard 
American diet and who agreed to adopt a vegetarian diet 
for 1 month. Serum-cholesterol measurements were made 
before adopting the diet and 1 month after. The data are 
available at cholesterol.xls at www.cengagebrain.com.

*2.13  Compute the mean change in cholesterol.

*2.14  Compute the standard deviation of the change in 
cholesterol levels.

2.15  Construct a stem-and-leaf plot of the cholesterol 
changes.

*2.16  Compute the median change in cholesterol.

2.17  Construct a box plot of the cholesterol changes to the 
right of the stem-and-leaf plot.

2.18  Some investigators believe that the effects of diet 
on cholesterol are more evident in people with high rather 
than low cholesterol levels. If you split the data in Table 2.15 
according to whether baseline cholesterol is above or 
below the median, can you comment descriptively on this 
issue?

Hypertension
In an experiment that examined the effect of body position on 
blood pressure [8], 32 participants had their blood pressures 
measured while lying down with their arms at their sides 
and again standing with their arms supported at heart level. 
The data are given in Table 2.16. They are also available at 
www.cengagebrain.com.

Table 2.15  � Serum-cholesterol levels (mg/dL) before 
and after adopting a vegetarian diet

Subject	 Before	 After	 Difference*

  1	 195	 146	 49
  2	 145	 155	 −10
  3	 205	 178	 27
  4	 159	 146	 13
  5	 244	 208	 36
  6	 166	 147	 19
  7	 250	 202	 48
  8	 236	 215	 21
  9	 192	 184	 8
10	 224	 208	 16
11	 238	 206	 32
12	 197	 169	 28
13	 169	 182	 −13
14	 158	 127	 31
15	 151	 149	 2
16	 197	 178	 19
17	 180	 161	 19
18	 222	 187	 35
19	 168	 176	 −8
20	 168	 145	 23
21	 167	 154	 13
22	 161	 153	 8
23	 178	 137	 41
24	 137	 125	 12

*Before – after.

2.19  Compute the arithmetic mean and median for the dif-
ference in systolic and diastolic blood pressure, respectively, 
taken in different positions (recumbent minus standing).

2.20  Construct stem-and-leaf and box plots for the differ-
ence scores for each type of blood pressure.

2.21  Based on your answers to Problems 2.19 and 2.20, 
comment on the effect of body position on the levels of 
systolic and diastolic blood pressure.

2.22  Orthostatic hypertension is sometimes defined based 
on an unusual change in blood pressure after changing 
position. Suppose we define a normal range for change in 
systolic blood pressure (SBP) based on change in SBP 
from the recumbent to the standing position in Table 2.16 
that is between the upper and lower decile. What should 
the normal range be?

Pulmonary Disease
Forced expiratory volume (FEV) is an index of pulmonary func-
tion that measures the volume of air expelled after 1 second of 
constant effort. Data set FEV.DAT at www.cengagebrain.com. 

 Data set available
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contains determinations of FEV in 1980 on 654 children 
ages 3 through 19 who were seen in the Childhood Respira-
tory Disease (CRD) Study in East Boston, Massachusetts. 
These data are part of a longitudinal study to follow the 
change in pulmonary function over time in children [9].

Table 2.16   Effect of position on blood pressure

	 Blood pressure (mm Hg)

	 Recumbent,	 Standing, 
Participant	 arm at side	 arm at heart level

B. R. A.	 99a	   71b	 105a	 79b

J. A. B.	 126	 74	 124	 76
F. L. B.	 108	 72	 102	 68
V. P. B.	 122	 68	 114	 72
M. F. B.	 104	 64	 96	 62
E. H. B.	 108	 60	 96	 56
G. C.	 116	 70	 106	 70
M. M. C.	 106	 74	 106	 76
T. J. F.	 118	 82	 120	 90
R. R. F.	 92	 58	 88	 60
C. R. F.	 110	 78	 102	 80
E. W. G.	 138	 80	 124	 76
T. F. H.	 120	 70	 118	 84
E. J. H.	 142	 88	 136	 90
H. B. H.	 118	 58	 92	 58
R. T. K.	 134	 76	 126	 68
W. E. L.	 118	 72	 108	 68
R. L. L.	 126	 78	 114	 76
H. S. M.	 108	 78	 94	 70
V. J. M.	 136	 86	 144	 88
R. H. P.	 110	 78	 100	 64
R. C. R.	 120	 74	 106	 70
J. A. R.	 108	 74	 94	 74
A. K. R.	 132	 92	 128	 88
T. H. S.	 102	 68	 96	 64
O. E. S.	 118	 70	 102	 68
R. E. S.	 116	 76	 88	 60
E. C. T.	 118	 80	 100	 84
J. H. T.	 110	 74	 96	 70
F. P. V.	 122	 72	 118	 78
P. F. W.	 106	 62	 94	 56
W. J. W.	 146	 90	 138	 94

aSystolic blood pressure
bDiastolic blood pressure
Source: C. E. Kossman (1946), “Relative importance of certain variables in 
the clinical determination of blood pressure,” American Journal of Medicine, 1, 
464–467.

Table 2.17   Format for FEV.DAT

	Column	 Variable	 Format or code

	 1–5	 ID number	
 7–8	 Age (years)	
10–15	 FEV (liters)	 X.XXX
	17–20	 Height (inches)	 XX.X
	 22	 Sex	 0 = female/1 = male
	 24	 Smoking status	 0 = noncurrent smoker/
			   1 = current smoker

The data in Table 2.17 are available for each child.

2.23  For each variable (other than ID), obtain appropriate 
descriptive statistics (both numeric and graphic).

2.24  Use both numeric and graphic measures to assess 
the relationship of FEV to age, height, and smoking status. 
(Do this separately for boys and girls.)

2.25  Compare the pattern of growth of FEV by age for boys 
and girls. Are there any similarities? Any differences?

Hint: Compute the mean FEV by age group (3–4/5–9/10–
14/15–19) separately for boys and girls and plot the mean 
FEV by age.

Nutrition
The food-frequency questionnaire (FFQ) is an instrument 
often used in dietary epidemiology to assess consump-
tion of specific foods. A person is asked to write down the 
number of servings per day typically eaten in the past year 
of over 100 individual food items. A food-composition table 
is then used to compute nutrient intakes (protein, fat, etc.) 
based on aggregating responses for individual foods. The 
FFQ is inexpensive to administer but is considered less 
accurate than the diet record (DR) (the gold standard of 
dietary epidemiology). For the DR, a participant writes down 
the amount of each specific food eaten over the past week 
in a food diary and a nutritionist using a special computer 
program computes nutrient intakes from the food diaries. 
This is a much more expensive method of dietary recording. 
To validate the FFQ, 173 nurses participating in the Nurses’ 
Health Study completed 4 weeks of diet recording about 
equally spaced over a 12-month period and an FFQ at the 
end of diet recording [10]. Data are presented in data set 
VALID.DAT at www.cengagebrain.com for saturated fat, 
total fat, total alcohol consumption, and total caloric intake 
for both the DR and FFQ. For the DR, average nutrient in-
takes were computed over the 4 weeks of diet recording. 
Table 2.18 shows the format of this file.

2.26  Compute appropriate descriptive statistics for each 
nutrient for both DR and FFQ, using both numeric and 
graphic measures.

 Data set available
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2.27  Use descriptive statistics to relate nutrient intake for 
the DR and FFQ. Do you think the FFQ is a reasonably ac-
curate approximation to the DR? Why or why not?

2.28  A frequently used method for quantifying dietary intake 
is in the form of quintiles. Compute quintiles for each nutri-
ent and each method of recording, and relate the nutrient 
composition for DR and FFQ using the quintile scale. (That 
is, how does the quintile category based on DR relate to the 
quintile category based on FFQ for the same individual?) 
Do you get the same impression about the concordance 
between DR and FFQ using quintiles as in Problem 2.27, in 
which raw (ungrouped) nutrient intake is considered?

In nutritional epidemiology, it is customary to assess nutrient 
intake in relation to total caloric intake. One measure used 
to accomplish this is nutrient density, which is defined as 
100% × (caloric intake of a nutrient/total caloric intake). For 
fat consumption, 1 g of fat is equivalent to 9 calories.

2.29  Compute the nutrient density for total fat for the DR 
and FFQ, and obtain appropriate descriptive statistics for 
this variable. How do they compare?

2.30  Relate the nutrient density for total fat for the DR 
versus the FFQ using the quintile approach in Problem 
2.28. Is the concordance between total fat for DR and FFQ 
stronger, weaker, or the same when total fat is expressed in 
terms of nutrient density as opposed to raw nutrient?

Environmental Health, Pediatrics
In Section 2.9, we described Data Set LEAD.DAT (at www 
.cengagebrain.com) concerning the effect of lead exposure 
on neurological and psychological function in children.

2.31  Compare the exposed and control groups regarding 
age and gender, using appropriate numeric and graphic 
descriptive measures.

2.32  Compare the exposed and control groups regarding 
verbal and performance IQ, using appropriate numeric and 
graphic descriptive measures.

Cardiovascular Disease
Activated-protein-C (APC) resistance is a serum marker that 
has been associated with thrombosis (the formation of blood 
clots often leading to heart attacks) among adults. A study as-
sessed this risk factor among adolescents. To assess the re-
producibility of the assay, a split-sample technique was used 
in which a blood sample was provided by 10 people; each 
sample was split into two aliquots (sub-samples), and each 
aliquot was assessed separately. Table 2.19 gives the results.

Table 2.19   APC resistance split-samples data

	Sample number	 A	 B	 A – B

	 1	 2.22	 1.88	 0.34
	 2	 3.42	 3.59	 −0.17
	 3	 3.68	 3.01	 0.67
	 4	 2.64	 2.37	 0.27
	 5	 2.68	 2.26	 0.42
	 6	 3.29	 3.04	 0.25
	 7	 3.85	 3.57	 0.28
	 8	 2.24	 2.29	 −0.05
	 9	 3.25	 3.39	 −0.14
	10	 3.30	 3.16	 0.14

2.33  To assess the variability of the assay, the investigators 
need to compute the coefficient of variation. Compute the 
coefficient of variation (CV) for each subject by obtaining 
the mean and standard deviation over the 2 replicates for 
each subject.

2.34  Compute the average CV over the 10 subjects as an 
overall measure of variability of the assay. In general, a CV of 
<10% is considered excellent, ≥10% and <20% is consid-
ered good, ≥20% and <30% is considered fair, and ≥30% 
is considered poor.

How would you characterize the reliability of the APC assay 
based on these criteria?

Microbiology
A study was conducted to demonstrate that soy beans in-
oculated with nitrogen-fixing bacteria yield more and grow 
adequately without expensive environmentally deleterious 
synthesized fertilizers. The trial was conducted under con-
trolled conditions with uniform amounts of soil. The initial hy-
pothesis was that inoculated plants would outperform their 
uninoculated counterparts. This assumption is based on the 
facts that plants need nitrogen to manufacture vital proteins 
and amino acids and that nitrogen-fixing bacteria would 
make more of this substance available to plants, increasing 
their size and yield. There were 8 inoculated plants (I) and 8 
uninoculated plants (U). The plant yield as measured by pod 
weight for each plant is given in Table 2.20.

2.35  Compute appropriate descriptive statistics for I and 
U plants. Data set available

Table 2.18   Format for VALID.DAT

	Variable	 Format or code

ID number	 XXXXX.XX
Saturated fat—DR (g)	 XXXXX.XX
Saturated fat—FFQ (g)	 XXXXX.XX
Total fat—DR (g)	 XXXXX.XX
Total fat—FFQ (g)	 XXXXX.XX
Alcohol consumption—DR (oz)	 XXXXX.XX
Alcohol consumption—FFQ (oz)	 XXXXX.XX
Total calories—DR (K-cal)	 XXXXXX.XX
Total calories—FFQ (K-cal)	 XXXXXX.XX
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Table 2.20  � Pod weight (g) from inoculated (I) 	
and uninoculated (U) plants

	Sample number	 I	 U

	1	 1.76	 0.49
	2	 1.45	 0.85
	3	 1.03	 1.00
	4	 1.53	 1.54
	5	 2.34	 1.01
	6	 1.96	 0.75
	7	 1.79	 2.11
	8	 1.21	 0.92

Note: The data for this problem were supplied by David Rosner.

2.36  Use graphic methods to compare the two groups.

2.37  What is your overall impression concerning the pod 
weight in the two groups?

Endocrinology
In Section 2.10, we described Data Set BONEDEN.DAT 
(at www.cengagebrain.com) concerning the effect of 
tobacco use on BMD.

2.38  For each pair of twins, compute the following for the 
lumbar spine:

A = �BMD for the heavier-smoking twin − BMD for the 
lighter-smoking twin = x1 − x2

B = mean BMD for the twinship = (x1 + x2)/2
C = 100% × (A/B)

Derive appropriate descriptive statistics for C over the 
entire study population.

2.39  Suppose we group the twin pairs according to the 
difference in tobacco use expressed in 10 pack-year 

groups (0–9.9 pack-years/10–19.9 pack-years/20–29.9 
pack-years/30–39.9 pack-years/40+ pack-years). Com-
pute appropriate descriptive statistics, and provide a scat-
ter plot for C grouped by the difference in tobacco use in 
pack-years.

2.40  What impression do you have of the relationship be-
tween BMD and tobacco use based on Problem 2.39?

2.41–2.43  Answer Problems 2.38–2.40 for BMD for the 
femoral neck.

2.44–2.46  Answer Problems 2.38–2.40 for BMD for the 
femoral shaft.

Cardiovascular Disease
The Left Ventricular Mass lndex (LVMI) is a measure of the 
enlargement of the left side of the heart and is expressed 
in the units (gm/ht(m)2.7). High values may predict subse-
quent cardiovascular disease in children as they get older 
(Urbina et al., [11]). A study is performed to relate the level 
of LVMI to blood pressure category in children and ado-
lescents age 10–18. The bp level of children was catego-
rized as either Normal (bpcat = 1 or bp percentile < 80% 
for a given age, gender, and height), Pre-Hypertensive 
(bpcat = 2 or bp percentile ≥ 80% and bp percentile 
< 90%), or Hypertensive (bpcat = 3 or bp percentile ≥ 
90%). The data are available in the data set LVM.XLS at 
www.cengagebrain.com

2.47  What is the arithmetic mean of LVMI by blood pres-
sure group?

2.48  What is the geometric mean of LVMI by blood pres-
sure group?

2.49  Provide a box plot of LVMI by blood pressure group.

2.50  Based on the box plot, does the arithmetic mean or 
the geometric mean provide a more appropriate measure of 
location for this type of data?

[1] White, J. R., & Froeb, H. E. (1980). Small-airways 
dysfunction in nonsmokers chronically exposed to tobacco 
smoke. New England Journal of Medicine, 302(33), 720–723.

[2] Pedersen, A., Wiesner, P., Holmes, K., Johnson, C., & 
Turck, M. (1972). Spectinomycin and penicillin G in the 
treatment of gonorrhea. Journal of the American Medical  
Association, 220(2), 205–208.

[3] Foster, T. A., & Berenson, G. (1987). Measurement 
error and reliability in four pediatric cross-sectional surveys 
of cardiovascular disease risk factor variables—the Bogalusa 
Heart Study. Journal of Chronic Diseases, 40(1), 13–21.

Re  f e r e n c e s

[4] Tukey, J. (1977). Exploratory data analysis. Reading, 
MA: Addison-Wesley.

[5] Landrigan, P. J., Whitworth, R. H., Baloh, R. W., 
Staehling, N. W., Barthel, W. F., & Rosenblum, B. F. (1975, 
March 29). Neuropsychological dysfunction in children with 
chronic low-level lead absorption. The Lancet, 1, 708–715.

[6] Hopper, J. H., & Seeman, E. (1994). The bone density  
of female twins discordant for tobacco use. New England  
Journal of Medicine, 330, 387–392.

[7] Townsend, T. R., Shapiro, M., Rosner, B., & Kass, E. 
H. (1979). Use of antimicrobial drugs in general hospitals. I. 

 Data set available

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



References              41

Description of population and definition of methods. Journal 
of Infectious Diseases, 139(6), 688–697.

[8] Kossmann, C. E. (1946). Relative importance of 
certain variables in clinical determination of blood pressure. 
American Journal of Medicine, 1, 464–467.

[9] Tager, I. B., Weiss, S. T., Rosner, B., & Speizer, F. E. 
(1979). Effect of parental cigarette smoking on pulmonary 
function in children. American Journal of Epidemiology, 110, 
15–26.

[10] Willett, W. C., Sampson, L., Stampfer, M. J., Rosner, 
B., Bain, C., Witschi, J., Hennekens, C. H., & Speizer, F. E. 
(1985). Reproducibility and validity of a semi-quantitative 
food frequency questionnaire. American Journal of Epidemiol-
ogy, 122, 51–65.

[11] Urbina, E. M., Gidding, S. S., Bao, W., Pickoff, A. S., 
Berdusis, K., & Berenson, G. S. (1995). Effect of body size, 
ponderosity, and blood pressure on left ventricular growth 
in children and young adults in the Bogalusa Heart Study. 
Circulation, 91(9), 2400–2406.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



42

	 3.1	 I n t r o d u c t i o n

Chapter 2 outlined various techniques for concisely describ-
ing data. But we usually want to do more with data than just 
describe them. In particular, we might want to test certain 
specific inferences about the behavior of the data.

	 Example 3.1 	 Cancer  One theory concerning the etiology of breast cancer states that women in 
a given age group who give birth to their first child relatively late in life (after age 30) 
are at greater risk for eventually developing breast cancer over some time period t 
than are women who give birth to their first child early in life (before age 20). Be-
cause women in upper social classes tend to have children later, this theory has been 
used to explain why these women have a higher risk of developing breast cancer 
than women in lower social classes. To test this hypothesis, we might identify 2000 
postmenopausal women from a particular census tract who are currently ages 45–54 
and have never had breast cancer, of whom 1000 had their first child before the age 
of 20 (call this group A) and 1000 after the age of 30 (group B). These 2000 women 
might be followed for 5 years to assess whether they developed breast cancer during 
this period. Suppose there are four new cases of breast cancer in group A and five 
new cases in group B.

Is this evidence enough to confirm a difference in risk between the two groups? 
Most people would feel uneasy about concluding that on the basis of such a limited 
amount of data.

Suppose we had a more ambitious plan and sampled 10,000 postmenopausal 
women each from groups A and B and at follow-up found 40 new cases in group A 
and 50 new cases in group B and asked the same question. Although we might be 
more comfortable with the conclusion because of the larger sample size, we would 
still have to admit that this apparent difference in the rates could be due to chance.

The problem is that we need a conceptual framework to make these decisions 
but have not explicitly stated what the framework is. This framework is provided by 
the underlying concept of probability. In this chapter, probability is defined and 
some rules for working with probabilities are introduced. Understanding probability 
is essential in calculating and interpreting p-values in the statistical tests of subse-
quent chapters. It also permits the discussion of sensitivity, specificity, and predic-
tive values of screening tests in Section 3.7.

3Probability
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	 3.2	 De  f i n i t i o n  o f  P r o b a b i l i t y

	 Example 3.2 	 Obstetrics  The data in Table 3.1 provide the proportion of women of childbearing 
age (ages 15–44) who have given birth in the past year by marital status and time 
period. [1] It appears that the birth rate has been declining over time for married 
women but increasing over time for unmarried women. However, these are empirical 
probabilities based on a finite amount of data. In principle, the sample size could be 
expanded indefinitely and a more precise estimate of the probability obtained.

	 Table 3.1 	 Proportion of women of childbearing age who have given birth in the past year

Year	 Unmarried	 Married

1980	 0.029	 0.097
1990	 0.044	 0.093
2000	 0.044	 0.087
2010	 0.048	 0.084

This principle leads to the following definition of probability:

	 Definition 3.1 	 The sample space is the set of all possible outcomes. In referring to probabilities of 
events, an event is any set of outcomes of interest. The probability of an event is 
the relative frequency of this set of outcomes over an indefinitely large (or infinite) 
number of trials.

	 Example 3.3 	 Pulmonary Disease  The tuberculin skin test is a routine screening test used to detect 
tuberculosis. The results of this test can be categorized as either positive, negative, or 
uncertain. If the probability of a positive test is .1, it means that if a large number of 
such tests were performed, about 10% would be positive. The actual percentage of  
positive tests will be increasingly close to .1 as the number of tests performed increases.

	 Example 3.4 	 Cancer  The probability of developing breast cancer over 40 years in 30-year-old 
women who have never had breast cancer is approximately 1/11. This probability 
means that over a large sample of 30-year-old women who have never had breast 
cancer, approximately 1 in 11 will develop the disease by age 70, with this proportion 
becoming increasingly close to 1 in 11 as the number of women sampled increases.

In real life, experiments cannot be performed an infinite number of times. 
Instead, probabilities of events are estimated from the empirical probabilities  
obtained from large samples (as in Examples 3.2–3.4). In other instances, theoretical-
probability models are constructed from which probabilities of many different kinds 
of events can be computed. An important issue in statistical inference is to compare 
empirical probabilities with theoretical probabilities—that is, to assess the goodness-
of-fit of probability models. This topic is covered in Section 10.7.

	 Example 3.5 	 Cancer  The probability of developing stomach cancer over a 1-year period in  
45- to 49-year-old women, based on SEER Tumor Registry data from 2002 to 2006, 
is 3.7 per 100,000 [2]. Suppose we have studied cancer rates in a small group of U.S. 
nurses over this period and want to compare how close the rates from this limited 
sample are to the tumor-registry figures. The value 3.7 per 100,000 would be the best 
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estimate of the probability before collecting any data, and we would then see how 
closely our new sample data conformed with this probability.

From Definition 3.1 and from the preceding examples, we can deduce that prob-
abilities have the following basic properties:

	 Equation 3.1 	 (1)	 The probability of an event E, denoted by Pr(E), always satisfies 0 ≤ Pr(E) ≤ 1.

		  (2)	 If outcomes A and B are two events that cannot both happen at the same 
time, then Pr(A or B occurs) = Pr(A) + Pr(B).

	 Example 3.6 	 Hypertension  Let A be the event that a person has normotensive diastolic blood-
pressure (DBP) readings (DBP < 90), and let B be the event that a person has border-
line DBP readings (90 ≤ DBP < 95). Suppose that Pr(A) = .7, and Pr(B) = .1. Let Z be 
the event that a person has a DBP < 95. Then

		  Pr Z Pr A Pr B( ) = ( ) + ( ) = .8

because the events A and B cannot occur at the same time.

	 Definition 3.2 	 Two events A and B are mutually exclusive if they cannot both happen at the same 
time.

Thus the events A and B in Example 3.6 are mutually exclusive.

	 Example 3.7 	 Hypertension  Let X be DBP, C be the event X ≥ 90, and D be the event 75 ≤ X ≤ 100. 
Events C and D are not mutually exclusive, because they both occur when 90 ≤ X ≤ 100.

	 3.3	 S o m e  Use   f u l  P r o b a b i l is  t i c  N o tat i o n

	 Definition 3.3 	 The symbol { } is used as shorthand for the phrase “the event.”

	 Definition 3.4 	 A ∪ B is the event that either A or B occurs, or they both occur.

Figure 3.1 diagrammatically depicts A ∪ B both for the case in which A and B are 
and are not mutually exclusive.

	 Example 3.8 	 Hypertension  Let events A and B be defined as in Example 3.6: A = {X < 90},  
B = {90 ≤ X < 95}, where X = DBP. Then A ∪ B = {X < 95}.

	 Example 3.9 	 Hypertension  Let events C and D be defined as in Example 3.7:

		  C X D X= ≥{ } = ≤ ≤{ }90 75 100

Then C ∪ D = {X ≥ 75}
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	 Definition 3.5 	 A ∩ B is the event that both A and B occur simultaneously. A ∩ B is depicted dia-
grammatically in Figure 3.2.

	 Example 3.10 	 Hypertension  Let events C and D be defined as in Example 3.7; that is,

		  C X D X= ≥{ } = ≤ ≤{ }90 75 100

Then C ∩ D = {90 ≤ X ≤ 100}

Notice that A ∩ B is not well defined for events A and B in Example 3.6 because 
both A and B cannot occur simultaneously. This is true for any mutually exclusive 
events.

	 Figure 3.1 	 Diagrammatic representation of A ∪ B: (a) A, B mutually exclusive; 	
(b) A, B not mutually exclusive

A

B

A � B shaded

A � B shaded

A

B

(a)

(b)

	 Figure 3.2 	 Diagrammatic representation of A ∩ B

A

B

A � B shaded
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	 Definition 3.6 	 A is the event that A does not occur. It is called the complement of A. Notice that
Pr A Pr A( ) ( )= −1 , because A occurs only when A does not occur. Event A is dia-
grammed in Figure 3.3.

	 Example 3.11 	 Hypertension  Let events A and C be defined as in Examples 3.6 and 3.7; that is,

		  A X C X= <{ } = ≥{ }90 90

Then C A= , because C can only occur when A does not occur. Notice that

		  Pr C Pr A( ) = ( ) = − =1 7 3. .

Thus, if 70% of people have DBP < 90, then 30% of people must have DBP ≥ 90.

	 3.4	 T h e  M u lt i p l i c at i o n  L a w  o f  P r o b a b i l i t y

In the preceding section, events in general were described. In this section, certain 
specific types of events are discussed.

	 Example 3.12 	 Hypertension, Genetics  Suppose we are conducting a hypertension-screening pro-
gram in the home. Consider all possible pairs of DBP measurements of the mother 
and father within a given family, assuming that the mother and father are not  
genetically related. This sample space consists of all pairs of numbers of the form  
(X, Y) where X > 0, Y > 0. Certain specific events might be of interest in this context. 
In particular, we might be interested in whether the mother or father is hypertensive, 
which is described, respectively, by events A = {mother’s DBP ≥ 90}, B = {father’s DBP 
≥ 90}. These events are diagrammed in Figure 3.4.

Suppose we know that Pr(A) = .1, Pr(B) = .2. What can we say about Pr(A ∩ B) =  
Pr(mother’s DBP ≥ 90 and father’s DBP ≥ 90) = Pr(both mother and father are  
hypertensive)? We can say nothing unless we are willing to make certain  
assumptions.

	 Definition 3.7 	 Two events A and B are called independent events if

		  Pr A B Pr A Pr B∩( ) = ( ) × ( )

	 Figure 3.3 	 Diagrammatic representation of A

A

A
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	 Example 3.13 	 Hypertension, Genetics  Compute the probability that both mother and father are 
hypertensive if the events in Example 3.12 are independent.

	 	 Solution:  If A and B are independent events, then

		  Pr A B Pr A Pr B∩( ) = ( ) × ( ) = ( ) =. . .1 2 02

One way to interpret this example is to assume that the hypertensive status of the 
mother does not depend at all on the hypertensive status of the father. Thus, if these 
events are independent, then in 10% of all households where the father is hypertensive 
the mother is also hypertensive, and in 10% of all households where the father is not 
hypertensive the mother is hypertensive. We would expect these two events to be inde-
pendent if the primary determinants of elevated blood pressure were genetic. However, if 
the primary determinants of elevated blood pressure were, to some extent, environmen-
tal, then we would expect the mother would be more likely to have elevated blood pres-
sure (A true) if the father had elevated blood pressure (B true) than if the father did not 
have elevated blood pressure (B not true). In this latter case the events would not be inde-
pendent. The implications of this lack of independence are discussed later in this chapter.

If two events are not independent, then they are said to be dependent.

	 Definition 3.8 	 Two events A, B are dependent if

		  Pr A B Pr A Pr B∩( ) ≠ ( ) × ( )

Example 3.14 is a classic example of dependent events.

	 Example 3.14 	 Hypertension, Genetics  Consider all possible DBP measurements from a mother 
and her first-born child. Let

		  { } { }= ≥ = ≥A Bmother’sDBP 90 first-bornchild’sDBP 80

= event A = {mother’s DBP ≥ 90}

= event B = {father’s DBP ≥ 90}

= event A > B = {both DBP ≥ 90}

90

0 90 Mother’s DBP

Fa
th

er
’s

 D
B

P

	 Figure 3.4 	 Possible diastolic blood-pressure measurements 	
of the mother and father within a given family
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Suppose    Pr(A ∩ B) = .05    Pr(A) = .1    Pr(B) = .2

Then    Pr(A ∩ B) = .05 > Pr(A) × Pr(B) = .02

and the events A, B would be dependent.

This outcome would be expected because the mother and first-born child both 
share the same environment and are genetically related. In other words, the first-
born child is more likely to have elevated blood pressure in households where the 
mother is hypertensive than in households where the mother is not hypertensive.

	 Example 3.15 	 Sexually Transmitted Disease  Suppose two doctors, A and B, test all patients com-
ing into a clinic for syphilis. Let events A+ = {doctor A makes a positive diagnosis}
and B+ = {doctor B makes a positive diagnosis}. Suppose doctor A diagnoses 10% of 
all patients as positive, doctor B diagnoses 17% of all patients as positive, and both 
doctors diagnose 8% of all patients as positive. Are the events A+, B+ independent?

	 	 Solution:  We are given that

		  Pr A Pr B Pr A B+ + + +( ) = ( ) = ∩( ) =. . .1 17 08

	 	 Thus, Pr A B Pr A Pr B+ + + +∩( ) = > ( ) × ( ) = ( ) =. . . .08 1 17 017

	 	 and the events are dependent. This result would be expected because there should be 
a similarity between how two doctors diagnose patients for syphilis.

Definition 3.7 can be generalized to the case of k(>2) independent events. This is 
often called the multiplication law of probability.

	 Equation 3.2 	 Multiplication Law of Probability

		  If A1, . . . , Ak are mutually independent events,

		  then Pr A A A Pr A Pr A Pr Ak k1 2 1 2∩ ∩ ∩( ) = ( ) × ( ) × × ( )K K

	 3.5	 T h e  A d d i t i o n  L a w  o f  P r o b a b i l i t y

We have seen from the definition of probability that if A and B are mutually ex-
clusive events, then Pr(A ∪ B) = Pr(A) + Pr(B). A more general formula for Pr(A ∪ B) 
can be developed when events A and B are not necessarily mutually exclusive. This 
formula, the addition law of probability, is stated as follows:

	 Equation 3.3 	 Addition Law of Probability

		  If A and B are any events,

		  then Pr(A ∪ B) = Pr(A) + Pr(B) − Pr(A ∩ B)

This principle is diagrammed in Figure 3.5. Thus, to compute Pr(A ∪ B), add the 
probabilities of A and B separately and then subtract the overlap, which is Pr(A ∩ B).
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	 Example 3.16 	 Sexually Transmitted Disease  Consider the data in Example 3.15. Suppose a patient 
is referred for further lab tests if either doctor A or B makes a positive diagnosis. 
What is the probability that a patient will be referred for further lab tests?

	 	 Solution:  The event that either doctor makes a positive diagnosis can be represented 
by A+ ∪ B+. We know that

		  Pr A Pr B Pr A B+ + + +( ) = ( ) = ∩( ) =. . .1 17 08

	 	 Therefore, from the addition law of probability,

		  Pr A B Pr A Pr B Pr A B+ + + + + +∪( ) = ( ) + ( ) − ∩( ) = + −. . .1 17 088 19= .

Thus, 19% of all patients will be referred for further lab tests.

Special cases of the addition law are of interest. First, if events A and B are mutu-
ally exclusive, then Pr(A ∩ B) = 0 and the addition law reduces to Pr(A ∪ B) = Pr(A) +  
Pr(B). This property is given in Equation 3.1 for probabilities over any two mutu-
ally exclusive events. Second, if events A and B are independent, then by definition  
Pr(A ∩ B) = Pr(A) × Pr(B) and Pr(A ∪ B) can be rewritten as Pr(A) + Pr (B) − Pr(A) × 
Pr(B). This leads to the following important special case of the addition law.

	 Equation 3.4 	 Addition Law of Probability for Independent Events

		  If two events A and B are independent, then

			   Pr A B Pr A Pr B Pr A∪( ) = ( ) + ( ) × − ( )[ ]1

This special case of the addition law can be interpreted as follows: The event A ∪ B 
can be separated into two mutually exclusive events: {A occurs} and {B occurs and 
A does not occur}. Furthermore, because of the independence of A and B, the prob-
ability of the latter event can be written as Pr(B) × [1 − Pr(A)]. This probability is 
diagrammed in Figure 3.6.

See page 44 for  
Equation 3.1

	 Figure 3.5 	 Diagrammatic representation of the addition law of probability

A B

A � B

= A

= B

= A � B
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	 Figure 3.6 	 Diagrammatic representation of the addition law 	
of probability for independent events

A

B � A

= A

= {B occurs and A does not occur} = B � A

	 Example 3.17 	 Hypertension  Look at Example 3.12, where

		  { } { }= ≥ = ≥A Bmother’s DBP 90 and father’s DBP 90

	 	 Pr(A) = .1, Pr(B) = .2, and assume A and B are independent events. Suppose a  
“hypertensive household” is defined as one in which either the mother or the 
father is hypertensive, with hypertension defined for the mother and father, re-
spectively, in terms of events A and B. What is the probability of a hypertensive 
household?

	 	 Solution:  Pr(hypertensive household) is

		  Pr A B Pr A Pr B Pr A∪( ) = ( ) + ( ) × − ( )[ ] = + ( ) =1 1 2 9 28. . . .

Thus, 28% of all households will be hypertensive.

It is possible to extend the addition law to more than two events. In particular, if 
there are three events A, B, and C, then

Pr A B C Pr A Pr B Pr C Pr A B Pr A C∪ ∪( ) = ( ) + ( ) + ( ) − ∩( ) − ∩( ) −− ∩( ) + ∩ ∩( )Pr B C Pr A B C

This result can be generalized to an arbitrary number of events, although that is  
beyond the scope of this text (see [3]).

	 3.6	 C o n d i t i o n a l  P r o b a b i l i t y

Suppose we want to compute the probability of several events occurring simultane-
ously. If the events are independent, then we can use the multiplication law of prob-
ability to do so. If some of the events are dependent, then a quantitative measure 
of dependence is needed to extend the multiplication law to the case of dependent 
events. Consider the following example:
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	 Example 3.18 	 Cancer  Physicians recommend that all women over age 50 be screened for breast 
cancer. The definitive test for identifying breast tumors is a breast biopsy. However, 
this procedure is too expensive and invasive to recommend for all women over the 
age of 50. Instead, women in this age group are encouraged to have a mammogram 
every 1 to 2 years. Women with positive mammograms are then tested further with 
a biopsy. Ideally, the probability of breast cancer among women who are mammo-
gram positive would be 1 and the probability of breast cancer among women who 
are mammogram negative would be 0. The two events {mammogram positive} and 
{breast cancer} would then be completely dependent; the results of the screening test 
would automatically determine the disease state. The opposite extreme is achieved 
when the events {mammogram positive} and {breast cancer} are completely inde-
pendent. In this case, the probability of breast cancer would be the same regardless 
of whether the mammogram is positive or negative, and the mammogram would 
not be useful in screening for breast cancer and should not be used.

These concepts can be quantified in the following way. Let A = {mammogram+},  
B = {breast cancer}, and suppose we are interested in the probability of breast cancer 
(B) given that the mammogram is positive (A). This probability can be written  
Pr(A ∩ B)/Pr(A).

	 Definition 3.9 	 The quantity Pr(A ∩ B)/Pr(A) is defined as the conditional probability of B given A, 
which is written Pr(B|A).

However, from Section 3.4 we know that, by definition of the multiplication law 
of probability, if two events are independent, then Pr(A ∩ B) = Pr(A) × Pr(B). If both 
sides are divided by Pr(A), then Pr(B) = Pr(A ∩ B)/Pr(A) = Pr(B | A). Similarly, we can 
show that if A and B are independent events, then Pr B A Pr B A Pr B( | ) ( | ) ( )= = . This  
relationship leads to the following alternative interpretation of independence in 
terms of conditional probabilities.

	 Equation 3.5 	 (1)	 If A and B are independent events, then Pr B A Pr B Pr B A| |( ) ( ) ( )= = .

		  (2)	 If two events A, B are dependent, then Pr B A Pr B Pr B A| |( ) ≠ ( ) ≠ ( ) and  
Pr(A ∩ B) ≠ Pr(A) × Pr(B).

	 Definition 3.10 	 The relative risk (RR) of B given A is

	 Pr B A Pr B A| |( ) ( )

Notice that if two events A, B are independent, then the RR is 1. If two events A, B 
are dependent, then the RR is different from 1. Heuristically, the more the depen-
dence between events increases, the further the RR will be from 1.

	 Example 3.19 	 Cancer  Suppose that among 100,000 women with negative mammograms 20 will 
be diagnosed with breast cancer within 2 years, or Pr B A( | ) / .= =20 10 00025 , whereas  
1 woman in 10 with positive mammograms will be diagnosed with breast cancer with-
in 2 years, or Pr(B|A) = .1. The two events A and B would be highly dependent, because

		  RR Pr B A Pr B A= ( ) ( ) = =  . /.1 0002 500
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In other words, women with positive mammograms are 500 times more likely to 
develop breast cancer over the next 2 years than are women with negative mammo-
grams. This is the rationale for using the mammogram as a screening test for breast 
cancer. If events A and B were independent, then the RR would be 1; women with 
positive or negative mammograms would be equally likely to have breast cancer, 
and the mammogram would not be useful as a screening test for breast cancer.

	 Example 3.20 	 Sexually Transmitted Disease  Using the data in Example 3.15, find the conditional 
probability that doctor B makes a positive diagnosis of syphilis given that doctor A 
makes a positive diagnosis. What is the conditional probability that doctor B makes 
a positive diagnosis of syphilis given that doctor A makes a negative diagnosis? 
What is the RR of B+ given A+?

	 	 Solution:  Pr B A Pr B A Pr A+ + + + +( ) = ∩( ) ( ) = = . / . .08 1 8

	 	 Thus, doctor B will confirm doctor A’s positive diagnoses 80% of the time. Similarly, 

		   Pr B A Pr B A Pr A Pr B A+ − + − − + −( ) = ∩( ) ( ) = ∩( ) .9

	 	 We must compute Pr(B+ ∩ A−). We know that if doctor B diagnoses a patient as posi-
tive, then doctor A either does or does not confirm the diagnosis. Thus,

		   Pr B Pr B A Pr B A+ + + + −( ) = ∩( ) + ∩( )
	 	 because the events B+ ∩ A+ and B+ ∩ A− are mutually exclusive. If we subtract Pr(B+ ∩ A+) 

from both sides of the equation, then

		   Pr B A Pr B Pr B A+ − + + +∩( ) = ( ) − ∩( ) = − =. . .17 08 09

	 	 Therefore, Pr B A+ −( ) = = . . .09 9 1

Thus, when doctor A diagnoses a patient as negative, doctor B will contradict the 
diagnosis 10% of the time. The RR of the event B+ given A+ is

		   Pr B A Pr B A+ + + −( ) ( ) = = / . / .8 1 8

This indicates that doctor B is 8 times as likely to diagnose a patient as positive 
when doctor A diagnoses the patient as positive than when doctor A diagnoses the 
patient as negative. These results quantify the dependence between the two doctors’ 
diagnoses.

R E V I E W  QU  E S T I ON  S  3 A

1	 What is the frequency definition of probability?

2	 What is the difference between independent and dependent events?

3	 What are mutually exclusive events?

4	 What is the addition law of probability?

5	 What is conditional probability? How does it differ from unconditional probability?

6	 What is relative risk? How do you interpret it?

Total-Probability Rule
The conditional Pr B A Pr B A( | ), ( | )( ) and unconditional Pr B( )( ) probabilities men-
tioned previously are related in the following way:
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	 Equation 3.6 	 For any events A and B,

			   Pr B Pr B A Pr A Pr B A Pr A( ) = ( ) × ( ) + ( ) × ( )| |

This formula tells us that the unconditional probability of B is the sum of the 
conditional probability of B given A times the unconditional probability of A plus 
the conditional probability of B given A not occurring times the unconditional prob-
ability of A not occurring.

To derive this, we note that if the event B occurs, it must occur either with A or 
without A. Therefore,

		  Pr B Pr B A Pr B A( ) = ∩( ) + ∩( )
From the definition of conditional probability, we see that

		  Pr B A Pr A Pr B A∩( ) = ( ) × ( )

and

		  Pr B A Pr A Pr B A∩( ) = ( ) × ( )

By substitution, it follows that

		  Pr B Pr B A Pr A Pr B A Pr A( ) = ( ) ( ) + ( ) ( ) 

Stated another way, the unconditional probability of B is a weighted average of 
the probabilities of B occurring in two mutually exclusive subsets (A, A), where the 
weights are the probabilities of the subsets (Pr |A), Pr(A), respectively.

	 Example 3.21 	 Cancer  Let A and B be defined as in Example 3.19, and suppose that 7% of the gen-
eral population of women will have a positive mammogram. What is the probability 
of developing breast cancer over the next 2 years among women in the general 
population?

	 	 Solution: 

( ) ( )
( ) ( )

( )( )

( ) ( )

=

=  ×

+  ×

= + = =

+ +

− −

Pr B Pr

Pr Pr

Pr Pr

breastcancer

breastcancer mammogram mammogram

breastcancer mammogram mammogram

.1 .07 .0002 .93 .00719 719 /105

Thus, the unconditional probability of developing breast cancer over the next 
2 years in the general population (719/105) is a weighted average of the conditional 
probability of developing breast cancer over the next 2 years among women with 
a positive mammogram (.1) and the conditional probability of developing breast 
cancer over the next 2 years among women with a negative mammogram (20/105), 
with weights of 0.07 and 0.93 corresponding to mammogram+ and mammogram− 

women, respectively. 

In Equation 3.6 the probability of event B is expressed in terms of two mutually 
exclusive events A and A. In many instances the probability of an event B can be 
determined in more than two mutually exclusive subsets, denoted by A1, A2, . . . , Ak.

	 Definition 3.11 	 A set of events A1, . . . , Ak is exhaustive if at least one of the events must occur.
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Assume that events A1, . . . , Ak are mutually exclusive and exhaustive; that is, at 
least one of the events A1, . . . , Ak must occur and no two events can occur simultane-
ously. Thus, exactly one of the events A1, . . . , Ak must occur.

	 Equation 3.7 	 Total-Probability Rule

		�  Let A1, . . . , Ak be mutually exclusive and exhaustive events. The unconditional 
probability of B Pr B( )( ) can then be written as a weighted average of the condi-
tional probabilities of B given Ai  Pr( )B Ai( ) with weights = Pr(Ai) as follows:

		
Pr B Pr B A Pr Ai

i

k

i( ) = ( ) × ( )
=
∑ 

1

	 	 To show this, we note that if B occurs, then it must occur together with one and only 
one of the events, A1, . . . , Ak. Therefore,

		  Pr B Pr B Ai
i

k

( ) = ∩( )
=
∑

1

	 	 Also, from the definition of conditional probability,

		  Pr B A Pr A Pr B Ai i i∩( ) = ( ) × ( )

	 	 By substitution, we obtain Equation 3.7.
An application of the total-probability rule is given in the following example:

	 Example 3.22 	 Ophthalmology  We are planning a 5-year study of cataract in a population of 
5000 people 60 years of age and older. We know from census data that 45% of this 
population is 60–64 years of age, 28% are 65–69 years of age, 20% are 70–74 years 
of age, and 7% are 75 or older. We also know from the Framingham Eye Study 
that 2.4%, 4.6%, 8.8%, and 15.3% of the people in these respective age groups will 
develop cataract over the next 5 years [4]. What percentage of the population in 
our study will develop cataract over the next 5 years, and how many people with 
cataract does this percentage represent?

	 	 Solution:  Let A1 = {ages 60–64}, A2 = {ages 65–69}, A3 = {ages 70–74}, A4 = {ages 75+}. 
These events are mutually exclusive and exhaustive because each person in our 
population must be in one and only one age group. Furthermore, from the conditions  
of the problem we know that Pr(A1) = .45, Pr(A2) = .28, Pr(A3) = .20, Pr(A4) = .07, 
Pr(B|A1) = .024, Pr(B|A2) = .046, Pr(B|A3) =.088, and Pr(B|A4) =.153, where B = {develop 
cataract in the next 5 years}. Finally, using the total-probability rule,

		

Pr B Pr B A Pr A Pr B A Pr A

Pr B A

( ) = ( ) × ( ) + ( ) × ( )
+

 



1 1 2 2

33 3 4 4

024 45 046

( ) × ( ) + ( ) × ( )
= ( ) +

Pr A Pr B A Pr A

. . . .228 088 20 153 07 052( ) + ( ) + ( ) =. . . . .

	 	 Thus 5.2% of this population will develop cataract over the next 5 years, which  
represents a total of 5000 × .052 = 260 people with cataract.

The definition of conditional probability also allows the multiplication law of  
probability to be extended to the case of dependent events.
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	 Equation 3.8 	 Generalized Multiplication Law of Probability

		  If A1, . . . , Ak are an arbitrary set of events, then

		    
Pr A A A

Pr A Pr A A Pr A A A

k1 2

1 2 1 3 2 1

∩ ∩ ∩( )
= ( ) × ( ) × ∩(

L

  )) × × ∩ ∩ ∩( )−L LPr A A A Ak k 1 2 1

If the events are independent, then the conditional probabilities on the right-
hand side of Equation 3.8 reduce to unconditional probabilities and the generalized 
multiplication law reduces to the multiplication law for independent events given 
in Equation 3.2. Equation 3.8 also generalizes the relationship Pr(A ∩ B) = Pr(A) ×  
Pr(B|A) given in Definition 3.9 for two events to the case of more than two 
events.

R E V I E W  QU  E S T I ON  S  3 B

1	 What is the total-probability rule?

2	 Suppose the rate of type II diabetes mellitus (DM) in 40- to 59-year-olds is 7% 
among Caucasians, 10% among African Americans, 12% among Hispanics, and 
5% among Asian Americans. Suppose the ethnic distribution in Houston, Texas, 
among 40- to 59-year-olds is 30% Caucasian, 25% African American, 40% His-
panic, and 5% Asian American. What is the overall probability of type II DM among 
40- to 59-year-olds in Houston?

	 3.7	 B ay es  ’  R u l e  a n d  S c r ee  n i n g  Tes   t s

The mammography test data given in Example 3.18 illustrate the general concept of 
the predictive value of a screening test, which can be defined as follows:

	 Definition 3.12 	 The predictive value positive (PV+) of a screening test is the probability that a per-
son has a disease given that the test is positive.

	 Pr(disease | test+)

The predictive value negative (PV−) of a screening test is the probability that a 
person does not have a disease given that the test is negative.

	 Pr(no disease | test −)

	 Example 3.23 	 Cancer  Find PV+ and PV− for mammography given the data in Example 3.19.

	 	 Solution:  We see that PV+ = Pr(breast cancer | mammogram+) = .1

	 	 whereas PV− = Pr(breast cancer − | mammogram−) 

	 	 	 = 1 − Pr(breast cancer | mammogram−) = 1 − .0002 = .9998

	 	 Thus, if the mammogram is negative, the woman is virtually certain not to develop 
breast cancer over the next 2 years (PV− ≈ 1); whereas if the mammogram is positive, 
the woman has a 10% chance of developing breast cancer (PV+ = .10).

See page 48 for  
Equation 3.2
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A symptom or a set of symptoms can also be regarded as a screening test for 
disease. The higher the PV of the screening test or symptoms, the more valuable the 
test will be. Ideally, we would like to find a set of symptoms such that both PV+ and 
PV− are 1. Then we could accurately diagnose disease for each patient. However, this 
is usually impossible.

Clinicians often cannot directly measure the PV of a set of symptoms. How-
ever, they can measure how often specific symptoms occur in diseased and normal 
people. These measures are defined as follows:

	 Definition 3.13 	 The sensitivity of a symptom (or set of symptoms or screening test) is the probabil-
ity that the symptom is present given that the person has a disease.

	 Definition 3.14 	 The specificity of a symptom (or set of symptoms or screening test) is the probabil-
ity that the symptom is not present given that the person does not have a disease.

	 Definition 3.15 	 A false negative is defined as a negative test result when the disease or condition 
being tested for is actually present. A false positive is defined as a positive test result 
when the disease or condition being tested for is not actually present.

For a symptom to be effective in predicting disease, it is important that both the 
sensitivity and specificity be high.

	 Example 3.24 	 Cancer  Suppose the disease is lung cancer and the symptom is cigarette smoking. 
If we assume that 90% of people with lung cancer and 30% of people without lung 
cancer (essentially the entire general population) are smokers, then the sensitivity 
and specificity of smoking as a screening test for lung cancer are .9 and .7, respec-
tively. Obviously, cigarette smoking cannot be used by itself as a screening criterion 
for predicting lung cancer because there will be too many false positives (people 
without cancer who are smokers).

	 Example 3.25 	 Cancer  Suppose the disease is breast cancer in women and the symptom is having 
a family history of breast cancer (either a mother or a sister with breast cancer). If we 
assume 5% of women with breast cancer have a family history of breast cancer but 
only 2% of women without breast cancer have such a history, then the sensitivity of 
a family history of breast cancer as a predictor of breast cancer is .05 and the speci-
ficity is .98 = (1 − .02). A family history of breast cancer cannot be used by itself to 
diagnose breast cancer because there will be too many false negatives (women with 
breast cancer who do not have a family history).

R E V I E W  QU  E S T I ON  S  3 C

1	 What is the sensitivity and specificity of a screening test?

2	 What are the PV+ and PV− of a screening test? How does PV differ from sensitivity 
and specificity?

3	 The level of prostate-specific antigen (PSA) in the blood is frequently used as a screen-
ing test for prostate cancer. Punglia et al. [5] reported the following data regarding the 
relationship between a positive PSA test (≥4.1 ng/dL) and prostate cancer.
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Bayes’ Rule
Review Question 3C.3 assumes that each PSA+ and PSA− participant (or at least a 
representative sample of PSA+ and PSA− participants) is evaluated for the presence 
of prostate cancer. Thus, one can directly evaluate PV+ and PV− from the data pro-
vided. Instead, in many screening studies, a random sample of cases and controls is 
obtained. One can estimate sensitivity and specificity from such a design. However, 
because cases are usually oversampled relative to the general population (e.g., if 
there are an equal number of cases and controls), one cannot directly estimate PV+ 
and PV− from the frequency counts available in a typical screening study. Instead, an 
indirect method known as Bayes’ rule is used for this purpose.

The general question then becomes how can the sensitivity and specificity of a 
symptom (or set of symptoms or diagnostic test), which are quantities a physician 
can estimate, be used to compute PVs, which are quantities a physician needs to 
make appropriate diagnoses?

Let A = symptom and B = disease. From Definitions 3.12, 3.13, and 3.14, we have

		

Predictive valuepositive

Predicti

= = ( )+PV Pr B A

vve valuenegative

Sensitivity

= = ( )
=

−PV Pr B A

Pr A







B

Pr A B

( )
= ( )Specificity

Let Pr(B) = probability of disease in the reference population. We wish to compute Pr (B|A) 
and Pr B A( | ) in terms of the other quantities. This relationship is known as Bayes’ rule.

	 Equation 3.9 	 Bayes’ Rule

		  Let A = symptom and B = disease.

		  PV Pr B A
Pr A B Pr B

Pr A B Pr B Pr A
+ = ( ) =

( ) × ( )
( ) × ( ) +




 BB Pr B( ) × ( )
		  In words, this can be written as

		  PV
x

x
+ = ×

× + −
Sensitivity

Sensitivity Specificit1 yy( ) × −( )1 x

		  where x = Pr(B) = prevalence of disease in the reference population. Similarly,

		  PV
x

x
− =

× −( )
× −( ) + −
Specificity

Specificity Se
1

1 1 nnsitivity( ) × x

	 Table 3.2 	 Association between PSA and prostate cancer

PSA test result	 Prostate cancer	 Frequency

+	 +	 92
+	 −	 27
−	 +	 46
−	 −	 72

  (a)  What are the sensitivity and specificity of the test?

  (b)  What are the PV+ and PV − of the test?
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To derive this, we have, from the definition of conditional probability,

	 PV Pr B A
Pr B A

Pr A
+ = ( ) =

∩( )
( )

Also, from the definition of conditional probability,

	 Pr B A Pr A B Pr B∩( ) = ( ) × ( )

Finally, from the total-probability rule,

		  Pr A Pr A B Pr B Pr A B Pr B( ) = ( ) × ( ) + ( ) × ( ) 

If the expressions for Pr(B ∩ A) and Pr(A) are substituted into the equation for PV+, 
we obtain

		
PV Pr B A

Pr A B Pr B

Pr A B Pr B Pr A
+ = ( ) =

( ) × ( )
( ) × ( ) +




 BB Pr B( ) × ( )

That is, PV+ can be expressed as a function of sensitivity, specificity, and the prob-
ability of disease in the reference population. A similar derivation can be used to 
obtain PV−.

	 Example 3.26 	 Hypertension  Suppose 84% of hypertensives and 23% of normotensives are classi-
fied as hypertensive by an automated blood-pressure machine. What are the PV+ and 
PV− of the machine, assuming 20% of the adult population is hypertensive?

	 	 Solution:  The sensitivity = .84 and specificity = 1 − .23 = .77. Thus, from Bayes’ rule 
it follows that

PV + = ( )( ) ( )( ) + ( )( )[ ]
=

. . / . . . .

. / .

84 2 84 2 23 8

168 3552 48= .

Similarly, PV− = (.77)(.8)/[(.77)(.8)+(.16)(.2)]
=.616/.648 = .95

	 	 Thus, a negative result from the machine is reasonably predictive because we are 
95% sure a person with a negative result from the machine is normotensive. How-
ever, a positive result is not very predictive because we are only 48% sure a person 
with a positive result from the machine is hypertensive.

Example 3.26 considered only two possible disease states: hypertensive and 
normotensive. In clinical medicine there are often more than two possible disease 
states. We would like to be able to predict the most likely disease state given a 
specific symptom (or set of symptoms). Let’s assume that the probability of having 
these symptoms among people in each disease state (where one of the disease 
states may be normal) is known from clinical experience, as is the probability of 
each disease state in the reference population. This leads us to the generalized 
Bayes’ rule:
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	 Equation 3.10 	 Generalized Bayes’ Rule

		�  Let B1 B2, . . . , Bk be a set of mutually exclusive and exhaustive disease states; that 
is, at least one disease state must occur and no two disease states can occur at the 
same time. Let A represent the presence of a symptom or set of symptoms. Then,

		  Pr B A Pr A B Pr B Pr A B Pr Bi i j j
j

k

i  ( ) = ( ) × ( ) ( ) × ( )
=1
∑∑













This result is obtained similarly to the result of Bayes’ rule for two disease states in Equa-
tion 3.9. Specifically, from the definition of conditional probability, note that

		  Pr B A
Pr B A

Pr Ai
i( ) =
∩( )

( )

Also, from the definition of conditional probability,

		  Pr B A Pr A B Pr Bi i i∩( ) = ( ) × ( )

From the total-probability rule,

		  Pr A Pr A B Pr B Pr A B Pr Bk k( ) = ( ) × ( ) + + ( ) × ( ) 1 1 L |

If the expressions for Pr(Bi ∩ A) and Pr(A) are substituted, we obtain

		  Pr B A
Pr A B Pr B

Pr A B Pr B
i

i i

jj

k
j





( ) =

( ) × ( )
( ) × (=∑ 1 ))

	 Example 3.27 	 Pulmonary Disease  Suppose a 60-year-old man who has never smoked cigarettes 
presents to a physician with symptoms of a chronic cough and occasional breath-
lessness. The physician becomes concerned and orders the patient admitted to the 
hospital for a lung biopsy. Suppose the results of the lung biopsy are consistent  
either with lung cancer or with sarcoidosis, a fairly common, usually nonfatal lung 
disease. In this case

	 	                        A = {chronic cough, results of lung biopsy}

	 	 Disease state  B1 = normal

	 	  B2 = lung cancer

	 	  B3 = sarcoidosis

	 	 Suppose that  Pr(A|B1) = .001  Pr(A|B2) = .9  Pr(A|B3) = .9 

	 	 and that in 60-year-old, never-smoking men

		  Pr B Pr B Pr B( ) . ( ) . ( ) .1 2 399 001 009= = =

	 	 The first set of probabilities Pr(A|Bi) could be obtained from clinical experience with 
the previous diseases, whereas the latter set of probabilities Pr(Bi) would have to 
be obtained from age-, gender-, and smoking-specific prevalence rates for the dis-
eases in question. The interesting question now becomes what are the probabilities 
Pr(Bi|A) of the three disease states given the previous symptoms?

(
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	 	 Solution:  Bayes’ rule can be used to answer this question. Specifically,

		

Pr B A Pr A B Pr B Pr A B Pr Bj j
j
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1
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=
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= =

Thus, although the unconditional probability of sarcoidosis is very low (.009), the 
conditional probability of the disease given these symptoms and this age-gender-
smoking group is .811. Also, although the symptoms and diagnostic tests are con-
sistent with both lung cancer and sarcoidosis, the latter is much more likely among 
patients in this age-gender-smoking group (i.e., among never- smoking men).

	 Example 3.28 	 Pulmonary Disease  Now suppose the patient in Example 3.27 smoked two packs of 
cigarettes per day for 40 years. Then assume Pr(B1) = .98, Pr(B2) = .015, and Pr(B3) = .005  
in this type of person. What are the probabilities of the three disease states for this 
type of patient, given these symptoms?

	 	 Solution:  Pr B A1 001 98 001 98 9 015 9 005( ) = ( ) ( ) + ( ) +. . . . . . . .(( )[ ]
= =

( ) = ( )
. / . .

. . / .

00098 01898 052

9 0152Pr B A 001898 01350 01898 711

9 0053

= =

( ) = ( )

. / . .

. . /Pr B A .. .01898 237=

Thus, in this type of patient (i.e., a heavy-smoking man) lung cancer is the most 
likely diagnosis.

R E V I E W  QU  E S T I ON  S  3 D

1	 What is Bayes’ rule? How is it used?

2	 What is the generalized Bayes’ rule?

3	 Refer to Review Question 3B.2. Suppose a 40- to 59-year-old person in Houston 
has type II DM. What is the probability that this person is African American? His-
panic? Caucasian? Asian American? (Hint: Use the generalized Bayes’ rule.)

4	 Answer Review Question 3D.3 for a nondiabetic 40- to 59-year-old person in Houston.

	 3.8	 B ay esi   a n  I n f e r e n c e

The definition of probability given in Definition 3.1 is sometimes called the 
frequency definition of probability. This definition forms the basis for the fre-
quentist method of inference, which is the main approach to statistical inference 
featured in this book and used in statistical practice. However, Bayesian inference 
is an alternative method of inference, espoused by a vocal minority of statisticians. 
The Bayesian school of inference rejects the idea of the frequency definition of 
probability, considering that it is a theoretical concept that can never be realized in 
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practice. Instead, Bayesians conceive of two types of probability: a prior probability 
and a posterior probability.

	 Definition 3.16 	 The prior probability of an event is the best guess by the observer of an event’s 
likelihood in the absence of data. This prior probability may be a single number, or 
it may be a range of likely values for the probability, perhaps with weights attached 
to each possible value.

	 Example 3.29 	 Hypertension  What is the prior probability of hypertension in Example 3.26?

	 	 Solution  The prior probability of hypertension in the absence of additional data is 
.20 because 20% of the adult population is hypertensive.

	 Definition 3.17 	 The posterior probability of an event is the likelihood that an event will occur after 
collecting some empirical data. It is obtained by integrating information from the 
prior probability with additional data related to the event in question.

	 Example 3.30 	 Hypertension  What is the posterior probability of hypertension given that an auto-
mated blood-pressure machine has classified a person as hypertensive?

	 	 Solution:  If we refer to Example 3.26 and let the event {true hypertensive} be de-
noted by B and the event {classified as hypertensive by an automated blood-pressure 
machine} be denoted by A, we see that the posterior probability is given by PV+ = 
Pr(B|A) = .48.

	 Example 3.31 	 Hypertension  What is the posterior probability of hypertension given that an auto-
mated blood-pressure machine has classified a person as normotensive?

	 	 Solution:  The posterior probability = = − = − =−Pr B A Pr B A PV( ) ( ) . 1 1 05. Thus, 
the initial prior probability of 20% has been integrated with the automated blood-
pressure machine data to yield posterior probabilities of .48 and .05, for people who 
are classified as hypertensive and normotensive by the automated blood-pressure 
machine, respectively.

The main problem with Bayesian inference lies in specifying the prior prob-
ability. Two different people may provide different prior probabilities for an event 
and may reach different conclusions (obtain different posterior probabilities), even 
with the same data. However, in some cases the prior probability is well defined. 
Also, having sufficient data diminishes the impact of the prior probability on the 
posterior inference.

	 3.9	 ROC    C u r ves 

In some instances, a test provides several categories of response rather than simply 
providing positive or negative results. In other instances, the results of the test may 
be reported as a continuous variable. In either case, designation of a cutoff point for 
distinguishing a test result as positive versus negative is arbitrary.
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	 Example 3.32 	 Radiology  The data in Table 3.3 provided by Hanley and McNeil [6], are ratings of 
computed tomography (CT) images by a single radiologist in a sample of 109 sub-
jects with possible neurological problems. The true disease status is also known for 
each of these subjects. The data are presented in Table 3.3. How can we quantify the 
diagnostic accuracy of the test?

Unlike previous examples, this test has no obvious cutoff point to use for designat-
ing a subject as positive for disease based on the CT scan. For example, if we desig-
nate a subject as test-positive if he or she is either probably abnormal or definitely 
abnormal (a rating of 4 or 5, or 4+), then the sensitivity of the test is (11 + 33)/51 = 
44/51 = .86, whereas the specificity is (33 + 6 + 6)/58 = 45/58 = .78. In Table 3.4, we 
compute the sensitivity and specificity of the radiologist’s ratings according to dif-
ferent criteria for test-positive.

To display these data, we construct a receiver operating characteristic (ROC) curve.

	 Definition 3.18 	 A receiver operating characteristic (ROC) curve is a plot of the sensitivity (on the 
y-axis) versus (1 – specificity) (on the x-axis) of a screening test, where the different 
points on the curve correspond to different cutoff points used to designate test-
positive.

	 Example 3.33 	 Radiology  Construct an ROC curve based on the data in Table 3.4.

	 	 Solution:  We plot sensitivity on the y-axis versus (1 – specificity) on the x-axis us-
ing the data in Table 3.4. The plot is shown in Figure 3.7.

	 Table 3.3 	 Ratings of 109 CT images by a single radiologist vs. true disease status

	 CT rating

True 	 Definitely	 Probably	 	 Probably	 Definitely	
disease	 normal 	 normal	 Questionable	 abnormal	 abnormal	
status 	 (1)	 (2)	 (3) 	 (4)	 (5)	 Total

Normal	 33	 6	 6	 11	   2	   58
Abnormal	   3	 2	 2	 11	 33	   51

Total	 36	 8	 8	 22	 35	 109

	 Table 3.4 	 Sensitivity and specificity of the radiologist’s ratings according to different 	
test-positive criteria based on the data in Table 3.3

Test-positive criteria	 Sensitivity	 Specificity

	 1 +	 1.0	 0
	 2 +	 .94	 .57
	 3 +	 .90	 .67
	 4 +	 .86	 .78
	 5 +	 .65	 .97
	 6 +	 0	 1.0
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The area under the ROC curve is a reasonable summary of the overall diagnos-
tic accuracy of the test. It can be shown [6] that this area, when calculated by the 
trapezoidal rule, corresponds to the probability that for a randomly selected pair of 
normal and abnormal subjects, the abnormal subject will have a higher CT rating. 
It is assumed that for untied ratings the radiologist designates the subject with the 
lower test score as normal and the subject with the higher test score as abnormal. 
For tied ratings, it is assumed that the radiologist randomly chooses one patient as 
normal and the other as abnormal.

	 Example 3.34 	 Radiology  Calculate the area under the ROC curve in Figure 3.7, and interpret what 
it means.

	 	 Solution:  The area under the ROC curve, when evaluated by the trapezoidal rule, is 
given by

		

. . . . . . . . . . .5 94 1 0 57 5 90 94 10 5 86 90+( )( ) + +( )( ) + +(( )( ) + +( )( )
+ +( )( ) =

. . . . .

. . . .

11 5 65 86 19

5 0 65 03 899

This means the radiologist has an 89% probability of correctly distinguishing a nor-
mal from an abnormal subject based on the relative ordering of their CT ratings. For 
normal and abnormal subjects with the same ratings, it is assumed the radiologist 
selects one of the two subjects at random.

In general, of two screening tests for the same disease, the test with the higher area 
under its ROC curve is considered the better test, unless some particular level of sen-
sitivity or specificity is especially important in comparing the two tests.

	 3.10	 P r ev  a l e n c e  a n d  I n c i d e n c e

In clinical medicine, the terms prevalence and incidence denote probabilities in a spe-
cial context and are used frequently in this text.

	 Figure 3.7 	 ROC curve for the data in Table 3.4*
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*Each point represents (1 – specificity, sensitivity) for different test-positive criteria.
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	 Definition 3.19 	 The prevalence of a disease is the probability of currently having the disease regard-
less of the duration of time one has had the disease. Prevalence is obtained by divid-
ing the number of people who currently have the disease by the number of people in 
the study population.

	 Example 3.35 	 Hypertension  The prevalence of hypertension among adults (age 17 and older) was 
reported to be 20.3%, as assessed by the NHANES study conducted in 1999–2000 
[7]. It was computed by dividing the number of people who had reported taking a 
prescription for hypertension and were 17 years of age and older (1225) by the total 
number of people 17 years of age and older in the study population (6044).

	 Definition 3.20 	 The cumulative incidence of a disease is the probability that a person with no prior 
disease will develop a new case of the disease over some specified time period.

In Chapter 14 we distinguish between cumulative incidence, which is defined over 
a long period of time, and incidence density, which is defined over a very short (or 
instantaneous) period of time. For simplicity, before Chapter 14 we use the abbrevi-
ated term incidence to denote cumulative incidence.

	 Example 3.36 	 Cancer  The cumulative-incidence rate of breast cancer in 40- to 44-year-old U.S. 
women over the time period 2002–2006 was approximately 118.4 per 100,000 [2]. 
This means that on January 1, 2002, about 118 in 100,000 women 40 to 44 years of 
age who had never had breast cancer would develop breast cancer by December 31, 
2002.

R E V I E W  QU  E S T I ON  S  3 E

1	 Suppose that of 25 students in a class, 5 are currently suffering from hay fever. Is 
the proportion 5 of 25 (20%) a measure of prevalence, incidence, or neither?

2	 Suppose 50 HIV-positive men are identified, 5 of whom develop AIDS over the next 
2 years. Is the proportion 5 of 50 (10%) a measure of prevalence, incidence, or 
neither?

	 3.11	 S u m m a r y

In this chapter, probabilities and how to work with them using the addition and 
multiplication laws were discussed. An important distinction was made between in-
dependent events, which are unrelated to each other, and dependent events, which 
are related to each other. The general concepts of conditional probability and RR 
were introduced to quantify the dependence between two events. These ideas were 
then applied to the special area of screening populations for disease. In particular, 
the notions of sensitivity, specificity, and PV, which are used to define the accuracy 
of screening tests, were developed as applications of conditional probability. We also 
used an ROC curve to extend the concepts of sensitivity and specificity when the 
designation of the cutoff point for test-positive versus test-negative is arbitrary.
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Consider a family with a mother, father, and two children. 
Let A1 = {mother has influenza}, A2 = {father has influenza}, 
A3 = {first child has influenza}, A4 = {second child has influ
enza}, B = {at least one child has influenza}, C = {at least one 
parent has influenza}, and D = {at least one person in the 
family has influenza}.

*3.1  What does A1 ∪ A2 mean?

*3.2  What does A1 ∩ A2 mean?

*3.3  Are A3 and A4 mutually exclusive?

*3.4  What does A3 ∪ B mean?

*3.5  What does A3 ∩ B mean?

*3.6  Express C in terms of A1, A2, A3, and A4.

*3.7  Express D in terms of B and C.

*3.8  What does A1 mean?

*3.9  What does A2 mean?
*3.10  Represent C in terms of A1, A2, A3, and A4.
*3.11  Represent D  in terms of B and C.
Suppose an influenza epidemic strikes a city. In 10% of 
families the mother has influenza; in 10% of families the 
father has influenza; and in 2% of families both the mother 
and father have influenza.
3.12  Are the events A1 = {mother has influenza} and A2 = 
{father has influenza} independent?
Suppose there is a 20% chance each child will get influ-
enza, whereas in 10% of two-child families both children 
get the disease.
3.13  What is the probability that at least one child will get 
influenza?
3.14  Based on Problem 3.12, what is the conditional prob-
ability that the father has influenza given that the mother has 
influenza?

3.15  Based on Problem 3.12, what is the conditional prob-
ability that the father has influenza given that the mother 
does not have influenza?

On some occasions, only sensitivities and specificities are available and we wish 
to compute the PV of screening tests. This task can be accomplished using Bayes’ 
rule. The use of Bayes’ rule in the context of screening tests is a special case of Bayes-
ian inference. In Bayesian inference, we specify a prior probability for an event, 
which, after data are collected, is then modified to a posterior probability. Finally, 
prevalence and incidence, which are probabilistic parameters that are often used to 
describe the magnitude of disease in a population, were defined.

In the next two chapters, these general principles of probability are applied to 
derive some of the important probabilistic models often used in biomedical research, 
including the binomial, Poisson, and normal models. These models will eventually 
be used to test hypotheses about data.

P r o b l e m s

Mental Health
Estimates of the prevalence of Alzheimer’s disease have 
recently been provided by Pfeffer et al. [8]. The estimates 
are given in Table 3.5.

Suppose an unrelated 77-year-old man, 76-year-old 
woman, and 82-year-old woman are selected from a com-
munity.

3.16  What is the probability that all three of these individu-
als have Alzheimer’s disease?

3.17  What is the probability that at least one of the women 
has Alzheimer’s disease?

3.18  What is the probability that at least one of the three 
people has Alzheimer’s disease?

3.19  What is the probability that exactly one of the three 
people has Alzheimer’s disease?

3.20  Suppose we know one of the three people has 	
Alzheimer’s disease, but we don’t know which one. What is the 
conditional probability that the affected person is a woman?

3.21  Suppose we know two of the three people have 	
Alzheimer’s disease. What is the conditional probability that 
they are both women?

3.22  Suppose we know two of the three people have 	
Alzheimer’s disease. What is the conditional probability that 
they are both younger than 80 years of age?

Table 3.5  � Prevalence of Alzheimer’s disease 	
(cases per 100 population)

Age group	 Males	 Females

65–69	 1.6	 0.0
70–74	 0.0	 2.2
75–79	 4.9	 2.3
80–84	 8.6	 7.8
85+	 35.0	 27.9
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Suppose the probability that both members of a married 
couple, each of whom is 75–79 years of age, will have 	
Alzheimer’s disease is .0015.

3.23  What is the conditional probability that the man will 
be affected given that the woman is affected? How does 
this value compare with the prevalence in Table 3.5? Why 
should it be the same (or different)?

3.24  What is the conditional probability that the woman 
will be affected given that the man is affected? How does 
this value compare with the prevalence in Table 3.5? Why 
should it be the same (or different)?

3.25  What is the probability that at least one member of the 
couple is affected?

Suppose a study of Alzheimer’s disease is proposed in a 
retirement community with people 65+ years of age, where 
the age–gender distribution is as shown in Table 3.6.

3.26  What is the expected overall prevalence of Alzheim-
er’s disease in the community if the prevalence estimates in 
Table 3.5 for specific age–gender groups hold?

3.27  Assuming there are 1000 people 65+ years of age 
in the community, what is the expected number of cases of 
Alzheimer’s disease in the community?

Infectious Disease
Commonly used vaccines for influenza are trivalent and con-
tain only one type of influenza B virus. They may be ineffec-
tive against other types of influenza B virus. A randomized 
clinical trial was performed among children 3 to 8 years of 
age in 8 countries. Children received either a quadrivalent 
vaccine (QIV) that had more than one influenza B virus or a 
trivalent Hepatitis A vaccine (control) (Jain, et al., [9]. New 
England Journal of Medicine 2013: 369(26): 2481–2491). 
An attack rate (i.e.,% of children who developed influenza) 
starting 14 days after vaccination until the end of the study 
was computed for each vaccine group, stratified by age. 
The following data were reported:

3.28  Suppose 3 children in a village ages 3, 5, and 7 are 
vaccinated with the QIV vaccine. What is the probability 
that at least one child among the 3 will get influenza?

Suppose that 80% of 3–4-year-old children and 70% of 
5–8-year-old children in a village are vaccinated with QIV 
vaccine. Also assume that children who are not vaccinated 
have twice the incidence of influenza as the control group 
in Table 3.7.

3.29  What % of 3–4-year-old children in the village will get 
influenza?

3.30  What % of 5–8-year-old children in the village will get 
influenza?

3.31  Suppose we identify a 5–8-year-old child with in-
fluenza in the village but are uncertain whether the child 
was vaccinated. If we make the same assumptions as in 
Problems 3.29–3.30, then what is the probability that the 
child was vaccinated? (Hint: Use Bayes’ rule here.)

Genetics
Suppose that a disease is inherited via a dominant mode 
of inheritance and that only one of the two parents is 	
affected with the disease. The implications of this mode of 
inheritance are that the probability is 1 in 2 that any particular 
offspring will get the disease.

3.32  What is the probability that in a family with two children, 
both siblings are affected?

3.33  What is the probability that exactly one sibling is affected?

3.34  What is the probability that neither sibling is 	
affected?

3.35  Suppose the older child is affected. What is the 	
probability that the younger child is affected?

3.36  If A, B are two events such that A = {older child is 	
affected}, B = {younger child is affected}, then are the events 
A, B independent?

Suppose that a disease is inherited via an autosomal 
recessive mode of inheritance. The implications of this 
mode of inheritance are that the children in a family each 
have a probability of 1 in 4 of inheriting the disease.

3.37  What is the probability that in a family with two children, 
both siblings are affected?

3.38  What is the probability that exactly one sibling is 	
affected?

3.39  What is the probability that neither sibling is 	
affected?
Suppose that a disease is inherited via a sex-linked mode 
of inheritance. The implications of this mode of inheritance 

Table 3.6  � Age–gender distribution of retirement 
community

Age group	 Male (%)a	 Female (%)a

65–69	 5	 10
70–74	 9	 17
75–79	 11	 18
80–84	 8	 12
85+	 4	 6

aPercentage of total population.

Table 3.7  � Attack rate for influenza by age and 
treatment group

age	 QIV group	 Control group

3–4	 3.78%	 5.69%
5–8	 1.70% 	 5.15%
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are that each male offspring has a 50% chance of inheriting 
the disease, whereas the female offspring have no chance 
of getting the disease.

3.40  In a family with one male and one female sibling, what 
is the probability that both siblings are affected?

3.41  What is the probability that exactly one sibling is affected?

3.42  What is the probability that neither sibling is affected?

3.43  Answer Problem 3.40 for families with two male siblings.

3.44  Answer Problem 3.41 for families with two male 
siblings.

3.45  Answer Problem 3.42 for families with two male siblings.
Suppose that in a family with two male siblings, both siblings 
are affected with a genetically inherited disease. Suppose 
also that, although the genetic history of the family is un-
known, only a dominant, recessive, or sex-linked mode of 
inheritance is possible.

3.46  Assume that the dominant, recessive, and sex-linked 
modes of inheritance follow the probability laws given in 
Problems 3.32, 3.37, and 3.40 and that, without prior 
knowledge about the family in question, each mode of in-
heritance is equally likely. What is the posterior probability 
of each mode of inheritance in this family?

3.47  Answer Problem 3.46 for a family with two male sib-
lings in which only one sibling is affected.

3.48  Answer Problem 3.46 for a family with one male and 
one female sibling in which both siblings are affected.

3.49  Answer Problem 3.48 where only the male sibling is 
affected.

Obstetrics
The following data are derived from the Monthly Vital 
Statistics Report (October 1999) issued by the National 
Center for Health Statistics [10]. These data are pertinent 
to livebirths only.

Suppose that infants are classified as low birthweight if they 
have a birthweight <2500 g and as normal birthweight if 
they have a birthweight ≥2500 g. Suppose that infants are 
also classified by length of gestation in the following five 
categories: <28 weeks, 28–31 weeks, 32–35 weeks, 36 
weeks, and ≥37 weeks. Assume the probabilities of the dif-
ferent periods of gestation are as given in Table 3.8.

Also assume that the probability of low birthweight is .949 
given a gestation of <28 weeks, .702 given a gestation of 
28–31 weeks, .434 given a gestation of 32–35 weeks, 
.201 given a gestation of 36 weeks, and .029 given a gesta-
tion of ≥37 weeks.

*3.50  What is the probability of having a low birthweight 
infant?

3.51  Show that the events {length of gestation ≤ 31 weeks} 
and {low birthweight} are not independent.

*3.52  What is the probability of having a length of gestation 
≤36 weeks given that an infant is low birthweight?

Pulmonary Disease
The familial aggregation of respiratory disease is a well-	
established clinical phenomenon. However, whether this 	
aggregation is due to genetic or environmental factors or 
both is somewhat controversial. An investigator wishes 
to study a particular environmental factor, namely the re-
lationship of cigarette-smoking habits in the parents to 
the presence or absence of asthma in their oldest child 
age 5 to 9 years living in the household (referred to be-
low as their offspring). Suppose the investigator finds 
that (1) if both the mother and father are current smok-
ers, then the probability of their offspring having asthma 
is .15; (2) if the mother is a current smoker and the 	
father is not, then the probability of their offspring having 
asthma is .13; (3) if the father is a current smoker and the 
mother is not, then the probability of their offspring having 
asthma is .05; and (4) if neither parent is a current smoker, 
then the probability of their offspring having asthma is .04.

*3.53  Suppose the smoking habits of the parents are in-
dependent and the probability that the mother is a current 
smoker is .4, whereas the probability that the father is a cur-
rent smoker is .5. What is the probability that both the father 
and mother are current smokers?

*3.54  Consider the subgroup of families in which the mother 
is not a current smoker. What is the probability that the 
father is a current smoker among such families? How does 
this probability differ from that calculated in Problem 3.53?

Suppose, alternatively, that if the father is a current smoker, 
then the probability that the mother is a current smoker is .6; 
whereas if the father is not a current smoker, then the prob-
ability that the mother is a current smoker is .2. Also assume 
that statements 1, 2, 3, and 4 above hold.

*3.55  If the probability that the father is a current smoker is 
.5, what is the probability that the father is a current smoker 
and that the mother is not a current smoker?

*3.56  Are the current smoking habits of the father and the 
mother independent? Why or why not?

*3.57  Under the assumptions made in Problems 3.55 and 
3.56, find the unconditional probability that the offspring will 
have asthma.

Table 3.8   Distribution of length of gestation

Length of gestation	 Probability

<28 weeks	 .007
28–31 weeks	 .012
32–35 weeks	 .050
36 weeks	 .037
≥37 weeks	 .893
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*3.58  Suppose a child has asthma. What is the posterior 
probability that the father is a current smoker?

*3.59  What is the posterior probability that the mother is a 
current smoker if the child has asthma?

*3.60  Answer Problem 3.58 if the child does not have 
asthma.

*3.61  Answer Problem 3.59 if the child does not have 
asthma.

*3.62  Are the child’s asthma status and the father’s smok-
ing status independent? Why or why not?

*3.63  Are the child’s asthma status and the mother’s smok-
ing status independent? Why or why not?

Genetics, Obstetrics
Precise quantification of smoking during pregnancy is difficult 
in retrospective studies. Routinely collected blood specimens 
from newborns for screening purposes may provide a low-
cost method to objectively measure maternal smoking close 
to the time of delivery. Serum cotinine is an important bio-
marker of recent smoking. A study was performed comparing 
cotinine levels in dried blood spots in newborns with those 
in umbilical cord blood (the gold standard) among 428 new-
borns in the California Genetic Screening Program (Yang et 
al. [11]). The lowest detection limit for dried blood spot coti-
nine was  3.1 ng/mL. The data in Table 3.9 were presented 
relating dried blood spot cotinine determinations to umbilical 
cord blood cotinine determinations.

Suppose a cutoff of ≥ 5 ng/mL is proposed as a criterion for 
testing positive based on dried blood spot cotinine levels.

3.64  What is the sensitivity using this cut-point?

3.65  What is the specificity using this cut-point?

Suppose it is estimated based on a large sample of births in 
California that 20% of mothers smoke at the time of delivery.

Suppose the screening test for detecting whether a mother 
smokes at the time of pregnancy is based on a cutoff of ≥ 5 
ng/mL using dried blood specimens from the newborn. 

3.66  What is the probability that a mother smokes at the 
time of delivery if the dried blood specimen is ≥ 5 ng/mL?

3.67  What is another name for this quantity?

Pulmonary Disease
Research into cigarette-smoking habits, smoking prevention, 
and cessation programs necessitates accurate measurement 
of smoking behavior. However, decreasing social acceptabil-
ity of smoking appears to cause significant underreporting. 
Chemical markers for cigarette use can provide objective 
indicators of smoking behavior. One widely used noninvasive 
marker is the level of saliva thiocyanate (SCN). In a Minne-
apolis school district, 1332 students in eighth grade (ages 
12–14) participated in a study [12] whereby they

(1)	 �Viewed a film illustrating how recent cigarette use 
could be readily detected from small samples of saliva

(2)	 �Provided a personal sample of SCN

(3)	 �Provided a self-report of the number of cigarettes 
smoked per week

The results are given in Table 3.10.

Table 3.10   �Relationship between SCN levels and 
self-reported cigarettes smoked per week

Self-reported	
cigarettes smoked	 Number of	 Percent with	
in past week	 students	 SCN ≥ 100 μg/mL

None	 1163	 3.3
1–4	 70	 4.3
5–14	 30	 6.7
15–24	 27	 29.6
25–44	 19	 36.8
45+	 23	 65.2

Source: Based on the American Journal of Public Health, 71(12), 1320, 1981.

	Table 3.9 	 Distribution of Cotinine Level in Dried Blood Spots from Newborns by Maternal 
Active Smoking Status* close to the time of delivery among 428 babies delivered in 
California, 2001–2003

Cotinine Level	 Maternal	 Maternal	 	 Cotinine Level	 Maternal	 Maternal	
in Dried	 Active	 Active 	 	 in Dried	 Active 	 Active 	
Blood (ng/mL)	 Smoking = yes	 Smoking = no	 	 Blood (ng/mL)	 Smoking = yes	 Smoking = no

<3.1	 2	 326	 	 9	 1	 3
3.1	 0	 2	 	 10	 2	 0
4	 0	 2	 	 11	 3	 0
5	 0	 1	 	 12	 2	 0
6	 2	 1	 	 13	 1	 1
7	 1	 0	 	 ≥14	 76	 0
8	 1	 1	 	 Total	 91	 337

*Maternal active smoking at the time of delivery was defined as cord blood levels of ≥10 ng/mL.
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Suppose the self-reports are completely accurate and are 
representative of the number of eighth-grade students who 
smoke in the general community. We are considering using 
an SCN level ≥ 100 μg/mL as a test criterion for identifying 
cigarette smokers. Regard a student as positive if he or she 
smokes one or more cigarettes per week.

*3.68  What is the sensitivity of the test for light-smoking 
students (students who smoke ≤ 14 cigarettes per week)?

*3.69  What is the sensitivity of the test for moderate-smoking 
students (students who smoke 15–44 cigarettes per week)?

*3.70  What is the sensitivity of the test for heavy-smoking 
students (students who smoke ≥ 45 cigarettes per week)?

*3.71  What is the specificity of the test?

*3.72  What is the PV+ of the test?

*3.73  What is the PV− of the test?

Suppose we regard the self-reports of all students who 
report some cigarette consumption as valid but estimate 
that 20% of students who report no cigarette consumption 
actually smoke 1–4 cigarettes per week and an additional 
10% smoke 5–14 cigarettes per week.

*3.74  Assuming the percentage of students with SCN ≥ 
100 μg/mL in these two subgroups is the same as in those 
who truly report 1–4 and 5–14 cigarettes per week, com-
pute the specificity under these assumptions.

*3.75  Compute the PV− under these altered assumptions. 
How does the true PV− using a screening criterion of SCN 
≥ 100 μg/mL for identifying smokers compare with the 	
PV− based on self-reports obtained in Problem 3.73?

Hypertension
Laboratory measures of cardiovascular reactivity are receiv-
ing increasing attention. Much of the expanded interest is 
based on the belief that these measures, obtained under 
challenge from physical and psychological stressors, may 
yield a more biologically meaningful index of cardiovascular 
function than more traditional static measures. Typically, 
measurement of cardiovascular reactivity involves the use 
of an automated blood-pressure monitor to examine the 
changes in blood pressure before and after a stimulating ex-
perience (such as playing a video game). For this purpose, 
blood-pressure measurements were made with the Vita-
Stat blood-pressure machine both before and after playing 
a video game. Similar measurements were obtained using 
manual methods for measuring blood pressure. A person 
was classified as a “reactor” if his or her DBP increased by 
10 mm Hg or more after playing the game and as a nonre-
actor otherwise. The results are given in Table 3.11.

3.76  If the manual measurements are regarded as the 
“true” measure of reactivity, then what is the sensitivity of 
automated DBP measurements?

3.77  What is the specificity of automated DBP measurements?

3.78  If the population tested is representative of the general 
population, then what are the PV+ and PV− using this test?

Otolaryngology
The data set in Table 3.12 is based on 214 children with 
acute otitis media (otitis media with effusion, or OME) who 
participated in a randomized clinical trial [13]. Each child 
had OME at the beginning of the study in either one (unilat-
eral cases) or both (bilateral cases) ears and was randomly 
assigned to receive a 14-day course of one of two antibiot-
ics, either cefaclor (CEF) or amoxicillin (AMO). The data 
here concern the 203 children whose middle-ear status 
was determined during a 14-day follow-up visit. The data 
in Table 3.12 are presented in data set EAR.DAT (at www	
.cengagebrain.com).

3.79  Does there seem to be any difference in the effect of 
the antibiotics on clearance of otitis media? Express your 
results in terms of relative risk (RR). Consider separate 
analyses for unilateral and bilateral cases. Also consider an 
analysis combining the two types of cases.

3.80  The investigators recorded the ages of the children 
because they felt this might be an important factor in de-
termining outcome. Were they right? Try to express your 
results in terms of RR.

3.81  While controlling for age, propose an analysis com-
paring the effectiveness of the two antibiotics. Express your 
results in terms of RR.

3.82  Another issue in this trial is the possible dependence 
between ears for the bilateral cases. Comment on this issue 
based on the data collected.

The concept of a randomized clinical trial is discussed more 
completely in Chapter 6. The analysis of contingency-table 

Table 3.11  � Classification of cardiovascular 
reactivity using an automated and a 
manual sphygmomanometer

	 ΔDBP, manual

ΔDBP, automated	 <10	 ≥10

<10	 51	 7
≥10	 15	 6

Table 3.12   Format for EAR.DAT

Column	 Variable	 Format or code

1–3	 ID
5	 Clearance by 14 days	 1 = yes/0 = no
7	 Antibiotic	 1 = CEF/2 = AMO
9	 Age	 1 = <2 yrs/2 = 2–5 yrs
	 	 3 = 6+ yrs
11	 Ear	 1 = 1st ear/2 = 2nd ear

 Data set available
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data is studied in Chapters 10 and 13, in which many of the 
formal methods for analyzing this type of data are discussed.

Gynecology
A drug company is developing a new pregnancy-test kit for 
use on an outpatient basis. The company uses the preg-
nancy test on 100 women who are known to be pregnant, 
for whom 95 test results are positive. The company uses the 
pregnancy test on 100 other women who are known to not 
be pregnant, of whom 99 test negative.

*3.83  What is the sensitivity of the test?

*3.84  What is the specificity of the test?

The company anticipates that of the women who will use the 
pregnancy-test kit, 10% will actually be pregnant.

*3.85  What is the PV+ of the test?

*3.86  Suppose the “cost” of a false negative (2c) is twice 
that of a false positive (c) (because for a false negative 
prenatal care would be delayed during the first trimester of 
pregnancy). If the standard home pregnancy-test kit (made 
by another drug company) has a sensitivity of .98 and a 
specificity of .98, then which test (the new or standard) will 
cost the least per woman using it in the general population 
and by how much?

Mental Health
The Chinese Mini-Mental Status Test (CMMS) consists 
of 114 items intended to identify people with Alzheimer’s 
disease and senile dementia among people in China [14]. 
An extensive clinical evaluation of this instrument was per-
formed, whereby participants were interviewed by psychia-
trists and nurses and a definitive diagnosis of dementia 
was made. Table 3.13 shows the results obtained for the 
subgroup of people with at least some formal education.

Suppose a cutoff value of ≤ 20 on the test is used to identify 
people with dementia.

3.87  What is the sensitivity of the test?

3.88  What is the specificity of the test?

3.89  The cutoff value of 20 on the CMMS used to identify 
people with dementia is arbitrary. Suppose we consider 
changing the cutoff. What are the sensitivity and specificity 
if cutoffs of 5, 10, 15, 20, 25, or 30 are used? Make a table 
of your results.

3.90  Construct an ROC curve based on the table con-
structed in Problem 3.89.

3.91  Suppose we want both the sensitivity and specificity 
to be at least 70%. Use the ROC curve to identify the pos-
sible value(s) to use as the cutoff for identifying people with 
dementia, based on these criteria.

3.92  Calculate the area under the ROC curve. Interpret 
what this area means in words in the context of this problem.

Demography
A study based on data collected from the Medical Birth 
Registry of Norway looked at fertility rates according to 
survival outcomes of previous births [15]. The data are 	
presented in Table 3.14.

3.93  What is the probability of having a livebirth (L) at a 
second birth given that the outcome of the first pregnancy 
was a stillbirth (D), that is, death?

3.94  Answer Problem 3.93 if the outcome of the first 	
pregnancy was a livebirth.

3.95  What is the probability of 0, 1, and 2+ additional 	
pregnancies if the first birth was a stillbirth?

3.96  Answer Problem 3.95 if the first birth was a live birth.

Mental Health
The ε4 allele of the gene encoding apolipoprotein E (APOE) 
is strongly associated with Alzheimer’s disease, but its value 
in making the diagnosis remains uncertain. A study was 
conducted among 2188 patients who were evaluated at 
autopsy for Alzheimer’s disease by previously established 
pathological criteria [16]. Patients were also evaluated clini-
cally for the presence of Alzheimer’s disease. The data in 
Table 3.15 were presented.

Suppose the pathological diagnosis is considered the gold 
standard for Alzheimer’s disease.

3.97  If the clinical diagnosis is considered a screening test for 
Alzheimer’s disease, then what is the sensitivity of this test?

3.98  What is the specificity of this test?

To possibly improve on the diagnostic accuracy of the clini-
cal diagnosis for Alzheimer’s disease, information on both 
the APOE genotype as well as the clinical diagnosis were 
considered. The data are presented in Table 3.16.

Suppose we consider the combination of both a clinical di-
agnosis for Alzheimer’s disease and the presence of ≥ 1 ε4 
allele as a screening test for Alzheimer’s disease.

3.99  What is the sensitivity of this test?

3.100  What is the specificity of this test?

Table 3.13  � Relationship of clinical dementia to 
outcome on the Chinese Mini-Mental 
Status Test

CMMS score	 Nondemented	 Demented

0–5	 0	 2
6–10	 0	 1
11–15	 3	 4
16–20	 9	 5
21–25	 16	 3
26–30	 18	 1

Total	 46	 16
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Cardiovascular Disease
A fascinating subject of recent interest is the “Hispanic 
paradox”: Census data “show” that coronary heart disease 
(CHD) has a lower prevalence in Hispanic people than in 
non-Hispanic whites (NHW) based on health interviews 
of representative samples of people from different ethnic 
groups from the U.S. population, although the risk-factor 
profile of Hispanics is generally worse (more hyperten-
sion, diabetes, and obesity in this group than in NHW). To 
study this further, researchers looked at a group of 1000 
Hispanic men ages 50–64 from several counties in Texas 
who were free of CHD in 1990 and followed them for 5 
years. They found that 100 of the men had developed CHD 	
(either fatal cases or nonfatal cases in which the men 	
survived a heart attack).

3.101  Is the proportion 100 out of 1000 a prevalence rate, 
an incidence rate, or neither?

Given other surveys over the same time period among 
NHW in these counties, the researchers expected that the 
comparable rate of CHD for NHW would be 8%.

Another important parameter in the epidemiology of CHD 
is the case-fatality rate (the proportion of people who die 
among those who have a heart attack). Among the 100 
CHD cases ascertained among Hispanics, 50 were fatal.

3.102  What is the expected proportion of Hispanic men 
who will be identified by health surveys as having a previous 
heart attack in the past 5 years (who are by definition sur-
vivors) if we assume that the proportion of men with more 
than one nonfatal heart attack is negligible? What is the 
comparable proportion for NHW men if the expected case-
fatality rate is 20% among NHW men with CHD?

3.103  Are these proportions prevalence rates, incidence 
rates, or neither? Do the results in this problem give insight 
into why the Hispanic paradox occurs (do Hispanic men 
truly have lower risk of CHD as government surveys would 
indicate)? Why or why not?

Genetics
A dominantly inherited genetic disease is identified over 
several generations of a large family. However, about half 

Table 3.14   Relationship of fertility rates to survival outcome of previous births in Norway

	 	 Continuing to	 Second birth	 Continuing to	 Third birth	
	 First birth	 second birth	 outcome	 third birth	 outcome

Perinatal outcome	 n	 n	 n	 n	 n

D	 7022	 5924	 D        368	 277	 D        39
	 	 	 	 	 L               238
	 	 	 L          5556	 3916	 D              115
	 	 	 	 	 L            3801
L	 350,693	 265,701	 D              3188	 2444	 D           140
	 	 	 	 	 L           2304
	 	 	 L    262,513	 79,450	 D              1005
	 	 L    78,445

Note: D = dead, L = alive at birth and for at least one week.

Table 3.15  � Relationship between clinical and 
pathological diagnoses of Alzheimer’s 
disease

	 Pathological diagnosis

	 Alzheimer’s	 Other causes	
Clinical diagnosis	 disease	 of dementia

Alzheimer’s disease	 1643	 190
Other causes of dementia	 127	 228

Table 3.16   Influence of the APOE genotype in diagnosing Alzheimer’s disease (AD)

	 Both clinical and 	 Only clinical	 Only pathological	 Neither clinical nor	
	 pathological	 criteria for	 criteria for	 pathological criteria 	
APOE genotype	 criteria for AD	 AD	 AD	 for AD

≥1 ε4 allele	 1076	 66	 66	 67
No ε4 allele	 567	 124	 61	 161

Total	 1643	 190	 127	 228
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the families have dominant disease with complete pen-
etrance, whereby if a parent is affected there is a 50% 
probability that any one offspring will be affected. Similarly, 
about half the families have dominant disease with reduced 
penetrance, whereby if a parent is affected there is a 25% 
probability that any one offspring will be affected.

Suppose in a particular family one parent and two of the two 
offspring are affected.

3.104  What is the probability that exactly two of the two 
offspring will be affected in a family with dominant disease 
with complete penetrance?

3.105  What is the probability that exactly two of the two 
offspring will be affected in a family with dominant disease 
with reduced penetrance?

3.106  What is the probability that the mode of transmission 
for this particular family is dominant with complete pen-
etrance? Is this a prior probability or a posterior probability?

3.107  Suppose you are a genetic counselor and are asked 
by the parents what the probability is that if they have an-
other (a third) child he or she will be affected by the disease. 
What is the answer?

SIMULATION—CLASS PROJECT

Infectious Disease
Suppose a standard antibiotic kills a particular type of bac-
teria 80% of the time. A new antibiotic is reputed to have 
better efficacy than the standard antibiotic. Researchers 
propose to try the new antibiotic on 100 patients infected 
with the bacteria. Using principles of hypothesis testing 
(covered in Chapter 7), researchers will deem the new an-
tibiotic “significantly better” than the standard one if it kills 
the bacteria in at least 88 out of the 100 infected patients.

3.108  Suppose there is a true probability (true efficacy) 
of 85% that the new antibiotic will work for an individual 
patient. Perform a “simulation study” on the computer, 
based on random number generation (using, for example, 
MINITAB, Excel, or R) for a group of 100 randomly simu-
lated patients. Repeat this exercise 20 times with separate 
columns for each simulated sample of 100 patients. For 
what percentage of the 20 samples is the new antibiotic 
considered “significantly better” than the standard anti-
biotic? (This percentage is referred to as the statistical 
power of the experiment.) Compare results for different 
students in the class.

3.109  Repeat the procedure in Problem 3.108 for each 
simulated patient, assuming the true efficacy of the new 
antibiotic is (a), 80%, (b) 90%, and (c) 95%, and compute 
the statistical power for each of (a), (b), and (c).

3.110  Plot the statistical power versus the true efficacy. 
Do you think 100 patients is a sufficiently large sample to 
discover whether the new drug is “significantly better” if the 
true efficacy of the drug is 90%? Why or why not?

Infectious Disease, Cardiovascular Disease
A validation study is to be performed in a local hospital to 
check the accuracy of assessment of hospital-acquired 
infection (INF) following coronary bypass surgery (coronary-
artery bypass graft, or CABG). In a given year the hospital 
performs 1100 CABG procedures. A Centers for Disease 
Control and Prevention (CDC) algorithm is currently used 
to categorize subjects as having INF. To validate this algo-
rithm, all CDC+ subjects (N = 100) and a random sample 
of CDC− subjects (N = 1000) will be ascertained by an 
infectious-disease (ID) fellow and a detailed investigation 
will be performed, including a chart review and documenta-
tion of antibiotic use. Assume the ID-fellow’s determination 
is correct.

Suppose 100 CDC+ subjects are ascertained, of whom the 
ID fellow confirms 80. Because there are a large number of 
CDC− subjects (1000), only a sample of 100 is studied, of 
whom the ID fellow confirms 90.

3.111  What is the PV+ of the CDC algorithm?

3.112  What is the PV− of the CDC algorithm?

3.113  What is the sensitivity of the CDC algorithm?

3.114  What is the specificity of the CDC algorithm?

Genetics
Suppose a birth defect has a recessive form of inheritance. 
In a study population, the recessive gene (a) initially has a 
prevalence of 25%. A subject has the birth defect if both 
maternal and paternal genes are of type a.

3.115  In the general population, what is the probability that 
an individual will have the birth defect, assuming that mater-
nal and paternal genes are inherited independently?

A further study finds that after 10 generations (≈200 years) 
a lot of inbreeding has taken place in the population. Two 
subpopulations (populations A and B), consisting of 30% 
and 70% of the general population, respectively, have 
formed. Within population A, prevalence of the recessive 
gene is 40%, whereas in population B it is 10%.

3.116  Suppose that in 25% of marriages both people are 
from population A, in 65% both are from population B, and 
in 10% there is one partner from population A and one from 
population B. What is the probability of a birth defect in the 
next generation?

3.117  Suppose that a baby is born with a birth defect, 
but the baby’s ancestry is unknown. What is the posterior 
probability that the baby will have both parents from popula-
tion A, both parents from population B, or mixed ancestry, 
respectively? (Hint: Use Bayes’ rule.)

Orthopedics
Piriformis syndrome is a pelvic condition that involves mal-
function of the piriformis muscle (a deep buttock muscle), 
which often causes back and buttock pain with sciatica 
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(pain radiating down the leg). An electrophysiologic test 
to detect piriformis syndrome involves measuring nerve-
conduction velocity (NCV) at two nerves in the leg (the tibial 
and peroneal nerves) with the leg flexed in a specific posi-
tion. Increases in NCV in these nerves are often associated 
with piriformis syndrome. The resulting test, called the flex-
ion abduction and internal rotation (FAIR) test, is positive if 
the average NCV in these nerves is delayed by 2+ seconds 
relative to normal.

A small study compared the FAIR test results with patient 
self-reports of how they feel on a visual analog scale (VAS) 
of 0–10, with 0 indicating no pain and 10 very severe pain. 
The results were as shown in Table 3.17.

Suppose physicians consider the FAIR test the gold stan-
dard, with a FAIR test result of ≥ 2 defined as a true positive 
and a FAIR test result of < 2 defined as a true negative. 	
Suppose a VAS of ≤ 4 is considered a good clinical re-
sponse based on self-report (a test-negative) and a VAS of 
≥ 5 is considered a bad clinical response (a test-positive).

3.118  What is the sensitivity of the VAS?

3.119  What is the specificity of the VAS?

3.120  The cutoff points of ≥ 5 for a VAS test-positive and 	
≤ 4 for a VAS test-negative are arbitrary. Compute and 
graph the ROC curve for the VAS test by varying the cutoff 
point for a test-positive. (Use the cutoff points VAS ≥ 0, 
VAS ≥ 3, VAS ≥ 5, VAS ≥ 7, and VAS ≥ 11 as possible 
criteria for test-positive.)

3.121  The area under the ROC curve is 65%. What does 
it mean?

Cancer
Breast cancer is considered largely a hormonal disease. 
An important hormone in breast-cancer research is estra-
diol. The data in Table 3.18 on serum estradiol levels were 
obtained from 213 breast-cancer cases and 432 age-
matched controls. All women were age 50–59 years.

Suppose a serum-estradiol level of 20+ pg/mL is proposed 
as a screening criterion for identifying breast-cancer cases.

3.122  What is the sensitivity of this test?

3.123  What is the specificity of this test?

The preceding sample was selected to oversample cases. 
In the general population, the prevalence of breast cancer is 
about 2% among women 50–59 years of age.

3.124  What is the probability of breast cancer among 50- to 
59-year-old women in the general population who have a 
serum-estradiol level of ≥ 20 pg/mL? What is another name 
for this quantity?

Cardiovascular Disease
Mayo Clinic investigators have tracked coronary-heart-
disease (CHD) mortality in Olmstead County, Minnesota, 
for the past 20 years[17]. Mayo Clinic physicians provided 
virtually all medical care to Olmstead County residents. 
Deaths from CHD were subdivided into those that occurred 
in hospital and those that occurred out of hospital. In-
hospital death rates are thought to be influenced mainly by 
advances in medical care. Out-of-hospital death rates are 
thought to be influenced mainly by changes in risk-factor 
levels over time. For men, out-of-hospital CHD death rates 
were 280 cases per 100,000 men per year and in-hospital 
CHD death rates were 120 cases per 100,000 men per 
year in 1998. For women, out-of-hospital CHD death rates 
were 100 cases per 100,000 women per year; in-hospital 
CHD death rates were 40 cases per 100,000 women per 
year in 1998.

3.125  If 50% of the Olmstead County population is male 
and 50% is female, what was the overall CHD mortality rate 
in Olmstead County in 1998?

The investigators reported that for both men and women, in-
hospital CHD death rates were declining at a rate of 5.3% 
per year, whereas out-of-hospital CHD death rates were 
declining by 1.8% per year.

3.126  What is the expected overall CHD mortality rate in 
Olmstead County in 2015 if these trends continue?

3.127  In 2015, what proportion of the CHD deaths will 	
occur in women?

Cancer
The SEER Cancer Registry [18] is an important resource 
for estimating cancer incidence rates and documenting 

Table 3.17  � FAIR test results on piriformis 
syndrome patients

Clinical response	 VAS	 FAIR ≥ 2	 FAIR < 2	 Total

Best	 ≤2	 5	 14	 19
	 3–4	 3	 12	 15
	 5–6	 7	 6	 13
Worst	 ≥7	 7	 6	 13

Total	 	 22	 38	 60

Table 3.18   Serum-estradiol data

Serum estradiol (pg/mL)	 Cases (N = 213)	 Controls (N = 432)

     1–4	 28	 72
     5–9	 96	 233
10–14	 53	 86
15–19	 17	 26
20–24	 10	 6
25–29	 3	 5
       30+	 6	 4
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changes in incidence rates over time. Cancer cases are 
accumulated over 17 cancer registries and are converted 
to cumulative incidence rates by dividing by U.S. Census 
population estimates within specific age-groups. The fol-
lowing data were obtained for breast cancer 1-year cumula-
tive incidence rates for Caucasian women of age 50–74 
from 1995 to 2000 (period A).

3.128  Suppose that among women who are age 50–74, 
22% are age 50–54, 21% are age 55–59, 20% are age 
60–64, 19% are age 65–69 and 18% are age 70–74. 
What is the overall 1-year cumulative incidence among 
Caucasian women ages 50–74?

The SEER data is also available for the time period 2001–
2006 (period B) as shown in Table 3.20.

comparable to traditional display modalities. A study was 
performed comparing a mobile display iPad 2 with a larger 
liquid crystal display (LCD) for the diagnosis of tuberculosis 
(TB) on chest radiography (Abboud et al., [19]). De-identified 
images of 240 chest X-rays were transferred from a PACS 
workstation (LCD) to an iPad 2 tablet. The images were re-
viewed independently by 5 radiologists and were graded as 
positive or negative for TB on both the LCD and the iPad 2. 
The reviews occurred at different times to avoid recall bias.

A database of > 500 chest X-rays was created from TB 
screening films over a 4-month period. Of these, 200 cases 
originally interpreted as TB-negative and 40 cases originally 
interpreted as TB-positive were selected at random for 
study. The images were re-reviewed using both an LCD 
and an iPad 2 imaging display, albeit at different times. The 
results were as shown in Table 3.21.

3.132  If we regard the LCD interpretation as the gold stan-
dard, then what is the sensitivity of the iPad 2 interpretation?

3.133  If we regard the LCD interpretation as the gold stan-
dard, then what is the specificity of the iPad 2 interpretation?

The selection of images for this study was enriched to in-
crease the number of images originally interpreted as posi-
tive. Suppose the underlying percentage of positive TB tests 
is 10% in a large sample of chest X-rays assessed by LCD.

3.134  If a subject tests positive on an iPad 2 display, then 
what is the probability that he(she) will also test positive on 
the LCD?

3.135  What is another name for the quantity in Problem 3.134?

Cardiovascular Disease
The ankle-arm blood-pressure index (AAI) is defined as the 
ratio of ankle systolic blood pressure/arm systolic blood pres-
sure and is used for the diagnosis of lower extremity arterial 
disease. A study was conducted to investigate whether the 
AAI can be used as a screening test for atherosclerotic dis-
eases in general [20]. The subjects were 446 male workers in a 
copper smelter in Japan. Each subject had an AAI determina-
tion as well as an electrocardiogram (ECG). From the ECG, 
an S-T segment depression was defined as an S-T segment 
≥ 0.1 mV below the baseline in at least 1 of 12 leads in a 
resting ECG. S-T segment depression is often used as one 
characterization of an abnormal ECG. The data in Table 3.22 
were presented relating AAI to S-T segment depression.

Table 3.19  � Breast cancer 1-year cumulative 
incidence rates by age among 
Caucasian women age 50–74, SEER, 
1995–2000 (period A)

Age group	 1-year cumulative incidence per 100,000 women+

50–54	 360
55–59	 422
60–64	 479
65–69	 534
70–74	 600

+ For example, for 100,000 50–54 year-old women who are disease-free at 
baseline, 360 will develop breast cancer over a 1-year period.

Table 3.20  � Breast cancer 1-year cumulative 
incidence rates by age among 
Caucasian women age 50–74, SEER, 
2001–2006 (period B)

Age group	 1-year cumulative incidence per 100,000 women+

50–54	 314
55–59	 412
60–64	 510
65–69	 544
70–74	 558

Table 3.21  � Comparison of TB screening results 
using an LCD and iPad 2 display

LCD	 iPad 2	 N

+	 +	 38
+	 −	 1
−	 +	 1
−	 −	 200

3.129  Answer the question in problem 3.128 for the time 
period 2001–2006.

3.130  What is the overall % change in 1-year cumulative 
incidence between period A and period B?

3.131  Suppose that we have 100 women who are age 55 
in the year 1995. What is the probability that at least 2 of 
them will develop breast cancer by 1996?

Radiology
Mobile displays have the potential to increase the flex-
ibility of consulting radiologists if they can be shown to be 
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3.136  If an abnormal ECG as determined by S-T segment 
depression is regarded as the gold standard for the pres-
ence of heart disease and an AAI of < 1.0 is regarded as 
a possible test criterion for heart disease, then what is the 
sensitivity of the test?

3.137  What is the specificity of the test?

3.138  What is the PV+? (Hint: Assume that the subjects in 
this study are a random sample from the general population 
of Japan.)

3.139  What is the PV−?

3.140  Suppose the reproducibility of the AAI test were 	
improved using better technology. Would the sensitivity of 
the test increase, decrease, or remain the same? why?

Obstetrics, Health Promotion
A study was performed to assess the accuracy of self-
reported exposure to cigarette smoking in-utero. A com-
parison was made between daughters’ reports of smoking 
by their mothers during pregnancy with the mother’s self-
reports of their own smoking while pregnant with their 
daughters. The results were as shown in Table 3.23.

3.141  If a mother’s self-report is considered completely 
accurate, then what is the PV+ of the daughter’s report, in 

Table 3.22  � Association between ankle-arm blood-
pressure index (AAI) and S-T segment 
depression

S-T segment depression

	 +	 −

AAI < 1.0	 20	   95
AAI ≥ 1.0	 13	 318

which positive indicates smoking and negative indicates not 
smoking?

3.142  If a mother’s self-report is considered completely 	
accurate, then what is the PV− of the daughter’s report?

Additional data on self-reported smoking indicate that the 
mother is not always completely accurate. Saliva cotinine is 
a biochemical marker that, if elevated, is a 100% accurate 
indication of recent smoking.

Suppose if the mother states she is a nonsmoker during 
pregnancy that saliva cotinine is elevated 5% of the time, 
whereas if the mother states she is a smoker during preg-
nancy that saliva cotinine is elevated 97% of the time. As-
sume also that a daughter report adds no further information 
regarding the probability of an elevated cotinine level once 
the mother’s self-report is known.

3.143  What is the probability that the saliva cotinine level 
in a mother is elevated during pregnancy if the daughter 
reports that the mother smoked in-utero?

3.144  What is the probability that the saliva cotinine level in 
the mother is not elevated during pregnancy if the daughter 
reports that the mother did not smoke in-utero?

Table 3.23  � Relationship between mothers’ self-
reports of smoking while pregnant 
and daughters’ reports of fetal smoke 
exposure

Daughter’s report	 Mother’s report of	 	
of fetal smoke exposure	 smoking during pregnancy	 N

yes	 yes	 6685
yes	 no	 1126
no	 yes	 1222
no	 no	 23,227
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4
	 4.1	 I n t r o d u c t i o n

Chapter 3 defined probability and introduced some basic 
tools used in working with probabilities. We now look at 
problems that can be put into a probabilistic framework. That 
is, by assessing the probabilities of certain events from actual 
past data, we can consider specific probability models that fit 
our problems.

	 Example 4.1 	 Ophthalmology  Retinitis pigmentosa is a progressive ocular disease that in some 
cases eventually results in blindness. The three main genetic types of the disease are 
dominant, recessive, and sex-linked. Each genetic type has a different rate of pro-
gression, with the dominant mode being the slowest to progress and the sex-linked 
mode the fastest. Suppose the prior history of disease in a family is unknown, but 
one of the two male children is affected and the one female child is not affected. 
Can this information help identify the genetic type?

The binomial distribution can be applied to calculate the probability of this 
event occurring (one of two males affected, none of one female affected) under each 
of the genetic types mentioned, and these results can then be used to infer the most 
likely genetic type. In fact, this distribution can be used to make an inference for 
any family for which we know k1 of n1 male children are affected and k2 of n2 female 
children are affected.

	 Example 4.2 	 Cancer  A second example of a commonly used probability model concerns a can-
cer scare in Woburn, Massachusetts. A news story reported an “excessive” number 
of cancer deaths in young children in this town and speculated about whether this 
high rate was due to the dumping of industrial wastes in the northeastern part  
of town [1]. Suppose 12 cases of leukemia were reported in a town where 6 would 
normally be expected. Is this enough evidence to conclude that the town has an 
excessive number of leukemia cases?

The Poisson distribution can be used to calculate the probability of 12 or more 
cases if this town had typical national rates for leukemia. If this probability were 
small enough, we would conclude that the number was excessive; otherwise, we 
would decide that longer surveillance of the town was needed before arriving at a 
conclusion.

Discrete Probability 
Distributions
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This chapter introduces the general concept of a discrete random variable and 
describes the binomial and Poisson distributions in depth. This forms the basis for 
the discussion (in Chapters 7, 10, and 14) of hypothesis testing based on the bino-
mial and Poisson distributions.

	 4.2	 R a n d o m  V a r i a b l e s

In Chapter 3 we dealt with very specific events, such as the outcome of a tuberculin 
skin test or blood-pressure measurements taken on different members of a family. 
We now want to introduce ideas that let us refer, in general terms, to different types 
of events having the same probabilistic structure. For this purpose let’s consider the 
concept of a random variable.

	De finition 4.1	 A random variable is a function that assigns numeric values to different events in a 
sample space.

Two types of random variables are discussed in this text: discrete and continuous.

	De finition 4.2	 A random variable for which there exists a discrete set of numeric values is a discrete 
random variable.

	 Example 4.3 	 Otolaryngology  Otitis media, a disease of the middle ear, is one of the most com-
mon reasons for visiting a doctor in the first 2 years of life other than a routine well-
baby visit. Let X be the random variable that represents the number of episodes of 
otitis media in the first 2 years of life. Then X is a discrete random variable, which 
takes on the values 0, 1, 2, and so on.

	 Example 4.4 	 Hypertension  Many new drugs have been introduced in the past several decades to 
bring hypertension under control—that is, to reduce high blood pressure to normo-
tensive levels. Suppose a physician agrees to use a new antihypertensive drug on a 
trial basis on the first four untreated hypertensives she encounters in her practice, 
before deciding whether to adopt the drug for routine use. Let X = the number of pa-
tients of four who are brought under control. Then X is a discrete random variable, 
which takes on the values 0, 1, 2, 3, 4.

	De finition 4.3	 A random variable whose possible values cannot be enumerated is a continuous 
random variable.

	 Example 4.5 	 Environmental Health  Possible health effects on workers of exposure to low levels 
of radiation over long periods of time are of public health interest. One problem in 
assessing this issue is how to measure the cumulative exposure of a worker. A study 
was performed at the Portsmouth Naval Shipyard, where each exposed worker wore 
a badge, or dosimeter, which measured annual radiation exposure in rem [2]. The 
cumulative exposure over a worker’s lifetime could then be obtained by summing 
the yearly exposures. Cumulative lifetime exposure to radiation is a good example 
of a continuous random variable because it varied in this study from 0.000 to 91.414 
rem; this would be regarded as taking on an essentially infinite number of values, 
which cannot be enumerated.
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	 4.3	 T h e  P r o b a b i l i t y - M a s s  F u n c t i o n  f o r 

a  Di  s c r e t e  R a n d o m  V a r i a b l e

The values taken by a discrete random variable and its associated probabilities can be 
expressed by a rule or relationship called a probability-mass function (pmf).

	De finition 4.4	 A probability-mass function is a mathematical relationship, or rule, that assigns to 
any possible value r of a discrete random variable X the probability Pr(X = r). This  
assignment is made for all values r that have positive probability. The probability-mass 
function is sometimes also called a probability distribution.

The probability-mass function can be displayed in a table giving the values 
and their associated probabilities, or it can be expressed as a mathematical formula  
giving the probabilities of all possible values.

	 Example 4.6 	 Hypertension  Consider Example 4.4. Suppose from previous experience with the 
drug, the drug company expects that for any clinical practice the probability that 0 
patients of 4 will be brought under control is .008, 1 patient of 4 is .076, 2 patients 
of 4 is .265, 3 patients of 4 is .411, and all 4 patients is .240. This probability-mass 
function, or probability distribution, is displayed in Table 4.1.

	T able 4.1	 Probability-mass function for the hypertension-control example

Pr(X = r)	 .008	 .076	 .265	 .411	 .240

r	 0	 1	 2	 3	 4

Notice that for any probability-mass function, the probability of any particular 
value must be between 0 and 1 and the sum of the probabilities of all values must 
exactly equal 1. Thus, 0 1< = ≤Pr( )X r , ∑ = =Pr( )X r 1, where the summation is taken 
over all possible values that have positive probability.

	 Example 4.7 	 Hypertension  In Table 4.1, for any clinical practice, the probability that between 0 
and 4 hypertensives are brought under control is 1; that is,

		  .008 + .076 + .265 + .411 + .240 = 1

Relationship of Probability Distributions  
to Frequency Distributions
In Chapters 1 and 2 we discussed the concept of a frequency distribution in the 
context of a sample. It was described as a list of each value in the data set and a cor-
responding count of how frequently the value occurs. If each count is divided by the 
total number of points in the sample, then the frequency distribution can be con-
sidered as a sample analog to a probability distribution. In particular, a probability 
distribution can be thought of as a model based on an infinitely large sample, giving 
the fraction of data points in a sample that should be allocated to each specific value. 
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80              C H A P T E R  4      Discrete Probability Distributions

Because the frequency distribution gives the actual proportion of points in a sample 
that correspond to specific values, the appropriateness of the model can be assessed 
by comparing the observed sample-frequency distribution with the probability 
distribution. The formal statistical procedure for making this comparison, called a 
goodness-of-fit test, is discussed in Chapter 10.

	 Example 4.8 	 Hypertension  How can the probability-mass function in Table 4.1 be used to judge 
whether the drug behaves with the same efficacy in actual practice as predicted by 
the drug company? The drug company might provide the drug to 100 physicians 
and ask each of them to treat their first four untreated hypertensives with it. Each 
physician would then report his or her results to the drug company, and the com-
bined results could be compared with the expected results in Table 4.1. For example, 
suppose that out of 100 physicians who agree to participate, 19 bring all their first 
four untreated hypertensives under control with the drug, 48 bring three of four 
hypertensives under control, 24 bring two of four under control, and the remaining 
9 bring only one of four under control. The sample-frequency distribution can be 
compared with the probability distribution given in Table 4.1, as shown in Table 4.2 
and Figure 4.1.

	T able 4.2	 Comparison of the sample-frequency distribution and the theoretical-probability 
distribution for the hypertension-control example

Number of hypertensives	 Probability distribution	  
under control = r	 Pr(X = r)	 Frequency distribution

0		  .008	 .000 = 0/100
1		  .076	 .090 = 9/100
2		  .265	 .240 = 24/100
3		  .411	 .480 = 48/100
4		  .240	 .190 = 19/100
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	Fi gure 4.1	 Comparison of the frequency and probability distribution 	
for the hypertension-control example
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The distributions look reasonably similar. The role of statistical inference is to 
compare the two distributions to judge whether differences between the two can 
be attributed to chance or whether real differences exist between the drug’s per-
formance in actual clinical practice and expectations from previous drug-company 
experience.

Students often ask where a probability-mass function comes from. In some 
instances previous data can be obtained on the same type of random variable be-
ing studied, and the probability-mass function can be computed from these data. 
In other instances previous data may not be available, but the probability-mass 
function from some well-known distribution can be used to see how well it fits ac-
tual sample data. This approach was used in Table 4.2, where the probability-mass 
function was derived from the binomial distribution and then compared with the 
frequency distribution from the sample of 100 physician practices.

	 4.4	 T h e  E x p e c t e d  V a l u e  o f  a  Di  s c r e t e 

R a n d o m  V a r i a b l e

If a random variable has a large number of values with positive probability, then 
the probability-mass function is not a useful summary measure. Indeed, we face 
the same problem as in trying to summarize a sample by enumerating each data 
value. 

Measures of location and spread can be developed for a random variable in 
much the same way as they were developed for samples. The analog to the arithme-
tic mean x is called the expected value of a random variable, or population mean, 
and is denoted by E(X) or µ. The expected value represents the “average” value of the 
random variable. It is obtained by multiplying each possible value by its respective 
probability and summing these products over all the values that have positive (that 
is, nonzero) probability.

	De finition 4.5	 The expected value of a discrete random variable is defined as

		
E X x X xi i

i

R

( ) ≡ = =( )
=
∑ µ Pr

1

where the xi ’s are the values the random variable assumes with positive probability.

Note that the sum in the definition of µ is over R possible values. R may be either finite 
or infinite. In either case, the individual values must be distinct from each other.

	 Example 4.9  	 Hypertension  Find the expected value for the random variable shown in Table 4.1. 

	 	 Solution: � E(X) = 0(.008) + 1(.076) + 2(.265) + 3(.411) + 4(.240) = 2.80 = µ

Thus, on average about 2.8 hypertensives would be expected to be brought under 
control for every 4 who are treated.

	 Example 4.10 	 Otolaryngology  Consider the random variable mentioned in Example 4.3 represent-
ing the number of episodes of otitis media in the first 2 years of life. Suppose this 
random variable has a probability-mass function as given in Table 4.3.
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82              C H A P T E R  4      Discrete Probability Distributions

	T able 4.3	 Probability-mass function for the number of episodes of otitis media 	
in the first 2 years of life

r	 0	 1	 2	 3	 4	 5	 6

Pr (X = r)	 .129	 .264	 .271	 .185	 .095	 .039	 .017

What is the expected number of episodes of otitis media in the first 2 years of life?

		  Solution:  E(X) = 0(.129) + 1(.264) + 2(.271) + 3(.185) + 4(.095) + 5(.039) + 6(.017) = 
2.038

Thus, on average a child would be expected to have about two episodes of otitis  
media in the first 2 years of life.

In Example 4.8 the probability-mass function for the random variable represent-
ing the number of previously untreated hypertensives brought under control was 
compared with the actual number of hypertensives brought under control in 100 
clinical practices. In much the same way, the expected value of a random variable 
can be compared with the actual sample mean in a data set ( x ).

	 Example 4.11 	 Hypertension  Compare the average number of hypertensives brought under con-
trol in the 100 clinical practices (x) with the expected number of hypertensives 
brought under control (µ) per 4-patient practice.

	 	 Solution:  From Table 4.2 we have

		  x = ( ) + ( ) + ( ) + ( ) + ( )[ ] =0 0 1 9 2 24 3 48 4 19 100 2 77.

hypertensives controlled per 4-patient clinical practice, while µ = 2.80. This agree-
ment is rather good. The specific methods for comparing the observed average value 
and expected value of a random variable (x and µ) are covered in the material on 
statistical inference in Chapter 7. Notice that x could be written in the form

		  x = 0(0/100) + 1(9/100) + 2(24/100) + 3(48/100) + 4(19/100)

that is, a weighted average of the number of hypertensives brought under control, where 
the weights are the observed probabilities. The expected value, in comparison, can be 
written as a similar weighted average, where the weights are the theoretical probabilities:

		  µ = 0(.008) + 1(.076) + 2(.265) + 3(.411) + 4(.240)

Thus, the two quantities are actually obtained in the same way, one with weights 
given by the “observed” probabilities and the other with weights given by the “theo-
retical” probabilities. If the observed and theoretical probabilities are close to each 
other, then x will be close to µ.

	 4.5	 T h e  V a r i a n c e  o f  a  Di  s c r e t e 

R a n d o m  V a r i a b l e

The analog to the sample variance (s2) for a random variable is called the variance  
of the random variable, or population variance, and is denoted by Var(X) or σ2. The vari-
ance represents the spread, relative to the expected value, of all values that have pos-
itive probability. In particular, the variance is obtained by multiplying the squared 
distance of each possible value from the expected value by its respective probability 
and summing over all the values that have positive probability.
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	De finition 4.6	 The variance of a discrete random variable, denoted by Var(X), is defined by

		
Var X xi

i

R

( ) = = −( ) =( )
=
∑σ2 2

1

µ Pr X xi

where the xi ’s are the values for which the random variable takes on positive prob-
ability. The standard deviation of a random variable X, denoted by sd(X) or σ, is 
defined by the square root of its variance.

The population variance can also be expressed in a different (“short”) form as 
follows:

	 Equation 4.1	 A short form for the population variance is given by 

			 
σ2 2 2 2

1

= −( ) = =( ) −
=
∑E X x X xi i
i

R

µ µPr

	 Example 4.12 	 Otolaryngology  Compute the variance and standard deviation for the random vari-
able depicted in Table 4.3.

	 	 Solution:  We know from Example 4.10 that µ = 2.038. Furthermore,
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Thus, Var(X) = σ2 = 6.12 − (2.038)2 = 1.967. The standard deviation of X is 

σ = =1 967 1 402. . .

How can we interpret the standard deviation of a random variable? The follow-
ing often-used principle is true for many, but not all, random variables:

	 Equation 4.2	 �Approximately 95% of the probability mass falls within two standard deviations (2σ) 
of the mean of a random variable.

If 1.96σ is substituted for 2σ in Equation 4.2, this statement holds exactly for 
normally distributed random variables and approximately for certain other random 
variables. Normally distributed random variables are discussed in detail in Chapter 5.

	 Example 4.13 	 Otolaryngology  Find a, b such that approximately 95% of infants will have between 
a and b episodes of otitis media in the first 2 years of life.

	 	 Solution:  The random variable depicted in Table 4.3 has mean (µ) = 2.038 and stan-
dard deviation (σ) = 1.402. The interval µ ± 2σ is given by

		  2.038 ± 2(1.402) = 2.038 ± 2.805
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84              C H A P T E R  4      Discrete Probability Distributions

or from −0.77 to 4.84. Because only positive-integer values are possible for this 
random variable, the valid range is from a = 0 to b = 4 episodes. Table 4.3 gives the 
probability of having ≤4 episodes as

		  .129 + .264 + .271 + .185 + .095 = .944

The rule lets us quickly summarize the range of values that have most of the 
probability mass for a random variable without specifying each individual value. 
Chapter 6 discusses the type of random variable to which Equation 4.2 applies.

	 4.6	 T h e  C u m u l at ive   - Di  s t r i b u t i o n  F u n c t i o n  

o f  a  Di  s c r e t e  R a n d o m  V a r i a b l e

Many random variables are displayed in tables or figures in terms of a cumulative-
distribution function rather than a distribution of probabilities of individual values as 
in Table 4.1. The basic idea is to assign to each individual value the sum of probabilities 
of all values that are no larger than the value being considered. This function is defined 
as follows:

	De finition 4.7	 The cumulative-distribution function (cdf) of a random variable X is denoted by F(X) 
and, for a specific value x of X, is defined by Pr(X ≤ x) and denoted by F(x).

	 Example 4.14 	 Otolaryngology  Compute the cdf for the otitis-media random variable in Table 4.3 
and display it graphically.

	 	 Solution:  The cdf is given by

F(x) = 0	 if	 x < 0
F(x) = .129	 if	 0 ≤ x < l
F(x) = .393	 if	 1 ≤ x < 2
F(x) = .664	 if	 2 ≤ x < 3
F(x) = .849	 if	 3 ≤ x < 4
F(x) = .944	 if	 4 ≤ x < 5
F(x) = .983	 if	 5 ≤ x < 6
F(x) = 1.0	 if	 x ≥ 6

The function is displayed in Figure 4.2.

Another way to distinguish between a discrete and continuous random variable 
is by each variable’s cdf. For a discrete random variable, the cdf looks like a series of 
steps and is sometimes called a step function. For a continuous random variable, the 
cdf is a smooth curve. As the number of values increases, the cdf for a discrete ran-
dom variable approaches that of a smooth curve. In Chapter 5, we discuss in more 
detail the cdf for continuous random variables.

R E V I E W  QU  E ST  I ONS    4 A

1	 What is the difference between a frequency distribution and a probability distribution?

2	 What is the difference between a probability-mass function (pmf) and a cumulative-
distribution function (cdf)?

3	 In Table 4.4 the random variable X represents the number of boys in families with  
4 children.

R
 E

 V
 I 

E 
W
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	T able 4.4	 Number of boys in families with 4 children

X		  Pr(X = x)

0		 1/16
1		 1/4
2		 3/8
3		 1/4
4		 1/16

	 (a)	 What is the expected value of X? What does it mean?

	 (b)	 What is the standard deviation of X?

	 (c)	 What is the cdf of X?

	 4.7	 Pe  r m u tat i o n s  a n d  C o m b i n at i o n s

Sections 4.2 through 4.6 introduced the concept of a discrete random variable in 
very general terms. The remainder of this chapter focuses on some specific discrete 
random variables that occur frequently in medical and biological work. Consider the 
following example.

	 Example 4.15 	 Infectious Disease  One of the most common laboratory tests performed on any 
routine medical examination is a blood count. The two main aspects of a blood 
count are (1) counting the number of white blood cells (the “white count”) and 
(2) differentiating the white blood cells that do exist into five categories—namely, 
neutrophils, lymphocytes, monocytes, eosinophils, and basophils (called the “dif-
ferential”). Both the white count and the differential are used extensively in mak-
ing clinical diagnoses. We concentrate here on the differential, particularly on the 
distribution of the number of neutrophils k out of 100 white blood cells (which is 
the typical number counted). We will see that the number of neutrophils follows a 
binomial distribution.
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	Fi gure 4.2 	 Cumulative-distribution function for the number of episodes of otitis media 	
in the first 2 years of life
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To study the binomial distribution, permutations and combinations—impor-
tant topics in probability—must first be understood.

	 Example 4.16 	 Mental Health  Suppose we identify 5 men ages 50−59 with schizophrenia in a com-
munity, and we wish to match these subjects with normal controls of the same gender 
and age living in the same community. Suppose we want to employ a matched-pair 
design, where each case is matched with a normal control of the same gender and 
age. Five psychologists are employed by the study, each of whom interviews a single 
case and his matched control. If there are 10 eligible 50- to 59-year-old male controls 
in the community (labeled A, B, . . . , J), then how many ways are there of choosing 
controls for the study if a control can never be used more than once?

	 	 Solution:  The first control can be any of A, . . . , J and thus can be chosen in 10 ways. 
Once the first control is chosen, he can no longer be selected as the second control; 
therefore, the second control can be chosen in 9 ways. Thus, the first two controls 
can be chosen in any one of 10 × 9 = 90 ways. Similarly, the third control can be 
chosen in any one of 8 ways, the fourth control in 7 ways, and the fifth control in 
6 ways, and so on. In total, there are 10 × 9 × 8 × 7 × 6 = 30,240 ways of choosing 
the 5 controls. For example, one possible selection is ACDFE. This means control A 
is matched to the first case, control C to the second case, and so on. The selection 
order of the controls is important because different psychologists may be assigned to 
interview each matched pair. Thus, the selection ABCDE differs from CBAED, even 
though the same group of controls is selected.

We can now ask the general question: How many ways can k objects be selected 
out of n where the order of selection matters? Note that the first object can be se-
lected in any one of n = (n + 1) − 1 ways. Given that the first object has been selected, 
the second object can be selected in any one of n − 1 = (n + 1) − 2 ways, . . . ; the kth 
object can be selected in any one of n − (k - 1) = n − k + 1 = (n + 1) − k ways.

	De finition 4.8	 The number of permutations of n things taken k at a time is 

		  n kP n n n k= −( ) × × − +( )1 1. . .

It represents the number of ways of selecting k items of n, where the order of selec-
tion is important.

	 Example 4.17 	 Mental Health  Suppose 3 schizophrenic women ages 50−59 and 6 eligible controls 
live in the same community. How many ways are there of selecting 3 controls?

	 	 Solution:  To answer this question, consider the number of permutations of 6 things 
taken 3 at a time.

		  6P3 = 6 × 5 × 4 = 120

Thus, there are 120 ways of choosing the controls. For example, one way is to match 
control A to case 1, control B to case 2, and control C to case 3 (ABC). Another way 
would be to match control F to case 1, control C to case 2, and control D to case 3 
(FCD). The order of selection is important because, for example, the selection ABC 
differs from the selection BCA.

In some instances we are interested in a special type of permutation: selecting n objects 
out of n, where order of selection matters (ordering n objects). By the preceding principle,

		  [ ]) )( ()(= − × × − − = − × × ×P n n n n n n1 . . . 1 1 . . . 2 1n n
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The special symbol generally used for this quantity is n!, which is called n factorial 
and is defined as follows:

	De finition 4.9	 n! = n factorial is defined as n n −( ) × × ×1 2 1. . .

	 Example 4.18 	 Evaluate 5 factorial.

		  5! = 5 × 4 × 3 × 2 × 1 = 120

The quantity 0! has no intuitive meaning, but for consistency it will be defined as 1.

Another way of writing n kP  is in terms of factorials. Specifically, from Defini-
tion 4.8 we can re-express n kP  in the form

		

n kP n n n k

n n n k n

= −( ) × × − +( )

=
−( ) × × − +( ) ×

1 1

1 1

. . .

. . . −−( ) × − −( ) × ×
−( ) × − −( ) × ×

= −

k n k
n k n k

n n

1 1
1 1

. . .

. . .

! kk( )!

	 Equation 4.3	 �Alternative Formula for Permutations   
	 An alternative formula expressing permutations in terms of factorials is given by

				    n kP n n k= −( )! !

	 Example 4.19 	 Mental Health  Suppose 4 schizophrenic women and 7 eligible controls live in the 
same community. How many ways are there of selecting 4 controls?

	 	 Solution: � The number of ways = 7P4 = 7(6)(5)(4) = 840.  
Alternatively, 7P4 = 7!/3! = 5040/6 = 840.

	 Example 4.20 	 Mental Health  Consider a somewhat different design for the study described in 
Example 4.16. Suppose an unmatched study design, in which all cases and controls 
are interviewed by the same psychologist, is used. If there are 10 eligible controls, 
then how many ways are there of choosing 5 controls for the study?

	 	 Solution:  In this case, because the same psychologist interviews all patients, what is 
important is which controls are selected, not the order of selection. Thus, the question 
becomes how many ways can 5 of 10 eligible controls be selected, where order is not 
important? Note that for each set of 5 controls (say A, B, C, D, E), there are 5 × 4 × 3 × 
2 × 1 = 5! ways of ordering the controls among themselves (e.g., ACBED and DBCAE are 
two possible orders). Thus, the number of ways of selecting 5 of 10 controls for the study 
without respect to order = (number of ways of selecting 5 controls of 10 where order is 
important)/5! = 10P5/5! = (10 × 9 × 8 × 7 × 6)/120 = 30,240/120 = 252 ways. Thus, ABCDE 
and CDFIJ are two possible selections. Also, ABCDE and BCADE are not counted twice.

The number of ways of selecting 5 objects of 10 without respect to order is 
referred to as the number of combinations of 10 things taken 5 at a time and is 

denoted by 10 5C  or 
10
5

252






= .

This discussion can be generalized to evaluate the number of combinations of n 
things taken k at a time. Note that for every selection of k distinct items of n, there 
are k k k−( ) × × × =1 2 1L ! ways of ordering the items among themselves. Thus, we 
have the following definition:
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	De finition 4.10	 The number of combinations of n things taken k at a time is

		  n kC
n
k

n n n k
k

=






=
−( ) × × − +( )1 1L

!

Alternatively, if we express permutations in terms of factorials, as in Equation 4.3, 
we obtain

		

n k n kC
n
k

P k

n n k k

=






=

= −( ) 

!

! ! !

Thus, we have the following alternative definition of combinations:

	De finition 4.11	 The number of combinations of n things taken k at a time is

		  n kC
n
k

n
k n k

=






=
−( )
!

! !

It represents the number of ways of selecting k objects out of n where the order of 
selection does not matter.

	 Example 4.21 	 Evaluate 7C3.

		
7 3

7 6 5
3 2 1

7 5 35C = × ×
× ×

= × =

Henceforth, for consistency we will always use the more common notation 
n
k






 for 

combinations. In words, this is expressed as “n choose k.”

A special situation arises upon evaluating 
n
0






. By definition, 

n
n n

0
0







= ( )!/ ! ! , and 

0! was defined as 1. Hence, 
n
0

1






=  for any n. This makes sense because there is only 

1 way to select 0 objects out of n objects.

Frequently, 
n
k






 will need to be computed for k = 0, 1, . . . , n. The combinatorials 

have the following symmetry property, which makes this calculation easier than it 
appears at first.

	 Equation 4.4	 For any non-negative integers n, k, where n ≥ k,

				  
n
k

n
n k







=
−







To see this, note from Definition 4.11 that 

n
k

n
k n k







=
−( )
!

! !

If n − k is substituted for k in this expression, then we obtain

		

n
n k

n
n k n n k

n
n k k−







=
−( ) − −( ) 

=
−( ) =!

! !
!

! !

nn
k






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Intuitively, this result makes sense because 
n
k






 represents the number of ways of se-

lecting k objects of n without regard to order. However, for every selection of k objects, 
we have also, in a sense, identified the other n − k objects that were not selected. Thus, 
the number of ways of selecting k objects of n without regard to order should be the 
same as the number of ways of selecting n − k objects of n without regard to order.

Hence, we need only evaluate combinatorials 
n
k






 for the integers k ≤ n/2.  

If k n> / 2, then the relationship 
n

n k
n
k−







=





 can be used.

	 Example 4.22 	 Evaluate

	 	 Solution:

	 	 	 7
0

7
1

7
7

7
0

1
7
1

























=


, , . . . ,





=






= ×
×

=






= × ×
×

7
7
2

7 6
2 1

21
7
3

7 6 5
3 2 ××

=







=






=






=






1
35

7
4

7
3

35
7
5

7
2

==






=






=






=






=21
7
6

7
1

7
7
7

7
0

1

	 	 We can also use a computer program to evaluate combinatorials. For example, to 

evaluate 
n
k






, we can use the Stata comb command with parameters n and k, denoted 

by comb (n, k).

	 Example 4.23 	 Evalutate 








7

3
 using Stata.

	 	 Solution:  We specify comb (7, 3), which is displayed as follows:

.display comb(7,3)

35

	 	 We can also use the choose command of R to evaluate more than one combinatorial 
at the same time.

	 Example 4.24 	 Evaluate 










8
0

, 








8

1
, . . . , 











8
8

 using R.

	 	 Solution:  In R, the notation 0:8 means the vector of integers 0,1,2,…, 8. Thus, we 
specify

> choose(8, 0:8)

[1]  1  8 28 56 70 56 28  8  1

R E V I E W  QU  E ST  I ONS    4 B

1	 Suppose we select 3 students randomly out of a class of 10 students to read a 
paper from the literature and summarize the results for the class. How many ways 
can the students be selected? Is this a permutation, a combination, or neither?

2	 Suppose we select 2 students randomly from a class of 20 students. The first student 
selected will analyze a data set on the computer and prepare summary tables, and the 
second student will present the results to the class. How many ways can the students 
be selected for these tasks? Is this a permutation, a combination, or neither?

R
 E

 V
 I 

E 
W
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	 4.8	 T h e  Bi  n o m i a l  Di  s t r i b u t i o n

All examples involving the binomial distribution have a common structure: a 
sample of n independent trials, each of which can have only two possible outcomes, 
which are denoted as “success” and “failure.” Furthermore, the probability of a suc-
cess at each trial is assumed to be some constant p, and hence, the probability of a 
failure at each trial is 1 − p = q. The term “success” is used in a general way, without 
any specific contextual meaning.

For Example 4.15, n = 100 and a “success” occurs when a cell is a neutrophil.

	 Example 4.25 	 Infectious Disease  Reconsider Example 4.15 with 5 cells rather than 100, and ask 
the more limited question: What is the probability that the second and fifth cells 
considered will be neutrophils and the remaining cells non-neutrophils, given a 
probability of .6 that any one cell is a neutrophil?

	 	 Solution:  If a neutrophil is denoted by an x and a non-neutrophil by an o, then the 
question being asked is: What is the probability of the outcome oxoox = Pr(oxoox)? 
Because the probabilities of success and failure are given, respectively, by .6 and .4,  
and the outcomes for different cells are presumed to be independent, then the 
probability is

		  q × p × q × q × p = p2q3 = (.6)2(.4)3

	 Example 4.26 	 Infectious Disease  Now consider the more general question: What is the probabil-
ity that any 2 cells out of 5 will be neutrophils?

	 	 Solution:  The arrangement oxoox is only one of 10 possible orderings that result in 
2 neutrophils. Table 4.5 gives the 10 possible orderings.

	T able 4.5	 Possible orderings for 2 neutrophils of 5 cells

xxooo	 oxxoo	 ooxox
xoxoo	 oxoxo	 oooxx
xooxo	 oxoox
xooox	 ooxxo

In terms of combinations, the number of orderings = the number of ways of selecting 

2 cells to be neutrophils out of 5 cells = 
5
2

5 4 2 1 10






= ×( ) ×( ) =/ .

The probability of any of the orderings in Table 4.5 is the same as that for the 
ordering oxoox, namely, (.6)2(.4)3. Thus, the probability of obtaining 2 neutrophils in 

5 cells is 
5
2

6 4 10 6 4 2302 3 2 3





( ) ( ) = ( ) ( ) =. . . . . .

Suppose the neutrophil problem is now considered more generally, with n trials 
rather than 5 trials, and the question is asked: What is the probability of k successes 
(rather than 2 successes) in these n trials? The probability that the k successes will 
occur at k specific trials within the n trials and that the remaining trials will be fail-
ures is given by pk(1 − p)n-k. To compute the probability of k successes in any of the 
n trials, this probability must be multiplied by the number of ways in which k trials 
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for the successes and n − k trials for the failures can be selected = 
n
k






, as was done in 

Table 4.5. Thus, the probability of k successes in n trials, or k neutrophils in n cells, is 

	
n
k

p p
n
k

p qk n k k n k





−( ) =






− −1

	 Equation 4.5	 The distribution of the number of successes in n statistically independent trials, where 
the probability of success on each trial is p, is known as the binomial distribu-
tion and has a probability-mass function given by

	 Pr X k
n
k

p q kk n k=( ) =






=− , , , . . . , n0 1

	 Example 4.27 	 What is the probability of obtaining 2 boys out of 5 children if the probability of a 
boy is .51 at each birth and the genders of successive children are considered inde-
pendent random variables?

	 	 Solution:  Use a binomial distribution with n = 5, p = .51, k = 2. Let X = number of 
boys out of 5 births. Compute

		

Pr X =( ) =






( ) ( ) = ×
×

( )2
5
2

51 49
5 4
2 1

51 42 3 2. . . . 99

10 51 49 306

3

2 3

( )

= ( ) ( ) =. . .

Using Binomial Tables
Often a number of binomial probabilities need to be evaluated for the same n and p, 
which would be tedious if each probability had to be calculated from Equation 4.5. 
Instead, for small n (n ≤ 20) and selected values of p, refer to Table 1 in the Appendix, 
where individual binomial probabilities are calculated. In this table, the number of 
trials (n) is provided in the first column, the number of successes (k) out of the n trials 
is given in the second column, and the probability of success for an individual trial 
(p) is given in the first row. Binomial probabilities are provided for n = 2, 3, . . . , 20;  
p = .05, .10, . . . , .50.

	 Example 4.28 	 Infectious Disease  Evaluate the probability of 2 lymphocytes out of 10 white blood 
cells if the probability of any one cell being a lymphocyte is .2.

	 	 Solution:  Refer to Table 1 with n = 10, k = 2, p = .20. The appropriate probability, 
given in the k = 2 row and p = .20 column under n = 10, is .3020.

	 Example 4.29 	 Pulmonary Disease  An investigator notices that children develop chronic bronchi-
tis in the first year of life in 3 of 20 households in which both parents have chronic 
bronchitis, as compared with the national incidence of chronic bronchitis, which is 
5% in the first year of life. Is this difference “real,” or can it be attributed to chance? 
Specifically, how likely are infants in at least 3 of 20 households to develop chronic 
bronchitis if the probability of developing disease in any one household is .05?

	 	 Solution:  Suppose the underlying rate of disease in the offspring is .05. Under this as-
sumption, the number of households in which the infants develop chronic bronchitis 
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will follow a binomial distribution with parameters n = 20, p = .05. Thus, among 20 
households the probability of observing k with bronchitic children is given by

		
20

05 95 0 1 2020

k
kk k





( ) ( ) =−. . , , , . . . ,

The question is: What is the probability of observing at least 3 households with a 
bronchitic child? The answer is 

		  Pr X
k k

k k≥( ) =






( ) ( ) = −






−3
20

05 95 1
2020. .  ( ) ( ) −

==
∑∑ . .05 95 20

0

2

3

20
k k

kk

These three probabilities in the latter sum can be evaluated using the binomial table 
(Table 1). Refer to n = 20, p = .05, and note that Pr(X = 0) = .3585, Pr(X = 1) = .3774, 
Pr(X = 2) = .1887. Thus,

		  Pr(X ≥ 3) = 1 − (.3585 + .3774 + .1887) = .0754

Thus, X ≥ 3 is an unusual event but not very unusual. Usually .05 or less is the range 
of probabilities used to identify unusual events. This criterion is discussed in more 
detail in our work on p-values in Chapter 7. If 3 infants of 20 were to develop the 
disease, it would be difficult to judge whether the familial aggregation was real until 
a larger sample was available.

One question sometimes asked is why a criterion of Pr(X ≥ 3 cases), rather than 
Pr(X = 3 cases), was used to define unusualness in Example 4.29? The latter is what 
we actually observed. An intuitive answer is that if the number of households studied in 
which both parents had chronic bronchitis were very large (for example, n = 1500), 
then the probability of any specific occurrence would be small. For example, 
suppose 75 cases occurred among 1500 households in which both parents had 
chronic bronchitis. If the incidence of chronic bronchitis were .05 in such families, 
then the probability of 75 cases among 1500 households would be

		
1500

75
05 95 04775 1425





( ) ( ) =. . .

This result is exactly consistent with the national incidence rate (5% of households 
with cases in the first year of life) and yet yields a small probability. This doesn’t 
make intuitive sense. The alternative approach is to calculate the probability of ob-
taining a result at least as extreme as the one obtained (a probability of at least 75 
cases out of 1500 households) if the incidence rate of .05 were applicable to families 
in which both parents had chronic bronchitis. This would yield a probability of 
approximately .50 in the preceding example and would indicate that nothing very 
unusual is occurring in such families, which is clearly the correct conclusion. If this 
probability were small enough, then it would cast doubt on the assumption that the 
true incidence rate was .05 for such families. This approach was used in Example 4.29  
and is developed in more detail in our work on hypothesis testing in Chapter 7. 
Alternative approaches to the analysis of these data also exist, based on Bayesian 
inference, but are beyond the scope of this text.

One question that arises is how to use the binomial tables if the probability of 
success on an individual trial (p) is greater than .5. Recall that

		

n
k

n
n k







=
−






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Let X be a binomial random variable with parameters n and p, and let Y be a binomial 
random variable with parameters n and q = 1 − p. Then Equation 4.5 can be rewritten as

	 Equation 4.6	 Pr X k
n
k

p q
n

n k
q p Pr Yk n k n k k=( ) =







=
−







=− − == −( )n k

In words, the probability of obtaining k successes for a binomial random variable X 
with parameters n and p is the same as the probability of obtaining n − k successes 
for a binomial random variable Y with parameters n and q. Clearly, if p > .5, then  
q = 1 − p < .5, and Table 1 can be used with sample size n, referring to the n − k row 
and the q column to obtain the appropriate probability.

	 Example 4.30 	 Infectious Disease  Evaluate the probabilities of obtaining k neutrophils out of 5 cells 
for k = 0, 1, 2, 3, 4, 5, where the probability of any one cell being a neutrophil is .6.

	 	 Solution:  Because p > .5, refer to the random variable Y with parameters n = 5,  
p = 1 − .6 = .4. 

		  Pr X =( ) =






( ) ( ) =






( ) (0
5
0

6 4
5
5

4 60 5 5. . . . )) = =( ) =0 5 0102Pr Y .

on referring to the k = 5 row and p = .40 column under n = 5. Similarly,

Pr(X = 1) = Pr(Y = 4) = .0768 on referring to the 4 row and .40 column under n = 5 
Pr(X = 2) = Pr(Y = 3) = .2304 on referring to the 3 row and .40 column under n = 5 
Pr(X = 3) = Pr(Y = 2) = .3456 on referring to the 2 row and .40 column under n = 5 
Pr(X = 4) = Pr(Y = 1) = .2592 on referring to the 1 row and .40 column under n = 5 
Pr(X = 5) = Pr(Y = 0) = .0778 on referring to the 0 row and .40 column under n = 5

Using “Electronic” Tables
In many instances we want to evaluate binomial probabilities for n > 20 and/or for 
values of p not given in Table 1 of the Appendix. For sufficiently large n, the normal 
distribution can be used to approximate the binomial distribution, and tables of the 
normal distribution can be used to evaluate binomial probabilities. This procedure is 
usually less tedious than evaluating binomial probabilities directly using Equation 
4.5 and is studied in detail in Chapter 5. Alternatively, if the sample size is not large 
enough to use the normal approximation and if the value of n or p is not in Table 1, 
then an electronic table can be used to evaluate binomial probabilities.

One example of an electronic table is provided by Microsoft Excel. A menu of 
statistical functions is available to the user, including calculation of probabilities for 
many probability distributions, including but not limited to those discussed in this 
text. For example, one function in this menu is the binomial-distribution function, 
which is called BINOMDIST and is discussed in detail at www.cengagebrain.com.  
Using this function, we can calculate the probability-mass function and cdf for  
virtually any binomial distribution.

	 Example 4.31 	 Pulmonary Disease  Compute the probability of obtaining exactly 75 cases of 
chronic bronchitis and the probability of obtaining at least 75 cases of chronic 
bronchitis in the first year of life among 1500 families in which both parents have 
chronic bronchitis, if the underlying incidence rate of chronic bronchitis in the first 
year of life is .05.
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	 	 Solution:  We use the BINOMDIST function of Excel to solve this problem. Table 4.6  
gives the results. First, we compute Pr(X = 75), which is .047, which is unusual.  
We then use the cdf option to compute Pr(X ≤ 74), which equals .483. Finally, we 
compute the probability of obtaining at least 75 cases by

		  Pr X Pr X≥( ) = − ≤( ) =75 1 74 517.

Hence, obtaining 75 cases out of 1500 children is clearly not unusual.

	T able 4.6	 Calculation of binomial probabilities using Excel

	      n	   1500

	      k	      75

	      p	   0.05

	 Pr(X = 75)	 0.047210 = BINOMDIST (75, 1500, .05, false)
	 Pr(X ≤ 74)	 0.483458 = BINOMDIST (74, 1500, .05, true)
	 Pr(X ≥ 75)	 0.516542 = 1 − BINOMDIST (74, 1500, .05, true)

	 Example 4.32 	 Infectious Disease  Suppose a group of 100 women ages 60−64 received a new flu 
vaccine in 2004, and 5 of them died within the next year. Is this event unusual, or 
can this death rate be expected for people of this age-sex group? Specifically, how 
likely are at least 5 of 100 60- to 64-year-old women who receive a flu vaccine to die 
in the next year?

	 	 Solution:  We first find the expected annual death rate in 60- to 64-year-old women. 
From a 2004 U.S. life table, we find that 60- to 64-year-old women have an approximate 
probability of death within the next year of .009 [3]. Thus, from the binomial distri-
bution, the probability that k of 100 women will die during the next year is given by  
100

009 991 100

k
k k





( ) ( ) −. . . We want to know whether 5 deaths in a sample of 100 wom-

en is an “unusual” event. One approach to this problem might be to find the prob-
ability of obtaining at least 5 deaths in this group = Pr(X ≥ 5) given that the prob-
ability of death for an individual woman is .009. This probability can be expressed as 

		
100

009 991 100

5

100

k
k k

k







( ) ( ) −

=
∑ . .

Because this sum of 96 probabilities is tedious to compute, we instead compute 

		  Pr X
k

k k

k

<( ) =






( ) ( ) −

=
∑5

100
009 991 100

0

4

. .

and then evaluate Pr(X ≥ 5) = 1 − Pr(X < 5). The binomial tables cannot be used be-
cause n > 20. Therefore, the sum of 5 binomial probabilities is evaluated using an 
electronic table from R. 

In R, the function used to calculate cdf’s for the binomial distribution is called 
pbinom. Specifically, if X is a binomial distribution with parameters n and p, then

		  Pr X k n p n
i

p q k n p, pbinom , ,i

i

k
n i

0
∑( )( ) ( )≤ =







=

=

−

Thus, to compute Pr(X ≥ 5) (n = 100, p = 0.05) we use the R code given in Table 4.7, 
which indicates that this probability = 0.002.
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	T able 4.7	 Calculation of the probability of at least 5 deaths among 	
100 women 60−64 years of age in 2004

	 This computes Pr(X ≤ 4)
	 > pbinom(4,100, 0.009)

	 [1] 0.997809

	 This computes Pr(X ≥ 5)
	 > 1-pbinom(4,100, 0.009)

	 [1] 0.00219104

We can also use R to evaluate and plot a set of binomial probabilities. For example, in 
Table 4.8 we provide R code to calculate the binomial probabilities with n = 100, p =  
0.05 and k = 0, 1, 2, 3, 4, 5. For this purpose we can use the dbinom command of R 

given by dbinom (k, n, p) = Pr(X = k) = 
n
k






 p kq n - k. These values are also displayed in 

Figure 4.3. 

Thus, at least 5 deaths in 100 is very unusual and would probably be grounds for 
considering halting use of the vaccine.

	T able 4.8	 Table of binomial probabilities for n = 100, p = 0.05, k = 0, 1, …, 5.

	 > k<-0:5

	 > prob<-dbinom(k,100,0.05)

	 > results=rbind(round(k,0),prob)

	 > rownames(results) <-c(“k”, “Prob(X=k)”)

	 > results

	  [,1]	 [,2]	 [,3]	 [,4]	 [,5]	 [,6]

	 k	 0.000000000	 1.00000000	 2.00000000	 3.0000000	 4.0000000	 5.0000000

	 Prob(X=k)	 0.005920529	 0.03116068	 0.08118177	 0.1395757	 0.1781426	 0.1800178

	 > barplot(prob, main=”Display of Binomial Probabilities \n N=100, 

p=0.05, for k=0, 1, 2, 3, 4, 5”, ylab=”Probabilities”, ylim=c(0, 

0.2), names.arg=c(“0”, “1”, “2, “3”, “4”, “5”))

	Fi gure 4.3	 Displays of binomial probabilities for n = 100, p = 0.05, k = 0, 1, …, 5.
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	 4.9	 E x p e c t e d  V a l u e  a n d  V a r i a n c e  

o f  t h e  Bi  n o m i a l  Di  s t r i b u t i o n

The expected value and variance of the binomial distribution are important both 
in terms of our general knowledge about the binomial distribution and for our later 
work on estimation and hypothesis testing. From Definition 4.5 we know that the 
general formula for the expected value of a discrete random variable is

		  E X x Pr X xi i
i

R

( ) = =( )
=
∑

1

In the special case of a binomial distribution, the only values that take on positive 
probability are 0, 1, 2, . . . , n, and these values occur with probabilities

		

n
p q

n
p qn n

0 1
0 1 1











−, , . . .

Thus, E X k
n
k

p qk n k

k

n

( ) =






−

=
∑

0

This summation reduces to the simple expression np. Similarly, using Definition 4.6, 
we can show that

		
Var X k np

n
k

p q npqk n k

k

n

( ) = −( ) 





=−

=
∑ 2

0

which leads directly to the following result:

	 Equation 4.7	 The expected value and the variance of a binomial distribution are np and npq, 
respectively.

These results make good sense because the expected number of successes in n tri-
als is simply the probability of success in one trial multiplied by n, which equals np. 
Furthermore, for a given number of trials n, the binomial distribution has the highest 
variance when p = 1/2, as shown in Figure 4.4. The variance of the distribution de-
creases as p moves away from 1/2 in either direction, becoming 0 when p = 0 or 1. This 
result makes sense because when p = 0, there must be 0 successes in n trials and when 
p = 1, there must be n successes in n trials, and there is no variability in either instance. 
Furthermore, when p is near 0 or near 1, the distribution of the number of successes 
is clustered near 0 and n, respectively, and there is comparatively little variability as 
compared with the situation when p = 1/2. This point is illustrated in Figure 4.5.

R E V I E W  QU  E ST  I ONS    4 C

1	 The probability of a woman developing breast cancer over a lifetime is about 1/9.

	 (a)	 What is the probability that exactly 2 women of 10 will develop breast cancer 
over a lifetime?

	 (b)	 What is the probability that at least 2 women of 10 will develop breast cancer 
over a lifetime?

2	 Suppose we have 10 subjects and the probability of having a disease at one point 
in time for 1 subject is .1. What is the probability that exactly 1 of the 10 subjects 
has the disease? Why is this not the same as .1?

R
 E

 V
 I 

E 
W
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	Fi gure 4.4 	 Plot of pq versus p
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	Fi gure 4.5 	 The binomial distribution for various values of p when n = 10
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	 4.10	 T h e  P o i s s o n  Di  s t r i b u t i o n

The Poisson distribution is perhaps the second most frequently used discrete distri-
bution after the binomial distribution. This distribution is usually associated with 
rare events.

	 Example 4.33 	 Infectious Disease  Consider the distribution of number of deaths attributed to 
typhoid fever over a long period of time, for example, 1 year. Assuming the prob-
ability of a new death from typhoid fever in any one day is very small and the 
number of cases reported in any two distinct periods of time are independent ran-
dom variables, then the number of deaths over a 1-year period will follow a Poisson 
distribution.

	 Example 4.34 	 Bacteriology  The preceding example concerns a rare event occurring over time. Rare 
events can also be considered not only over time but also on a surface area, such as 
the distribution of number of bacterial colonies growing on an agar plate. Suppose 
we have a 100-cm2 agar plate. We assume that the probability of finding any bacterial 
colonies at any one point a (or more precisely in a small area around a) is very small 
and proportional to the area and that the events of finding bacterial colonies at any 
two points a1, a2 are independent. Under these assumptions, the number of bacterial 
colonies over the entire agar plate will follow a Poisson distribution.

Consider Example 4.33. Ask the question: What is the distribution of the 
number of deaths caused by typhoid fever from time 0 to time t (where t is some 
long period of time, such as 1 year or 20 years)?

Three assumptions must be made about the incidence of the disease. Consider 
any general small subinterval of the time period t, denoted by ∆t.

	A ssumption 4.1	 Assume that

(1)	 The probability of observing 1 death is directly proportional to the length of the 
time interval ∆t. That is, Pr(1 death) ≈ λ∆t for some constant λ.

(2)	 The probability of observing 0 deaths over ∆t is approximately 1 − λ∆t.

(3)	 The probability of observing more than 1 death over this time interval is essentially 0.

	A ssumption 4.2	 Stationarity  Assume the number of deaths per unit time is the same throughout the 
entire time interval t. Thus, an increase in the incidence of the disease as time goes 
on within the time period t would violate this assumption. Note that t should not be 
overly long because this assumption is less likely to hold as t increases.

	A ssumption 4.3	 Independence  If a death occurs within one time subinterval, then it has no bear-
ing on the probability of death in the next time subinterval. This assumption would 
be violated in an epidemic situation because if a new case of disease occurs, then 
subsequent deaths are likely to build up over a short period of time until after the 
epidemic subsides.

Given these assumptions, the Poisson probability distribution can be derived:
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	 Equation 4.8	 The probability of k events occurring in a time period t for a Poisson random variable 
with parameter λ is

		  Pr X k e k kk=( ) = =−µµ !, , , , . . .0 1 2

	 where µ λ= t  and e is approximately 2.71828.

Thus, the Poisson distribution depends on a single parameter µ λ= t . Note that the 
parameter λ represents the expected number of events per unit time, whereas the param-
eter μ represents the expected number of events over time period t. One important differ-
ence between the Poisson and binomial distributions concerns the numbers of trials 
and events. For a binomial distribution there are a finite number of trials n, and the 
number of events can be no larger than n. For a Poisson distribution the number of  
trials is essentially infinite and the number of events (or number of deaths) can be  
indefinitely large, although the probability of k events becomes very small as k increases.

	 Example 4.35 	 Infectious Disease  Consider the typhoid-fever example. Suppose the number of 
deaths from typhoid fever over a 1-year period is Poisson distributed with parameter 
μ = 4.6. What is the probability distribution of the number of deaths over a 6-month 
period? A 3-month period?

	 	 Solution:  Let X = the number of deaths in 6 months. Because μ = 4.6, t = 1 year, it 
follows that λ = 4.6 deaths per year. For a 6-month period we have λ = 4.6 deaths per 
year, t = .5 year. Thus, μ = λt = 2.3. Therefore,
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Let Y = the number of deaths in 3 months. For a 3-month period, we have λ = 4.6 
deaths per year, t = .25 year, μ = λt = 1.15. Therefore,
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These distributions are plotted in Figure 4.6. Note that the distribution tends to 
become more symmetric as the time interval increases or, more specifically, as μ 
increases.

The Poisson distribution can also be applied to Example 4.34, in which the dis-
tribution of the number of bacterial colonies in an agar plate of area A is discussed. 
Assuming that the probability of finding 1 colony in an area the size of ∆A at any 
point on the plate is λ∆A for some λ and that the number of bacterial colonies found 
at 2 different points of the plate are independent random variables, then the prob-
ability of finding k bacterial colonies in an area of size A is e−µµk k !, where µ λ= A.

	 Example 4.36 	 Bacteriology  Assuming A = 100 cm2 and λ = .02 colonies per cm2, calculate the 
probability distribution of the number of bacterial colonies.

	 	 Solution:  We have μ = λA = 100(.02) = 2. Let X = the number of colonies. 
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	Fi gure 4.6	 Distribution of the number of deaths attributable 	
to typhoid fever over various time intervals
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Clearly, the larger λ is, the more bacterial colonies we would expect to find.

	 4.11	 C o m p u tat i o n  o f  P o i s s o n  P r o b a b i l i t ie  s

Using Poisson Tables
A number of Poisson probabilities for the same parameter μ often must be evaluated. 
This task would be tedious if Equation 4.8 had to be applied repeatedly. Instead, for 
μ ≤ 20 refer to Table 2 in the Appendix, in which individual Poisson probabilities are 
specifically calculated. In this table the Poisson parameter μ is given in the first row, 
the number of events (k) is given in the first column, and the corresponding Poisson 
probability is given in the k row and μ column.

	 Example 4.37 	 Compute the probability of obtaining a least 5 events for a Poisson distribution with 
parameter μ = 3.

	 	 Solution:  Refer to Appendix Table 2 under the 3.0 column. Let X = the number of 
events. 
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Electronic Tables for the Poisson Distribution
In many instances we want to evaluate a collection of Poisson probabilities for the 
same μ, but μ is not given in Table 2 of the Appendix. For large μ (μ ≥ 10), a normal 
approximation, as given in Chapter 5, can be used. Otherwise, an electronic table 
similar to that presented for the binomial distribution can be used. The POISSON 
function of Excel can be used to compute individual and cumulative probabilities 
for the Poisson distribution (see Companion Website for details).

	 Example 4.38 	 Infectious Disease  Calculate the probability distribution of deaths caused by  
typhoid fever over a 1-year period using the information given in Example 4.35.

In this case, we model the number of deaths caused by typhoid fever by a Pois-
son distribution with μ = 4.6. We will use the POISSON function of Excel. The results 
are given in Table 4.9. We see that 9 or more deaths caused by typhoid fever would 
be unusual over a 1-year period.
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	T able 4.9	 Calculation of the probability distribution of the number of deaths caused by typhoid 
fever over a 1-year period using the POISSON function of Excel

Number of  
deaths	 Probability

 0	 0.010 = POISSON (0, 4.6, false)
 1	 0.046 = POISSON (1, 4.6, false)
  2	 0.106 = POISSON (2, 4.6, false)
  3	 0.163 = POISSON (3, 4.6, false)
  4	 0.188 = POISSON (4, 4.6, false)
  5	 0.173 = POISSON (5, 4.6, false)
  6	 0.132 = POISSON (6, 4.6, false)
  7	 0.087 = POISSON (7, 4.6, false)
  8	 0.050 = POISSON (8, 4.6, false)

<  = 8	 0.955 = POISSON (8, 4.6, true)
>  = 9	 0.045 = 1 − POISSON (8, 4.6, true)

	 4.12	 E x p e c t e d  V a l u e  a n d  V a r i a n c e 

o f  t h e  P o i s s o n  Di  s t r i b u t i o n

In many instances we cannot predict whether the assumptions for the Poisson 
distribution in Section 4.10 are satisfied. Fortunately, the relationship between 
the expected value and variance of the Poisson distribution provides an important 
guideline that helps identify random variables that follow this distribution. This 
relationship can be stated as follows:

	 Equation 4.9	 For a Poisson distribution with parameter μ, the mean and variance are both  
equal to μ.

This fact is useful, because if we have a data set from a discrete distribution where 
the mean and variance are about the same, then we can preliminarily identify it as a 
Poisson distribution and use various tests to confirm this hypothesis.

	 Example 4.39 	 Infectious Disease  The number of deaths attributable to polio during the years 
1968−1977 is given in Table 4.10 [4, 5]. Comment on the applicability of the Poisson 
distribution to this data set.

	 	 Solution:  The sample mean and variance of the annual number of deaths caused by 
polio during the period 1968−1977 are 18.0 and 23.1, respectively. The Poisson dis-
tribution will probably fit well here because the variance is approximately the same 
as the mean.

	T able 4.10 	 Number of deaths attributable to polio during the years 1968−1977

Year	 1968	 1969	 1970	 1971	 1972	 1973	 1974	 1975	 1976	 1977

Number of  
deaths	 15	 10	 19	 23	 15	 17	 23	 17	 26	 15
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Suppose we are studying a rare phenomenon and want to apply the Poisson distribu-
tion. A question that often arises is how to estimate the parameter μ of the Poisson 
distribution in this context. Because the expected value of the Poisson distribution is μ, 
μ can be estimated by the observed mean number of events over time t (e.g., 1 year), if 
such data are available. If the data are not available, other data sources can be used 
to estimate μ.

	 Example 4.40 	 Occupational Health  A public-health issue arose concerning the possible carcino-
genic potential of food ingredients containing ethylene dibromide (EDB). In some 
instances foods were removed from public consumption if they were shown to have 
excessive quantities of EDB. A previous study had looked at mortality in 161 white 
male employees of two plants in Texas and Michigan who were exposed to EDB over 
the time period 1940−1975 [6]. Seven deaths from cancer were observed among 
these employees. For this time period, 5.8 cancer deaths were expected as calculated 
from overall mortality rates for U.S. white men. Was the observed number of cancer 
deaths excessive in this group?

	 	 Solution:  Estimate the parameter μ from the expected number of cancer deaths 
from U.S. white male mortality rates; that is, μ = 5.8. Then calculate Pr(X ≥ 7), where 
X is a Poisson random variable with parameter μ = 5.8. Use the relationship

		  Pr(X ≥ 7) = 1 − Pr(X ≤ 6)

where  Pr X k kk=( ) = ( )e−5.8 5 8. !

Because μ = 5.8 is not in Table 2 of the Appendix let’s use Excel to perform the calcu-
lations. Table 4.11 gives the results.

Thus, Pr(X ≥ 7) = 1 − Pr(X ≤ 6)
				    = 1 − .638 = .362

Clearly, the observed number of cancer deaths is not excessive in this group.

	T able 4.11 	 Calculation of the probability distribution of the number of cancer deaths 	
in the EDB example using the POISSON function of Excel

	 Mean 	  
	 number of 	  
	 deaths	 Probability

	 0	 0.003 = POISSON (0, 5.8, false)
	 1	 0.018 = POISSON (1, 5.8, false)
	 2	 0.051 = POISSON (2, 5.8, false)
	 3	 0.098 = POISSON (3, 5.8, false)
	 4	 0.143 = POISSON (4, 5.8, false)
	 5	 0.166 = POISSON (5, 5.8, false)
	 6	 0.160 = POISSON (6, 5.8, false)

	 <  = 6	 0.638 = POISSON (6, 5.8, true)
	>  =  7	 0.362 = 1 − POISSON (6, 5.8, true)
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	 4.13	 P o i s s o n  A p p r o x i m at i o n  t o  t h e 

Bi  n o m i a l  Di  s t r i b u t i o n

As noted in the preceding section, the Poisson distribution seems to fit well in some 
applications. Another important use for the Poisson distribution is as an approxima-
tion to the binomial distribution. Consider the binomial distribution for large n and 
small p. The mean of this distribution is given by np and the variance by npq. Note 
that q ≈ (is approximately equal to) 1 for small p, and thus npq ≈ np. Therefore, the 
mean and variance of the binomial distribution are almost equal in this case, which 
suggests the following rule:

	 Equation 4.10	 �Poisson Approximation to the Binomial Distribution   
The binomial distribution with large n and small p can be accurately approxi-
mated by a Poisson distribution with parameter μ = np.

The rationale for using this approximation is that the Poisson distribution is eas-
ier to work with than the binomial distribution. The binomial distribution involves 

expressions such as 
n
k






 and 1 −( ) −p n k, which are cumbersome for large n.

	 Example 4.41 	 Cancer, Genetics  Suppose we are interested in the genetic susceptibility to breast 
cancer. We find that 4 of 1000 women ages 40−49 whose mothers have had breast 
cancer also develop breast cancer over the next year of life. We would expect from 
large population studies that 1 in 1000 women of this age group will develop a new 
case of the disease over this period of time. How unusual is this event?

	 	 Solution:  The exact binomial probability could be computed by letting n = 1000, 
p = 1/1000. Hence,
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Instead, use the Poisson approximation with μ = 1000(.001) = 1, which is obtained 
as follows:

		  Pr X Pr X Pr X Pr X Pr X≥( ) = − = + = + = + =4 1 0 1 2 3[ ( ) ( ) ( ) ( )]

Using Table 2 of the Appendix under the μ = 1.0 column, we find that 

			 

Pr X
Pr X
Pr X
Pr X

( ) .
( ) .
( ) .
(

= =
= =
= =

0 3679
1 3679
2 1839

== =3 0613) .

Thus,  Pr X ≥( ) = − + + +( )
= −

4 1 3679 3679 1839 0613

1 9810

. . . .

. == .0190

This event is indeed unusual and suggests a genetic susceptibility to breast cancer 
among daughters of women who have had breast cancer. For comparative purposes, 
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we have computed the exact binomial probabilities of obtaining 0, 1, 2, and 3 
events, which are given by .3677, .3681, .1840, and .0613, respectively. The cor-
responding exact binomial probability of obtaining 4 or more breast-cancer cases 
is .0189, which agrees almost exactly with the Poisson approximation of .0190 just 
given.

How large should n be or how small should p be before the approximation is 
“adequate”? A conservative rule is to use the approximation when n ≥ 100 and  
p ≤ .01. As an example, we give the exact binomial probability and the Poisson ap-
proximation for n = 100, p = .01, k = 0, 1, 2, 3, 4, 5 in Table 4.12. The two probability 
distributions agree to within .002 in all instances.

	T able 4.12	 An example of the Poisson approximation to the binomial distribution 	
for n = 100, p = .01, k = 0, 1, . . . , 5

	 Exact 			   Exact 
	 binomial 	 Poisson		  binomial	 Poisson 
k	 probability	 approximation	 k	 probability	 approximation

0	 .366	 .368	 3	 .061	 .061
1	 .370	 .368	 4	 .015	 .015
2	 .185	 .184	 5	 .003	 .003

	 Example 4.42 	 Infectious Disease  An outbreak of poliomyelitis occurred in Finland in 1984 after 
20 years without a single case being reported in the country. As a result, an intensive 
immunization campaign was conducted within 5 weeks between February 9 and 
March 15, 1985; it covered 94% of the population and was highly successful. During 
and after the campaign, several patients with Guillain-Barré syndrome (GBS), a rare 
neurologic disease often resulting in paralysis, were admitted to the neurologic units 
of hospitals in Finland [7].

The authors provided data on monthly incidence of GBS from April 1984 to  
October 1985. These data are given in Table 4.13.

	T able 4.13	 Monthly incidence of GBS in Finland from April 1984 to October 1985

	 Number of 		  Number of		  Number of 
Month	 GBS cases	 Month	 GBS cases	 Month	 GBS cases

April 1984	 3	 November 1984	 2	 May 1985	 2
May 1984	 7	 December 1984	 3	 June 1985	 2
June 1984	 0	 January 1985	 3	 July 1985	 6
July 1984	 3	 February 1985	 8	 August 1985	 2
August 1984	 4	 March 1985	 14	 September 1985	 2
September 1984	 4	 April 1985	 7	 October 1985	 6
October 1984	 2

Determine whether the number of cases in March 1985 is excessive compared with 
the experience in the other 18 months based on the data in Table 4.13.

	 	 Solution:  If there are n people in Finland who could get GBS and the monthly inci-
dence of GBS (p) is low, then we could model the number of GBS cases in 1 month 
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(X) by a binomial distribution with parameters n and p. Because n is large and p 
is small, it is reasonable to approximate the distribution of the number of GBS 
cases in 1 month (X) by a Poisson distribution with parameter μ = np. To estimate 
μ, we use the average monthly number of GBS cases during the 18-month period 
from April 1984 to October 1985, excluding the vaccine month of March 1985.  
The mean number of cases per month = (3 + 7 + . . . + 6)/18 = 3.67. We now  
assess whether the number of cases in March 1985 (14) is excessive by comput-
ing Pr(X ≥ 14 | μ = 3.67). We use Stata to perform this computation, as shown in 
Table 4.14.

	T able 4.14	 Probability of observing 14 or more cases of GBS in Finland 	
during March 1985 (mean = 3.67)

.display poissontail (3.67, 14)

.00003092

The results indicate that Pr(X ≥ 14 | μ = 3.67) = 3.09 × 10−5. Thus, 14 cases in 1 month 
is very unusual, given the 18-month experience in nonvaccine months, and possi-
bly indicates that the many cases in March 1985 are attributable to the vaccination 
campaign.

R E V I E W  QU  E ST  I ONS    4 D

1	 Suppose the number of motor-vehicle fatalities in a city during a week is Poisson-
distributed, with an average of 8 fatalities per week.

	 (a)	 What is the probability that 12 fatalities occur in a specific week?

	 (b)	 What is the probability that at least 12 fatalities occur during a specific week?

	 (c)	 How many motor-vehicle fatalities would have to occur during a given week 
to conclude that there are an unusually high number of events in that week?  
(Hint: Refer to Example 4.38.)

2	 Suppose a rare infectious disease occurs at the rate of 2 per 106 people per year.

	 (a)	 What is the probability that in New York City (population about 8 million)  
exactly 25 cases occur in a given year?

	 (b)	 What is the probability that at least 25 cases occur in a given year?  
(Hint: Use the Poisson approximation to the binomial distribution.)

	 4.14	 S u m m a r y

In this chapter, random variables were discussed and a distinction between discrete 
and continuous random variables was made. Specific attributes of random variables, 
including the notions of probability-mass function (or probability distribution), 
cdf, expected value, and variance were introduced. These notions were shown to 
be related to similar concepts for finite samples, as discussed in Chapter 2. In par-
ticular, the sample-frequency distribution is a sample realization of a probability 
distribution, whereas the sample mean (x) and variance (s2) are sample analogs of 
the expected value and variance, respectively, of a random variable. The relation-
ship between attributes of probability models and finite samples is explored in more 
detail in Chapter 6.
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Finally, some specific probability models were introduced, focusing on the bino-
mial and Poisson distributions. The binomial distribution was shown to be applicable 
to binary outcomes, that is, if only two outcomes are possible, where outcomes on 
different trials are independent. These two outcomes are labeled as “success” and 
“failure,” where the probability of success is the same for each trial. The Poisson dis-
tribution is a classic model used to describe the distribution of rare events.

The study of probability models continues in Chapter 5, where the focus is on 
continuous random variables.

Let X be the random variable representing the number of 
hypertensive adults in Example 3.12.

*4.1  Derive the probability-mass function for X.

*4.2   What is its expected value?

*4.3  What is its variance?

*4.4   What is its cumulative-distribution function?

Suppose we want to check the accuracy of self-reported 
diagnoses of angina by getting further medical records on a 
subset of the cases.

4.5  If we have 50 reported cases of angina and we want 
to select 5 for further review, then how many ways can we 
select these cases if order of selection matters?

4.6  Answer Problem 4.5 assuming order of selection does 
not matter.

4.7   Evaluate   10

0

10

1

10

10



















, , . . . , .

*4.8  Evaluate 9!.

4.9  Suppose 6 of 15 students in a grade-school class 
develop influenza, whereas 20% of grade-school students 
nationwide develop influenza. Is there evidence of an ex-
cessive number of cases in the class? That is, what is the 
probability of obtaining at least 6 cases in this class if the 
nationwide rate holds true?

4.10  What is the expected number of students in the class 
who will develop influenza?

*4.11  What is the probability of obtaining exactly 6 events 
for a Poisson distribution with parameter μ = 4.0?

*4.12  What is the probability of obtaining at least 6 events 
for a Poisson distribution with parameter μ = 4.0?

*4.13  What is the expected value and variance for a Pois-
son distribution with parameter μ = 4.0?

Infectious Disease
Newborns were screened for human immunodeficiency 
virus (HIV) or acquired immunodeficiency syndrome (AIDS) 
in five Massachusetts hospitals. The data [8] are shown in 
Table 4.15.

4.14  If 500 newborns are screened at the inner-city 
hospital, then what is the exact binomial probability of  
exactly 5 HIV-positive test results?

4.15  If 500 newborns are screened at the inner-city hospi
tal, then what is the exact binomial probability of at least  
5 HIV-positive test results?

4.16  Answer Problems 4.14 and 4.15 using an approxima-
tion rather than an exact probability.

4.17  Answer Problem 4.14 for a mixed urban/suburban 
hospital (hospital C).

4.18  Answer Problem 4.15 for a mixed urban/suburban 
hospital (hospital C).

4.19  Answer Problem 4.16 for a mixed urban/suburban 
hospital (hospital C).

4.20  Answer Problem 4.14 for a mixed suburban/rural  
hospital (hospital E).

P r o b l e m s

Table 4.15  Seroprevalence of HIV antibody in newborns’ blood samples, according to hospital category

				    Number positive  
Hospital	 Type	 Number tested	 Number positive	 (per 1000)

A	 Inner city	 3741	 30	 8.0
B	 Urban/suburban	 11,864	 31	 2.6
C	 Urban/suburban	 5006	 11	 2.2
D	 Suburban/rural	 3596	 1	 0.3
E	 Suburban/rural	 6501	 8	 1.2
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4.21  Answer Problem 4.15 for a mixed suburban/rural  
hospital (hospital E).

4.22  Answer Problem 4.16 for a mixed suburban/rural  
hospital (hospital E).

Infectious Disease
One hypothesis is that gonorrhea tends to cluster in central 
cities.

4.23  Suppose 10 gonorrhea cases are reported over a 
3-month period among 10,000 people living in an urban 
county. The statewide incidence of gonorrhea is 50 per 
100,000 over a 3-month period. Is the number of gonorrhea 
cases in this county unusual for this time period?

Otolaryngology
Assume the number of episodes per year of otitis media, a 
common disease of the middle ear in early childhood, fol-
lows a Poisson distribution with parameter λ = 1.6 episodes 
per year.

*4.24  Find the probability of getting 3 or more episodes of 
otitis media in the first 2 years of life.

*4.25  Find the probability of not getting any episodes of 
otitis media in the first year of life.

An interesting question in pediatrics is whether the ten-
dency for children to have many episodes of otitis media is 
inherited in a family.

*4.26  What is the probability that 2 siblings will both have 
3 or more episodes of otitis media in the first 2 years of life?

*4.27  What is the probability that exactly 1 sibling will have 
3 or more episodes in the first 2 years of life?

*4.28  What is the probability that neither sibling will have  
3 or more episodes in the first 2 years of life?

*4.29  What is the expected number of siblings in a 2-sibling 
family who will have 3 or more episodes in the first 2 years 
of life?

Hypertension
A national study found that treating people appropriately for 
high blood pressure reduced their overall mortality by 20%. 
Treating people adequately for hypertension has been dif-
ficult because it is estimated that 50% of hypertensives do 
not know they have high blood pressure, 50% of those who 
do know are inadequately treated by their physicians, and 
50% who are appropriately treated fail to follow this treat-
ment by taking the right number of pills.

4.30  What is the probability that among 10 true hyperten-
sives at least 50% are being treated appropriately and are 
complying with this treatment?

4.31  What is the probability that at least 7 of the 10 hyper-
tensives know they have high blood pressure?

4.32  If the preceding 50% rates were each reduced to 
40% by a massive education program, then what effect 
would this change have on the overall mortality rate among 
true hypertensives; that is, would the mortality rate decrease 
and, if so, what percentage of deaths among hypertensives 
could be prevented by the education program?

Renal Disease
The presence of bacteria in a urine sample (bacteriuria) is 
sometimes associated with symptoms of kidney disease in 
women. Suppose a determination of bacteriuria has been 
made over a large population of women at one point in 
time and 5% of those sampled are positive for bacteriuria.

*4.33  If a sample size of 5 is selected from this population, 
what is the probability that 1 or more women are positive for 
bacteriuria?

*4.34  Suppose 100 women from this population are sam-
pled. What is the probability that 3 or more of them are 
positive for bacteriuria?

One interesting phenomenon of bacteriuria is that there is 
a “turnover”; that is, if bacteriuria is measured on the same 
woman at two different points in time, the results are not 
necessarily the same. Assume that 20% of all women who 
are bacteriuric at time 0 are again bacteriuric at time 1  
(1 year later), whereas only 4.2% of women who were not 
bacteriuric at time 0 are bacteriuric at time 1. Let X be the 
random variable representing the number of bacteriuric 
events over the two time periods for 1 woman and still as-
sume that the probability that a woman will be positive for 
bacteriuria at any one exam is 5%.

*4.35  What is the probability distribution of X?

*4.36  What is the mean of X?

*4.37  What is the variance of X?

Pediatrics, Otolaryngology
Otitis media is a disease that occurs frequently in the first 
few years of life and is one of the most common reasons 
for physician visits after the routine checkup. A study was 
conducted to assess the frequency of otitis media in the 
general population in the first year of life. Table 4.16 gives 
the number of infants of 2500 infants who were first seen at 
birth who remained disease-free by the end of the ith month 
of life, i = 0, 1, . . . , 12. (Assume no infants have been lost 
to follow-up.)

*4.38  What is the probability that an infant will have one or 
more episodes of otitis media by the end of the sixth month 
of life? The first year of life?

*4.39  What is the probability that an infant will have one or 
more episodes of otitis media by the end of the ninth month 
of life given that no episodes have been observed by the 
end of the third month of life?
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Table 4.16  �Number of infants (of 2500) who 
remain disease-free at the end of each 
month during the first year of life

	 Disease-free infants at  
  i	 the end of month i

  0	 2500
  1	 2425
  2	 2375
  3	 2300
  4	 2180
  5	 2000
  6	 1875
  7	 1700
  8	 1500
  9	 1300
10	 1250
11	 1225
12	 1200

*4.40  Suppose an “otitis-prone family” is defined as one 
in which at least three siblings of five develop otitis media 
in the first 6 months of life. What proportion of five-sibling 
families is otitis prone if we assume the disease occurs in-
dependently for different siblings in a family?

*4.41  What is the expected number of otitis-prone families 
of 100 five-sibling families?

Cancer, Epidemiology
An experiment is designed to test the potency of a drug on 
20 rats. Previous animal studies have shown that a 10-mg 
dose of the drug is lethal 5% of the time within the first  
4 hours; of the animals alive at 4 hours, 10% will die in the 
next 4 hours.

4.42  What is the probability that 3 or more rats will die in 
the first 4 hours?

4.43  Suppose 2 rats die in the first 4 hours. What is 
the probability that 2 or fewer rats will die in the next  
4 hours?

4.44  What is the probability that 0 rats will die in the 8-hour 
period?

4.45  What is the probability that 1 rat will die in the 8-hour 
period?

4.46  What is the probability that 2 rats will die in the 8-hour 
period?

4.47  Can you write a general formula for the probability that 
x rats will die in the 8-hour period? Evaluate this formula 
for x = 0, 1, . . . , 10. (Hint: Use the BINOMDIST function 
of Excel.)

Environmental Health
An important issue in assessing nuclear energy is whether 
excess disease risks exist in the communities surrounding 
nuclear-power plants. A study undertaken in the community 
surrounding Hanford, Washington, looked at the prevalence 
of selected congenital malformations in the counties sur-
rounding the nuclear-test facility [9].

*4.48  Suppose 27 cases of Down’s syndrome are found 
and only 19 are expected based on Birth Defects Monitoring 
Program prevalence estimates in the states of Washington, 
Idaho, and Oregon. Are there significant excess cases in the 
area around the nuclear-power plant?

Suppose 12 cases of cleft palate are observed, whereas 
only 7 are expected based on Birth Defects Monitoring 
Program estimates.

*4.49  What is the probability of observing exactly 12 cases 
of cleft palate if there is no excess risk of cleft palate in the 
study area?

*4.50  Do you feel there is a meaningful excess number of 
cases of cleft palate in the area surrounding the nuclear-
power plant? Explain.

Health Promotion
A study was conducted among 234 people who had 
expressed a desire to stop smoking but who had not yet 
stopped. On the day they quit smoking, their carbon- 
monoxide level (CO) was measured and the time was noted 
from the time they smoked their last cigarette to the time of 
the CO measurement. The CO level provides an “objec-
tive” indicator of the number of cigarettes smoked per day  
during the time immediately before the quit attempt. How-
ever, it is known to also be influenced by the time since 
the last cigarette was smoked. Thus, this time is provided 
as well as a “corrected CO level,” which is adjusted for 
the time since the last cigarette was smoked. Information 
is also provided on the age and sex of the participants 
as well as each participant’s self-report of the number 
of cigarettes smoked per day. The participants were 
followed for 1 year for the purpose of determining the 
number of days they remained abstinent. Number of days 
abstinent ranged from 0 for those who quit for less than 
1 day to 365 for those who were abstinent for the full 
year. Assume all people were followed for the entire year.

The data, provided by Dr. Arthur J. Garvey, Boston, Mas-
sachusetts, are given in Data Set SMOKE.DAT, at www 
.cengagebrain.com. The format of this file is given in Table 4.17.

4.51  Develop a life table similar to Table 4.16, giving the 
number of people who remained abstinent at 1, 2, . . . , 
12 months of life (assume for simplicity that there are 30 
days in each of the first 11 months after quitting and 35 
days in the 12th month). Plot these data on the computer 

 Data set available
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using either Excel or R or some other statistical package. 
Compute the probability that a person will remain absti-
nent at 1, 3, 6, and 12 months after quitting.

4.52  Develop life tables for subsets of the data based on 
age, gender, number of cigarettes per day, and CO level 
(one variable at a time). Given these data, do you feel age, 
gender, number of cigarettes per day, and/or CO level are 
related to success in quitting? (Methods of analysis for life-
table data are discussed in more detail in Chapter 14.)

Genetics
4.53  A topic of some interest in the genetic literature 
over at least the past 30 years has been the study of sex- 
ratio data. In particular, one suggested hypothesis is that there 
are enough families with a preponderance of males (females) 
that the sexes of successive childbirths are not independent 
random variables but rather are related to each other. This hy-
pothesis has been extended beyond just successive births, so 
some authors also consider relationships between offspring 
two birth orders apart (first and third offspring, second and 
fourth offspring, etc.). Sex-ratio data from the first 5 births 
in 51,868 families are given in Data Set SEXRAT.DAT (at 
www.cengagebrain.com). The format of this file is given in 
Table 4.18 [10]. What are your conclusions concerning the 
preceding hypothesis based on your analysis of these data?

Infectious Disease
A study considered risk factors for HIV infection among 
intravenous drug users [11]. It found that 40% of users who 
had ≤ 100 injections per month (light users) and 55% of us-
ers who had > 100 injections per month (heavy users) were 
HIV positive.

4.54  What is the probability that exactly 3 of 5 light users 
are HIV positive?

Table 4.18   Format of SEXRAT.DAT

Variable	 Column

Number of childrena	 1
Sex of childrenb	 3−7
Number of families	 9−12

aFor families with 5+ children, the sexes of the first 5 children are listed. The 
number of children is given as 5 for such families. 
bThe sex of successive births is given. Thus, MMMF means the first 3 
children were males and the fourth child was a female. There were 484 such 
families.

4.55  What is the probability that at least 3 of 5 light users 
are HIV positive?

4.56  Suppose we have a group of 10 light users and 10 
heavy users. What is the probability that exactly 3 of the 20 
users are HIV positive?

4.57  What is the probability that at least 4 of the 20 users 
are HIV positive?

4.58  Is the distribution of the number of HIV positive among 
the 20 users binomial? Why or why not?

Ophthalmology, Diabetes
A study [12] of incidence rates of blindness among insulin-
dependent diabetics reported that the annual incidence rate 
of blindness per year was 0.67% among 30- to 39-year-old 
male insulin-dependent diabetics (IDDM) and 0.74% among 
30- to 39-year-old female insulin-dependent diabetics.

4.59  If a group of 200 IDDM 30- to 39-year-old men is 
followed, what is the probability that exactly 2 will go blind 
over a 1-year period?

4.60  If a group of 200 IDDM 30- to 39-year-old women is 
followed, what is the probability that at least 2 will go blind 
over a 1-year period?

Table 4.17  Format of SMOKE.DAT

Variable	 Columns	 Code

ID number	   1−3	
Age	   4−5	
Gender	   6	 1 = male, 2 = female
Cigarettes/day	   7−8	
CO (× 10)	   9−11	
Minutes elapsed since the last cigarette smoked	 12−15	
LogCOAdja (× 1000)	 16−19	
Days abstinentb	 20−22	

aThis variable represents adjusted CO values. CO values were adjusted for minutes elapsed since the last cigarette smoked using the formula,  
log10CO (adjusted) = log10CO − (−0.000638) × (min − 80), where min is the number of minutes elapsed since the last cigarette smoked.
bThose abstinent less than 1 day were given a value of 0.

 Data set available
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4.61  What is the probability that a 30-year-old IDDM male 
patient will go blind over the next 10 years?

4.62  After how many years of follow-up would we expect 
the cumulative incidence of blindness to be 10% among 
30-year-old IDDM females, if the incidence rate remains 
constant over time?

4.63  What does cumulative incidence mean, in words, in 
the context of this problem?

Cardiovascular Disease
An article was published [13] concerning the incidence of 
cardiac death attributable to the earthquake in Los Angeles 
County on January 17, 1994. In the week before the earth-
quake there were an average of 15.6 cardiac deaths per day 
in Los Angeles County. On the day of the earthquake, there 
were 51 cardiac deaths.

4.64  What is the exact probability of 51 deaths occurring 
on one day if the cardiac death rate in the previous week 
continued to hold on the day of the earthquake?

4.65  Is the occurrence of 51 deaths unusual? (Hint: Use 
the same methodology as in Example 4.32.)

4.66  What is the maximum number of cardiac deaths that 
could have occurred on the day of the earthquake to be 
consistent with the rate of cardiac deaths in the past week? 
(Hint: Use a cutoff probability of .05 to determine the maxi-
mum number.)

Environmental Health
Some previous studies have shown a relationship between 
emergency-room admissions per day and level of pollution 
on a given day. A small local hospital finds that the num-
ber of admissions to the emergency ward on a single day  
ordinarily (unless there is unusually high pollution) follows 
a Poisson distribution with mean = 2.0 admissions per day. 
Suppose each admitted person to the emergency ward 
stays there for exactly 1 day and is then discharged.

4.67  The hospital is planning a new emergency-room facil-
ity. It wants enough beds in the emergency ward so that for 
at least 95% of normal-pollution days it will not need to turn 
anyone away. What is the smallest number of beds it should 
have to satisfy this criterion?

4.68  The hospital also finds that on high-pollution days the 
number of admissions is Poisson-distributed with mean 
= 4.0 admissions per day. Answer Problem 4.67 for high-
pollution days.

4.69  On a random day during the year, what is the probability 
there will be 4 admissions to the emergency ward, assuming 
there are 345 normal-pollution days and 20 high-pollution 
days?

4.70  Answer Problem 4.67 for a random day during the year.

Women’s Health
The number of legal induced abortions per year per 1000 
U.S. women ages 15−44 [14] is given in Table 4.19.

For example, of 1000 women ages 15−44 in 1980, 25 had 
a legal induced abortion during 1980.

4.71  If we assume (1) no woman has more than 1 abortion 
and (2) the probability of having an abortion is independent 
across different years, what is the probability that a 15-year-
old woman in 1975 will have an abortion over her 30 years 
of reproductive life (ages 15−44, or 1975−2004)?

Table 4.19  �Annual incidence of legal induced 
abortions by time period

	 Legal induced abortions per year  
Year	 per 1000 women ages 15−44

1975−1979	 21
1980−1984	 25
1985−1989	 24
1990−1994	 24
1995−2004	 20

Studies have been undertaken to assess the relationship 
between abortion and the development of breast cancer. In 
one study among nurses (the Nurses’ Health Study II), there 
were 16,359 abortions among 2,169,321 person-years of 
follow-up for women of reproductive age. (Note: 1 person-
year = 1 woman followed for 1 year.)

4.72  What is the expected number of abortions among 
nurses over this time period if the incidence of abortion is 
25 per 1000 women per year and no woman has more than 
1 abortion?

4.73  Does the abortion rate among nurses differ signifi-
cantly from the national experience? Why or why not? 
(Hint: Use the Poisson distribution.) A yes/no answer is not  
acceptable.

Endocrinology
4.74  Consider the Data Set BONEDEN.DAT at www 
.cengagebrain.com. Calculate the difference in bone density 
of the lumbar spine (g/cm2) between the heavier-smoking twin 
and the lighter-smoking twin (bone density for the heavier-
smoking twin minus bone density for the lighter-smoking twin) 
for each of the 41 twin pairs. Suppose smoking has no rela-
tionship to bone density. What would be the expected number 
of twin pairs with negative difference scores? What is the 
actual number of twin pairs with negative difference scores? 
Do you feel smoking is related to bone density of the lumbar 
spine, given the observed results? Why or why not? A yes/no 
answer is not acceptable. (Hint: Use the binomial distribution.)

 Data set available
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4.75  Sort the differences in smoking between members of 
a twin pair (expressed in pack-years). Identify the subgroup 
of 20 twin pairs with the largest differences in smoking.  
Answer Problem 4.74 based on this subgroup of 20 twin pairs.

4.76  Answer Problem 4.74 for bone density of the femoral 
neck.

4.77  Answer Problem 4.75 for bone density of the femoral 
neck.

4.78  Answer Problem 4.74 for bone density of the femoral 
shaft.

4.79  Answer Problem 4.75 for bone density of the femoral 
shaft.

SIMULATION
An attractive feature of modern statistical packages such as 
MINITAB, Excel, or R is the ability to use the computer to 
simulate random variables on the computer and to compare 
the characteristics of the observed samples with the theo-
retical properties of the random variables.

4.80  Draw 100 random samples from a binomial distribu-
tion, each based on 10 trials with probability of success = 
.05 on each trial. Obtain a frequency distribution of the num-
ber of successes over the 100 random samples, and plot the 
distribution. How does it compare with Figure 4.5(a)?

4.81  Answer Problem 4.80 for a binomial distribution with 
parameters n = 10 and p = .95. Compare your results with 
Figure 4.5(b).

4.82  Answer Problem 4.80 for a binomial distribution with 
parameters n = 10 and p = .5. Compare your results with 
Figure 4.5(c).

Cancer
The two-stage model of carcinogenesis is based on the 
premise that for a cancer to develop, a normal cell must first 
undergo a “first hit” and mutate to become a susceptible or 
intermediate cell. An intermediate cell then must undergo a 
“second hit” and mutate to become a malignant cell. A can-
cer develops if at least one cell becomes a malignant cell. 
This model has been applied to the development of breast 
cancer in females (Moolgavkar et al. [15]).

Suppose there are 108 normal breast cells and 0 interme-
diate or malignant breast cells among 20-year-old females. 
The probability that a normal breast cell will mutate to 
become an intermediate cell is 10−7 per year.

4.83  What is the probability that there will be at least 5 inter-
mediate cells by age 21? (Hint: Use the Poisson distribution.)

4.84  What is the expected number of intermediate cells by 
age 45?

The probability that an intermediate cell will mutate to be-
come a malignant cell is 5 × 10−7 per year.

4.85  Suppose a woman has 300 intermediate cells by age 
45. What is the probability that she develops breast cancer 
by age 46? By age 50? (Hint: Use the Poisson approximation 
to the binomial distribution.)

Dentistry
The data in Table 4.20 were reported by men in the Health 
Professionals Follow-up Study on the number of teeth lost over 
a 1-year period (January 1, 1987, to December 31, 1987).

Table 4.20  �Distribution of number of teeth lost 
from January 1, 1987, to December 31, 
1987, among 38,905 men in the Health 
Professionals Follow-up Study

Number of teeth lost	 Frequency

  0		  35,763
  1		  1,978
  2		  591
  3		  151
  4		  163
  5−9		  106
10+		  153

Total		  38,905

4.86  If we assume the average number of teeth lost in the 
5−9 group is 7 teeth and the average number of teeth lost 
in the 10+ group is 12 teeth, what is the best estimate of 
the average number of teeth lost per year?

4.87  Suppose that on January 1, 1987, a man is 50 years 
old, that he will live for 30 more years (until 2016), and that 
the rate of tooth loss over this 30-year period is the same 
as in 1987. If a man has 13 teeth remaining on January 1, 
1987, what is the probability he will need dentures (have 10 
or fewer teeth remaining) during his 30-year lifetime? (Hint: 
Use the Poisson distribution.)

4.88  Suppose dental practice improves over the 30-year 
period. We assume the rate of tooth loss per year from 
1987−2001 (15 years) is the same as in 1987, whereas the 
rate of tooth loss per year from 2002−2016 (15 years) is half 
the 1987 rate. What is the probability that the man in Prob-
lem 4.87 will require dentures under these altered assump-
tions? (Hint: Consider a mixture of two Poisson distributions.)

Hospital Epidemiology
Suppose the number of admissions to the emergency room 
at a small hospital follows a Poisson distribution but the 
incidence rate changes on different days of the week. On a 
weekday there are on average two admissions per day, while 
on a weekend day there is on average one admission per day.

4.89  What is the probability of at least one admission on a 
Wednesday?

4.90  What is the probability of at least one admission on a 
Saturday?

4.91  What is the probability of having 0, 1, and 2+ admis-
sions for an entire week, if the results for different days dur-
ing the week are assumed to be independent?
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Obstetrics
Suppose the incidence of a specific birth defect in a high 
socioeconomic status (SES) census tract is 50 cases per 
100,000 births.

4.92  If there are 5000 births in the census tract in 1 year, then 
what is the probability that there will be exactly 5 cases of the 
birth defect during the year (census tract A in Table 4.21)?

Suppose the incidence of the same birth defect in a low 
SES census tract is 100 cases per 100,000 births.

4.93  If there are 12,000 births in the census tract in 1 
year, then what is the probability that there will be at least 8 
cases of the birth defect during the year (census tract B in 
Table 4.21)?

Suppose a city is divided into eight census tracts as shown 
in Table 4.21.

4.94  Suppose a child is born with the birth defect but the 
address of the mother is unknown. What is the probability 
that the child comes from a low SES census tract?

4.95  What is the expected number of cases over 1 year in 
the city?

Emergency Medicine
A study was performed concerning medical emergencies on 
commercial airline flights (Peterson, et al., [16]). A database 
was constructed based on calls to a medical communi-
cations center from 5 domestic and international airlines 
representing approximately 10% of global passenger flight 
volume from January 1, 2008 to October 31, 2010. There 
were 11,920 in-flight medical emergencies (IFM) among 
7,198,118 flights during the study period. Assume for this 
entire problem that there is at most 1 IFM per flight.

4.96  Suppose a flight attendant works on 2 flights per day 
for each of 300 days per year. What is the probability that 
the flight attendant will encounter at least one IFM over a 
1-year period?

Hint: Use the Poisson approximation to the binomial distribution.

4.97  Suppose the flight attendant’s total duration of em-
ployment is 20 years. What is the probability that he/she 
encounters at least 10 IFMs on his/her flights over a 20-year 
period? Make the same assumptions as in Problem 4.96.

Hint: Use a computer program (e.g., Excel, Stata, or R) to 
solve this problem.

The more significant IFMs result in an aircraft being forced 
to land in an airport other than its original destination due to 
the medical emergency (referred to as an aircraft diversion 
or DIV). Suppose that 875 out of the 11,920 IFMs (7.3%) 
resulted in a DIV.

4.98  Calculate the probability that a flight attendant en-
counters at least one DIV over his/her 20-year working 
lifetlme. Make the same assumptions as in Problem 4.96.

Hint: Use a computer program (e.g., Excel, Stata, or R) to 
solve this problem.

Epidemiology
A study was performed to assess the feasibility of a national 
random digit dialing cellular phone survey among young 
adults age 18–34 (Genderson et al., [17]). lt was reported 
that 3.1% of respondents were eligible to participate and 
that 52% of eligible respondents agreed to participate.

4.99  Suppose the survey is given to 100 subjects. What 
is the probability of obtaining at least 2 eligible responders 
who agree to participate?

4.100  Suppose 1000 potential participants are contacted to 
participate in the survey. What is the probability that at least 10 
of the 1000 participants will be eligible and agree to participate?

Hint: Use a computer program to answer this question.

Cancer
A clinical trial was conducted among 178 patients with 
advanced melanoma (a type of skin cancer) (Schwartzentruber, 
et al. [18]). There were two treatment groups. Group A  
received lnterleukin-2. Group B received lnterleukin-2 plus a 
vaccine. Six percent of Group A patients and 16% of group B 
patients had a complete or partial response to treatment.

Suppose we seek to extrapolate the results of the study to a 
larger group of melanoma patients.

4.101  lf 20 melanoma patients are given lnterleukin-2 plus 
a vaccine, what is the probability that exactly 5 of them will 
have a positive response to treatment (either complete or 
partial response)?

4.102  lf 20 melanoma patients are given lnterleukin-2 plus 
a vaccine, what is the probability that at least 3 of them will 
have a positive response to treatment?
One issue is that some patients experience side effects and 
have to discontinue treatment. lt was estimated that 19% 

Table 4.21  Relationship between incidence of birth defects and census tract

			   Incidence of 				    Incidence of 
Census tract	 SES	 Number of births/yr	 birth defects	 Census tract	 SES	 Number of births/yr	 birth defects

A		  High	 5000	 50/105	 E	 Low	 7000	 100/105

B		  Low	 12,000	 100/105	 F	 Low	 20,000	 100/105

C		  Low	 10,000	 100/105	 G	 High	 5000	 50/105

D		  Low	 8000	 100/105	 H	 Low	 3000	 100/105

					     Total	 70,000	
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of patients receiving lnterleukin-2 plus vaccine developed 
an arrhythmia (irregular heartbeat) and had to discontinue 
treatment. Since the side effect was attributable to the 
vaccine, assume that the patients would continue to take 
lnterleukin-2 if arrhythmia developed but not the vaccine 
and that the probability of a positive response to treatment 
would be the same as group A (i.e., 6%).
4.103  Suppose we have 10 patients who receive lnterleu-
kin-2 plus vaccine of whom 2 develop arrhythmia and 8 do 
not. What is the probability that exactly 3 of the 10 patients 
will get a positive response to treatment?

Cancer
Mesothelioma is an asbestos-related neoplasm that is 
resistant to current therapies and is associated with poor 
prognosis. The average survival time after diagnosis is 12 
months.

4.104  A surgeon tries an experimental treatment on 1 
patient, and the patient survives for 18 months. lf we as-
sume the distribution of survival time is Poisson-distributed, 
then what is the probability that a patient will survive for at 
least 18 months if the treatment had no benefit? Hint: Use 
Table 2 of the Appendix.

4.105  The surgeon is encouraged by the result and tries 
the treatment on 5 other patients. He finds that 3 of the 5 
patients survive for at least 18 months. What is the prob-
ability that at least 3 of 5 patients would survive for at least 
18 months if the treatment had no benefit?

4.106  The cutoff of 18 months is arbitrary. ln a larger study, 
the investigator wants to use a cutoff (x) so that the prob-
ability of surviving for at least x months is < 1%, if the treat-
ment has no benefit. What is the smallest integer value of x 
that satisfies this criterion?

Re  f e r e n c e s
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	 5.1	 I n t r o d u c t i o n

This chapter discusses continuous probability distributions. 
Specifically, the normal distribution—the most widely used 
distribution in statistical work—is explored in depth.
	 The normal, or Gaussian or “bell-shaped,” distribution is 
the cornerstone of most methods of estimation and hypothesis 
testing developed throughout the rest of this text. Many ran-
dom variables, such as distribution of birthweights or blood 
pressures in the general population, tend to approximately 
follow a normal distribution. In addition, many random vari-
ables that are not themselves normal are closely approxi-
mated by a normal distribution when summed many times. In 
such cases, using the normal distribution is desirable because 
it is easy to use and tables for the normal distribution are more 
widely available than are tables for many other distributions.

	 Example 5.1 	 Infectious Disease  The number of neutrophils in a sample of 2 white blood cells 
is not normally distributed, but the number in a sample of 100 white blood cells is 
very close to being normally distributed.

	 5.2	 G e n e r a l  C o n c e p t s

We want to develop an analog for a continuous random variable to the concept 
of a probability-mass function, as was developed for a discrete random variable 
in Section 4.3. Thus, we would like to know which values are more probable than 
others and how probable they are.

	 Example 5.2 	 Hypertension  Consider the distribution of diastolic blood-pressure (DBP) mea-
surements in 35- to 44-year-old men. In actual practice, this distribution is dis-
crete because only a finite number of blood-pressure values are possible since the 
measurement is only accurate to within 2 mm Hg. However, assume there is no 
measurement error and hence the random variable can take on a continuum of pos-
sible values. One consequence of this assumption is that the probabilities of specific 

5Continuous Probability 
Distributions
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blood-pressure measurement values such as 117.3 are 0, and thus, the concept of 
a probability-mass function cannot be used. The proof of this statement is beyond 
the scope of this text. Instead, we speak in terms of the probability that blood pres-
sure falls within a range of values. Thus, the probabilities of DBPs (denoted by X) 
falling in the ranges of 90 ≤ X < 100, 100 ≤ X < 110, and X ≥ 110 might be 15%, 5%, 
and 1%, respectively. People whose blood pressures fall in these ranges may be con-
sidered mildly hypertensive, moderately hypertensive, and severely hypertensive, 
respectively.

Although the probability of exactly obtaining any value is 0, people still have the 
intuitive notion that certain ranges of values occur more frequently than others. This 
notion can be quantified using the concept of a probability-density function (pdf).

	 Definition 5.1 	 The probability-density function of the random variable X is a function such that 
the area under the density-function curve between any two points a and b is equal 
to the probability that the random variable X falls between a and b. Thus, the total 
area under the density-function curve over the entire range of possible values for the 
random variable is 1.

The pdf has large values in regions of high probability and small values in 
regions of low probability.

	 Example 5.3 	 Hypertension  A pdf for DBP in 35- to 44-year-old men is shown in Figure 5.1. Areas 
A, B, and C correspond to the probabilities of being mildly hypertensive, moderately 
hypertensive, and severely hypertensive, respectively. Furthermore, the most likely 
range of values for DBP occurs around 80 mm Hg, with the values becoming increas-
ingly less likely as we move farther away from 80.

Not all continuous random variables have symmetric bell-shaped distributions 
as in Figure 5.1.

	 Example 5.4 	 Cardiovascular Disease  Serum triglyceride level is an asymmetric, positively 
skewed, continuous random variable whose pdf appears in Figure 5.2.

The cumulative-distribution function (or cdf) is defined similarly to that for a 
discrete random variable (see Section 4.6).
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	 Figure 5.1	 The pdf of DBP in 35- to 44-year-old men
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	 Definition 5.2 	 The cumulative-distribution function for the random variable X evaluated at the 
point a is defined as the probability that X will take on values ≤ a. It is represented by 
the area under the pdf to the left of a.

	 Example 5.5 	 Obstetrics  The pdf for the random variable representing the distribution of birth-
weights in the general population is given in Figure 5.3.

The cdf evaluated at 88 oz = Pr(X ≤ 88) is represented by the area under this curve 
to the left of 88 oz. The region X ≤ 88 oz has a special meaning in obstetrics because 
88 oz is the cutoff point obstetricians usually use for identifying low-birthweight 
infants. Such infants are generally at higher risk for various unfavorable outcomes, 
such as mortality in the first year of life.

Generally, a distinction is not made between the probabilities Pr(X < x) and  
Pr(X ≤ x) when X is a continuous random variable. This is because they represent the 
same quantity since the probability of individual values is 0; that is, Pr(X = x) = 0.

The expected value and variance for continuous random variables have the same 
meaning as for discrete random variables (see Sections 4.4 and 4.5). However, the 
mathematical definition of these terms is beyond the scope of this book.

	 Definition 5.3 	 The expected value of a continuous random variable X, denoted by E(X), or µ, is the 
average value taken on by the random variable.

	 Figure 5.3 	 The pdf for birthweight
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	 Figure 5.2 	 The pdf for serum triglycerides
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	 Definition 5.4  	 The variance of a continuous random variable X, denoted by Var(X) or σ2, is the av-
erage squared distance of each value of the random variable from its expected value, 
which is given by E(X − µ)2 and can be re-expressed in short form as E(X2) − µ2. The 
standard deviation, or σ, is the square root of the variance, that is,  σ = Var X( ).

	 Example 5.6 	 Hypertension  The expected value and standard deviation of the distribution of DBP 
in 35- to 44-year-old men are 80 and 12 mm Hg, respectively.

	 5.3	 T h e  N o r m a l  Di  s t r i b u t i o n

The normal distribution is the most widely used continuous distribution. It is also 
frequently called the Gaussian distribution, after the well-known mathematician 
Karl Friedrich Gauss (Figure 5.4).

	 Example 5.7 	 Hypertension  Body weights or DBPs for a group of 35- to 44-year-old men approxi-
mately follow a normal distribution.

Many other distributions that are not themselves normal can be made approxi-
mately normal by transforming the data onto a different scale.

	 Example 5.8 	 Cardiovascular Disease  The distribution of serum-triglyceride concentrations from 
this same group of 35- to 44-year-old men is likely to be positively skewed. However, 
the log transformation of these measurements usually follows a normal distribution.

Generally speaking, any random variable that can be expressed as a sum of 
many other random variables can be well approximated by a normal distribution.

For example, many physiologic measures are determined in part by a combina-
tion of several genetic and environmental risk factors and can often be well approxi-
mated by a normal distribution.

	 Figure 5.4 	 Karl Friedrich Gauss (1777−1855)
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	 Example 5.9 	 Infectious Disease  The number of lymphocytes in a differential of 100 white blood 
cells (see Example 4.15 for the definition of a differential) tends to be normally 
distributed because this random variable is a sum of 100 random variables, each 
representing whether or not an individual cell is a lymphocyte.

Thus, because of its omnipresence the normal distribution is vital to statistical 
work, and most estimation procedures and hypothesis tests that we will study as-
sume the random variable being considered has an underlying normal distribution.

Another important area of application of the normal distribution is as an 
approximating distribution to other distributions. The normal distribution is 
generally more convenient to work with than any other distribution, particularly 
in hypothesis testing. Thus, if an accurate normal approximation to some other 
distribution can be found, we often will want to use it.

	 Definition 5.5 	 The normal distribution is defined by its pdf, which is given as
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for some parameters µ, σ, where σ > 0.

The exp function merely implies that the quantity to the right in brackets is the 
power to which “e” (≈2.71828) is raised. This pdf is plotted in Figure 5.5 for a normal 
distribution with µ = 50 and σ2 = 100.

The density function follows a bell-shaped curve, with the mode at µ and the 
most frequently occurring values around µ. The curve is symmetric about µ, with 
points of inflection on either side of µ at µ − σ and µ + σ, respectively. A point of in-
flection is a point at which the slope of the curve changes direction. In Figure 5.5, the 
slope of the curve increases to the left of µ − σ and then starts to decrease to the right 
of µ − σ and continues to decrease until reaching µ + σ, after which it starts increas-
ing again. Thus, distances from µ to points of inflection provide a good visual sense 
of the magnitude of the parameter σ.

You may wonder why the parameters µ and σ2 have been used to define the nor-
mal distribution when the expected value and variance of an arbitrary distribution 
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	 Figure 5.5 	 The pdf for a normal distribution with mean µ (50) and variance σ2 (100)
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were previously defined as µ and σ2. Indeed, from the definition of the normal distri-
bution it can be shown, using calculus methods, that µ and σ2 are, respectively, the 
expected value and variance of this distribution.

	 Example 5.10 	 For DBP the parameters might be µ = 80 mm Hg, σ = 12 mm Hg; for birthweight they 
might be µ = 120 oz, σ = 20 oz.

Interestingly, the entire shape of the normal distribution is determined by the 
two parameters µ and σ2. If two normal distributions with the same variance σ2 and 
different means µ1, µ2, where µ2 > µ1, are compared, then their density functions will 
appear as in Figure 5.6, where µ1 = 50, µ2 = 62, and σ = 7. The heights of the two 
curves are the same, but one curve is shifted to the right relative to the other curve.

Similarly, two normal distributions with the same mean but different variances 
( )σ σ2

2
1
2>  can be compared, as shown in Figure 5.7, with µ = 50, σ1 = 5, and σ2 = 10. 

Thus, the x value corresponding to the highest density (x = 50) is the same for each 
curve, but the curve with the smaller standard deviation (σ1 = 5) is higher and has  
a more concentrated distribution than the curve with the larger standard deviation 
(σ2 = 10). Note that the area under any normal density function must be 1. Thus, 
the two normal distributions shown in Figure 5.7 must cross, because otherwise one 
curve would remain completely above the other and the areas under both curves 
could not simultaneously be 1.

	 Definition 5.6 	 A normal distribution with mean µ and variance σ2 will generally be referred to 
as an N(µ,σ2) distribution.

Note that the second parameter is always the variance σ2, not the standard  
deviation σ.

Another property of the normal distribution is that the height = 1 2πσ( ). Thus, 
the height is inversely proportional to σ. As noted previously, this helps us visualize σ, 
because the density at the value x = µ for an N( , )µ σ1

2  distribution in Figure 5.7 is 
larger than for an N( , )µ σ2

2  distribution.
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	 Figure 5.6 	 Comparison of two normal distributions with the same variance 	
and different means
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	 Definition 5.7 	 A normal distribution with mean 0 and variance 1 is called a standard, or unit, 
normal distribution. This distribution is also called an N(0,1) distribution.

We will see that any information concerning an N(µ,σ2) distribution can be ob-
tained from appropriate manipulations of an N(0,1) distribution.

	 5.4	 P r o p e r t ie  s  o f  t h e  S ta n d a r d  N o r m a l 

Di  s t r i b u t i o n

To become familiar with the N(0,1) distribution, let’s discuss some of its properties. 
First, the pdf in this case reduces to

	 Equation 5.1 	 f x e xx( ) ,= − ∞ < < + ∞−( )1
2

1 2 2

π

This distribution is symmetric about 0, because f (x) = f (−x), as shown in Figure 5.8.

	 Equation 5.2 	 �It can be shown that about 68% of the area under the standard normal density 
lies between +1 and −1, about 95% of the area lies between +2 and −2, and about 
99% lies between +2.5 and −2.5.

These relationships can be expressed more precisely by saying that

		  Pr(−1 < X < 1) = .6827	 Pr(−1.96 < X < 1.96) = .95

		  Pr(−2.576 < X < 2.576) = .99

Thus, the standard normal distribution slopes off very rapidly, and absolute val-
ues greater than 3 are unlikely. Figure 5.9 shows these relationships.

Tables of the area under the normal density function, or so-called normal tables, 
take advantage of the symmetry properties of the normal distribution and generally 
are concerned with areas for positive values of x.

	 Figure 5.7 	 Comparison of two normal distributions with the same means 	
and different variances
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	 Definition 5.8 	 The cumulative-distribution function (cdf) for a standard normal distribution 
is denoted by

		  Φ( ) ( )x X x= ≤Pr

where X follows an N(0,1) distribution. This function is shown in Figure 5.10.

	 Definition 5.9 	 The symbol ~ is used as shorthand for the phrase “is distributed as.” Thus, X ~ N(0,1) 
means that the random variable X is distributed as an N(0,1) distribution.

Unlike the binomial and Poisson distributions, there is not a closed-form 
algebraic expression for areas under the normal distribution. Hence, numerical 
methods must be used to calculate these areas, which are generally displayed in 
“normal-tables.”

	 Figure 5.8 	 The pdf for a standard normal distribution
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	 Figure 5.9 	 Empirical properties of the standard normal distribution
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Using Normal Tables
Column A in Table 3 of the Appendix presents Φ(x) for various positive values of x  
for a standard normal distribution. This cumulative distribution function is illus-
trated in Figure 5.11. Notice that the area to the left of 0 is .5. 

Furthermore, the area to the left of x approaches 0 as x becomes small and 
approaches 1 as x becomes large.

The right-hand tail of the standard normal distribution = Pr(X ≥ x) is given in 
column B of Appendix Table 3.

	 Example 5.11 	 If X ~ N(0,1), then find Pr(X ≤ 1.96) and Pr(X ≤ 1).

	 	 Solution:  From the Appendix, Table 3, column A,

		  Φ(1.96)  = .975 and Φ(1) = .8413

	Equation 5.3 	 Symmetry Properties of the Standard Normal Distribution  
From the symmetry properties of the standard normal distribution,

		  Φ Φ( ) ( ) ( ) ( ) ( )− = ≤ − = ≥ = − ≤ = −x X x X x X x xPr Pr Pr1 1

This symmetry property is depicted in Figure 5.12 for x = 1.

	 Figure 5.10 	 The cdf [Φ( x)] for a standard normal distribution
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	 Figure 5.11 	 The cdf for a standard normal distribution [Φ(x)]
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	 Example 5.12 	 Calculate Pr(X ≤ −1.96) assuming X ~ N(0,1).

	 	 Solution:  Pr(X ≤ −1.96) = Pr(X ≥ 1.96) = .0250 from column B of Table 3.

Furthermore, for any numbers a, b we have Pr(a ≤ X ≤ b) = Pr(X ≤ b) − Pr(X ≤ a) 
and thus, we can evaluate Pr(a ≤ X ≤ b) for any a, b from Table 3.

	 Example 5.13 	 Compute Pr(−1 ≤ X ≤ 1.5) assuming X ~ N(0,1).

			  Solution:  Pr(−1 ≤ X ≤ 1.5) = Pr(X ≤ 1.5) − Pr(X ≤ −1)

			   = Pr(X ≤ 1.5) − Pr(X ≥ 1) = .9332 − .1587

			   = .7745

	 Example 5.14 	 Pulmonary Disease  Forced vital capacity (FVC), a standard measure of pulmonary 
function, is the volume of air a person can expel in 6 seconds. Current research looks 
at potential risk factors, such as cigarette smoking, air pollution, indoor allergens, or 
the type of stove used in the home, that may affect FVC in grade-school children. 
One problem is that age, gender, and height affect pulmonary function, and these 
variables must be corrected for before considering other risk factors. One way to 
make these adjustments for a particular child is to find the mean µ and standard de-
viation σ for children of the same age (in 1-year age groups), gender, and height (in 
2-in. height groups) from large national surveys and compute a standardized FVC, 
which is defined as ( )X − µ σ , where X is the original FVC. The standardized FVC 
then approximately follows an N(0,1) distribution, if the distribution of the original 
FVC values was bell-shaped. Suppose a child is considered in poor pulmonary health 
if his or her standardized FVC < −1.5. What percentage of children are in poor pul-
monary health?

	 	 Solution:  Pr(X < −1.5) = Pr(X > 1.5) = .0668

Thus, about 7% of children are in poor pulmonary health.

A common misconception is that use of Z-scores by subtracting the mean and 
dividing by the standard deviations [i.e., Z = (X − μ/σ)] will automatically create a 
scale that is normally distributed. This is only true if the original scale (X) was nor-
mally distributed.
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	 Figure 5.12 	 Illustration of the symmetry properties of the normal distribution
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In many instances we are concerned with tail areas on either side of 0 for a stan-
dard normal distribution. For example, the normal range for a biological quantity is 
often defined by a range within x standard deviations of the mean for some specified 
value of x. The probability of a value falling in this range is given by Pr(−x ≤ X ≤ x) 
for a standard normal distribution. This quantity is tabulated in column D of Table 3 
in the Appendix for various values of x.

	 Example 5.15 	 Pulmonary Disease  Suppose a child is considered to have normal lung growth if 
his or her standardized FVC is within 1.5 standard deviations of the mean. What 
proportion of children are within the normal range?

	 	 Solution:  Compute Pr(−1.5 ≤ X ≤ 1.5). Under 1.50 in Table 3, column D gives this 
quantity as .8664. Thus, about 87% of children have normal lung growth, according 
to this definition.

Finally, column C of Table 3 provides the area under the standard normal den-
sity from 0 to x because these areas occasionally prove useful in work on statistical 
inference.

	 Example 5.16 	 Find the area under the standard normal density from 0 to 1.45.

	 	 Solution:  Refer to column C of Table 3 under 1.45. The appropriate area is given 
by .4265.

Of course, the areas given in columns A, B, C, and D are redundant in that 
all computations concerning the standard normal distribution can be performed 
using any one of these columns. In particular, we have seen that B(x) = 1 − A(x). 
Also, from the symmetry of the normal distribution we can easily show that C(x) = 
A(x) − .5, D(x) = 2 × C(x) = 2 × A(x) − 1.0. However, this redundancy is deliberate 
because for some applications one of these columns may be more convenient  
to use.

Using Electronic Tables for the Normal Distribution
It is also possible to use “electronic tables” to compute areas under a standard nor-
mal distribution. For example, in Excel the function NORMSDIST(x) provides the cdf 
for a standard normal distribution for any value of x.

	 Example 5.17 	 Using an electronic table, find the area under the standard normal density to the left 
of 2.824.

	 	 Solution:  We use the Excel function NORMSDIST evaluated at 2.824 [NORMS-
DIST(2.824)], with the result as follows:

	 x	 2.824

NORMSDIST(x)	 0.997629

The area is .9976.

The percentiles of a normal distribution are often frequently used in statisti-
cal inference. For example, we might be interested in the upper and lower fifth 
percentiles of the distribution of FVC in children in order to define a normal range 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



126              C H A P T E R  5      Continuous Probability Distributions

of values. For this purpose, the definition of the percentiles of a standard normal 
distribution is introduced:

	 Definition 5.10 	 The (100 × u)th percentile of a standard normal distribution is denoted by zu. It is 
defined by the relationship

		  Pr(Z < zu) = u,   where Z ~ N(0,1)

Figure 5.13 displays zu.
The function zu is sometimes referred to as the inverse normal function. In pre-

vious uses of the normal table, we were given a value x and have used the normal 
tables to evaluate the area to the left of x—that is, Φ(x)—for a standard normal 
distribution.

To obtain zu, we perform this operation in reverse. Thus, to evaluate zu we must 
find the area u in column A of Appendix Table 3 and then find the value zu that cor-
responds to this area. If u < .5, then we use the symmetry properties of the normal 
distribution to obtain zu = −z1−u, where z1−u can be obtained from Table 3.

	 Example 5.18 	 Compute z.975, z.95, z.5, and z.025.

	 	 Solution:  From Table 3 we have

			     Φ(l.96) = .975 

			   Φ(l.645) = .95

			       Φ(0) = .5

		  Φ(−1.96) = l − Φ(l.96) = l − .975 = .025

Thus,   z.975 = 1.96

		    z.95 = 1.645

		      z.5 = 0

		   z.025 = −1.96

where for z.95 we interpolate between 1.64 and 1.65 to obtain 1.645.
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	 Figure 5.13 	 Graphic display of the (100 × u)th percentile of a standard 	
normal distribution (zu)
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	 Example 5.19 	 Compute the value x such that the area to the left of x under a standard normal  
density = .85.

	 	 Solution:  We use the qnorm function of R evaluated at .85 [qnorm (.85)] with the 
result given as follows:

	 	 	 x <− qnorm (.85)

	 	 	 x

	 	 	 1.036

Thus, the area to the left of 1.036 under a standard normal density is .85.

The percentile zu is used frequently in our work on estimation in Chapter 6 and 
hypothesis testing in Chapters 7−14.

R E V I E W  QU  E ST  I ONS    5 A

1	 What is the difference between a probability-density function (pdf) and a probability-
mass function?

2	 Suppose a continuous random variable can only take on values between −1 and +1. 
What is the area under the pdf from −2 to 2?

3	 What is a standard normal distribution?

4	 (a)	� What is the area to the left of −0.2 under a standard normal distribution? What 
symbol is used to represent this area?

	 (b)	 What is the area to the right of 0.3 under a standard normal distribution? What 
symbol is used to represent this area?

5	 (a)	 What is z.30? What does it mean?

	 (b)	 What is z.75? What does it mean?

	 5.5	 C o n ve  r s i o n  f r o m  a n  N (μ ,σ 2 )  Di  s t r i b u t i o n  

t o  a n  N ( 0 , 1 )  Di  s t r i b u t i o n

	 Example 5.20 	 Hypertension  Suppose a mild hypertensive is defined as a person whose DBP is 
between 90 and 100 mm Hg inclusive, and the subjects are 35- to 44-year-old men 
whose blood pressures are normally distributed with mean 80 and variance 144. 
What is the probability that a randomly selected person from this population will 
be a mild hypertensive? This question can be stated more precisely: If X ~ N(80,144), 
then what is Pr(90 < X < 100)?

(The solution is given on page 129.)

More generally, the following question can be asked: If X ~ N(µ,σ2), then what is 
Pr(a < X < b) for any a, b? To solve this, we convert the probability statement about 
an N(µ,σ2) distribution to an equivalent probability statement about an N(0,1) distri-
bution. Consider the random variable Z = (X − µ)/σ. We can show that the following 
relationship holds:

	 Equation 5.4 	 If X ~ N(µ,σ2) and Z = (X − µ)/σ, then Z ~ N(0,1).

	 Equation 5.5 	 	 Evaluation of Probabilities for Any Normal Distribution via Standardization

If X ~ N(µ,σ2) and Z = (X − µ)/σ

R
 E

 V
 I 

E 
W
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then   Pr Pr( ) ( ) (a X b
a

Z
b

b a< < = − < < −



 = −[ ] −µ

σ
µ

σ
µ σΦ Φ −−[ ]µ σ)

Because the Φ function, which is the cumulative distribution function for a 
standard normal distribution, is given in column A of Table 3 of the Appendix, 
probabilities for any normal distribution can now be evaluated using the tables 
in this text. This procedure is shown in Figure 5.14 for µ = 80, σ = 12, a = 90,  
b = 100, where the areas in Figure 5.14a and 5.14b are the same.

The procedure in Equation 5.5 is known as standardization of a normal variable.

	 Equation 5.6 	 	 The general principle is that for any probability expression concerning normal 
random variables of the form Pr(a < X < b), the population mean µ is subtracted 
from each boundary point and divided by the standard deviation σ to obtain an 
equivalent probability expression for the standard normal random variable Z,

		  Pr ( ) ( )a Z b− < < −[ ]µ σ µ σ

The standard normal tables are then used to evaluate this latter probability.

x

f(
x)

0.03

0.02

0.01

0.00

X ~ N(µ,σ2)

80 90 100

Pr(a < X < b)
   = Pr(90 < X < 100)

(µ) (a) (b)
(a)

z

f(
z)

0.4

0.3

0.2

0.1

0.0

Z ~ N(0,1)

0 0.83 1.67

Pr

    = Pr(0.83 < Z < 1.67)

a – µ
σ < Z <

b – µ
σ 

a – µ
σ 

b – µ
σ (b)

	 Figure 5.14 	 Evaluation of probabilities for any normal distribution using standardization
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	 Example 5.20 	 Solution:  The probability of being a mild hypertensive among the group of 35- to 
44-year-old men can now be calculated.

		

Pr X Pr( )90 100
90 80

12
100 80

12
< < = − < < −



Z

= (0.833Pr < <Z 1 667. )) = 3Φ Φ( . ) ( . )1 667 0 8 3−

= .9522 − =. .7977 155

Thus, about 15.5% of this population will have mild hypertension.

	 Example 5.21 	 Botany  Suppose tree diameters of a certain species of tree from some defined forest 
area are assumed to be normally distributed with mean = 8 in. and standard devia-
tion = 2 in. Find the probability of a tree having an unusually large diameter, which 
is defined as >12 in.

	 	 Solution:  We have X ~ N(8,4) and require

		

Pr Pr Pr( ) ( )X X Z> = − < = − < −



12 1 12 1

12 8
2

= 1 2 0 1 977 023− < = − =Pr( . ) . .Z

Thus, 2.3% of trees from this area have an unusually large diameter.

	 Example 5.22 	 Cerebrovascular Disease  Diagnosing stroke strictly on the basis of clinical 
symptoms is difficult. A standard diagnostic test used in clinical medicine to detect 
stroke in patients is the angiogram. This test has some risks for the patient, and 
researchers have developed several noninvasive techniques that they hope will be 
as effective as the angiogram. One such method measures cerebral blood flow (CBF) 
in the brain because stroke patients tend to have lower CBF levels than normal. 
Assume that in the general population, CBF is normally distributed with mean = 75 
mL/100 g brain tissue and standard deviation = 17 mL/100 g brain tissue. A patient 
is classified as being at risk for stroke if his or her CBF is lower than 40 mL/100 g 
brain tissue. What proportion of normal patients will be mistakenly classified as be-
ing at risk for stroke?

	  	 Solution:  Let X be the random variable representing CBF. Then X ~ N(75,172) = 
N(75,289). We want to find Pr(X < 40). We standardize the limit of 40 so as to use the 
standard normal distribution. The standardized limit is (40 − 75)/17 = −2.06. Thus, if 
Z represents the standardized normal random variable = (X − µ)/σ, then

		

< = < −
= Φ − = − Φ = − ≅

Pr X Pr Z( 40) ( 2.06)
( 2.06) 1 (2.06) 1 .9803 .020

Thus, about 2.0% of normal patients will be incorrectly classified as being at risk for 
stroke.

If we use electronic tables, then the pdf, cdf, and inverse normal distribution 
can be obtained for any normal distribution, and standardization is unnecessary. For 
example, using Excel, the two functions NORMDIST and NORMINV are available for 
this purpose. To find the probability p that an N(µ,σ2) distribution is ≤ x, we use the 
function
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		  p = NORMDIST(x,µ,σ, TRUE)

To find the probability density f at x, we use the function

		  f = NORMDIST(x,µ,σ, FALSE)

To find the value x such that the cdf for an N(µ,σ2) distribution is equal to p, we use 
the function

		  x = NORMINV(p,µ,σ)

More details and examples of using these functions are provided at www 
.cengagebrain.com.

Using R, we evaluate

p = pnorm(x, mean = µ, sd = σ)

f = dnorm(x, mean = µ, sd = σ)

x = qnorm(p, mean = µ, sd = σ)

	 Equation 5.7 	 	 The pth percentile of a general normal distribution (x) can also be written in 
terms of the percentiles of a standard normal distribution as follows:

		  x = µ + zpσ

	 Example 5.23 	 Ophthalmology  Glaucoma is an eye disease that is manifested by high intraocular 
pressure (IOP). The distribution of IOP in the general population is approximately 
normal with mean = 16 mm Hg and standard deviation = 3 mm Hg. If the normal 
range for IOP is considered to be between 12 and 20 mm Hg, then what percentage 
of the general population would fall within this range?

	 	 Solution:  Because IOP can only be measured to the nearest integer, we will associate 
the recorded value of 12 mm Hg with a range of actual IOP values from 11.5 to 12.5 
mm Hg. Similarly, we associate a recorded IOP value of 20 mm Hg with a range of 
actual IOP values from 19.5 to 20.5 mm Hg. Hence, we want to calculate Pr(11.5 ≤ 
X ≤ 20.5), where X ~ N(16,9), as shown in Figure 5.15. The process of associating a 
specific observed value (such as 12 mm Hg) with an actual range of value (11.5 ≤ X ≤ 
12.5) is called “incorporating a continuity correction.”
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Pr(11.5 ≤ X ≤ 20.5) = 86.6%

 

	 Figure 5.15 	 Calculation of the proportion of people with IOP in the normal range
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We use the NORMDIST function of Excel to perform these computations. 
First, we compute p X X N1 20 5 16= ≤[ ]Pr . ( , )∼ 9  given by NORMDIST(20.5, 16, 3, 
TRUE). Second, we compute p X X N2 11 5 16= ≤[ ]Pr . ( , )∼ 9  given by NORMDIST 
(11.5, 16, 3, TRUE). Thus, Pr( . . ) .11 5 20 5 1 2 866≤ ≤ = =X p p− . The computations are 
shown in the following spreadsheet.

		  p1=NORMDIST(20.5,16,3,true)	 0.933193

		  p2=NORMDIST(11.5,16,3,true)	 0.066807

		  p=p1−p2	 0.866386

Thus, 86.6% of the population has IOP in the normal range.

	 Example 5.24 	 Hypertension  Suppose the distribution of DBP in 35- to 44-year-old men is 
normally distributed with mean = 80 mm Hg and variance = 144 mm Hg. Find the 
upper and lower fifth percentiles of this distribution.

	 	 Solution:  We could do this either using Table 3 (Appendix) or using a computer 
program. If we use Table 3 and we denote the upper and lower 5th percentiles by x.05 
and x.95, respectively, then from Equation 5.7 we have

		  x.05 = 80 + z.05(12)
		       = 80 − 1.645(12) = 60.3 mm Hg

		  x.95 = 80 + z.95(12)
		       = 80 + 1.645(12) = 99.7 mm Hg

If we use the qnorm function of R, then we have

		  x.05 = qnorm (0.05, mean = 80, sd = 12)
		  x.95 = qnorm (0.95, mean = 80, sd = 12)

The results are given as follows:

>x<- qnorm(0.05,mean = 80, sd = 12)

>x

[1] 60.26176

>y<- qnorm(0.95,mean = 80, sd = 12)

>y

[1] 99.73824

R E V I E W  QU  E ST  I ONS    5 B

1	 What is the difference between a standard normal distribution and a general normal 
distribution?

2	 What does the principle of standardization mean?

3	 Suppose the distribution of serum-cholesterol values is normally distributed, with 
mean = 220 mg/dL and standard deviation = 35 mg/dL.

	 (a)	 What is the probability that a serum cholesterol level will range from 200 to 
250 inclusive (that is, a high normal range)? Assume that cholesterol values 
can be measured exactly—that is, without the need for incorporating a continu-
ity correction.

	 (b)	 (1)	� What is the lowest quintile of serum-cholesterol values (the 20th  
percentile)?

		  (2)	� What is the highest quintile of serum-cholesterol values (the 80th  
percentile)?

R
 E

 V
 I 

E 
W
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	 5.6	 Li  n e a r  C o m b i n at i o n s  o f  R a n d o m  V a r i a b l e s

In work on statistical inference, sums or differences or more complicated linear 
functions of random variables (either continuous or discrete) are often used. For this 
reason, the properties of linear combinations of random variables are important to 
consider.

	 Definition 5.11 	 A linear combination L of the random variables X1, . . . Xn is defined as any function 
of the form L = c1X1 + … + cnXn. A linear combination is sometimes also called a linear 
contrast.

	 Example 5.25 	 Renal Disease  Let X1, X2 be random variables representing serum-creatinine lev-
els for Caucasian and African American individuals with end-stage renal disease. 
Represent the sum, difference, and average of the random variables X1, X2 as linear 
combinations of the random variables X1, X2.

	 	 Solution:  The sum is X1 + X2, where c1 = 1, c2 = 1. The difference is X1 − X2, where  
c1 = 1, c2 = −1. The average is (X1 + X2)/2, where c1 = 0.5, c2 = 0.5.

It is often necessary to compute the expected value and variance of linear combina-
tions of random variables. To find the expected value of L, we use the principle that 
the expected value of the sum of n random variables is the sum of the n respective 
expected values. Applying this principle,

		
E L E c X c X

E c X E c
n n( ) ...

...

= + +( )
= ( ) + +

1 1

1 1 nn n n nX c E X c E X( ) = ( ) + + ( )1 1
...

	 Equation 5.8 	 	 Expected Value of Linear Combinations of Random Variables 

	 	 	 The expected value of the linear combination L c X E L c E Xi ii

n
i ii

n= = ( )= =∑ ∑1 1
is ( ) .

	 Example 5.26 	 Renal Disease  Suppose the expected values of serum creatinine for the Caucasian 
and the African American individuals in Example 5.25 are 1.3 and 1.5, respectively. 
What is the expected value of the average serum-creatinine level of a single Cauca-
sian and a single African American individual?

	 	 Solution:  The expected value of the average serum-creatinine level = E(0.5X1 + 0.5X2) 
= 0.5E(X1) + 0.5E(X2) = 0.65 + 0.75 = 1.4.

To compute the variance of linear combinations of random variables, we assume 
that the random variables are independent. Under this assumption, it can be shown 
that the variance of the sum of n random variables is the sum of the respective 
variances. Applying this principle,

		
Var L Var c X c X

Var c
n n( ) ( ... )

(

= + +1 1

= 11 1 1
2

1
2X Var c X c Var X c Var Xn n n) ... ( ) ( ) ... (+ + = + + nn )

because

		  Var c X c Var Xi i i i( ) ( )= 2
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	 Equation 5.9 	 	 Variance of Linear Combinations of Independent Random Variables   

The variance of the linear combination L c Xi ii

n=
=∑ 1

, where X1, . . . , Xn are 

independent is Var L c Var Xii

n
i( ) ( ).=

=∑ 2
1

	 Example 5.27 	 Renal Disease  Suppose X1 and X2 are defined as in Example 5.26. If we know that 
Var(X1) = Var(X2) = 0.25, then what is the variance of the average serum-creatinine 
level over a single Caucasian and a single African American individual?

	 	 Solution:  We wish to compute Var(0.5X1 + 0.5X2). Applying Equation 5.9,

		  Var(0.5X1 + 0.5X2) = (0.5)2Var(X1) + (0.5)2Var(X2)

			   = 0.25(0.25) + 0.25(0.25) = 0.125

		  Note that the variance of the average of X1 and X2 is less than the variance of indi-
vidual observations X1 or X2.

The results for the expected value and variance of linear combinations in Equations 
5.8 and 5.9 do not depend on assuming normality. However, linear combinations 
of normal random variables are often of specific concern. It can be shown that any 
linear combination of independent normal random variables is itself normally dis-
tributed. This leads to the following important result:

	 Equation 5.10 	 	 If X1 , . . . , Xn are independent normal random variables with expected values  

µ1, . . . , µn and variances σ σ1
2 ,. . . , ,n

2  and L is any linear combination = c Xi ii

n

=∑ 1
, 

 then L is normally distributed with

	 Expected value = E L ci i
i

n

( ) =
=
∑ µ

1

 and variance = Var L ci i
i

n

( ) =
=
∑ 2 2

1

σ

	 Example 5.28 	 Renal Disease  If X1 and X2 are defined as in Examples 5.25−5.27 and are each nor-
mally distributed, then what is the distribution of the average = 0.5X1 + 0.5X2?

	 	 Solution:  Based on the solutions to Examples 5.26 and 5.27, we know that E(L) = 1.4, 
Var(L) = 0.125. Therefore, (X1 + X2)/2 ~ N(1.4,0.125).

	 5.7	 N o r m a l  A p p r o x i m at i o n  t o  t h e  Bi  n o m i a l 

Di  s t r i b u t i o n

In Chapter 4 we introduced the binomial distribution to assess the probability of k 
successes in n independent trials, where the probability of success (p) is the same for 
each trial. If n is large, the binomial distribution is very cumbersome to work with 
and an approximation is easier to use rather than the exact binomial distribution. 
The normal distribution is often used to approximate the binomial because it is very 
easy to work with. The key question is: When does the normal distribution provide 
an accurate approximation to the binomial?

Suppose a binomial distribution has parameters n and p. If n is moderately large 
and p is either near 0 or near 1, then the binomial distribution will be very positively 
or negatively skewed, respectively (Figure 5.16a and 5.16b). Similarly, when n is 
small, for any p, the distribution tends to be skewed (Figure 5.16c). However, if n is 
moderately large and p is not too extreme, then the binomial distribution tends to 
be symmetric and is well approximated by a normal distribution (Figure 5.16d).
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We know from Chapter 4 that the mean and variance of a binomial distribution 
are np and npq, respectively. A natural approximation to use is a normal distribution 
with the same mean and variance—that is, N(np, npq). Suppose we want to compute 
Pr(a ≤ X ≤ b) for some integers a, b where X is binomially distributed with parameters 
n and p. This probability might be approximated by the area under the normal curve 
from a to b. However, we can show empirically that a better approximation to this 

probability is the area under the normal curve from a b− +1
2

1
2

to . This is generally 

the case when any discrete distribution is approximated by the normal distribution. 
Thus the following rule applies:

	 Equation 5.11 	 	 Normal Approximation to the Binomial Distribution 

		  	 If X is a binomial random variable with parameters n and p, then Pr(a ≤ X < b) 

is approximated by the area under an N(np, npq) curve from a b− +1
2

1
2

to . This 

rule implies that for the special case a = b, the binomial probability Pr(X = a) is 

approximated by the area under the normal curve from a a− +1
2

1
2

to . The only 

exception to this rule is that Pr(X = 0) and Pr(X = n) are approximated by the area 

under the normal curve to the left of 
1
2

 and to the right of n − 1
2

, respectively.

	 Figure 5.16 	 Symmetry properties of the binomial distribution
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We saw in Equation 5.10 that if X1, . . . , Xn are independent normal random 

variables, then any linear combination of these variables L c Xi ii

n=
=∑ 1

 is normally 

distributed. In particular, if c cn1 1= = =... , then a sum of normal random variables 

L Xii

n=
=∑ 1

 is normally distributed.

The normal approximation to the binomial distribution is a special case of a very 
important statistical principle, the central-limit theorem, which is a generalization 
of Equation 5.10. Under this principle, for large n, a sum of n random variables is ap-
proximately normally distributed even if the individual random variables being summed 
are not themselves normal.

	 Definition 5.12 	 Let Xi be a random variable that takes on the value 1 with probability p and the value 
0 with probability q = 1 − p. This type of random variable is referred to as a Bernoulli 
trial. This is a special case of a binomial random variable with n = 1.

We know from the definition of an expected value that E(Xi) = 1(p) + 0(q) = p and 
that E X p q pi( ) ( ) ( ) .2 2 21 0= + =  Therefore,

		  Var X E X E X p p p p pqi i i( ) ( ) ( ) ( )= − [ ] = − = − =2 2 2 1

Now consider the random variable

		
X Xi

i

n

=
=
∑

1

This random variable represents the number of successes among n trials.

	 Example 5.29 	 Interpret X1, . . . , Xn and X in the case of the number of neutrophils among 100 
white blood cells (see Example 4.15).

	 	 Solution:  In this case, n = 100 and Xi = 1 if the ith white blood cell is a neutrophil 
and Xi = 0 if the ith white blood cell is not a neutrophil, where i = 1, . . . , 100. 
X represents the number of neutrophils among n = 100 white blood cells.

Given Equations 5.8 and 5.9, we know that

		
E X E X p p p npi

i

n

( ) ...=






= + + + =

=
∑

1

and

		
Var X Var X Var X pq pqi

i

n

i
i

n

( ) ( )=






= = + +

= =
∑ ∑

1 1

.... + =pq npq

Given the normal approximation to the binomial distribution, we approximate 
the distribution of X by a normal distribution with mean = np and variance = npq. 
We discuss the central-limit theorem in more detail in Section 6.5.

	 Example 5.30 	 Suppose a binomial distribution has parameters n = 25, p = .4. How can Pr(7 ≤ X ≤ 12) 
be approximated?

	 	 Solution:  We have np = 25(.4) = 10, npq = 25(.4)(.6) = 6.0. Thus, this distribution is 
approximated by a normal random variable Y with mean 10 and variance 6. We spe-
cifically want to compute the area under this normal curve from 6.5 to 12.5. We have

See page 133 for  
Equation 5.10
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		  Pr 6 5 12 5
12 5 10

6
6 5 10

6
. .

. .≤ ≤( ) = −





− −


Y Φ Φ


−= Φ Φ( . )1 021 (( . ) ( . ) ( . )− = − −[ ]1 429 1 021 1 1 429Φ Φ

= Φ Φ( . ) ( . ) .1 021 1 429 1 846+ − = 33 9235 1 770+ − =. .

This approximation is depicted in Figure 5.17. For comparison, we also computed 
Pr(7 ≤ X ≤ 12) using the BINOMDIST function of Excel and obtained .773, which 
compares well with the normal approximation of .770.

	 Example 5.31 	 Infectious Disease  Suppose we want to compute the probability that between  
50 and 75 of 100 white blood cells will be neutrophils, where the probability that any 
one cell is a neutrophil is .6. These values are chosen as proposed limits to the range 
of neutrophils in normal people, and we wish to predict what proportion of people 
will be in the normal range according to this definition.

	 	 Solution:  The exact probability is given by

		

100
6 4 100

50

75

k
k k

k







−

=
∑ (. ) (. )

The normal approximation is used to approximate the exact probability. The mean of 
the binomial distribution in this case is 100(.6) = 60, and the variance is 100(.6)(.4) = 24. 
Thus, we find the area between 49.5 and 75.5 for an N(60,24) distribution. This area is

		  Φ Φ Φ75 5 60

24

49 5 60

24
3 164

. .
( . )

−





− −





= − ΦΦ( . )−2 143

  = Φ Φ( . ) ( . )3 164 2 143 1+ −

.9992= + − =. .9840 1 983
Thus, 98.3% of the people will be normal.

	 Example 5.32 	 Infectious Disease  Suppose a neutrophil count is defined as abnormally high if 
the number of neutrophils is ≥ 76 and abnormally low if the number of neutrophils  
is ≤ 49. Calculate the proportion of people whose neutrophil counts are abnormally 
high or low.

	 Figure 5.17 	 The approximation of the binomial random variable X with parameters n = 25, 	
p = .4 by the normal random variable Y with mean = 10 and variance = 6
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Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



	 5.7      Normal Approximation to the Binomial Distribution              137

	 	 Solution:  The probability of being abnormally high is given by Pr(X ≥ 76) ≈ Pr(Y ≥ 
75.5), where X is a binomial random variable with parameters n = 100, p = .6, and 
Y ~ N(60,24). This probability is

		
1

75 5 60
24

1 3 164 001− −





= − =Φ Φ.
( . ) .

Similarly, the probability of being abnormally low is

		  Pr Pr( ) ( . )
.

X Y≤ ≈ ≤ = −





49 49 5
49 5 60

24
Φ

= Φ Φ( . ) ( . )− = −2 143 1 2 143

= 1 − =. .9840 016

Thus, 0.1% of people will have abnormally high neutrophil counts and 1.6% will 
have abnormally low neutrophil counts. These probabilities are shown in Figure 5.18.

For comparative purposes, we have also computed (using Excel) the proportion 
of people who are in the normal range, abnormally high, and abnormally low based 
on exact binomial probabilities. We obtain Pr(50 ≤ X ≤ 75) = .983, Pr(X ≥ 76) = .0006, 
and Pr(X ≤ 49) = .017, which corresponds almost exactly to the normal approxima-
tions used in Examples 5.31 and 5.32.

Under what conditions should this approximation be used?

	 Equation 5.12 	 	 The normal distribution with mean np and variance npq can be used to approxi-
mate a binomial distribution with parameters n and p when npq ≥ 5. This condi-
tion is sometimes called “the rule of five.”

This condition is satisfied if n is moderately large and p is not too small or too 
large. To illustrate this condition, the binomial probability distributions for p = .1,  
n = 10, 20, 50, and 100 are plotted in Figure 5.19 and p = .2, n = 10, 20, 50, and 100 
are plotted in Figure 5.20, using R.
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	 Figure 5.18 	 Normal approximation to the distribution of neutrophils
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Notice that the normal approximation to the binomial distribution does not fit  
well in Figure 5.19a, n = 10, p = .1 (npq = 0.9) or Figure 5.19b, n = 20, p = .1 (npq = 1.8). 
The approximation is marginally adequate in Figure 5.19c, n = 50, p = .1 (npq = 4.5), 
where the right-hand tail is only slightly longer than the left-hand tail. The ap-
proximation is quite good in Figure 5.19d, n = 100, p = .1 (npq = 9.0), where the 
distribution appears quite symmetric. Similarly, for p = .2, although the normal ap-
proximation is not good for n = 10 (Figure 5.20a, npq = 1.6), it becomes marginally 
adequate for n = 20 (Figure 5.20b, npq = 3.2) and quite good for n = 50 (Figure 5.20c, 
npq = 8.0) and n = 100 (Figure 5.20d, npq = 16.0).

Note that the conditions under which the normal approximation to the bino-
mial distribution works well (namely, npq ≥ 5), which corresponds to n moderate 
and p not too large or too small, are generally not the same as the conditions for 
which the Poisson approximation to the binomial distribution works well [n large 
(≥ 100) and p very small (p ≤ .01)]. However, occasionally both these criteria are 
met. In such cases (for example, when n = 1000, p = .01), the two approximations 
yield about the same results. The normal approximation is preferable because it is 
easier to apply.
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	 Figure 5.19 	 R plot of binomial distribution, n = 10, 20, 50, 100, p = .1
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	 5.8	 N o r m a l  A p p r o x i m at i o n  t o  t h e  P o i s s o n 

Di  s t r i b u t i o n

The normal distribution can also be used to approximate discrete distributions other 
than the binomial distribution, particularly the Poisson distribution. The motivation 
for this is that the Poisson distribution is cumbersome to use for large values of µ.

The same technique is used as for the binomial distribution; that is, the mean 
and variance of the Poisson distribution and the approximating normal distribution 
are equated.

	 Equation 5.13 	 	 Normal Approximation to the Poisson Distribution 

		  	 A Poisson distribution with parameter µ is approximated by a normal distribu-
tion with mean and variance both equal to µ. Pr(X = x) is approximated by the 

area under an N(µ,µ) density from x x− +1
2

1
2

to  for x > 0 or by the area to the 

left of 1
2

 for x = 0. This approximation is used when µ ≥ 10.

The Poisson distributions for µ = 2, 5, 10, and 20 are plotted using R in 
Figure 5.21. The normal approximation is clearly inadequate for µ = 2 (Figure 5.21a), 
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	 Figure 5.20 	 R plot of binomial distribution, n = 10, 20, 50, 100, p = .2
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marginally adequate for µ = 5 (Figure 5.21b), and adequate for µ = 10 (Figure 5.21c) 
and µ = 20 (Figure 5.21d).

	 Example 5.33 	 Bacteriology  Consider again the distribution of the number of bacteria in a Petri 
plate of area A. Assume the probability of observing x bacteria is given exactly  
by a Poisson distribution with parameter µ = λA, where λ = 0.1 bacteria/cm2 and  
A = 100 cm2. Suppose 20 bacteria are observed in this area. How unusual is this event?

	 	 Solution:  The exact distribution of the number of bacteria observed in 100 cm2 is 
Poisson with parameter µ = 10. We approximate this distribution by a normal distri-
bution with mean = 10 and variance = 10. Therefore, we compute

		  Pr(X ≥ 20) ≈ Pr(Y ≥ 19.5)

where Y ~ N(λA,λA) = N(10,10)

We have

		

Pr Pr( . ) ( . )
.

Y Y≥ = − ≤ = − −



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19 5 1 19 5 1
19 5 10

10
Φ

= 1
9 5
10

1 3 0− 





= −Φ Φ.
( . 004
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)

. .1= − =

	 Figure 5.21 	 R plot of Poisson distribution, μ = 2, 5, 10, 20
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Thus, 20 or more colonies in 100 cm2 would be expected only 1.3 times in 1000 
plates, a rare event indeed. For comparison, we have also computed the exact 
Poisson probability of obtaining 20 or more bacteria, using Excel, and obtain
Pr( ) .X ≥ = =20 10 0035µ . Thus, the normal approximation is only fair in this case 
but does result in the same conclusion that obtaining 20 or more bacteria in 100 cm2 

is a rare event.

R E V I E W   QU  E ST  I ONS    5 C

1	 Why do we use the normal approximation to the binomial distribution?

2	 Which of the following binomial distributions can be well approximated by a normal 
distribution? A Poisson distribution? Both? Neither?

	 (a)	 n = 40, p = .05

	 (b)	 n = 300, p = .05

	 (c)	 n = 500, p = .001

	 (d)	 n = 1000, p = .001

3	 The prevalence of glaucoma among the elderly in high-risk inner-city populations 
is about 5%. Suppose an “Eyemobile” is sent to several neighborhoods in the 
Chicago area to identify subjects for a new glaucoma study. If 500 elderly people 
(age 65+) are screened by Eyemobile staff, then what is the probability of identifying 
at least 20 glaucoma cases?

4	 The number of deaths from heart failure in a hospital is approximately Poisson dis-
tributed with mean = 20 cases per year. In 2012, a hospital sees 35 deaths from 
heart failure. Is this an unusual occurrence? Why or why not?

	 5.9	 S u m m a r y

In this chapter continuous random variables were discussed. The concept of a 
probability-density function (pdf), which is the analog to a probability-mass function 
for discrete random variables, was introduced. In addition, generalizations of the 
concepts of expected value, variance, and cumulative distribution were presented 
for continuous random variables.

The normal distribution, the most important continuous distribution, was then 
studied in detail. The normal distribution is often used in statistical work because many 
random phenomena follow this probability distribution, particularly those that can be 
expressed as a sum of many random variables. It was shown that the normal distribu-
tion is indexed by two parameters, the mean µ and the variance σ2. Fortunately, all 
computations concerning any normal random variable can be accomplished using the 
standard, or unit, normal probability law, which has mean 0 and variance 1. Normal 
tables were introduced to use when working with the standard normal distribution. 
Alternatively, electronic tables can be used to evaluate areas and/or percentiles for any 
normal distribution. Also, because the normal distribution is easy to use, it is often 
employed to approximate other distributions. In particular, we studied the normal ap-
proximations to the binomial and Poisson distributions. These are special cases of the 
central-limit theorem, which is covered in more detail in Chapter 6. Also, to facilitate 
applications of the central-limit theorem, the properties of linear combinations of ran-
dom variables were discussed, for the case of independent random variables.

	In the next three chapters, the normal distribution is used extensively as a foun-
dation for work on statistical inference.
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Cardiovascular Disease
Because serum cholesterol is related to age and sex, some 
investigators prefer to express it in terms of z-scores. If X = 

raw serum cholesterol, then Z
X= − µ

σ
, where µ is the mean 

and σ is the standard deviation of serum cholesterol for a  
given age–gender group. Suppose Z is regarded as a 
standard normal random variable.

*5.1  What is Pr(Z < 0.5)?

*5.2  What is Pr(Z > 0.5)?

*5.3  What is Pr(−1.0 < Z < 1.5)?

Suppose a person is regarded as having high cholesterol 
if Z > 2.0 and borderline cholesterol if 1.5 < Z < 2.0.

*5.4  What proportion of people have high cholesterol?

*5.5  What proportion of people have borderline cholesterol?

Nutrition
Suppose that total carbohydrate intake in 12- to 14-year-
old boys is normally distributed, with mean = 124 g/1000 cal 
and standard deviation = 20 g/1000 cal.

5.6  What percentage of boys in this age range have carbo-
hydrate intake above 140 g/1000 cal?

5.7  What percentage of boys in this age range have carbo-
hydrate intake below 90 g/1000 cal?

Suppose boys in this age range who live below the poverty 
level have a mean carbohydrate intake of 121 g/1000 cal 
with a standard deviation of 19 g/1000 cal.

5.8  Answer Problem 5.6 for boys in this age range and 
economic environment.

5.9  Answer Problem 5.7 for boys in this age range and 
economic environment.

Hypertension
A study was conducted assessing the effect of observer 
training on measurement of blood pressure based on 
NHANES data from 1999–2000 (Ostchega, et al., [1]). A 
goal was that the difference in recorded blood pressure 
between the observer and trainer be ≤ 2 mm Hg in absolute 
value. It was reported that the mean difference in systolic 
blood pressure (SBP) between observers and trainers (i.e., 
mean observer SBP minus trainer SBP) = mean (Δ) was 
0.189 mm Hg with sd = 2.428 mm Hg.

5.10  If we assume that the distribution of Δ is normally 
distributed, then what % of (observer, trainer) pairs have a 
mean difference of ≥ 2 mm Hg in absolute value (i.e., either 
≥ 2 mm Hg or ≤ −2 mm Hg)?

5.11  If we assume that the distribution of Δ is normally dis-
tributed, then what is the 90 percentile (i.e., the upper decile) 
and 10 percentile (i.e., the lower decile) of the distribution?

Cardiovascular Disease, Pulmonary Disease
The duration of cigarette smoking has been linked to many 
diseases, including lung cancer and various forms of heart 
disease. Suppose we know that among men ages 30−34 
who have ever smoked, the mean number of years they 
smoked is 12.8 with a standard deviation of 5.1 years. For 
women in this age group, the mean number of years they 
smoked is 9.3 with a standard deviation of 3.2.

*5.12  Assuming that the duration of smoking is normally 
distributed, what proportion of men in this age group have 
smoked for more than 20 years?

*5.13  Answer Problem 5.12 for women.

Cardiovascular Disease
Serum cholesterol is an important risk factor for coronary 
disease. We can show that serum cholesterol is approxi-
mately normally distributed, with mean = 219 mg/dL and 
standard deviation = 50 mg/dL.

*5.14  If the clinically desirable range for cholesterol is 
< 200 mg/dL, what proportion of people have clinically  
desirable levels of cholesterol?

*5.15  Some investigators believe that only cholesterol 
levels over 250 mg/dL indicate a high-enough risk for heart 
disease to warrant treatment. What proportion of the popu-
lation does this group represent?

*5.16  What proportion of the general population has  
borderline high-cholesterol levels—that is, > 200 but  
< 250 mg/dL?

Hypertension
People are classified as hypertensive if their systolic blood 
pressure (SBP) is higher than a specified level for their age 
group, according to the algorithm in Table 5.1.

Assume SBP is normally distributed with mean and 
standard deviation given in Table 5.1 for age groups 1−14 
and 15−44, respectively. Define a family as a group of two 
people in age group 1−14 and two people in age group 
15−44. A family is classified as hypertensive if at least one 
adult and at least one child are hypertensive.

*5.17  What proportion of 1- to 14-year-olds are hypertensive?

*5.18  What proportion of 15- to 44-year-olds are hyper-
tensive?

Table 5.1  � Mean and standard deviation of SBP 	
(mm Hg) in specific age groups

		  Standard 	 Specified 
Age group	 Mean	 deviation	 hypertension level

  1−14	 105.0	 5.0	 115.0
15−44	 125.0	 10.0	 140.0

P r o b l e m s
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*5.19  What proportion of families are hypertensive? (As-
sume that the hypertensive status of different members of a 
family are independent random variables.)

*5.20  Suppose a community has 1000 families living in it. 
What is the probability that between one and five families 
are hypertensive?

Pulmonary Disease
Forced expiratory volume (FEV) is an index of pulmonary 
function that measures the volume of air expelled after 1 
second of constant effort. FEV is influenced by age, sex, 
and cigarette smoking. Assume that in 45- to 54-year-old 
nonsmoking men FEV is normally distributed with mean = 
4.0 L and standard deviation = 0.5 L.

In comparably aged currently smoking men FEV is nor-
mally distributed, with mean = 3.5 L and standard deviation 
= 0.6 L.

5.21  If an FEV of less than 2.5 L is regarded as showing 
some functional impairment (occasional breathlessness,  
inability to climb stairs, etc.), then what is the probability  
that a currently smoking man has functional impairment?

5.22  Answer Problem 5.21 for a nonsmoking man.

Some people are not functionally impaired now, but their 
pulmonary function usually declines with age and they even-
tually will be functionally impaired. Assume that the decline 
in FEV over n years is normally distributed, with mean = 
0.03n L and standard deviation = 0.02n L.

5.23  What is the probability that a 45-year-old man with an 
FEV of 4.0 L will be functionally impaired by age 75?

5.24  Answer Problem 5.23 for a 25-year-old man with an 
FEV of 4.0 L.

Infectious Disease
The differential is a standard measurement made during a 
blood test. It consists of classifying white blood cells into 
the following five categories: (1) basophils, (2) eosinophils, 
(3) monocytes, (4) lymphocytes, and (5) neutrophils. The 
usual practice is to look at 100 randomly selected cells 
under a microscope and to count the number of cells within 
each of the five categories. Assume that a normal adult will 
have the following proportions of cells in each category: 
basophils, 0.5%; eosinophils, 1.5%; monocytes, 4%; lym-
phocytes, 34%; and neutrophils, 60%.

*5.25  An excess of eosinophils is sometimes consistent 
with a violent allergic reaction. What is the exact probability 
that a normal adult will have 5 or more eosinophils?

*5.26  An excess of lymphocytes is consistent with vari-
ous forms of viral infection, such as hepatitis. What is 
the probability that a normal adult will have 40 or more 
lymphocytes?

*5.27  What is the probability a normal adult will have 50 or 
more lymphocytes?

*5.28  How many lymphocytes would have to appear in the 
differential before you would feel the “normal” pattern was 
violated?

*5.29  An excess of neutrophils is consistent with sev-
eral types of bacterial infection. Suppose an adult has x 
neutrophils. How large would x have to be for the prob-
ability of a normal adult having x or more neutrophils to 
be ≤5%?

*5.30  How large would x have to be for the probability of a 
normal adult having x or more neutrophils to be ≤1%?

Blood Chemistry
In pharmacologic research a variety of clinical chemistry 
measurements are routinely monitored closely for evidence 
of side effects of the medication under study. Suppose  
typical blood-glucose levels are normally distributed, with 
mean = 90 mg/dL and standard deviation = 38 mg/dL.

5.31  If the normal range is 65−120 mg/dL, then what per-
centage of values will fall in the normal range?

5.32  In some studies only values at least 1.5 times as high 
as the upper limit of normal are identified as abnormal. What 
percentage of values would fall in this range?

5.33  Answer Problem 5.32 for values 2.0 times the upper 
limit of normal.

5.34  Frequently, tests that yield abnormal results are re-
peated for confirmation. What is the probability that for a 
normal person a test will be at least 1.5 times as high as the 
upper limit of normal on two separate occasions?

5.35  Suppose that in a pharmacologic study involving 6000 
patients, 75 patients have blood-glucose levels at least 1.5 
times the upper limit of normal on one occasion. What is the 
probability that this result could be due to chance?

Cancer
A treatment trial is proposed to test the efficacy of vitamin 
E as a preventive agent for cancer. One problem with 
such a study is how to assess compliance among partici-
pants. A small pilot study is undertaken to establish criteria 
for compliance with the proposed study agents. In this 
study, 10 patients are given 400 IU/day of vitamin E and 
10 patients are given similar-sized placebo capsules over 
a 3-month period. Their serum vitamin E levels are mea-
sured before and after the 3-month period, and the change 
(3-month – baseline) is shown in Table 5.2.

Table 5.2  � Change in serum vitamin E (mg/dL) 	
in pilot study

Group	 Mean	 sd	 n

Vitamin E	 0.80	 0.48	 10
Placebo	 0.05	 0.16	 10
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*5.36  Suppose a change of 0.30 mg/dL in serum levels is 
proposed as a test criterion for compliance; that is, a patient 
who shows a change of ≥ 0.30 mg/dL is considered a com-
pliant vitamin E taker. If normality is assumed, what percent-
age of the vitamin E group would be expected to show a 
change of at least 0.30 mg/dL?

*5.37  Is the measure in Problem 5.36 a measure of sensi-
tivity, specificity, or predictive value?

*5.38  What percentage of the placebo group would be 
expected to show a change of not more than 0.30 mg/dL?

*5.39  Is the measure in Problem 5.38 a measure of sensi-
tivity, specificity, or predictive value?

*5.40  Suppose a new threshold of change, Δ mg/dL, is pro-
posed for establishing compliance. We wish to use a level of 
Δ such that the compliance measures in Problems 5.36 and 
5.38 for the patients in the vitamin E and placebo groups are 
the same. What should Δ be? What would be the compliance 
in the vitamin E and placebo groups using this threshold level?

5.41  Suppose we consider the serum vitamin E assay as a 
screening test for compliance with vitamin E supplementa-
tion. Participants whose change in serum vitamin E is ≥ Δ 
mg/dL will be considered vitamin E takers, and participants 
whose change is < Δ mg/dL will be considered placebo  
takers. Choose several possible values for Δ, and construct 
the receiver operating characteristic (ROC) curve for this 
test. What is the area under the ROC curve? (Hint: The area 
under the ROC curve can be computed analytically from the 
properties of linear combinations of normal distributions.)

Pulmonary Disease
Refer to the pulmonary-function data in the Data Set FEV.DAT 
at www.cengagebrain.com (see Problem 2.23, p. 38). 
We are interested in whether smoking status is related to 
level of pulmonary function. However, FEV is affected by 
age and sex; also, smoking children tend to be older than 
nonsmoking children. For these reasons, FEV should be 
standardized for age and sex. To accomplish this, use the  
z-score approach outlined in Problem 5.1, where the  
z-scores here are defined by age−sex groups.

5.42  Plot the distribution of z-scores for smokers and non-
smokers separately. Do these distributions look normal? Do 
smoking and pulmonary function seem in any way related in 
these data?

5.43  Repeat the analyses in Problem 5.42 for the subgroup 
of children 10+ years of age (because smoking is very rare 
before this age). Do you reach similar conclusions?

5.44  Repeat the analyses in Problem 5.43 separately for boys 
and girls. Are your conclusions the same in the two groups?

(Note: Formal methods for comparing mean FEVs between 
smokers and nonsmokers are discussed in the material on 
statistical inference in Chapter 8.)

Cardiovascular Disease
A clinical trial was conducted to test the efficacy of nife-
dipine, a new drug for reducing chest pain in patients 
with angina severe enough to require hospitalization. The 
duration of the study was 14 days in the hospital unless 
the patient was withdrawn prematurely from therapy, was 
discharged from the hospital, or died prior to this time. 
Patients were randomly assigned to either nifedipine or 
propranolol and were given the same dosage of each 
drug in identical capsules at level 1 of therapy. If pain did 
not cease at this level of therapy or if pain recurred after 
a period of pain cessation, then the patient progressed to 
level 2, whereby the dosage of each drug was increased 
according to a pre-specified schedule. Similarly, if pain 
continued or recurred at level 2, then the patient pro-
gressed to level 3, whereby the dosage of the anginal drug 
was increased again. Patients randomized to either group 
received nitrates in any amount deemed clinically appropri-
ate to help control pain.

The main objective of the study was to compare the degree 
of pain relief with nifedipine vs. propranolol. A secondary 
objective was to better understand the effects of these 
agents on other physiologic parameters, including heart rate 
and blood pressure. Data on these latter parameters are 
given in Data Set NIFED.DAT (at www.cengagebrain.com); 
the format of this file is shown in Table 5.3.

5.45  Describe the effect of each treatment regimen on 
changes in heart rate and blood pressure. Does the distri-
bution of changes in these parameters look normal or not?

5.46  Compare graphically the effects of the treatment regi-
mens on heart rate and blood pressure. Do you notice any 
difference between treatments?

Table 5.3   Format of NIFED.DAT

	Variable	 Code

ID
	Treatment group	 N = nifedipine/ 
		  P = propanolol
	Baseline heart ratea	 beats/min
	Level 1 heart rateb	 beats/min
	Level 2 heart rate	 beats/min
	Level 3 heart rate	 beats/min
	Baseline SBPa	 mm Hg
	Level 1 SBPb	 mm Hg
	Level 2 SBP	 mm Hg
	Level 3 SBP	 mm Hg

aHeart rate and SBP immediately before randomization.
bHighest heart rate and SBP at each level of therapy.
Note: Missing values indicate one of the following:
(1)  �The patient withdrew from the study before entering this level of therapy.
(2)  The patient achieved pain relief before reaching this level of therapy.
(3)  �The patient encountered this level of therapy, but this particular piece of 

data was missing. Data set available
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(Note: Formal tests for comparing changes in heart rate and 
blood pressure in the two treatment groups are covered in 
Chapter 8.)

Hypertension
Well-known racial differences in blood pressure exist be-
tween Caucasian and African American adults. These differ-
ences generally do not exist between Caucasian and African 
American children. Because aldosterone levels have been re-
lated to blood-pressure levels in adults in previous research, 
an investigation was performed to look at aldosterone levels 
among African American children and Caucasian children [2].

*5.47  If the mean plasma-aldosterone level in African Ameri-
can children was 230 pmol/L with a standard deviation of 
203 pmol/L, then what percentage of African American 
children have levels ≤ 300 pmol/L if normality is assumed?

*5.48  If the mean plasma-aldosterone level in Caucasian 
children is 400 pmol/L with standard deviation of 218 pmol/L, 
then what percentage of Caucasian children have levels ≤ 
300 pmol/L if normality is assumed?

*5.49  The distribution of plasma-aldosterone concentra-
tion in 53 Caucasian and 46 African American children is 
shown in Figure 5.22. Does the assumption of normality 
seem reasonable? Why or why not? (Hint: Qualitatively 
compare the observed number of children who have levels 
≤ 300 pmol/L with the expected number in each group un-
der the assumption of normality.)

Hepatic Disease
Suppose we observe 84 alcoholics with cirrhosis of the 
liver, of whom 29 have hepatomas—that is, liver-cell carci-
noma. Suppose we know, based on a large sample, that the 
risk of hepatoma among alcoholics without cirrhosis of the 
liver is 24%.

5.50  What is the probability that we observe exactly 29 
alcoholics with cirrhosis of the liver who have hepatomas if 
the true rate of hepatoma among alcoholics (with or without 
cirrhosis of the liver) is .24?

5.51  What is the probability of observing at least 29 hepa-
tomas among the 84 alcoholics with cirrhosis of the liver 
under the assumptions in Problem 5.50?

5.52  What is the smallest number of hepatomas that would 
have to be observed among the alcoholics with cirrhosis of 
the liver for the hepatoma experience in this group to differ 
from the hepatoma experience among alcoholics without 
cirrhosis of the liver? (Hint: Use a 5% probability of getting 
a result at least as extreme to denote differences between 
the hepatoma experiences of the two groups.)

Diabetes, Obstetrics
Pregnant women with gestational diabetes mellitus (GDM) 
are at risk for long-term weight gain and subsequent devel-
opment of type II diabetes. A pilot weight loss clinical trial 
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Figure 5.22   Plasma-aldosterone concentrations 	
in 53 Caucasian and 46 African American children. Values 
within the shaded area were undetectable (< 50 pmol/L). 
The solid horizontal lines indicate the mean values, and 
the broken horizontal lines indicate the mean ± se. The 
concept of standard error (se) is discussed in Chapter 6.

was conducted where women with GDM were randomized 
to either an active intervention using a web-based delivery 
or a control intervention (Nicklas et al. [3]). Women were 
randomized at 6 weeks postpartum and then were seen at 
follow-up visits at 6 months and 12 months postpartum. At 
12 months postpartum, women in the active group lost a 
mean of 0.2 lb. with a standard deviation of 15.4 lbs.

5.53  If we assume that the change in weight from pre-
pregnancy to 12 months is normally distributed, then what 
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percent of women in the active group were at or below their 
pre-pregnancy weight at 12 months postpartum?

Hint: For all parts of this problem, assume that weights 
can be measured exactly and no continuity correction is 
necessary.

At 12 months postpartum, women in the control group gained 
a mean of 7.9 lbs. with a standard deviation of 15.3 lbs. com-
pared with their pre-pregnancy weight.

5.54  What is the probability that a control group woman 
was at or below her pre-pregnancy weight at 12 months?

Hint: Make the same assumptions as in Problem 5.53.

5.55  What are the approximate 10th and 90th percentiles 
of weight change from pre-pregnancy to 12 months post-
partum among women in the active group? Among women 
in the control group?

Hint: Make the same assumptions as in Problems 5.53 and 
5.54.

Officials in the State Health Department are considering 
using the active intervention in the general population of 
women with GDM. However, they expect that 80% of the 
women who are offered the intervention will actually com-
ply with the intervention and are expected to have a weight 
gain distribution similar to the active group. The remaining 
20% of women will lose interest and are expected to have 
a weight gain distribution similar to the control group.

5.56  What % of the GDM women in the program will be ex-
pected to be no more than 2 lbs. above their pre-pregnancy 
weight?

The program will be implemented if at least 50% of the 
GDM women in the program are no more than 2 lbs. above 
their pre-pregnancy weight at 12 months postpartum.

5.57  Based on the results in Problem 5.56, should the pro-
gram be implemented? Why or why not?

Environmental Health
5.58  A study was conducted relating particulate air pollu-
tion and daily mortality in Steubenville, Ohio [4]. On average 
over the past 10 years there have been 3 deaths per day in 
Steubenville. Suppose that on 90 high-pollution days—days 
in which the total suspended particulates are in the highest 
quartile among all days—the death rate is 3.2 deaths per day, 
or 288 deaths observed over the 90 high-pollution days. Are 
there an unusual number of deaths on high-pollution days?

Nutrition
Refer to Data Set VALID.DAT (at www.cengagebrain.com) 
described in Table 2.16 (p. 38).

5.59  Consider the nutrients saturated fat, total fat, and total 
calories. Plot the distribution of each nutrient for both the 

 Data set available

diet record and the food-frequency questionnaire. Do you 
think a normal distribution is appropriate for these nutrients?

(Hint: Compute the observed proportion of women who 
fall within 1.0, 1.5, 2.0, and 2.5 standard deviations of the 
mean. Compare the observed proportions with the ex-
pected proportions based on the assumption of normality.)

5.60  Answer Problem 5.59 using the ln(nutrient) transfor-
mation for each nutrient value. Is the normality assumption 
more appropriate for log-transformed or untransformed 
values, or neither?

5.61  A special problem arises for the nutrient alcohol con-
sumption. There are often a large number of nondrinkers 
(alcohol consumption = 0) and another large group of drinkers 
(alcohol consumption > 0). The overall distribution of alcohol  
consumption appears bimodal. Plot the distribution of  
alcohol consumption for both the diet record and the 
food frequency questionnaire. Do the distributions appear  
unimodal or bimodal? Do you think the normality assumption 
is appropriate for this nutrient?

Cancer, Neurology
A study concerned the risk of cancer among patients with 
cystic fibrosis [5]. Given registries of patients with cystic 
fibrosis in the United States and Canada, cancer incidence 
among cystic-fibrosis patients between January 1, 1985, 
and December 31, 1992, was compared with expected 
cancer-incidence rates based on the Surveillance Epidemi-
ology and End Results program from the National Cancer 
Institute from 1984 to 1988.

5.62  Among cystic-fibrosis patients, 37 cancers were  
observed, whereas 45.6 cancers were expected. What 
distribution can be used to model the distribution of the 
number of cancers among cystic-fibrosis patients?

5.63  Are there an unusually low number of cancers among 
cystic-fibrosis patients?

5.64  In the same study 13 cancers of the digestive tract 
were observed, whereas only 2 cancers were expected. Are 
there an unusually high number of digestive cancers among 
cystic-fibrosis patients?

Hypertension
A doctor diagnoses a patient as hypertensive and pre-
scribes an antihypertensive medication. To assess the 
clinical status of the patient, the doctor takes n replicate 
blood-pressure measurements before the patient starts the 
drug (baseline) and n replicate blood-pressure measure-
ments 4 weeks after starting the drug (follow-up). She 
uses the average of the n replicates at baseline minus the 
average of the n replicates at follow-up to assess the clini-
cal status of the patient. She knows, from previous clinical 
experience with the drug, that the mean diastolic blood 
pressure (DBP) change over a 4-week period over a large 
number of patients after starting the drug is 5.0 mm Hg with 
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variance 33/n, where n is the number of replicate measures 
obtained at both baseline and follow-up.

5.65  If we assume the change in mean DBP is normally 
distributed, then what is the probability that a subject 
will decline by at least 5 mm Hg if 1 replicate measure is  
obtained at baseline and follow-up?

5.66  The physician also knows that if a patient is untreated 
(or does not take the prescribed medication), then the mean 
DBP over 4 weeks will decline by 2 mm Hg with variance 
33/n. What is the probability that an untreated subject 
will decline by at least 5 mm Hg if 1 replicate measure is  
obtained at both baseline and follow-up?

5.67  Suppose the physician is not sure whether the patient 
is actually taking the prescribed medication. She wants 
to take enough replicate measurements at baseline and 
follow-up so that the probability in Problem 5.65 is at least 
five times the probability in Problem 5.66. How many repli-
cate measurements should she take?

Endocrinology
A study compared different treatments for preventing bone 
loss among postmenopausal women younger than 60 years 
of age [6]. The mean change in bone-mineral density of the 
lumbar spine over a 2-year period for women in the placebo 
group was −1.8% (a mean decrease), with a standard de-
viation of 4.3%. Assume the change in bone-mineral density 
is normally distributed.

5.68  If a decline of 2% in bone-mineral density is consid-
ered clinically significant, then what percentage of women 
in the placebo group can be expected to show a decline of 
at least this much?

The change in bone-mineral density of the lumbar spine over 
a 2-year period among women in the alendronate 5-mg group 
was +3.5% (a mean increase), with a standard deviation of 
4.2%.

5.69  What percentage of women in the alendronate 5-mg 
group can be expected to have a clinically significant de-
cline in bone-mineral density as defined in Problem 5.68?

5.70  Suppose 10% of the women assigned to the alen-
dronate 5-mg group are actually not taking their pills (non-
compliers). If noncompliers are assumed to have a similar 
response as women in the placebo group, what percentage 
of women complying with the alendronate 5-mg treatment 
would be expected to have a clinically significant decline? 
(Hint: Use the total-probability rule.)

Cardiovascular Disease
Obesity is an important determinant of cardiovascular dis-
ease because it directly affects several established cardio-
vascular risk factors, including hypertension and diabetes. 
It is estimated that the average weight for an 18-year-old 
woman is 123 lbs. and increases to 142 lbs. at 50 years 

of age. Also, let us assume that the average SBP for a 
50-year-old woman is 125 mm Hg, with a standard deviation 
of 15 mm Hg, and that SBP is normally distributed.

5.71  What proportion of 50-year-old women is hyperten-
sive, if hypertension is defined as SBP ≥ 140 mm Hg?

From previous clinical trials, it is estimated that for every 
10 lbs. of weight loss there is, on average, a corresponding 
reduction in mean SBP of 3 mm Hg.

5.72  Suppose an average woman did not gain any weight 
from age 18 to 50. What average SBP for 50-year-old 
women would be expected under these assumptions?

5.73  If the standard deviation of SBP under the assumption 
in Problem 5.72 remained the same (15 mm Hg), and the 
distribution of SBP remained normal, then what would be 
the expected proportion of hypertensive women under the 
assumption in Problem 5.72?

5.74  What percentage of hypertension at age 50 is attrib-
utable to the weight gain from age 18 to 50?

S I M U L A T I O N

5.75  Draw 100 random samples from a binomial distribution 
with parameters n = 10 and p = .4. Consider an approxima-
tion to this distribution by a normal distribution with mean = 
np = 4 and variance = npq = 2.4. Draw 100 random samples 
from the normal approximation. Plot the two frequency distri-
butions on the same graph, and compare the results. Do you 
think the normal approximation is adequate here?

5.76  Answer the question in Problem 5.75 for a binomial 
distribution with parameters n = 20 and p = .4 and the  
corresponding normal approximation.

5.77  Answer the question in Problem 5.75 for a binomial 
distribution with parameters n = 50 and p = .4 and the cor-
responding normal approximation.

S I M U L A T I O N

An apparatus displaces a collection of balls to the top of 
a stack by suction. At the top level (Level 1) each ball is 
shifted 1 unit to the left or 1 unit to the right at random with 
equal probability (see Figure 5.23). The ball then drops 
down to Level 2. At Level 2, each ball is again shifted 1 unit 
to the left or 1 unit to the right at random. The process 
continues for 15 levels; the balls remain at the bottom for a 
short time and are then forced by suction to the top. (Note: 
A similar apparatus, located in the Museum of Science, 
Boston, Massachusetts, is displayed in Figure 5.24.)

5.78  What is the exact probability distribution of the posi-
tion of the balls at the bottom with respect to the entry posi-
tion (arbitrarily denoted by 0)?

5.79  Can you think of an approximation to the distribution 
derived in Problem 5.78?
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S I M U L A T I O N

5.80  Perform a simulation of this process (e.g., using 
MINITAB, Excel, or R) with 100 balls, and plot the frequency 
distribution of the position of the balls at the bottom with 
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Figure 5.23   Apparatus for random displacement of balls

Figure 5.24  � Probability apparatus at the Museum 
of Science, Boston
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respect to the entry position. Does the distribution appear 
to conform to the distributions derived in Problems 5.78 
and 5.79?

Orthopedics
A study was conducted of a diagnostic test (the FAIR 
test, i.e., hip flexion, adduction, and internal rotation) used 
to identify people with piriformis syndrome (PS), a pelvic 
condition that involves malfunction of the piriformis muscle 
(a deep buttock muscle), which often causes lumbar and 
buttock pain with sciatica (pain radiating down the leg) 
[7]. The FAIR test is based on nerve-conduction velocity 
and is expressed as a difference score (nerve-conduction 
velocity in an aggravating posture minus nerve-conduction 
velocity in a neutral posture). It is felt that the larger the 
FAIR test score, the more likely a participant will be to 
have PS. Data are given in the Data Set PIRIFORM.DAT 
for 142 participants without PS (piriform = 1) and 489 
participants with PS (piriform = 2) for whom the diagnosis 
of PS was based on clinical criteria. The FAIR test value 
is called MAXCHG and is in milliseconds (ms). A cutoff 
point of ≥ 1.86 ms on the FAIR test is proposed to define 
a positive test.

5.81  What is the sensitivity of the test for this cutoff point?

5.82  What is the specificity of the test for this cutoff point?

5.83  Suppose that 70% of the participants who are referred 
to an orthopedist who specializes in PS will actually have the 
condition. If a test score of ≥ 1.86 ms is obtained for a par-
ticipant, then what is the probability that the person has PS?

5.84  The criterion of ≥ 1.86 ms to define a positive test is 
arbitrary. Using different cutoff points to define positivity, 
obtain the ROC curve for the FAIR test. What is the area 
under the ROC curve? What does it mean in this context?

5.85  Do you think the distribution of FAIR test scores within 
a group is normally distributed? Why or why not?
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Ophthalmology
Retinitis pigmentosa (RP) is a genetic ocular disease that 
results in substantial visual loss and in many cases leads to 
blindness. One measure commonly used to assess the vi-
sual function of these patients is the Humphrey 30−2 visual-
field total point score. The score is a measure of central 
vision and is computed as a sum of visual sensitivities over 
76 locations, with a higher score indicating better central 
vision. Normals have an average total point score of 2500 
db (decibels), and the average 37-year-old RP patient has a 
total point score of 900 db. A total point score of < 250 db 
is often associated with legal blindness. Longitudinal stud-
ies have indicated that the change in total point score over 
N years of the average RP patient is normally distributed 
with mean change = 45N and variance of change = 1225N. 
(Assume the total point score is measured without error; 
hence, no continuity correction is needed.)

5.86  What is the probability that a patient will change by  
≥ 200 db over 5 years?

5.87  If a 37-year-old RP patient has an initial total point 
score of 900 db, what is the probability that the patient 
will become legally blind (that is, have a total point score of  
< 250 db) by age 50?

Suppose a new treatment is discovered based on ocular 
implants. The treatment immediately lowers total point score 
by 50 db. However, the long-term effect is to reduce the 
mean rate of decline to 25 db per year (from the previous  
45 db per year), while maintaining the same variance of 
change as previously (that is, variance of change over  
N years = 1225N).

5.88  If a 37-year-old RP patient has an initial total point score 
of 900 db and receives the implant treatment, what is the prob-
ability that the patient will become legally blind by age 50?

Diabetes
Physicians recommend that children with type-I (insulin-
dependent) diabetes keep up with their insulin shots to 
minimize the chance of long-term complications. In addition, 
some diabetes researchers have observed that growth rate 
of weight during adolescence among diabetic patients is 
affected by level of compliance with insulin therapy. Sup-
pose 12-year-old type-I diabetic boys who comply with their 
insulin shots have a weight gain over 1 year that is normally 
distributed, with mean = 12 lbs. and variance = 12 lbs.

5.89  What is the probability that compliant type-I diabetic 
12-year-old boys will gain at least 15 lbs. over 1 year?

Conversely, 12-year-old type-I diabetic boys who do not 
take their insulin shots have a weight gain over 1 year that is 
normally distributed with mean = 8 lbs. and variance = 12 lbs.

5.90  Answer the question in Problem 5.89 for noncompli-
ant type-I diabetic 12-year-old boys.

It is generally assumed that 75% of type-I diabetics comply 
with their insulin regimen. Suppose that a 12-year-old type-I 

diabetic boy comes to clinic and shows a 5-lb. weight gain 
over 1 year (actually, because of measurement error, as-
sume this is an actual weight gain from 4.5 to 5.5 lbs.). The 
boy claims to be taking his insulin medication.

5.91  What is the probability that he is telling the truth?

Environmental Health
Some previous studies have shown that mortality rates are 
higher on days with high pollution levels. In a follow-up on 
this observation, a group of 50 nonfatal heart attack cases 
were ascertained over a 1-year period. For each case, the 
level of pollution (total suspended particulates) was mea-
sured on the day of the heart attack (index date) and also  
1 month before the heart attack (control date).

The results shown in Table 5.4 were obtained:

Table 5.4  � Comparison of pollution levels on 	
index date vs. control date

	 n

Pollution level on index date > pollution level	  
on control date	 30
Pollution level on control date > pollution level	  
on index date	 15
Pollution level the same on	  
both days	 5

Total	 50

5.92  Suppose the level of pollution has nothing to do with 
the incidence of heart attack. How many heart attacks 
would be expected to occur where the pollution level on the 
index date is higher than the pollution level on the control 
date? (Ignore cases where the pollution level on the index 
and control dates are the same.)

5.93  Given the preceding data, assess whether pollution 
level acts as a trigger effect in causing heart attack. (Hint: 
Use the normal approximation to the binomial distribution.)

Researchers also analyzed cases occurring in the winter 
months. They found that on 10 days the pollution level on 
the index date was higher than on the control date, whereas 
on 4 days the pollution level on the control date was higher 
than on the index date. For 2 cases, the pollution level was 
the same on both days.

5.94  Answer Problem 5.93 based on cases in winter.

Ophthalmology
A previous study found that people consuming large 
quantities of vegetables containing lutein (mainly spin-
ach) were less likely to develop macular degeneration, 
a common eye disease among older people (age 65+) 
that causes a substantial loss in visual acuity and in some 
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cases can lead to total blindness. To follow up on this 
observation, a clinical trial is planned in which participants 
65+ years of age without macular degeneration will be 
assigned to either a high-dose lutein supplement tablet 
or a placebo tablet taken once per day. To estimate the 
possible therapeutic effect, a pilot study was conducted 
in which 9 people 65+ years of age were randomized to 
placebo and 9 people 65+ years of age were randomized 
to lutein tablets (active treatment). Their serum lutein level 
was measured at baseline and again after 4 months of 
follow-up. From previous studies, people with serum lu-
tein ≥ 10 mg/dL are expected to get some protection from 
macular degeneration. However, the level of serum lutein 
may vary depending on genetic factors, dietary factors, 
and study supplements.

5.95  Suppose that among people randomized to placebo, at 
a 4-month follow-up mean serum lutein level = 6.4 mg/dL with 
standard deviation = 3 mg/dL. If we presume a normal distribu-
tion for serum lutein, then what percentage of placebo subjects 
will have serum lutein in the therapeutic range (≥ 10 mg/dL)? 
(For the following problems, assume that lutein can be mea-
sured exactly, so that no continuity correction is necessary.)

5.96  Suppose that among people randomized to lutein 
tablets, at a 4-month follow-up the mean serum lutein level 
= 21 mg/dL with standard deviation = 8 mg/dL. If we pre-
sume a normal distribution for serum-lutein values among 
lutein-treated participants, then what percentage of people 
randomized to lutein tablets will have serum lutein in the 
therapeutic range?

Suppose for the sake of simplicity that the incidence  
of macular degeneration is 1% per year among people  
65+ years of age in the therapeutic range (≥10 mg/dL) and 
2% per year among people 65+ years of age with lower 
levels of lutein (< 10 mg/dL).

5.97  What is the expected incidence rate of macular de-
generation among lutein-treated participants? (Hint: Use 
the total-probability rule.)

5.98  What is the expected relative risk of macular degener-
ation for lutein-treated participants versus placebo-treated 
participants in the proposed study?

Pediatrics 
A study was recently published in Western Australia on the 
relationship between method of conception and prevalence 
of major birth defects (Hansen et al. [8]).

The prevalence of at least one major birth defect among 
infants conceived naturally was 4.2%, based on a large 
sample of infants. Among 837 infants born as a result of in-
vitro fertilization (IVF), 75 had at least one major birth defect.

5.99  How many infants with at least one birth defect would 
we expect among the 837 IVF infants if the true prevalence 
of at least one birth defect in the IVF group were the same 
as for infants conceived naturally?

5.100  Does an unusual number of infants have at least one 
birth defect in the IVF group? Why or why not? (Hint: Use 
an approximation to the binomial distribution.)

In addition, data were also provided regarding specific birth 
defects. There were 6 chromosomal birth defects among 
the IVF infants. Also, the prevalence of chromosomal birth 
defects among infants conceived naturally is 9/4000.

5.101  Are there an unusual number of chromosomal birth 
defects in the IVF group? (Hint: Use an approximation to the 
binomial distribution.)

Accident Epidemiology
Automobile accidents are a frequent occurrence and one 
of the leading causes of morbidity and mortality among 
persons 18−30 years of age. The National Highway & Traf-
fic Safety Administration (NHTSA) has estimated that the 
average driver in this age group has a 6.5% probability of 
having at least one police-reported automobile accident 
over the past year.

Suppose we study a group of medical interns who are 
on a typical hospital work schedule in which they have 
to work through the night for at least one of every three 
nights. Among 20 interns, 5 report having had an auto-
mobile accident over the past year while driving to or from 
work.

Suppose the interns have the same risk of having an auto-
mobile accident as a typical person ages 18−30.

5.102  What is a reasonable probability model for the num-
ber of interns with at least one automobile accident over the 
past year? What are the parameters of this model?

5.103  Apply the model in Problem 5.102 to assess whether 
there is an excessive number of automobile accidents 
among interns compared with the average 18- to 30-year-
old. Explain your answer.

The study is expanded to include 50 medical interns, of 
whom 11 report having had an automobile accident over 
the past year.

One issue in the above study is that not all people report au-
tomobile accidents to the police. The NHTSA estimates that 
only half of all auto accidents are actually reported. Assume 
this rate applies to interns.

5.104  What is an exact probability model for the num-
ber of automobile accidents over the past year for the 
50 medical interns? (Note: The 11 reported accidents 
include both police-reported and non-police-reported 
accidents).

5.105  Assess whether there is an excessive number of 
automobile accidents among interns under these altered 
assumptions. Explain your answer. (Hint: An approximation 
may be helpful.)

5.106  What is the 40th percentile of a normal distribution 
with mean = 5 and variance = 9?
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5.107  What is the sum of the 40th and 60th percentiles of 
a normal distribution with a mean = 8.2 and variance = 9.5?

5.108  What is z.90?

Obstetrics
A study was performed of different predictors of low birth-
weight deliveries among 32,520 women in the Nurses’ 
Health Study [9].

The data in Table 5.5 were presented concerning the distri-
bution of birthweight in the study:

Table 5.5  � Distribution of birthweight in the 	
Nurses’ Health Study

Category	 Birthweight (g)	 N	 %

A	 < 2500	 1850	 5.7
B	 2500–2999	 6289	 19.3
C	 3000–3499	 13,537	 41.6
D	 3500–3999	 8572	 26.4
E	 4000+	 2272	 7.0

Total		  32,520	 100.0

5.109  If 20 women are randomly chosen from the study, 
what is the probability that exactly 2 will have a low birth-
weight delivery (defined as < 2500 g)?

5.110  What is the probability that at least 2 women will 
have a low birthweight delivery?

An important risk factor for low birthweight delivery is ma-
ternal smoking during pregnancy (MSMOK). The data in 
Table 5.6 were presented relating MSMOK to birthweight.

Table 5.6  � Association between maternal smoking 
and birthweight category in the Nurses’ 
Health Study

Category	 Birthweight (g)	 % MSMOK = yes

A	 < 2500	 40
B	 2500–2999	 34
C	 3000–3499	 25
D	 3500–3999	 19
E	 4000+	 15

5.111  If 50 women are selected from the < 2500 g group, 
then what is the probability that at least half of them will 
have smoked during pregnancy?

5.112  What is the probability that a woman has a low birth-
weight delivery if she smokes during pregnancy? (Hint: Use 
Bayes’ rule.)

Cancer
The Shanghai Women’s Health Study (SWHS) was under-
taken to determine risk factor for different cancers among 

Asian women. The women were recruited from urban com-
munities in 1997−2000 and were interviewed every 2 years 
to obtain health-related information.

One issue is whether risk prediction models derived from 
American populations are also applicable to Asian women.

5.113  Suppose the expected number of breast cancer 
cases among a large number of 45- to 49-year-old women 
in this study who were followed for 7 years is 149, while  
the observed number of cases is 107. Are there an unusu-
ally small number of cases among Asian women? Why or 
why not?

Another aspect of the study is to use the SWHS data to 
predict the long-term incidence of breast cancer in Chinese 
women. Those incidence data are presented in Table 5.7.

 

Table 5.7  � Incidence rate of breast cancer by age 	
in the SWHS

	 Annual incidence 
Age	 per 105 women

40–44	 63.8
45–49	 86.6
50–54	 92.6
55–59	 107.0
60–64	 120.9

5.114  What is the predicted cumulative incidence of breast 
cancer from age 40 to 64 (i.e., over a 25-year period) 
among Chinese women? (Assume no deaths during this 
period.)

5.115  Suppose that in the year 2000 there are 10,000,000 
Chinese women age 40 years with no prior breast cancer. 
What is the expected number of breast cancer cases in this 
group by the year 2025? (Assume no deaths during this 
period.)

5.116  What is the difference between a prevalence rate of 
breast cancer and an incidence rate of breast cancer?

Diabetes

The Diabetes Prevention Trial (DPT) involved a weight loss 
trial in which half the subjects received an active interven-
tion and the other half a control intervention. For subjects  
in the active intervention group, the average reduction 
in body mass index (BMI, i.e., weight in kg/height2 in m2) 
over 24 months was 1.9 kg/m2. The standard deviation of 
change in BMI was 6.7 kg/m2.

5.117  If the distribution of BMI change is approximately 
normal, then what is the probability that a subject in the ac-
tive group would lose at least 1 BMI unit over 24 months?

In the control group of the Diabetes Prevention Trial, the 
mean change in BMI was 0 units with a standard deviation 
of 6 kg/m2.
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5.118  What is the probability that a random control group 
participant would lose at least 1 BMI unit over 24 months?

It was known that only 70% of the subjects in the active 
group actually complied with the intervention; that is, 30% 
of subjects either dropped out or did not attend the required 
group and individual counseling meetings. We will refer to 
this latter 30% of subjects as dropouts.

5.119  If we assume that dropouts had the same distribution 
of change as the subjects in the control group, then what is 
the probability that an active subject who complied with the 
intervention lost at least 1 kg/m2?

Ophthalmology, Genetics
Age-related macular degeneration (AMD) is a common 
eye disease among the elderly that can lead to partial 
or total loss of vision. It is well known that smoking and 
excessive weight tend to be associated with higher in-
cidence rates of AMD. More recently, however, several 
genes have been found to be associated with AMD as 
well. One gene that has been considered is the Y402H 
gene (RS 1061170). There are three genotypes for 
the Y402H gene—TT, TC, and CC. The relationship  
between AMD and the Y402H genotype is as follows:

Table 5.8  � Association between Y402H genotype 
and prevalence of AMD in a high-risk 
population

Y402H	 AMD = yes	 AMD = no

TT (wild type)	 41	 380
TC	 119	 527
CC	 121	 278

Total	 281	 1185

5.120  What is the relative risk for AMD for the CC geno-
type compared with the TT genotype?

One issue is whether the Y402H gene is in Hardy- 
Weinberg equilibrium (HWE). For a gene to be in HWE,  
its two alleles must assort independently.

5.121  Under HWE, what is the expected frequency of the TC 
genotype among the 1185 subjects in the AMD = no group?

5.122  Are the data consistent with HWE? Specifically, is 
the number of heterozygotes (TC) significantly lower than 
expected under HWE?

Hypertension
Blood pressure readings are known to be highly variable. 
Suppose we have mean SBP for one individual over n visits 
with k readings per visit Xn k,( ). The variability of Xn k,( ) de-
pends on n and k and is given by the formula σw

2 = σA
2/n +  

σ2/(nk), where σA
2 = between visit variability and σ2 = within 

visit variability. For 30- to 49-year-old Caucasian females, 
σA

2 = 42.9 and σ2 = 12.8. For one individual, we also assume 
that Xn k,  is normally distributed about their true long-term 
mean = µ with variance = σw

2.

5.123  Suppose a woman is measured at two visits with two 
readings per visit. If her true long-term SBP = 130 mm Hg, 
then what is the probability that her observed mean SBP 
is ≥140 mm Hg? (Ignore any continuity correction.) (Note: 
By true mean SBP we mean the average SBP over a large 
number of visits for that subject.)

5.124  Suppose we want to observe the woman over n 
visits, where n is sufficiently large so that there is less than 
a 5% chance that her observed mean SBP will not differ 
from her true mean SBP by more than 5 mm Hg. What is 
the smallest value of n to achieve this goal? (Note: Assume 
two readings per visit.)

It is also known that over a large number of 30- to 49-year-old 
Caucasian women, their true mean SBP is normally distrib-
uted with mean = 120 mm Hg and standard deviation = 14 
mm Hg. Also, over a large number of African American 30- to 
49-year-old women, their true mean SBP is normal with mean 
= 130 mm Hg and standard deviation = 20 mm Hg.

5.125  Suppose we select a random 30- to 49-year-old 
Caucasian woman and a random 30- to 49-year-old African 
American woman. What is the probability that the African 
American woman has a higher true SBP?

Hint: Use Equation 5.10 (on page 133).

Ornithology
The Christmas Bird Count (CBC) is an annual tradition in 
Lexington, Massachusetts. A group of volunteers counts the 
number of birds of different species over a 1-day period. 
Each year, there are approximately 30–35 hours of obser-
vation time split among multiple volunteers. The following 
counts were obtained for the Northern Cardinal (or cardinal, 
in brief) for the period 2005–2011.

Table 5.9  � Number of Cardinals observed 
Christmas Day, 2005–2011, Lexington, 
Massachusetts

Year	 Number	 Year	 Number

2005	 76	 2009	 62
2006	 47	 2010	 69
2007	 63	 2011	 62
2008	 53		

Note:  ∑ ∑= , = ,212
= =

x x432 27ii ii1

7 2
1

7

5.126  What is the mean number of cardinal birds per year 
observed from 2005 to 2011?

5.127  What is the standard deviation (sd) of the number of 
cardinal birds observed?
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Suppose we assume that the distribution of the number of 
cardinal birds observed per year is normally distributed and 
that the true mean and sd are the same as the sample mean 
and sd calculated in Problems 5.126 and 5.127.

5.128  What is the probability of observing at least 60 
cardinal birds in 2012? (Hint: Apply a continuity correction 
where appropriate.)

The observers wish to identify a normal range for the num-
ber of cardinal birds observed per year. The normal range 

will be defined as the interval (L, U), where L is the largest 
integer ≤ 15th percentile and U is the smallest integer ≥ 
85th percentile .

5.129  If we make the same assumptions as in Problem 
5.128, then what is L? What is U?

5.130  What is the probability that the number of cardinal 
birds will be ≥ U at least once on Christmas day during the 
10-year period 2012–2021? (Hint: Make the same as-
sumptions as in Problem 5.128.)
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6
	 6.1	 I n t r o d u c t i o n

Chapters 3 through 5 explored the properties of different 
probability models. In doing so, we always assumed the 
specific probability distributions were known.

	 Example 6.1 	 Infectious Disease  We assumed the number of neutrophils in a sample of 100 white 
blood cells was binomially distributed, with parameter p = .6.

	 Example 6.2 	 Bacteriology  We assumed the number of bacterial colonies on a 100-cm2 agar plate 
was Poisson distributed, with parameter µ = 2.

	 Example 6.3 	 Hypertension  We assumed the distribution of diastolic blood-pressure (DBP) 
measurements in 35- to 44-year-old men was normal, with mean µ = 80 mm Hg and 
standard deviation σ = 12 mm Hg.

In general, we have been assuming that the properties of the underlying 
distributions from which our data are drawn are known and that the only question 
left is what we can predict about the behavior of the data given an understanding 
of these properties.

	 Example 6.4 	 Hypertension  Using the model in Example 6.3, we could predict that about  
95% of all DBP measurements from 35- to 44-year-old men should fall between  
80 + 2 (12) mm Hg = 56 and 104 mm Hg.

The problem addressed in the rest of this text is that we have a data set and we 
want to infer the properties of the underlying distribution from this data set. This in-
ference usually involves inductive reasoning rather than deductive reasoning; that 
is, in principle, a variety of different probability models must at least be explored to see 
which model best “fits” the data.

Statistical inference can be further subdivided into the two main areas of esti-
mation and hypothesis testing. Estimation is concerned with estimating the values 
of specific population parameters; hypothesis testing is concerned with testing 
whether the value of a population parameter is equal to some specific value. Prob-
lems of estimation are covered in this chapter, and problems of hypothesis testing 
are discussed in Chapters 7 through 10.

Estimation
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Some typical problems that involve estimation follow.

	 Example 6.5 	 Hypertension  Suppose we measure the systolic blood pressure (SBP) of a group 
of Samoan villagers and we believe the underlying distribution is normal. How 
can the parameters of this distribution (µ, σ2) be estimated? How precise are our 
estimates?

	 Example 6.6 	 Infectious Disease  Suppose we look at people living within a low-income census 
tract in an urban area and we wish to estimate the prevalence of human immuno-
deficiency virus (HIV) in the community. We assume the number of cases among n 
people sampled is binomially distributed, with some parameter p. How is the para
meter p estimated? How precise is this estimate?

In Examples 6.5 and 6.6, we were interested in obtaining specific values as  
estimates of our parameters. These values are often referred to as point estimates. 
Sometimes we want to specify a range within which the parameter values are likely 
to fall. If this range is narrow, then we may feel our point estimate is good. This type 
of problem involves interval estimation.

	 Example 6.7 	 Ophthalmology  An investigator proposes to screen a group of 1000 people ages 
65 or older to identify those with visual impairment—that is, a visual acuity of 
20/50 or worse in both eyes, even with the aid of glasses. Suppose we assume the 
number of people with visual impairment ascertained in this manner is binomi-
ally distributed, with parameters n = 1000 and unknown p. We would like to ob-
tain a point estimate of p and provide an interval about this point estimate to see 
how precise our point estimate is. For example, we would feel more confidence 
in a point estimate of 5% if this interval were .04−.06 than if it were .01–.10.

	 6.2	 T h e  Re  l at i o n s h i p  B e t w ee  n  P o p u l at i o n 

a n d  S a m p l e

	 Example 6.8 	 Obstetrics  Suppose we want to characterize the distribution of birthweights of all 
liveborn infants born in the United States in 2013. Assume the underlying distribu-
tion of birthweight has an expected value (or mean) µ and variance σ2. Ideally, we 
wish to estimate µ and σ2 exactly, based on the entire population of U.S. liveborn 
infants in 2013. But this task is difficult with such a large group. Instead, we decide 
to select a random sample of n infants who are representative of this large group and 
use the birthweights x1 , . . . , xn from this sample to help us estimate µ and σ2. What 
is a random sample?

	De finition 6.1  	 A random sample is a selection of some members of the population such that each 
member is independently chosen and has a known nonzero probability of being 
selected.

	De finition 6.2 	 A simple random sample is a random sample in which each group member has the 
same probability of being selected.
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	De finition 6.3 	 The reference, target, or study population is the group we want to study. The  
random sample is selected from the study population.

For ease of discussion, we use the abbreviated term “random sample” to denote 
a simple random sample. Although many samples in practice are random samples, 
this is not the only type of sample used in practice. A popular alternative design is 
cluster sampling.

	 Example 6.9	 Cardiovascular Disease  The Minnesota Heart Study seeks to accurately assess the 
prevalence and incidence of different types of cardiovascular morbidity (such as 
heart attack and stroke) in the greater Minneapolis–St. Paul metropolitan area, as 
well as trends in these rates over time. It is impossible to survey every person in the 
area. It is also impractical to survey, in person, a random sample of people in the area 
because that would entail dispersing a large number of interviewers throughout the 
area. Instead, the metropolitan area is divided into geographically compact regions, 
or clusters. A random sample of clusters is then chosen for study, and several inter-
viewers go to each cluster selected. The primary goal is to enumerate all households 
in a cluster and then survey all members of these households, with the secondary 
goal being to identify all adults age 21 years and older. The interviewers then invite 
age-eligible individuals to be examined in more detail at a centrally located health 
site within the cluster. The total sample of all interviewed subjects throughout the 
metropolitan area is called a cluster sample. Similar strategies are also used in many 
national health surveys. Cluster samples require statistical methods that are beyond 
the scope of this book. See Cochran [1] for more discussion of cluster sampling.

In this book, we assume that all samples are random samples from a reference 
population.

	 Example 6.10	 Epidemiology  The Nurses’ Health Study 3 is a large epidemiologic study involving 
more than 40,000 nurses residing in 11 large states in the United States. The nurses 
were first contacted by internet in 2013 and have been followed every 6 months 
by internet or smart phone. Suppose we want to select a sample of 100 nurses to 
test a new procedure for obtaining blood samples by mail. One way of selecting the 
sample is to assign each nurse an ID number and then select the nurses with the 
lowest 100 ID numbers. This is definitely not a random sample because each nurse is 
not equally likely to be chosen. Indeed, because the first two digits of the ID number 
are assigned according to state, the 100 nurses with the lowest ID numbers would all 
come from the same state. An alternative method of selecting the sample is to have 
a computer generate a set of 100 random numbers (from among the numbers 1 to 
over 40,000), with one number assigned to each nurse in the study. Thus, each nurse 
is equally likely to be included in the sample. This would be a truly random sample. 
(More details on random numbers are given in Section 6.3.)

In practice, there is rarely an opportunity to enumerate each member of the 
reference population so as to select a random sample, so the researcher must assume 
that the sample selected has all the properties of a random sample without formally 
being a random sample.

In Example 6.8 the reference population is finite and well defined and can be 
enumerated. In many instances, however, the reference population is effectively 
infinite and not well defined.
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	 Example 6.11 	 Cancer  Suppose we want to estimate the 5-year survival rate of women who are 
initially diagnosed as having breast cancer at the ages of 45−54 and who undergo 
radical mastectomy at this time. Our reference population is all women who have 
ever had a first diagnosis of breast cancer when they were 45−54 years old, or who-
ever will have such a diagnosis in the future when they are 45−54 years old, and who 
receive radical mastectomies.

This population is effectively infinite. It cannot be formally enumerated, so a 
truly random sample cannot be selected from it. However, we again assume the 
sample we have selected behaves as if it were a random sample.

In this text we assume all reference populations discussed are effectively infi-
nite, although, as in Examples 6.8 and 6.10, many are actually very large but finite. 
Sampling theory is the special branch of statistics that treats statistical inference for 
finite populations; it is beyond the scope of this text. See Cochran [1] for a good 
treatment of this subject.

	 6.3	 R a n d o m - N u m be  r  Ta b l e s

In this section, practical methods for selecting random samples are discussed.

	 Example 6.12 	 Hypertension  Suppose we want to study how effective a hypertension treatment 
program is in controlling the blood pressure of its participants. We have a roster of 
all 1000 participants in the program, but because of limited resources only 20 can 
be surveyed. We would like the 20 people chosen to be a random sample from the 
population of all participants in the program. How should we select this random 
sample?

A computer-generated list of random numbers would probably be used to select 
this sample.

	De finition 6.4 	 A random number (or random digit) is a random variable X that takes on the  
values 0, 1, 2, . . . , 9 with equal probability. Thus,

	 Pr X Pr X Pr X=( ) = =( ) = = =( ) =0 1 9
1

10
L

	De finition 6.5 	 Computer-generated random numbers are collections of digits that satisfy the  
following two properties:

	 (1)	 Each digit 0, 1, 2, . . . , 9 is equally likely to occur.

	 (2)	� The value of any particular digit is independent of the value of any other digit 
selected.

Table 4 in the Appendix lists 1000 random digits generated by a computer  
algorithm.
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	 Example 6.13 	 Suppose 5 is a particular random digit selected. Does this mean 5’s are more likely to 
occur in the next few digits selected?

	 	Solution:  No. Each digit either after or before the 5 is still equally likely to be any of 
the digits 0, 1, 2, . . . , 9 selected.

Computer programs generate large sequences of random digits that approxi-
mately satisfy the conditions in Definition 6.5. Thus, such numbers are sometimes 
referred to as pseudorandom numbers because they are simulated to approximately 
satisfy the properties in Definition 6.5.

	 Example 6.14 	 Hypertension  How can the random digits in Appendix Table 4 be used to select 
20 random participants in the hypertension treatment program in Example 6.12?

	 	 Solution:  A roster of the 1000 participants must be compiled, and each participant 
must then be assigned a number from 000 to 999. Perhaps an alphabetical list of the 
participants already exists, which would make this task easy. Twenty groups of three 
digits would then be selected, starting at any position in the random-number table. 
For example, starting at the first row of Table 4 would yield the numbers listed in 
Table 6.1.

	T able 6.1	 Twenty random participants chosen from 1000 participants 	
in the hypertension treatment program

First 3 rows of random-number table	 Actual random numbers chosen

32924	 22324	 18125	 09077	 329	 242	 232	 418	 125

54632	 90374	 94143	 49295	 090	 775	 463	 290	 374

88720	 43035	 97081	 83373	 941	 434	 929	 588	 720

	 	 	 	 430	 359	 708	 183	 373

Therefore, our random sample would consist of the people numbered 329,  
242, . . . , 373 in the alphabetical list. In this particular case there were no repeats in 
the 20 three-digit numbers selected. If there had been repeats, then more three-digit 
numbers would have been selected until 20 unique numbers were selected. This 
process is called random selection.

	 Example 6.15 	 Diabetes  Suppose we want to conduct a clinical trial to compare the effectiveness 
of an oral hypoglycemic agent for diabetes with standard insulin therapy. A small 
study of this type will be conducted on 10 patients: 5 patients will be randomly 
assigned to the oral agent and 5 to insulin therapy. How can the table of random 
numbers be used to make the assignments?

	 	 Solution:  The prospective patients are numbered from 0 to 9, and five unique ran-
dom digits are selected from some arbitrary position in the random-number table 
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(e.g., from the 28th row). The first five unique digits are 6, 9, 4, 3, 7. Thus, the patients 
numbered 3, 4, 6, 7, 9 are assigned to the oral hypoglycemic agent and the remaining 
patients (numbered 0, 1, 2, 5, 8) to standard insulin therapy. In some studies the pro-
spective patients are not known in advance and are recruited over time. In this case, 
if 00 is identified with the 1st patient recruited, 01 with the 2nd patient recruited, . . . , 
and 09 with the 10th patient recruited, then the oral hypoglycemic agent would be  
assigned to the 4th (3 + 1), 5th (4 + 1), 7th (6 + 1), 8th (7 + 1), and 10th (9 + 1) pa-
tients recruited and the standard therapy to the 1st (0 + 1), 2nd (1 + 1), 3rd (2 + 1), 
6th (5 + 1), and 9th (8 + 1) patients recruited.

This process is called random assignment. It differs from random selection 
(Example 6.14) in that, typically, the number, in this case of patients, to be assigned 
to each type of treatment (5) is fixed in advance. The random-number table helps 
select the 5 patients who are to receive one of the two treatments (oral hypoglyce-
mic agent). By default, the patients not selected for the oral agent are assigned to 
the alternative treatment (standard insulin therapy). No additional random num-
bers need be chosen for the second group of 5 patients. If random selection were 
used instead, then one approach might be to draw a random digit for each patient. 
If the random digit is from 0 to 4, then the patient is assigned to the oral agent; if 
the random digit is from 5 to 9, then the patient is assigned to insulin therapy. One 
problem with this approach is that in a finite sample, equal numbers of patients are 
not necessarily assigned to each therapy, which is usually the most efficient design. 
Indeed, referring to the first 10 digits in the 28th row of the random-number table 
(69644 37198), we see that 4 patients would be assigned to oral therapy (patients 4, 
5, 6, and 8) and 6 patients would be assigned to insulin therapy (patients 1, 2, 3, 7, 
9, 10) if the method of random selection were used. Random assignment is prefer-
able in this instance because it ensures an equal number of patients assigned to each 
treatment group.

	 Example 6.16	 Obstetrics  The birthweights from 1000 consecutive infants delivered at Boston 
City Hospital (serving a low-income population) are enumerated in Table 6.2 and are 
also available in BIRTHWEIGHT.XLS. For this example, consider this population as 
effectively infinite. Suppose we wish to draw 5 random samples of size 10 from this 
population using a computer. How can these samples be selected?

	 	 Solution:  MINITAB has a function that allows sampling from columns. The user 
must specify the number of rows to be sampled (the size of the random sample to 
be selected). Thus, if the 1000 birthweights are stored in a single column (e.g., C1), 
and we specify 10 rows to be sampled, then we will obtain a random sample of size 
10 from this population. This random sample of size 10 can be stored in a differ-
ent column (e.g., C2). This process can be repeated 5 times and results stored in 5 
separate columns. It is also possible to calculate the mean x and standard devia-
tion (s) for each random sample. The results are shown in Table 6.3. One issue in 
obtaining random samples on the computer is whether the samples are obtained 
with or without replacement. The default option is sampling without replacement, 
whereby the same data point from the population cannot be selected more than 
once in a specific sample. In sampling with replacement (sometimes called boot-
strap sampling), repetitions are permissible within a particular sample. Table 6.3 
uses sampling without replacement.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



160              C H A P T E R  6      Estimation

Table 6.2 � Sample of birthweights (oz) obtained from 1000 consecutive  
deliveries at Boston City Hospital

ID	
Numbers	 0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19

000–019	 116	 124	 119	 100	 127	 103	 140	 82	 107	 132	 100	 92	 76	 129	 138	 128	 115	 133	 70	 121
020–039	 114	 114	 121	 107	 120	 123	 83	 96	 116	 110	 71	 86	 136	 118	 120	 110	 107	 157	 89	 71
040–059	 98	 105	 106	 52	 123	 101	 111	 130	 129	 94	 124	 127	 128	 112	 83	 95	 118	 115	 86	 120
060–079	 106	 115	 100	 107	 131	 114	 121	 110	 115	 93	 116	 76	 138	 126	 143	 93	 121	 135	 81	 135
080–099	 108	 152	 127	 118	 110	 115	 109	 133	 116	 129	 118	 126	 137	 110	 32	 139	 132	 110	 140	 119
100–119	 109	 108	 103	 88	 87	 144	 105	 138	 115	 104	 129	 108	 92	 100	 145	 93	 115	 85	 124	 123
120–139	 141	 96	 146	 115	 124	 113	 98	 110	 153	 165	 140	 132	 79	 101	 127	 137	 129	 144	 126	 155
140–159	 120	 128	 119	 108	 113	 93	 144	 124	 89	 126	 87	 120	 99	 60	 115	 86	 143	 97	 106	 148
160–179	 113	 135	 117	 129	 120	 117	 92	 118	 80	 132	 121	 119	 57	 126	 126	 77	 135	 130	 102	 107
180–199	 115	 135	 112	 121	 89	 135	 127	 115	 133	 64	 91	 126	 78	 85	 106	 94	 122	 111	 109	 89
200–219	 99	 118	 104	 102	 94	 113	 124	 118	 104	 124	 133	 80	 117	 112	 112	 112	 102	 118	 107	 104
220–239	 90	 113	 132	 122	 89	 111	 118	 108	 148	 103	 112	 128	 86	 111	 140	 126	 143	 120	 124	 110
240–259	 142	 92	 132	 128	 97	 132	 99	 131	 120	 106	 115	 101	 130	 120	 130	 89	 107	 152	 90	 116
260–279	 106	 111	 120	 198	 123	 152	 135	 83	 107	 55	 131	 108	 100	 104	 112	 121	 102	 114	 102	 101
280–299	 118	 114	 112	 133	 139	 113	 77	 109	 142	 144	 114	 117	 97	 96	 93	 120	 149	 107	 107	 117
300–319	 93	 103	 121	 118	 110	 89	 127	 100	 156	 106	 122	 105	 92	 128	 124	 125	 118	 113	 110	 149
320–339	 98	 98	 141	 131	 92	 141	 110	 134	 90	 88	 111	 137	 67	 95	 102	 75	 108	 118	 99	 79
340–359	 110	 124	 122	 104	 133	 98	 108	 125	 106	 128	 132	 95	 114	 67	 134	 136	 138	 122	 103	 113
360–379	 142	 121	 125	 111	 97	 127	 117	 122	 120	 80	 114	 126	 103	 98	 108	 100	 106	 98	 116	 109
380–399	 98	 97	 129	 114	 102	 128	 107	 119	 84	 117	 119	 128	 121	 113	 128	 111	 112	 120	 122	 91
400–419	 117	 100	 108	 101	 144	 104	 110	 146	 117	 107	 126	 120	 104	 129	 147	 111	 106	 138	 97	 90
420–439	 120	 117	 94	 116	 119	 108	 109	 106	 134	 121	 125	 105	 177	 109	 109	 109	 79	 118	 92	 103
440–459	 110	 95	 111	 144	 130	 83	 93	 81	 116	 115	 131	 135	 116	 97	 108	 103	 134	 140	 72	 112
460–479	 101	 111	 129	 128	 108	 90	 113	 99	 103	 41	 129	 104	 144	 124	 70	 106	 118	 99	 85	 93
480–499	 100	 105	 104	 113	 106	 88	 102	 125	 132	 123	 160	 100	 128	 131	 49	 102	 110	 106	 96	 116
500–519	 128	 102	 124	 110	 129	 102	 101	 119	 101	 119	 141	 112	 100	 105	 155	 124	 67	 94	 134	 123
520–539	 92	 56	 17	 135	 141	 105	 133	 118	 117	 112	 87	 92	 104	 104	 132	 121	 118	 126	 114	 90
540–559	 109	 78	 117	 165	 127	 122	 108	 109	 119	 98	 120	 101	 96	 76	 143	 83	 100	 128	 124	 137
560–579	 90	 129	 89	 125	 131	 118	 72	 121	 91	 113	 91	 137	 110	 137	 111	 135	 105	 88	 112	 104
580–599	 102	 122	 144	 114	 120	 136	 144	 98	 108	 130	 119	 97	 142	 115	 129	 125	 109	 103	 114	 106
600–619	 109	 119	 89	 98	 104	 115	 99	 138	 122	 91	 161	 96	 138	 140	 32	 132	 108	 92	 118	 58
620–639	 158	 127	 121	 75	 112	 121	 140	 80	 125	 73	 115	 120	 85	 104	 95	 106	 100	 87	 99	 113
640–659	 95	 146	 126	 58	 64	 137	 69	 90	 104	 124	 120	 62	 83	 96	 126	 155	 133	 115	 97	 105
660–679	 117	 78	 105	 99	 123	 86	 126	 121	 109	 97	 131	 133	 121	 125	 120	 97	 101	 92	 111	 119
680–699	 117	 80	 145	 128	 140	 97	 126	 109	 113	 125	 157	 97	 119	 103	 102	 128	 116	 96	 109	 112
700–719	 67	 121	 116	 126	 106	 116	 77	 119	 119	 122	 109	 117	 127	 114	 102	 75	 88	 117	 99	 136
720–739	 127	 136	 103	 97	 130	 129	 128	 119	 22	 109	 145	 129	 96	 128	 122	 115	 102	 127	 109	 120
740–759	 111	 114	 115	 112	 146	 100	 106	 137	 48	 110	 97	 103	 104	 107	 123	 87	 140	 89	 112	 123
760–779	 130	 123	 125	 124	 135	 119	 78	 125	 103	 55	 69	 83	 106	 130	 98	 81	 92	 110	 112	 104
780–799	 118	 107	 117	 123	 138	 130	 100	 78	 146	 137	 114	 61	 132	 109	 133	 132	 120	 116	 133	 133
800–819	 86	 116	 101	 124	 126	 94	 93	 132	 126	 107	 98	 102	 135	 59	 137	 120	 119	 106	 125	 122
820–839	 101	 119	 97	 86	 105	 140	 89	 139	 74	 131	 118	 91	 98	 121	 102	 115	 115	 135	 100	 90
840–859	 110	 113	 136	 140	 129	 117	 117	 129	 143	 88	 105	 110	 123	 87	 97	 99	 128	 128	 110	 132
860–879	 78	 128	 126	 93	 148	 121	 95	 121	 127	 80	 109	 105	 136	 141	 103	 95	 140	 115	 118	 117
880–899	 114	 109	 144	 119	 127	 116	 103	 144	 117	 131	 74	 109	 117	 100	 103	 123	 93	 107	 113	 144
900–919	 99	 170	 97	 135	 115	 89	 120	 106	 141	 137	 107	 132	 132	 58	 113	 102	 120	 98	 104	 108
920–939	 85	 115	 108	 89	 88	 126	 122	 107	 68	 121	 113	 116	 94	 85	 93	 132	 146	 98	 132	 104
940–959	 102	 116	 108	 107	 121	 132	 105	 114	 107	 121	 101	 110	 137	 122	 102	 125	 104	 124	 121	 111
960–979	 101	 93	 93	 88	 72	 142	 118	 157	 121	 58	 92	 114	 104	 119	 91	 52	 110	 116	 100	 147
980–999	 114	 99	 123	 97	 79	 81	 146	 92	 126	 122	 72	 153	 97	 89	 100	 104	 124	 83	 81	 129
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	T able 6.3	 Five random samples of size 10 from the population of infants 	
whose birthweights (oz) appear in Table 6.2

	 Sample

Individual	 1	 2	 3	 4	 5

	 1	 97	 177	 97	 101	 137
	 2	 117	 198	 125	 114	 118
	 3	 140	 107	 62	 79	 78
	 4	 78	 99	 120	 120	 129
	 5	 99	 104	 132	 115	 87
	 6	 148	 121	 135	 117	 110
	 7	 108	 148	 118	 106	 106
	 8	 135	 133	 137	 86	 116
	 9	 126	 126	 126	 110	 140
	 10	 121	 115	 118	 119	 98

	X	 116.90	 132.80	 117.00	 106.70	 111.90
	 s	 21.70	 32.62	 22.44	 14.13	 20.46

	 6.4	 R a n d o m i z e d  C l i n i c a l  T r i a l s

An important advance in clinical research is the acceptance of the randomized clini-
cal trial (RCT) as the optimal study design for most studies.

	De finition 6.6	 A randomized clinical trial is a type of research design used for comparing different 
treatments, in which patients are assigned to a specific treatment by some random 
mechanism. The process of assigning treatments to patients is called randomization. 
Randomization means the types of patients assigned to different treatment modali-
ties will be similar if the sample sizes are large. However, if the sample sizes are small, 
then patient characteristics of treatment groups may not be comparable. Thus, it is 
customary to present a table of characteristics of different treatment groups in RCTs 
to check that the randomization process is working well.

	 Example 6.17 	 Hypertension  The SHEP (Systolic Hypertension in the Elderly Program) was de-
signed to assess the ability of antihypertensive drug treatment to reduce risk of 
stroke among people age 60 years or older with isolated systolic hypertension. 
Isolated systolic hypertension is defined as elevated SBP (≥160 mm Hg) but normal 
DBP (<90 mm Hg) [2]. Of the 4736 people studied, 2365 were randomly assigned to 
active drug treatment and 2371 were randomly assigned to placebo. The baseline 
characteristics of the participants were compared by treatment group to check that 
the randomization achieved its goal of providing comparable groups of patients in 
the two treatment groups (see Table 6.4). We see the patient characteristics of the 
two treatment groups are generally very similar.

The importance of randomization in modern clinical research cannot be overes-
timated. Before randomization, comparison of different treatments was often based 
on selected samples, which are often not comparable.
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Table 6.4  Baseline characteristics of randomized SHEPa participants by treatment group

	 Active-	
Characteristic	 treatment group	 Placebo group	 Total

Number randomized	 2365	 2371	 4736
Age, y
  Averageb	 71.6 (6.7)	 71.5 (6.7)	 71.6 (6.7)
  Percentage
    60–69	 41.1	 41.8	 41.5
    70–79	 44.9	 44.7	 44.8
    ≥80	 14.0	 13.4	 13.7
Race–sex, %c

  Black men	 4.9	 4.3	 4.6
  Black women	 8.9	 9.7	 9.3
  White men	 38.8	 38.4	 38.6
  White women	 47.4	 47.7	 47.5
Education, y b	 11.7 (3.5)	 11.7 (3.4)	 11.7 (3.5)
Blood pressure, mm Hgb

  Systolic	 170.5 (9.5)	 170.1 (9.2)	 170.3 (9.4)
  Diastolic	 76.7 (9.7)	 76.4 (9.8)	 76.6 (9.7)
Antihypertensive medication at initial contact, %	 33.0	 33.5	 33.3
Smoking, %
  Current smokers	 12.6	 12.9	 12.7
  Past smokers	 36.6	 37.6	 37.1
  Never smokers	 50.8	 49.6	 50.2
Alcohol use, %
  Never	 21.5	 21.7	 21.6
  Formerly	 9.6	 10.4	 10.0
  Occasionally	 55.2	 53.9	 54.5
  Daily or nearly daily	 13.7	 14.0	 13.8
History of myocardial infarction, %	 4.9	 4.9	 4.9
History of stroke, %	 1.5	 1.3	 1.4
History of diabetes, %	 10.0	 10.2	 10.1
Carotid bruits, %	 6.4	 7.9	 7.1
Pulse rate, beats/minbd	 70.3 (10.5)	 71.3 (10.5)	 70.8 (10.5)
Body-mass index, kg/m2b	 27.5 (4.9)	 27.5 (5.1)	 27.5 (5.0)
Serum cholesterol, mmol/Lb

  Total cholesterol	 6.1 (1.2)	 6.1 (1.1)	 6.1 (1.1)
  High-density lipoprotein	 1.4 (0.4)	 1.4 (0.4)	 1.4 (0.4)
Depressive symptoms, %e	 11.1	 11.0	 11.1
Evidence of cognitive impairment, %f	 0.3	 0.5	 0.4
No limitation of activities of daily living, %d	 95.4	 93.8	 94.6
Baseline electrocardiographic abnormalities, %g	 61.3	 60.7	 61.0

aSHEP = Systolic Hypertension in the Elderly Program.
bValues are mean (sd).
cIncluded among the whites were 204 Asians (5% of whites), 84 Hispanics (2% of whites), and 41 classified as “other” (1% of whites).
dP < .05 for the active-treatment group compared with the placebo group.
eDepressive-symptom-scale score of 7 or greater.
fCognitive-impairment-scale score of 4 or greater.
gOne or more of the following Minnesota codes: 1.1 to 1.3 (Q/QS), 3.1 to 3.4 (high R waves), 4.1 to 4.4 (ST depression), 5.1 to 5.4 (T wave changes), 	
6.1 to 6.8 (AV-conduction defects), 7.1 to 7.8 (ventricular-conduction defects), 8.1 to 8.6 (arrhythmias), and 9.1 to 9.3 and 9.5 (miscellaneous items).
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	 Example 6.18 	 Infectious Disease  Aminoglycosides are a type of antibiotic that are effective 
against certain types of gram-negative organisms. They are often given to critically 
ill patients (such as cancer patients, to prevent secondary infections caused by the 
treatment received). However, there are also side effects of aminoglycosides, includ-
ing nephrotoxicity (damage to the kidney) and ototoxicity (temporary hearing 
loss). For several decades, studies have been performed to compare the efficacy and 
safety of different aminoglycosides. Many studies have compared the most common 
aminoglycoside, gentamicin, with other antibiotics in this class (such as tobramy-
cin). The earliest studies were nonrandomized studies. Typically, physicians would 
compare outcomes for all patients treated with gentamicin in an infectious disease 
service over a defined period of time with outcomes for all patients treated with 
another aminoglycoside. No random mechanism was used to assign treatments to 
patients. The problem is that patients prescribed tobramycin might be sicker than 
patients prescribed gentamicin, especially if tobramycin is perceived as a more ef-
fective antibiotic and is “the drug of choice” for the sickest patient. Ironically, in a 
nonrandomized study, the more effective antibiotic might actually perform worse 
because this antibiotic is prescribed more often for the sickest patients. Recent clini-
cal studies are virtually all randomized studies. Patients assigned to different antibi-
otics tend to be similar in randomized studies, and different types of antibiotics can 
be compared using comparable patient populations.

Design Features of Randomized Clinical Trials
The actual method of randomization differs widely in different studies. Random 
selection, random assignment, or some other random process may be used as the 
method of randomization. In clinical trials, random assignment is sometimes called 
block randomization.

	De finition 6.7 	 Block randomization is defined as follows in clinical trials comparing two treatments 
(treatments A and B). A block size of 2n is determined in advance, where for every 2n 
patients entering the study, n patients are randomly assigned to treatment A and the 
remaining n patients are assigned to treatment B. A similar approach can be used in 
clinical trials with more than two treatment groups. For example, if there are k treat-
ment groups, then the block size might be kn, where for every kn patients, n patients 
are randomly assigned to the first treatment, n patients are randomly assigned to 
the second treatment, . . . , n patients are randomly assigned to the kth treatment.

Thus, with two treatment groups under block randomization, for every 2n pa-
tients an equal number of patients will be assigned to each treatment. The advan-
tage is that treatment groups will be of equal size in both the short and the long run. 
Because the eligibility criteria, types of patients entering a trial, or other procedures 
in a clinical trial sometimes change as a study progresses, this ensures comparability 
of treatment groups over short periods of time as the study procedures evolve. One 
disadvantage of blocking is that it may become evident what the randomization 
scheme is after a while, and physicians may defer entering patients into the study 
until the treatment they perceive as better is more likely to be selected. To avert this 
problem, a variable block size is sometimes used. For example, the block size might 
be 8 for the first block, 6 for the second block, 10 for the third block, and so on.

Another technique that is sometimes used in the randomization process is 
stratification.
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	De finition 6.8	 In some clinical studies, patients are subdivided into subgroups, or strata, according 
to characteristics thought important for patient outcome. Separate randomization 
lists are maintained for each stratum to ensure comparable patient populations 
within each stratum. This procedure is called stratification. Either random selection 
(ordinary randomization) or random assignment (block randomization) might be 
used for each stratum. Typical characteristics used to define strata are age, gender, or 
overall clinical condition of the patient.

Another important advance in modern clinical research is the use of blinding.

	De finition 6.9	 A clinical trial is called double blind if neither the physician nor the patient knows 
what treatment he or she is getting. A clinical trial is called single blind if the  
patient is blinded as to treatment assignment but the physician is not. A clinical  
trial is unblinded if both the physician and patient are aware of the treatment  
assignment.

Currently, the gold standard of clinical research is the randomized double-blind 
study, in which patients are assigned to treatments at random and neither the  
patient nor the physician is aware of the treatment assignment.

	 Example 6.19 	 Hypertension  The SHEP study referred to in Example 6.17 was a double-blind study. 
Neither the patients nor the physicians knew whether the antihypertensive medica-
tion was an active drug or a placebo. Blinding is always preferable to prevent biased 
reporting of outcome by the patient and/or the physician. However, it is not always 
feasible in all research settings.

	 Example 6.20 	 Cerebrovascular Disease  Atrial fibrillation (AF) is a common symptom in the 
elderly, characterized by a specific type of abnormal heart rhythm. For example, 
former President George H. W. Bush had this condition while in office. It is 
well known that the risk of stroke is much higher among people with AF than 
for other people of comparable age and gender, particularly among the elderly. 
Warfarin is a drug considered effective in preventing stroke among people with 
AF. However, warfarin can cause bleeding complications and it is important to 
determine the optimal dose for each patient in order to maximize the benefit of 
stroke prevention while minimizing the risk of bleeding. Unfortunately, monitoring 
the dose requires blood tests every few weeks to assess the prothrombin time  
(a measure of the clot-forming capacity of blood), after which the dose may be 
increased, decreased, or kept the same. Because it is usually considered impractical 
to give control patients regular sham blood tests, the dilemma arises of how best to 
select a good control treatment to compare with warfarin in a clinical-trial setting. 
In most clinical trials involving warfarin, patients are assigned at random to either 
warfarin or control treatment, where control is simply nontreatment. However, 
it is important in this setting that the people making the sometimes subjective 
determination of whether a stroke has occurred be blind to treatment assignment 
of individual patients.

Another issue with blinding is that patients may be blind to treatment 
assignment initially, but the nature of side effects may strongly indicate the actual 
treatment received.
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	 Example 6.21 	 Cardiovascular Disease  As part of the Physicians’ Health Study, a randomized study 
was performed comparing aspirin with placebo in preventing cardiovascular disease. 
One side effect of regular intake of aspirin is gastrointestinal bleeding. The presence 
of this side effect strongly indicates that the type of treatment received was aspirin.

R E V I E W  Q U E ST  I ONS    6 A

1	 What is a random sample?

2	 What is a randomized clinical trial?

3	 Why was the use of randomization an important advance in clinical research?

	 6.5	 E s t i m at i o n  o f  t h e  Me  a n  o f  a  Di  s t r ib  u t i o n

Now that we have discussed the meaning of a random sample from a population 
and have explored some practical methods for selecting such samples using computer-
generated random numbers, let’s move on to estimation. The question remains: 
How is a specific random sample x1, . . . , xn used to estimate µ and σ2, the mean and 
variance of the underlying distribution? Estimating the mean is the focus of this  
section, while estimating the variance is covered in Section 6.7.

Point Estimation
A natural estimator to use for estimating the population mean µ is the sample mean

		  X X ni
i

n

=
=
∑

1

What properties of X make it a desirable estimator of µ? We must forget about our 
particular sample for the moment and consider the set of all possible samples of 
size n that could have been selected from the population. The values of X in each of 
these samples will, in general, be different. These values will be denoted by x1, x2, 
and so forth. In other words, we forget about our sample as a unique entity and con-
sider it instead as representative of all possible samples of size n that could have been 
drawn from the population. Stated another way, x is a single realization of a random 
variable X over all possible samples of size n that could have been selected from the 
population. In the rest of this text, the symbol X denotes a random variable, and x 
denotes a specific realization of the random variable X in a sample.

	De finition 6.10 	 The sampling distribution of X is the distribution of values of x over all possible sam-
ples of size n that could have been selected from the reference population.

Figure 6.1 gives an example of such a sampling distribution. This is a frequency dis-
tribution of the sample mean from 200 randomly selected samples of size 10 drawn 
from the distribution of 1000 birthweights given in Table 6.2, as displayed by the 
Statistical Analysis System (SAS) procedure PROC CHART.

We can show that the average of these sample means (x’s), when taken over a 
large number of random samples of size n, approximates µ as the number of samples 
selected becomes large. In other words, the expected value of X over its sampling 
distribution is equal to µ. This result is summarized as follows:
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	 Equation 6.1	 �Let X1, . . . , Xn be a random sample drawn from some population with mean µ.

		  Then, for the sample mean X, E X( ) = µ.

Note that Equation 6.1 holds for any population regardless of its underlying  
distribution. In words, we refer to X as an unbiased estimator of µ.

	De finition 6.11	 We refer to an estimator of a parameter θ as θ̂. An estimator θ̂ of a parameter θ is un-
biased if E(ˆ)θ θ= . This means that the average value of θ̂ over a large number of 
random samples of size n is θ.

The unbiasedness of X is not sufficient reason to use it as an estimator of µ. For 
symmetric distributions, many unbiased estimators of µ exist, including the sample 
median and the average value of the largest and smallest data points in a sample. 
Why is X chosen rather than any of the other unbiased estimators? The reason is 
that if the underlying distribution of the population is normal, then it can be shown 
that the unbiased estimator with the smallest variance is given by X. Thus, X is 
called the minimum variance unbiased estimator of µ.

This concept is illustrated in Figure 6.2, where for 200 random samples of size 10 
drawn from the population of 1000 birthweights in Table 6.2, the sampling distribu-
tion of the sample mean (X) is plotted in Figure 6.2a, the sample median in Figure 6.2b, 
and the average of the smallest and largest observations in the sample in Figure 6.2c. 
Note that the variability of the distribution of sample means is slightly smaller than 
that of the sample median and considerably smaller than that of the average of the 
smallest and largest observations.

	Fi gure 6.1	 Sampling distribution of X over 200 samples of size 10 selected from the population 
of 1000 birthweights given in Table 6.2 (100 = 100.0-100.9, etc.)
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Standard Error of the Mean
From Equation 6.1 we see that X is an unbiased estimator of µ for any sample size 
n. Why then is it preferable to estimate parameters from large samples rather than 
from small ones? The intuitive reason is that the larger the sample size, the more 
precise an estimator X is.

	Fi gure 6.2	 Sampling distributions of several estimators of µ for 200 random samples 	
of size 10 selected from the population of 1000 birthweights given 	
in Table 6.2 (100 = 100.0–101.9, etc.)

%
 o

f 
sa

m
p

le
s 

w
it

h
 b

ir
th

w
ei

gh
t 

= 
b

%
 o

f 
sa

m
p

le
s 

w
it

h
 b

ir
th

w
ei

gh
t 

= 
b

%
 o

f 
sa

m
p

le
s 

w
it

h
 b

ir
th

w
ei

gh
t 

= 
b

Birthweight (b) in oz

7
6

7
8

8
0

8
2

8
4

8
6

8
8

9
0

9
2

9
4

9
6

9
8

1
0
0

1
0
2

1
0
4

1
0
6

1
0
8

1
1
0

1
1
2

1
1
4

1
1
6

1
1
8

1
2
0

1
2
2

1
2
4

1
2
6

1
2
8

1
3
0

1
3
2

1
3
4

1
3
6

1
3
8

0

2

4

6

8

10

12

14

(b) Sampling distribution of the sample median
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(c) Sampling distribution of the average of the smallest and largest observations
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(a) Sampling distribution of the sample mean (X)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



168              C H A P T E R  6      Estimation

	 Example 6.22 	 Obstetrics  Consider Table 6.3 (p. 161). Notice that the 50 individual birthweights 
range from 62 to 198 oz and have a sample standard deviation of 23.79 oz. The five 
sample means range from 106.7 to 132.8 oz and have a sample standard deviation 
of 9.77 oz. Thus, the sample means based on 10 observations are less variable from 
sample to sample than are the individual observations, which can be considered as 
sample means from samples of size 1.

Indeed, we would expect the sample means from repeated samples of size 100 
to be less variable than those from samples of size 10. We can show this is true.  
Using the properties of linear combinations of independent random variables given 
in Equation 5.9,
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However, by definition Var Xi( ) = σ2. Therefore,

		  Var X n n n n( ) = ( ) + + +( ) = ( )( ) =1 12 2 2 2 2 2 2σ σ σ σ σL

The standard deviation sd( ) = variance; thus, sd X n( ) = σ / . We have the follow-
ing summary:

	 Equation 6.2	 Let X1, . . . , Xn be a random sample from a population with underlying mean µ and 
variance σ2. The set of sample means in repeated random samples of size n from 
this population has variance σ2 n. The standard deviation of this set of sample 
means is thus σ n  and is referred to as the standard error of the mean or the 
standard error.

In practice, the population variance σ2 is rarely known. We will see in Section 6.7 
that a reasonable estimator for the population variance σ2 is the sample variance s2, 
which leads to the following definition:

	De finition 6.12	 The standard error of the mean (sem), or the standard error (se), is given by σ n  
and is estimated by s n . The standard error represents the estimated standard de-
viation obtained from a set of sample means from repeated samples of size n from a 
population with underlying variance σ2.

Note that the standard error is not the standard deviation of an individual observa-
tion Xi but rather of the sample mean X. The standard error of the mean is illustrated 
in Figure 6.3. In Figure 6.3a, the frequency distribution of the sample mean is plotted 
for 200 samples of size 1 drawn from the collection of birthweights in Table 6.2. Similar  
frequency distributions are plotted for 200 sample means from samples of size 10 in 
Figure 6.3b and from samples of size 30 in Figure 6.3c. Notice that the spread of the 
frequency distribution in Figure 6.3a, corresponding to n = 1, is much larger than 
the spread of the frequency distribution in Figure 6.3b, corresponding to n = 10. 
Furthermore, the spread of the frequency distribution in Figure 6.3b, corresponding 
to n = 10, is much larger than the spread of the frequency distribution in Figure 6.3c, 
corresponding to n = 30.

See page 133 for  
Equation 5.9
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	Fi gure 6.3	 Illustration of the standard error of the mean (100 = 100.0–103.9, etc.)
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	 Example 6.23 	 Obstetrics  Compute the standard error of the mean for the third sample of birth-
weights in Table 6.3 (p. 161).

	 	 Solution:  The standard error of the mean is given by

		  s n = =22 44 10 7 09. .

The standard error is a quantitative measure of the variability of sample means 
obtained from repeated random samples of size n drawn from the same population. 
Notice that the standard error is directly proportional to both 1 / n  and to the 
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population standard deviation σ of individual observations. It justifies the concern 
with sample size in assessing the precision of our estimate x of the unknown popu-
lation mean µ. The reason it is preferable to estimate µ from a sample of size 400 
rather than from one of size 100 is that the standard error from the first sample will 
be half as large as in the second sample. Thus, the larger sample should provide a 
more precise estimate of µ. Notice that the precision of our estimate is also affected 
by the underlying variance σ2 from the population of individual observations, 
a quantity that is unrelated to the sample size n. However, σ2 can sometimes be  
affected by experimental technique. For example, in measuring blood pressure, σ2 

can be reduced by better standardization of blood-pressure observers and/or by  
using additional replicates for individual subjects (for example, using an average of 
two blood-pressure readings for each subject rather than a single reading).

	 Example 6.24 	 Gynecology  Suppose a woman wants to estimate her exact day of ovulation for 
contraceptive purposes. A theory exists that at the time of ovulation the body tem-
perature rises 0.5 to 1.0°F. Thus, changes in body temperature can be used to guess 
the day of ovulation.

To use this method, we need a good estimate of basal body temperature during 
a period when ovulation is definitely not occurring. Suppose that for this purpose 
a woman measures her body temperature on awakening on the first 10 days after 
menstruation and obtains the following data: 97.2°, 96.8°, 97.4°, 97.4°, 97.3°, 97.0°, 
97.1°, 97.3°, 97.2°, 97.3°. What is the best estimate of her underlying basal body 
temperature (µ)? How precise is this estimate?

	 	 Solution:  The best estimate of her underlying body temperature during the non-
ovulation period (µ) is given by

		  x− = + + +( ) =97 2 96 8 97 3 10 97 20. . . . . . . °

The standard error of this estimate is given by 

		  s 10 0 189 10 0 06= =. . °

In our work on confidence intervals (CIs) later in this section (p. 173), we show 
that for many underlying distributions, we can be fairly certain the true mean µ is 
approximately within two standard errors of x. In this case, true mean basal body 
temperature (µ) is within 97.20° ± 2(0.06)° ≈ (97.1°−97.3°). Thus, if the temperature 
is elevated by at least 0.5° above this range on a given day, then it may indicate 
the woman was ovulating and, for contraceptive purposes, should not have inter-
course on that day.

R E V I E W  Q U E ST  I ONS    6 B

1	 What is a sampling distribution?

2	 Why is the sample mean X used to estimate the population mean µ?

3	 What is the difference between a standard deviation and a standard error?

4	 Suppose we have a sample of five values of hemoglobin A1c (HgbA1c) obtained from 
a single diabetic patient. HgbA1c is a serum measure often used to monitor compli-
ance among diabetic patients. The values are 8.5%, 9.3%, 7.9%, 9.2%, and 10.3%.

	 (a)	 What is the standard deviation for this sample?

	 (b)	 What is the standard error for this sample?

R
 E

 V
 I 

E 
W
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5	 �Suppose the number of values from the patient in Review Question 6B.4 increases 
from 5 to 20.

	 (a)	 �Would you expect the standard deviation to increase, decrease, or remain the 
same? Why?

	 (b)	 �Would you expect the standard error to increase, decrease, or remain the 
same? Why?

Central-Limit Theorem
If the underlying distribution is normal, then it can be shown that the sample mean 
is itself normally distributed with mean µ and variance σ2 n  (see Section 5.6). In 
other words, X N n~ ,µ σ2( ) . If the underlying distribution is not normal, we would 
still like to make some statement about the sampling distribution of the sample 
mean. This statement is given by the following theorem:

	 Equation 6.3 	 	 Central-Limit Theorem 
	 	 	 Let X1, . . . , Xn be a random sample from some population with mean µ and vari-

ance σ2. Then, for large n, X N n~ ,. µ σ2( ) even if the underlying distribution of 
individual observations in the population is not normal. (The symbol ~.  is used 
to represent “approximately distributed.”)

This theorem is very important because many of the distributions encountered in 
practice are not normal. In such cases the central-limit theorem can often be applied; 
this lets us perform statistical inference based on the approximate normality of the 
sample mean despite the nonnormality of the distribution of individual observations.

	 Example 6.25 	 Obstetrics  The central-limit theorem is illustrated by plotting, in Figure 6.4a, 
the sampling distribution of mean birthweights obtained by drawing 200 random 
samples of size 1 from the collection of birthweights in Table 6.2. Similar sampling 
distributions of sample means are plotted from samples of size 5, in Figure 6.4b, 
and samples of size 10, in Figure 6.4c. Notice that the distribution of individual 
birthweights (i.e., sample means from samples of size 1) is slightly skewed to the 
left. However, the distribution of sample means becomes increasingly closer to  
bell-shaped as the sample size increases to 5 and 10.

	 Example 6.26 	 Cardiovascular Disease  Serum triglycerides are an important risk factor for cer-
tain types of coronary disease. Their distribution tends to be positively skewed, or 
skewed to the right, with a few people with very high values, as is shown in Figure 6.5. 
However, hypothesis tests can be performed based on mean serum triglycerides over 
moderate samples of people because from the central-limit theorem the distribu-
tion of means will be approximately normal, even if the underlying distribution of 
individual measurements is not. To further ensure normality, the data can also be 
transformed onto a different scale. For example, if a log transformation is used, then 
the skewness of the distribution is reduced and the central-limit theorem will be  
applicable for smaller sample sizes than if the data are kept in the original scale.

	 Example 6.27 	 Obstetrics  Compute the probability that the mean birthweight from a sample of 10 
infants from the Boston City Hospital population in Table 6.2 will fall between 98.0 
and 126.0 oz ( ., )i.e 98 126≤ <X  if the mean birthweight for the 1000 birthweights from 
the Boston City Hospital population is 112.0 oz with a standard deviation of 20.6 oz.
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172              C H A P T E R  6      Estimation

	 	 Solution:  The central-limit theorem is applied, and we assume X follows a normal 
distribution with mean µ = 112.0 oz and standard deviation σ n = =20 6 10 6 51. .  
oz. It follows that

		

Pr X98 0 126 0
126 0 112 0

6 51
98

. .
. .

.
≤ <( ) = −



 −Φ Φ .. .

.

. .

.

0 112 0
6 51

2 15 2 15

2 15

−





= ( ) − −( )
= (

Φ Φ

Φ )) − − ( ) = ( ) −[ . ] .1 2 15 2 2 15 1Φ Φ

	Fi gure 6.4	 Illustration of the central-limit theorem: 100 = 100−103.9 in Figure 6.4(a): = 100−101.9 
in Figures 6.4(b) and (c). 
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Refer to Table 3 in the Appendix and obtain

		
Pr X98 0 126 0 2 9842 1 0 968. . . . .≤ <( ) = ( ) − =

Thus, if the central-limit theorem holds, 96.8% of the samples of size 10 would 
be expected to have mean birthweights between 98 and 126 oz. This value can be 
checked by referring to Figure 6.2(a) (on page 167). Note that the 90 column cor-
responds to the birthweight interval 90.0−91.9, the 92 column to 92.0–93.9, and 
so forth. Note that 0.5% of the birthweights are in the 90 column, 0.5% in the 
94 column, 1% in the 96 column, 1% in the 126 column, and 1.5% in the 128 col-
umn. Thus, 2% of the distribution is less than 98.0 oz, and 2.5% of the distribution 
is 126.0 oz or greater. It follows that 100% − 4.5% = 95.5% of the distribution is actu-
ally between 98 and 126 oz. This value corresponds well to the 96.8% predicted by 
the central-limit theorem, confirming that the central-limit theorem holds approxi-
mately for averages from samples of size 10 drawn from this population.

Interval Estimation
We have been discussing the rationale for using x to estimate the mean of a dis-
tribution and have given a measure of variability of this estimate, namely, the 
standard error. These statements hold for any underlying distribution. However, 
we frequently wish to obtain an interval of plausible estimates of the mean as well 
as a best estimate of its precise value. Our interval estimates will hold exactly if the 
underlying distribution is normal and only approximately if the underlying distribu-
tion is not normal, as stated in the central-limit theorem.

	 Example 6.28 	 Obstetrics  Suppose the first sample of 10 birthweights given in Table 6.3 (on 
page 161) has been drawn. Our best estimate of the population mean µ would be 
the sample mean x = 116 9.  oz. Although 116.9 oz is our best estimate of µ, we still 
are not certain that µ is 116.9 oz. Indeed, if the second sample of 10 birthweights 
had been drawn, a point estimate of 132.8 oz would have been obtained. Our point 
estimate would certainly have a different meaning if it was highly likely that µ was 
within 1 oz of 116.9 rather than within 1 lb (16 oz).

We have assumed previously that the distribution of birthweights in Table 6.2 
was normal with mean µ and variance σ2. It follows from our previous discussion of 
the properties of the sample mean that X N n∼ µ σ, 2( ). Thus, if µ and σ2 were known, 
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(a) Individual serum-triglyceride values (b) Mean serum triglycerides

	Fi gure 6.5	 Distribution of single serum-triglyceride measurements and of means of such 
measurements over samples of size n
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then the behavior of the set of sample means over a large number of samples of size 
n would be precisely known. In particular, 95% of all such sample means will fall 

within the interval µ σ µ σ− +( )1 96 1 96. , .n n .

	 Equation 6.4 	 	 Alternatively, if we re-express X in standardized form by

		
Z

X
n

= − µ
σ

then Z should follow a standard normal distribution. Hence, 95% of the Z val-
ues from repeated samples of size n will fall between −1.96 and +1.96 because 
these values correspond to the 2.5th and 97.5th percentiles from a standard 
normal distribution. However, the assumption that σ is known is somewhat 
artificial, because σ is rarely known in practice.

t Distribution
Because σ is unknown, it is reasonable to estimate σ by the sample standard devia-
tion s and to try to construct CIs using the quantity X S n( )( )− µ . The problem is 
that this quantity is no longer normally distributed.

This problem was first solved in 1908 by a statistician named William Gossett. 
For his entire professional life, Gossett worked for the Guinness Brewery in Ireland. 
He chose to identify himself by the pseudonym “Student,” and thus the distribution 
of X S n−( ) ( )µ  is usually referred to as Student’s t distribution. Gossett found 
that the shape of the distribution depends on the sample size n. Thus, the t distribu-
tion is not a unique distribution but is instead a family of distributions indexed by a 
parameter referred to as the degrees of freedom (df  ) of the distribution.

	 Equation 6.5 	 	 If X1, . . . , Xn ~ N(µ,σ2) and are independent, then X S n−( ) ( )µ  is distributed 
as a t distribution with (n − 1) df.

Once again, Student’s t distribution is not a unique distribution but is a family of 
distributions indexed by the degrees of freedom d. The t distribution with d degrees 
of freedom is sometimes referred to as the td distribution.

	De finition 6.13	 The 100 × uth percentile of a t distribution with d degrees of freedom is denoted by 
td,u, that is,

	 Pr t t ud d u<( ) ≡,

	 Example 6.29 	 What does t20, .95 mean?

	 	 Solution:  t20, .95 is the 95th percentile or the upper 5th percentile of a t distribution 
with 20 degrees of freedom.

It is interesting to compare a t distribution with d degrees of freedom with an 
N(0, 1) distribution. The density functions corresponding to these distributions are 
depicted in Figure 6.6 for the special case where d = 5.

Notice that the t distribution is symmetric about 0 but is more spread out than 
the N(0, 1) distribution. It can be shown that for any α, where α > .5, td,1−α is always 
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larger than the corresponding percentile for an N(0, 1) distribution (z1−α). This re-
lationship is shown in Figure 6.6. However, as d becomes large, the t distribution 
converges to an N(0, 1) distribution. An explanation for this principle is that for 
finite samples the sample variance (s2) is an approximation to the population vari-
ance (σ2). This approximation gives the statistic X S n−( ) ( )µ  more variability than 
the corresponding statistic X n−( ) ( )µ σ . As n becomes large, this approximation 
gets better and S2 will converge to σ2. The two distributions thus get more and more 
alike as n increases in size. The upper 2.5th percentile of the t distribution for various 
degrees of freedom and the corresponding percentile for the normal distribution are 
given in Table 6.5.

	T able 6.5	 Comparison of the 97.5th percentile of the t distribution and the normal distribution

  d	 td,.975	 z.975	 d	 td,.975	 z.975

  4	 2.776	 1.960	 60	 2.000	 1.960
  9	 2.262	 1.960	 ∞	 1.960	 1.960
29	 2.045	 1.960	 	

The difference between the t distribution and the normal distribution is greatest 
for small values of n (n < 30). Table 5 in the Appendix gives the percentage points of 
the t distribution for various degrees of freedom. The degrees of freedom are given in 
the first column of the table, and the percentiles are given across the first row. The 
uth percentile of a t distribution with d degrees of freedom is found by reading across 
the row marked d and reading down the column marked u.

	 Example 6.30 	 Find the upper 5th percentile of a t distribution with 23 df.

	 	 Solution:  Find t23, .95, which is given in row 23 and column .95 of Appendix Table 5 
and is 1.714.

Statistical packages such as MINITAB, Excel, SAS, Stata, or R, will also compute 
exact probabilities associated with the t distribution. This is particularly useful for 
values of the degrees of freedom (d) that are not given in Table 5.
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	Fi gure 6.6	 Comparison of Student’s t distribution with 5 degrees of freedom with an N(0, 1) 
distribution
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If σ is unknown, we can replace σ by S in Equation 6.4 and correspondingly  
replace the z statistic by a t statistic given by

		
t

X
S n

= − µ

The t statistic should follow a t distribution with n − 1 df. Hence, 95% of the t statis-
tics in repeated samples of size n should fall between the 2.5th and 97.5th percen-
tiles of a tn−1 distribution, or

		
Pr t t tn n− −< <( ) =1 025 1 975 95,. ,. %

More generally, 100% × (1 − α) of the t statistics should fall between the lower and 
upper α/2 percentile of a tn−1 distribution in repeated samples of size n or

		
Pr t t tn n− − −< <( ) = −1 2 1 1 2 1, / , /α α α

This inequality can be written in the form of two inequalities:

		
t

X
S n

X
S n

tn n− − −< − − <1 2 1 1 2, / , /α α
µ µ

and

If we multiply both sides of each inequality by S n( ) and add µ to both sides, we 
obtain

		
µ µα+ < < +− − −t S n X X t S nn a n1 2 1 1 2, / , /and

Finally, if we subtract t S nn a−1 2, /  from both sides of the first inequality and 
t S nn a− −1 1 2, /  from both sides of the second inequality, we get

		  µ µα α< − − <− − −X t S n X t S nn n1 2 1 1 2, / , /and

Expressed as one inequality, this is

		
X t S n X t S nn n− < < −− − −1 1 2 1 2, / , /α αµ

From the symmetry of the t distribution, tn−1,α/2 = −tn−1,1−α/2, so this inequality can be 
rewritten as

		
X t S n X t S nn n− < < +− − − −1 1 2 1 1 2, / , /α αµ

and we can say that

		
Pr X t S n X t S nn n− < < +( ) = −− − − −1 1 2 1 1 2 1, / , /α αµ α

The interval X t S n X t S n,n n1,1 /2 1,1 /2( )− +− −α − −α  is referred to as a 100% × (1 − α) 
CI for µ. This can be summarized as follows:

	 Equation 6.6 	 	 Confidence Interval for the Mean of a Normal Distribution 
	 	 	 A 100% × (1 − α) CI for the mean µ of a normal distribution with unknown 

variance is given by

			 
x t s n x t s nn n− +( )− − − −1 1 2 1 1 2, / , /,α α

A shorthand notation for the CI is

			 
x t s nn± − −1 1 2, /α
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	 Example 6.31 	 Compute a 95% CI for the mean birthweight based on the first sample of size 10 in 
Table 6.3 (on page 161).

	 	 Solution:  We have n = 10, x = 116 90. , s = 21.70. Because we want a 95% CI, α = .05. 
Therefore, from Equation 6.6 the 95% CI is

		  116 9 21 70 10 116 9 21 709 975 9 975. . , . .,. ,.− ( ) + ( )t t 110 

From Table 5, t9,.975 = 2.262. Therefore, the 95% CI is

		

116 9 2 262 21 70 10 116 9 2 262 21 70 10. . . , . . .− ( ) + ( ) 
= − +( )
= ( )

116 9 15 5 116 9 15 5

101 4 132 4

. . , . .

. , .

Note that if the sample size is large (say, >200), then the percentiles of a t distribu-
tion are virtually the same as for a normal distribution. In this case, a reasonable 
approximate 100% × (1    − α) CI for µ is given as follows:

	 Equation 6.7 	 	 Confidence Interval for the Mean of a Normal Distribution (Large-Sample Case)  
An approximate 100% × (1 − α) CI for the mean µ of a normal distribution with 
unknown variance is given by

			 
x z s n x z s n− +( )− −1 2 1 2α α/ /,

This interval should only be used if n > 200. In addition, Equation 6.7 can 
also be used for n ≤ 200 if the standard deviation (σ) is known, by replacing 
s with σ.

You may be puzzled at this point as to what a CI is. The parameter µ is a fixed 
unknown constant. How can we state that the probability that it lies within  
some specific interval is, for example, 95%? The important point to understand  
is that the boundaries of the interval depend on the sample mean and sample  
variance and vary from sample to sample. Furthermore, 95% of such intervals  
that could be constructed from repeated random samples of size n contain the  
parameter µ.

	 Example 6.32 	 Obstetrics  Consider the five samples of size 10 from the population of birthweights 
as shown in Table 6.3 (p. 161). Because t9,.975 = 2.262, the 95% CI is given by

		

x t s n x t s n x
s

x− +( ) = − +9 975 9 975
2 262

10
2 26

,. ,.,
.

,
. 22

10

0 715 0 715

s

x s x s







= − +( ). , .

The interval is different for each sample and is given in Figure 6.7. A dashed line has 
been added to represent an imaginary value for µ. The idea is that over a large num-
ber of hypothetical samples of size 10, 95% of such intervals contain the parameter 
µ. Any one interval from a particular sample may or may not contain the parameter 
µ. In Figure 6.7, by chance all five intervals contain the parameter µ. However, with 
additional random samples this need not be the case.

Therefore, we cannot say there is a 95% chance that the parameter µ will fall 
within a particular 95% CI. However, we can say the following:
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	 Equation 6.8	� Over the collection of all 95% CIs that could be constructed from repeated  
	 random samples of size n, 95% will contain the parameter µ.

The length of the CI gives some idea of the precision of the point estimate x. In 
this particular case, the length of each CI ranges from 20 to 47 oz, which makes the 
precision of the point estimate x doubtful and implies that a larger sample size is 
needed to get a more precise estimate of µ.

	 Example 6.33 	 Gynecology  Compute a 95% CI for the underlying mean basal body temperature 
using the data in Example 6.24 (p. 170).

	 	 Solution:  The 95% CI is given by

		

x t s n± = ± ( ) = ±9 975 97 2 2 262 0 189 10 97 2 0 13,. . . . . .° ° °°

° °= ( )97 07 97 33. , .

We can also consider CIs with a level of confidence other than 95%.

	 Example 6.34 	 Suppose the first sample in Table 6.3 has been drawn. Compute a 99% CI for the 
underlying mean birthweight.

	 	 Solution:  The 99% CI is given by

		  116 9 21 70 10 116 9 21 709 995 9 995. . , . .,. ,.− ( ) + ( )t t 110( )
From Table 5 of the Appendix we see that t9,.995 = 3.250, and therefore the 99% CI is

		  116 9 3 250 21 70 10 116 9 3 250 21 70 10. . . , . . .− ( ) + ( )( ) == ( )94 6 139 2. , .

The midpoint of each interval is xi

101.4
(116.9 – 15.5)

109.5
(132.8 – 23.3)

132.8

101.0
(117.0 – 16.0)

117.0

96.6
(106.7 – 10.1)

97.3
(111.9 – 14.6)

106.7 116.8
(106.7 + 10.1)

126.5
(111.9 + 14.6)

133.0
(117.0 + 16.0)

156.1
(132.8 + 23.3)

132.4
(116.9 + 15.5)

116.9

�

111.9

	Fi gure 6.7	 A collection of 95% CIs for the mean µ as computed from repeated samples of size 10 
(see Table 6.3) from the population of birthweights given in Table 6.2
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Notice that the 99% CI (94.6, 139.2) computed in Example 6.34 is wider than 
the corresponding 95% CI (101.4, 132.4) computed in Example 6.31. The ratio-
nale for this difference is that the higher the level of confidence desired that µ lies 
within an interval, the wider the CI must be. Indeed, for 95% CIs the length was
2 2 262( . )s n; for 99% CIs, the length was 2 3 250( . )s n. In general, the length of 
the 100% × (1 − α) CI is given by

		  2 1 1 2t s nn− −, /α

Therefore, we can see the length of a CI is governed by three variables: n, s, and α.

	 Equation 6.9	 �Factors Affecting the Length of a CI 

		  �The length of a 100% × (1 − α) CI for µ equals 2 1 1 2t s nn− −, /α  and is determined by n,  
	 s, and α.

		  n	 As the sample size (n) increases, the length of the CI decreases.

		  s	 As the standard deviation (s), which reflects the variability of the distribu-
tion of individual observations, increases, the length of the CI increases.

		  α	 As the confidence desired increases (α decreases), the length of the CI increases.

	 Example 6.35 	 Gynecology  Compute a 95% CI for the underlying mean basal body temperature 
using the data in Example 6.24, assuming that the number of days sampled is 100 
rather than 10.

	 	 Solution:  The 95% CI is given by

		

97 2 0 189 100 97 2 1 984 0 18999 975. . . . .,.° ± ( ) = ± ( )t ° 110 97 2 0 04

97 16 97 24

= ±

= ( )
. .

. , .

° °

° °

where we use the qt function of R to estimate t99,.975 by 1.984. Notice that this inter-
val is much narrower than the corresponding interval (97.07°, 97.33°) based on a 
sample of 10 days given in Example 6.33.

	 Example 6.36 	 Compute a 95% CI for the underlying mean basal temperature using the data in  
Example 6.24, assuming that the standard deviation of basal body temperature is 
0.4° rather than 0.189° with a sample size of 10.

	 	 Solution:  The 95% CI is given by

		  97 2 2 262 0 4 10 97 2 0 29 96 91 97 49. . . . . . , .° ° ° °± ( ) = ± = °°( )
Notice that this interval is much wider than the corresponding interval (97.07°, 
97.33°) based on a standard deviation of 0.189° with a sample size of 10.

Usually only n and α can be controlled. s is a function of the type of variable 
being studied, although s itself can sometimes be decreased if changes in technique 
can reduce the amount of measurement error, day-to-day variability, and so forth. 
An important way in which s can be reduced is by obtaining replicate measurements 
for each individual and using the average of several replicates for an individual, 
rather than a single measurement.

Up to this point, CIs have been used as descriptive tools for characterizing the 
precision with which the parameters of a distribution can be estimated. Another use 
for CIs is in making decisions on the basis of data.
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	 Example 6.37 	 Cardiovascular Disease, Pediatrics  Suppose we know from large studies that the 
mean cholesterol level in children ages 2–14 is 175 mg/dL. We wish to see if there is 
a familial aggregation of cholesterol levels. Specifically, we identify a group of fathers 
who have had a heart attack and have elevated cholesterol levels (≥250 mg/dL) and 
measure the cholesterol levels of their 2- to 14-year-old offspring.

Suppose we find that the mean cholesterol level in a group of 100 such children 
is 207.3 mg/dL with standard deviation = 30 mg/dL. Is this value far enough from 
175 mg/dL for us to believe that the underlying mean cholesterol level in the popu-
lation of all children selected in this way is different from 175 mg/dL?

	 	 Solution:  One approach would be to construct a 95% CI for µ on the basis of our 
sample data. We then could use the following decision rule: If the interval contains 
175 mg/dL, then we cannot say the underlying mean for this group is any different 
from the mean for all children (175), because 175 is among the plausible values 
for µ provided by the 95% CI. We would decide there is no demonstrated familial 
aggregation of cholesterol levels. If the CI does not contain 175, then we would 
conclude the true underlying mean for this group is different from 175. If the lower 
bound of the CI is above 175, then there is a demonstrated familial aggregation of 
cholesterol levels. The basis for this decision rule is discussed in the chapters on 
hypothesis testing.

The CI in this case is given by

		  207 3 30 100 207 3 6 0 201 3 213 399 975. . . . , .,.± ( ) = ± =t (( )
Clearly, 175 is far from the lower bound of the interval, and we thus conclude there 
is familial aggregation of cholesterol.

R E V I E W  Q U E ST  I ONS    6 C

1	 What does a 95% CI mean?

2	 (a)  Derive a 95% CI for the underlying mean HgbA1c in Review Question 6B.4.

	 (b)	 Suppose that diabetic patients with an underlying mean HgbA1c < 7% are 
considered in good compliance. How do you evaluate the compliance of the 
patient in Review Question 6B.4?

3	 (a)  What is the difference between a t distribution and a normal distribution?

	 (b)  What is the 95th percentile of a t distribution with 30 df? What symbol is used 
to denote this percentile?

4	 What is the central-limit theorem? Why is it important in statistics?

	 6.6	 C a s e  S t u dy :  E f f e c t s  o f  T o b a c c o  U s e  o n  B o n e -

Mi  n e r a l  De  n s i t y ( B MD  )  i n  Mi  d d le - A g e d  W o m e n

There were 41 twin pairs in this study. We wish to assess whether there is a relation-
ship between BMD of the lumbar spine and cigarette smoking. One way to approach 
this problem is to calculate the difference in BMD between the heavier-smoking 
twin and the lighter-smoking twin for each twin pair and then calculate the average 
of these differences over the 41 twin pairs. In this study, there was a mean difference 
in BMD of −0.036 ± 0.014 g/cm2 (mean ± se) for the 41 twin pairs. We can use CI 
methodology to address this question. Specifically, the 95% CI for the true mean dif-
ference (µd) in BMD between the heavier- and lighter-smoking twins is

R
 E

 V
 I 

E 
W
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		  − ± ( )0 036 4140 975. ,.t s

However, because se s= 41, another way to express this formula is

		

− ± ( ) = − ± ( )
= −

0 036 0 036 2 021 0 014

0

40 975. . . .

.

,.t se

0036 0 028 0 064 0 008± = − −( ). . , .

Because the upper bound of the 95% CI is less than 0, we can be fairly confident that 
the true mean difference is less than 0. Stated another way, we can be fairly confi-
dent the true mean BMD for the heavier-smoking twins is lower than that for the 
lighter-smoking twins. In statistical terms, we say there is a significant association 
between BMD and cigarette smoking. We discuss assessment of statistical signifi-
cance in more detail in Chapter 7.

	 6.7	 E s t i m at i o n  o f  t h e  Va r i a n c e  o f  a  Di  s t r ib  u t i o n

Point Estimation
In Chapter 2, the sample variance was defined as

			 
s

n
x xi

i

n
2 2

1

1
1

=
−

−( )
=
∑

This definition is somewhat counterintuitive because the denominator would be 
expected to be n rather than n − 1. A more formal justification for this definition is 
now given. If our sample x1, . . . , xn is considered as coming from some population 
with mean µ and variance σ2, then how can the unknown population variance σ2  

be estimated from our sample? The following principle is useful in this regard:

	 Equation 6.10	 �Let X1, . . . , Xn be a random sample from some population with mean µ and  
	 variance σ2. The sample variance S2 is an unbiased estimator of σ2 over all  
	� possible random samples of size n that could have been drawn from this 

population; that is, E(S2) = σ2.

Therefore, if repeated random samples of size n are selected from the population, 
as was done in Table 6.3, and the sample variance s2 is computed from each sample, 
then the average of these sample variances over a large number of such samples of size 
n is the population variance σ2. This statement holds for any underlying distribution.

	 Example 6.38 	 Gynecology  Estimate the variance of the distribution of basal body temperature us-
ing the data in Example 6.24 (on page 170).

	 	 Solution:  We have

		
s x xi

i

n
2 2

1

1
9

0 0356= − =
=
∑ ( ) .

which is an unbiased estimate of σ2.

Note that the intuitive estimator for σ2 with n in the denominator rather than 
n − 1, that is,
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1 2

1n
x xi

i

n

−( )
=
∑

tends to underestimate the underlying variance σ2 by a factor of (n − 1)/n. This factor 
is considerable for small samples but tends to be negligible for large samples. A more 
complete discussion of the relative merits of different estimators for σ2 is given in [3].

The Chi-Square Distribution
The problem of interval estimation of the mean of a normal distribution was dis-
cussed in Section 6.5. We often want to obtain interval estimates of the variance 
as well. Once again, as was the case for the mean, the interval estimates will hold 
exactly only if the underlying distribution is normal. The interval estimates perform 
much more poorly for the variance than for the mean if the underlying distribution 
is not normal, and they should be used with caution in this case.

	 Example 6.39 	 Hypertension  An Arteriosonde machine “prints” blood-pressure readings on a tape so 
that the measurement can be read rather than heard. A major argument for using 
such a machine is that the variability of measurements obtained by different observ-
ers on the same person will be lower than with a standard blood-pressure cuff.

Suppose we have the data in Table 6.6, consisting of systolic blood pressure (SBP) 
measurements obtained on 10 people and read by two observers. We use the differ-
ence di between the first and second observers to assess interobserver variability. In 
particular, if we assume the underlying distribution of these differences is normal 
with mean µ and variance σ2, then it is of primary interest to estimate σ2. The higher 
σ2 is, the higher the interobserver variability.

	T able 6.6	 SBP measurements (mm Hg) from an Arteriosonde machine obtained 	
from 10 people and read by two observers

	 Observer

Person (i)	 1	 2	 Difference (di)

	 1	 194	 200	 −6
	 2	 126	 123	 +3
	 3	 130	 128	 +2
	 4	 98	 101	 −3
	 5	 136	 135	 +1
	 6	 145	 145	 0
	 7	 110	 111	 −1
	 8	 108	 107	 +1
	 9	 102	 99	 +3
	 10	 126	 128	 −2

We have seen previously that an unbiased estimator of the variance σ2 is given 
by the sample variance S2. In this case,

		

Meandifference

Sample var

= − + + −( ) = − =6 3 2 10 0 2L . d

iiance = = −

= − +( ) + + − +(
=
∑s d di
i

n
2 2

1

2

9

6 0 2 2 0 2

( )

. .L ))



 =2 9 8 178.

How can an interval estimate for σ2 be obtained?
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To obtain an interval estimate for σ2, a new family of distributions, called  
chi-square (χ2) distributions, must be introduced to enable us to find the sampling 
distribution of S2 from sample to sample.

	De finition 6.14	 If G Xi
i

n

=
=
∑ 2

1

where X1, . . . , Xn ~ N(0,1)

and the X si
′  are independent, then G is said to follow a chi-square distribution 

with n degrees of freedom (df  ). The distribution is often denoted by χn
2
.

The chi-square distribution is actually a family of distributions indexed by the 
parameter n referred to, again, as the degrees of freedom, as was the case for the t 
distribution. Unlike the t distribution, which is always symmetric about 0 for any 
degrees of freedom, the chi-square distribution only takes on positive values and is 
always skewed to the right. The general shape of these distributions is indicated in 
Figure 6.8.

For n = 1, 2, the distribution has a mode at 0 [3]. For n ≥ 3, the distribution has 
a mode greater than 0 and is skewed to the right. The skewness diminishes as n 
increases. It can be shown that the expected value of a χn

2 distribution is n and the 
variance is 2n.

	De finition 6.15	 The uth percentile of a χd
2 distribution (i.e., a chi-square distribution with d df  ) is de-

noted by χd u,
2 , where Pr ud d u( ),χ χ2 2< ≡ . These percentiles are shown in Figure 6.9 for a 

chi-square distribution with 5 df and appear in Table 6 in the Appendix.

Table 6 is constructed like the t table (Table 5), with the degrees of freedom (d) 
indexed in the first column and the percentile (u) indexed in the first row. The main 
difference between the two tables is that both lower (u ≤ 0.5) and upper (u > 0.5) per-
centiles are given for the chi-square distribution, whereas only upper percentiles are 

	Fi gure 6.8	 General shape of various χ2 distributions with d df

50
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given for the t distribution. The t distribution is symmetric about 0, so any lower 
percentile can be obtained as the negative of the corresponding upper percentile. 
Because the chi-square distribution is, in general, a skewed distribution, there is no 
simple relationship between the upper and lower percentiles.

	 Example 6.40 	 Find the upper and lower 2.5th percentiles of a chi-square distribution with 10 df. 

	 	 Solution:  According to Appendix Table 6, the upper and lower percentiles are given, 
respectively, by

		  χ χ10 975
2

10 025
220 48 3 25,. ,.. .= =and

For values of d not given in Table 6, a computer program, such as Excel, R, or 
Stata, can be used to obtain percentiles.

For example, in Excel the CHIINV function can be used to obtain upper percen-
tiles of the chi-square distribution. Specifically, CHIINV(p,d) = upper pth percentile 
of a chi-square distribution with d d.f. = x2

d,1-p. In R, the qchisq function can be used 
to obtain percentiles of the chi-square distribution. Specifically, qchisq(p,d) = lower 
pth percentile of a chi-square distribution with d d.f. = x2

d,p.

	 Example 6.41 	 Find the upper and lower 5th percentile of a chi-square distribution with 8 d.f. using 
Excel and R.

	 	 Solution:  

	 	 Excel

	 	

= χ = =

= χ = =

Theupper5thpercentile CHIINV(0.05,8) 15.51.

Thelower5thpercentile CHIINV(0.95,8) 2.73.

8,.95
2

8,.05
2

	 	 R

	 	

= χ = =

= χ = =

Theupper5thpercentile qchisq(0.95,8) 15.51.

Thelower5thpercentile qchisq(0.05,8) 2.73.

8,.95
2

8,.05
2

	 	 These are denoted by chisq_8_upper and chisq_8_lower in the R output below.

	Fi gure 6.9	 Graphic display of the percentiles of a χ5
2 distribution
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	 	 > chisq_8_upper<-qchisq(0.95,8)

	 	 > chisq_8_upper

	 	 [1] 15.50731

	 	 > chisq_8_lower<-qchisq(0.05,8)

	 	 > chisq_8_lower

	 	 [1] 2.732637

Interval Estimation
To obtain a 100% × (1 − α) CI for σ2 we use the following formula:

	 Equation 6.11	 A 100% × (1 − α) CI for σ2 is given by

		  n s n sn n−( ) −( ) − − −1 12
1 1 2

2 2
1 2

2χ χα α, / , /,

To show why this is true, we need to find the sampling distribution of S2. Suppose we 
assume that X1, . . . , Xn ~ N(µ,σ2). Then it can be shown that

	 Equation 6.12	 S
n

n2
2

1
2

1
∼ σ χ −

−

To see this, we recall from Section 5.5 that if X ~ N(µ,σ2) and if we standardize 
X (that is, we subtract µ and divide by σ), thus creating a new random variable  
Z = (X − µ)/σ, then Z will be normally distributed with mean 0 and variance 1. Thus, 
from Definition 6.14 (see page 183) we see that

	 Equation 6.13	 Z Xi
i

n

i n
2

1

2 2 2

=
∑ = − =( ) -µ σ χ∼ chi squaredistributioon withndf

i

n

=
∑

1

Because we usually don’t know µ, we estimate µ by x. However, it can be shown 
that if we substitute X for µ in Equation 6.13, then we lose 1 df [3], resulting in the 
relationship

	 Equation 6.14	 X Xi n
i

n

−( ) −
=
∑ 2 2

1
2

1

σ χ∼

However, we recall from the definition of a sample variance that S2 = 

X X nii

n −( ) −( )=∑ 2

1
1 . Thus, multiplying both sides by (n − 1) yields the relationship 

n S X Xi
i

n

−( ) = −( )
=
∑1 2 2

1

Substituting into Equation 6.14, we obtain
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	 Equation 6.15	
( )n S

n
−

−
1 2

2 1
2

σ
χ∼

If we multiply both sides of Equation 6.15 by σ2/(n − 1), we obtain Equation 6.12,

		  S
n n

2
2

1
2

1
∼ σ χ

− −

Thus, from Equation 6.12 we see that S2 follows a chi-square distribution with n − 1 
df multiplied by the constant σ2/(n − 1). Manipulations similar to those given in  
Section 6.5 can now be used to obtain a 100% × (1 − α) CI for σ2.

In particular, from Equation 6.12 it follows that

		
Pr

n
S

n
n nσ χ σ χα α

2
1 2

2
2

2
1 1 2

2

1 1
− − −

−
< <

−








 =, / , / 11 − α

This inequality can be represented as two separate inequalities:

		
σ χ σ χα α

2
1 2

2
2 2

2
1 1 2

2

1 1
n n

n
S S

n
− − −

−
< <

−
, / , /and

If both sides of the first inequality are multiplied by ( ) , /n n− −1 1 2
2χ α  and both sides of 

the second inequality are multiplied by ( ) , /n n− − −1 1 1 2
2χ α , then we have

		
σ

χ χ
σ

α α

2
2

1 2
2

2

1 1 2
2

21 1
<

−( ) −( )
<

− − −

n S n S

n n, / , /
and

or, on combining these two inequalities,

		
n S n S

n n

−( )
< <
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It follows that
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Thus, the interval n S n S( 1) ,( 1)n n
2

1,1 /2
2 2

1, /2
2− χ − χ − −α − α  is a 100% × (1 − α) CI for σ2.

	 Example 6.42 	 Hypertension  We now return to the specific data set in Example 6.39 (see page 182). 
Suppose we want to construct a 95% CI for the interobserver variability as defined 
by σ2.

	 	 Solution:  Because there are 10 people and s2 = 8.178, the required interval is given by

		  9 9 9 8 178 19 02 9 82
9 975
2 2

9 025
2s sχ χ,. ,., . . , .( ) = ( ) 1178 2 70 3 87 27 26( )  = ( ). . , .

Similarly, a 95% CI for σ is given by 3 87 27 26 1 97 5 22. , . ( . , . )( ) = . Notice that the CI 
for σ2 is not symmetric about s2 = 8.178, in contrast to the CI for µ, which was sym-
metric about x. This characteristic is common in CIs for the variance.

We could use the CI for σ2 to make decisions concerning the variability of the 
Arteriosonde machine if we had a good estimate of the interobserver variability of 
blood-pressure readings from a standard cuff. For example, suppose we know from 
previous work that if two people are listening to blood-pressure recordings from a 
standard cuff, then the interobserver variability as measured by the variance of the 
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set of differences between the readings of two observers is 35. This value is outside 
the range of the 95% CI for σ2(3.87, 27.26), and we thus conclude that the interob-
server variability is reduced by using an Arteriosonde machine. Alternatively, if this 
prior variance were 15, then we could not say that the variances obtained from us-
ing the two methods are different.

Note that the CI for σ2 in Equation 6.11 is only valid for normally distributed 
samples. If the underlying distribution is not normal, then the level of confidence for 
this interval may not be 1 − α even if the sample size is large. This is different from 
the CI for µ given in Equation 6.6 (see page 176), which will be valid for large n based 
on the central-limit theorem, even if the underlying distribution is not normal.

R E V I E W  Q U E ST  I ONS    6 D

1	 What is the difference between a t distribution and a chi-square distribution? When 
do we use each?

2	 Suppose we have a normal distribution with mean = 0 and variance = 5. We draw a 
sample of size 8 from this distribution and compute the sample variance, s2. What is 
the probability that s2 > 10?

	 6.8	 E s t i m at i o n  f o r  t h e  B i n o m i a l  Di  s t r ib  u t i o n

Point Estimation
Point estimation for the parameter p of a binomial distribution is discussed in this 
section.

	 Example 6.43 	 Cancer  Consider the problem of estimating the prevalence of malignant melanoma 
in 45- to 54-year-old women in the United States. Suppose a random sample of 5000 
women is selected from this age group, of whom 28 are found to have the disease. 
Let the random variable Xi represent the disease status for the ith woman, where Xi = 1 
if the ith woman has the disease and 0 if she does not; i = 1, . . . , 5000. The random 
variable Xi was also defined as a Bernoulli trial in Definition 5.12. Suppose the preva-
lence of the disease in this age group = p. How can p be estimated?

We let X Xi
i

n

= =
=
∑

1

 the number of women with malignant melanoma among the 

n women. From Example 5.29, we have E(X) = np and Var(X) = npq. Note that X can 
also be looked at as a binomial random variable with parameters n and p because X 
represents the number of events in n independent trials.

Finally, consider the random variable p̂ = sample proportion of events. In our 
example, p̂ = proportion of women with malignant melanoma. Thus,

		
p̂

n
X X ni

i

n

= =
=
∑1

1

Because p̂  is a sample mean, the results of Equation 6.1 apply and we see that
E p E X pi( ˆ) ( )= ≡ =µ . Furthermore, from Equation 6.2 it follows that

		  Var p n pq n se p pq n( ˆ) ( ˆ)= = =σ2 and

Thus, for any sample of size n the sample proportion p̂ is an unbiased estimator 
of the population proportion p. The standard error of this proportion is given 

See pages 166 and 168 for  
Equations 6.1 
and 6.2
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exactly by pq n and is estimated by ˆˆpq n. These principles can be summarized 
as follows:

	 Equation 6.16	 �Point Estimation of the Binomial Parameter p 
		  �Let X be a binomial random variable with parameters n and p. An unbiased es-

timator of p is given by the sample proportion of events p̂. Its standard error is 
given exactly by pq n and is estimated by ˆˆpq n.

	 Example 6.44 	 Estimate the prevalence of malignant melanoma in Example 6.43, and provide its 
standard error.

	 	 Solution:  Our best estimate of the prevalence rate of malignant melanoma among 45- to  
54-year-old women is 28/5000 = .0056. Its estimated standard error is

		  . (. ) .0056 9944 5000 0011=

Interval Estimation—Normal-Theory Methods
Point estimation of the parameter p of a binomial distribution was covered in the 
previous section. How can an interval estimate of the parameter p be obtained?

	 Example 6.45 	 Cancer  Suppose we are interested in estimating the prevalence rate of breast cancer 
among 50- to 54-year-old women whose mothers have had breast cancer. Suppose that 
in a random sample of 10,000 such women, 400 are found to have had breast cancer at 
some point in their lives. We have shown that the best point estimate of the prevalence 
rate p is given by the sample proportion ˆ , .p = =400 10 000 040 . How can an interval 
estimate of the parameter p be obtained? (See the solution in Example 6.46.)

Let’s assume the normal approximation to the binomial distribution is valid—
whereby from Equation 5.11 the number of events X observed out of n women will 
be approximately normally distributed with mean np and variance npq or, corre-
spondingly, the proportion of women with events = =p̂ X n is normally distributed 
with mean p and variance pq/n.

The normal approximation can actually be justified on the basis of the central-
limit theorem. Indeed, in the previous section we showed that p̂ could be repre-
sented as an average of n Bernoulli trials, each of which has mean p and variance pq. 
Thus, for large n, from the central-limit theorem, we can see that p̂ X=  is normally 
distributed with mean µ = p and variance σ2/n = pq/n, or

	 Equation 6.17	 ˆ ,p N p pq n∼. ( )

Alternatively, because the number of successes in n Bernoulli trials = =X np̂ 
(which is the same as a binomial random variable with parameters n and p), if Equa-
tion 6.17 is multiplied by n,

	 Equation 6.18	 X N np npq∼. ( , )
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This formulation is indeed the same as that for the normal approximation to the bi-
nomial distribution, which was given in Equation 5.11. How large should n be before 
this approximation can be used? In Chapter 5 we said the normal approximation to 
the binomial distribution is valid if npq ≥ 5. However, in Chapter 5 we assumed p was 
known, whereas here we assume it is unknown. Thus, we estimate p by p̂ and q by 
ˆ ˆq p= −1  and apply the normal approximation to the binomial if npqˆˆ ≥ 5. Therefore, 
the results of this section should only be used if npqˆˆ ≥ 5. An approximate 100% ×  
(1 − α) CI for p can now be obtained from Equation 6.17 using methods similar to 
those given in Section 6.5. 

	 Equation 6.19	 �Normal-Theory Method for Obtaining a CI for the Binomial Parameter p (Wald Method) 
		�  An approximate 100% × (1 − α) CI for the binomial parameter p based on the 

normal approximation to the binomial distribution is given by

		  	 ˆ ˆˆ/p z pq n± −1 2α

		  This method of interval estimation should only be used if npqˆˆ ≥ 5.

Specifically, to derive Equation 6.19, from Equation 6.17 we see that

		  Pr p z pq n p p z pq n− < < +( ) = −− −1 2 1 2 1α α α/ /ˆ

This inequality can be written in the form of two inequalities:

		  p z pq n p p p z pq n− < < +− −1 2 1 2α α/ /ˆ ˆand

To explicitly derive a CI based on these inequalities requires solving a quadratic 
equation for p in terms of p̂. To avoid this, it is customary to approximate pq n  by 

ˆˆpq n  and to rewrite the inequalities in the form

		  p z pq n p p p z pq n− < < +− −1 2 1 2α α/ /ˆˆ ˆ ˆ ˆˆand

We now add z pq n1 2−α/ ˆˆ  to both sides of the first inequality and subtract this quan-
tity from both sides of the second inequality, obtaining

		  p p z pq n p z pq n p< + − <− −ˆ ˆˆ ˆ ˆˆ/ /1 2 1 2α αand

Combining these two inequalities, we get

		  ˆ ˆˆ ˆ ˆˆ/ /p z pq n p p z pq n− < < +− −1 2 1 2α α

or  Pr p z pq n p p z pq nˆ ˆˆ ˆ ˆˆ/ /− < < +( ) = −− −1 2 1 2 1α α α

The approximate 100% × (1 − α) CI for p is given by

		  ˆ ˆˆ , ˆ ˆˆ/ /p z pq n p z pq n− +( )− −1 2 1 2α α

	 Example 6.46 	 Cancer  Using the data in Example 6.45, derive a 95% CI for the prevalence rate of 
breast cancer among 50- to 54-year-old women whose mothers have had breast cancer.

	 	 Solution:  ˆ . . . ,/p z n= = = =−040 05 1 96 10 0001 2α α .

	 	 We have that ( )( )= ,00 = ≥npqˆˆ 10 0 0.040 0.4611 384 5. Thus, we can use the large 
sample method in Equation 6.19.
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Therefore, an approximate 95% CI is given by

		

. . . (. ) , ,. . . (. )040 1 96 04 96 10 000 040 1 96 04 96 10− + ,,

(. . , . . ) (. , . )

000

040 004 040 004 036 044

 
= − + =

Suppose we know the prevalence rate of breast cancer among all 50- to 
54-year-old American women is 2%. Because 2% is less than .036 (the lower con-
fidence limit), we can be quite confident that the underlying rate for the group 
of women whose mothers have had breast cancer is higher than the rate in the 
general population.

We can also obtain large sample confidence limits for the binomial parameter p 
using a computer program. For example, using Stata if we specify

	 cii n x, wald

where n = number of trials and x = number of successes, we will obtain a 95% CI for 
the binomial parameter p.

	 Example 6.47 	 Cancer  Use Stata to obtain a 95% CI for the proportion of women who develop 
breast cancer based on the data in Example 6.46.

	 	 Solution:  We use the cii command and obtain the following output:

	 	 . cii 10000 400, wald

	 	                                  — Binomial Wald —
		    Variable  |     Obs    Mean    Std. Err.    [95% Conf. Interval]
		  ------------+---------------------------------------------------
		               |    10000   .04      .0019596        .0361593    .0438407

	 	 The results are the same as in Example 6.46.

Interval Estimation—Exact Methods
The question remains: How is a CI for the binomial parameter p obtained when  
either the normal approximation to the binomial distribution is not valid or a more 
exact CI is desired?

	 Example 6.48 	 Cancer, Nutrition  Suppose we want to estimate the rate of bladder cancer in rats that 
have been fed a diet high in saccharin. We feed this diet to 20 rats and find that 2 

develop bladder cancer. In this case, our best point estimate of p is ˆ . .p = =2
20

1

However, because

		  npqˆˆ .= ( )( ) = <20 2 20 18 20 1 8 5

the normal approximation to the binomial distribution cannot be used and thus 
normal-theory methods for obtaining CIs are not valid. How can an interval  
estimate be obtained in this case?

A small-sample method for obtaining confidence limits will be presented.
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	 Equation 6.20	� Exact Method for Obtaining a CI for the Binomial Parameter p (Clopper-Pearson Method)
		�  An exact 100% × (1 − α) CI for the binomial parameter p that is always valid is 

given by (p1, p2), where p1, p2 satisfy the equations

		

Pr X x p p
n
k

p p

Pr

k n k

k x

n

( | ) ( )≥ = = =






− −

=
∑1 1 12

1
α

(( | ) ( )X x p p
n
k

p pk n k

k

x

≤ = = =




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− −

=
∑2 2 2

02
1

α

A rationale for this CI is given in our discussion of hypothesis testing for the 
binomial distribution in Section 7.9 on page 259.

The main problem with using this method is the difficulty in computing expres-
sions such as

		
n
k

p pk n k

k

x 





− −

=
∑ ( )1

0

Fortunately, computer programs exist for the evaluation of such expressions, one of 
which is provided by Stata.

We use the cii command of Stata, where the default method for computing 
confidence intervals for the binomial parameter p is based on the exact method. 
Specifically, if we specify

	  cii n x

where n = number of trials and x = number of successes, then we will obtain a 95% 
CI for p.

	 Example 6.49 	 Cancer  Derive an exact 95% CI for the probability of developing bladder cancer 
based on the data in Example 6.48.

	 	 Solution:  We use the cii command of Stata and obtain the following output:

	 	 . cii 20 2

	 	                                 — Binomial Exact —
		    Variable  |    Obs    Mean    Std. Err.    [95% Conf. Interval]
	 	 ------------+--------------------------------------------------
	 	               |      20         .1      .067082      .0123485    .3169827

	 	 Thus, the exact 95% CI for p = (0.01, 0.32). Note that this interval is not symmetric 
about the point estimate for p (0.10).

Another approach to solving this problem is to use the BINOMDIST function of 
Excel. From Equation 6.20, we need to find values of p1 and p2 such that

		  Pr X p p Pr X p p≥ =( ) = ≤ =( ) =2 025 2 0251 2| . | .and

However, Pr(X ≥ 2 |  p = p1) = 1 − Pr(X ≤ 1|  p = p1) = 1 − BINOMDIST(1, 20, p1, TRUE) 
and Pr(X ≤ 2 |  p = p2) = BINOMDIST(2, 20, p2, TRUE). Hence we set up a spreadsheet 
in which the first column has values of p1 from .01 to 1.0 in increments of .01; the 
second column has 1 − BINOMDIST(1, 20, p1, TRUE); the third column has values 
of p2 from .01 to 1.0 in increments of .01; and the fourth column has BINOMDIST  
(2, 20, p2, TRUE). An excerpt from the spreadsheet is shown in Table 6.7.
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Usually with exact confidence limits accurate to a fixed number of decimal 
places, we cannot exactly satisfy Equation 6.20. Instead, we use a more conservative 
approach. We find the largest value of p1 so that Pr(X ≥ x |  p = p1) ≤ α/2 and the small-
est value of p2 so that Pr(X ≤ x |  p = p2) ≤ α/2. Based on Table 6.7 with α = .05, the 
values of p1 and p2 that satisfy these inequalities are p1 = .01 and p2 = .32. Hence, the 
95% CI for p is (.01, .32).

	 Example 6.50 	 Health Promotion  Suppose that as part of a program for counseling patients with 
many risk factors for heart disease, 100 smokers are identified. Of this group, 10 
give up smoking for at least 1 month. After a 1-year follow-up, 6 of the 10 patients 
are found to have taken up smoking again. The proportion of ex-smokers who start 
smoking again is called the recidivism rate. Derive a 99% CI for the recidivism rate.

	 	 Solution:  Exact binomial confidence limits must be used, because

		  npqˆˆ (. )(. ) .= = <10 6 4 2 4 5

We can also use the Stata command cii to obtain exact 99% confidence limits 
for p. The general form of this command is   

 .cii n x, level(%)

where % is the level of confidence, n is the number of trials and x is the number of 
successes. The results for the recidivism data are as follows:

.cii 10 6, level(99)
                                        -- Binomial Exact --
    Variable |    Obs    Mean    Std. Err.    [99% Conf. Interval]
-------------+---------------------------------------------------
              |     10      .6     .1549193      .1909163   .9232318

We see that the 99% exact binomial confidence interval is (.19, .92).

	T able 6.7	 Evaluation of exact binomial confidence limits using Excel, 	
based on the data in Example 6.48

	 p1
	 1 − BINOMDIST(1,20,p1,TRUE)	 p2

	 BINOMDIST(2,20,p2,TRUE)

	 0.01	 0.017	 0.25	 0.091
	 0.02	 0.060	 0.26	 0.076
	 0.03	 0.120	 0.27	 0.064
	 0.04	 0.190	 0.28	 0.053
	 0.05	 0.264	 0.29	 0.043
	 0.06	 0.340	 0.30	 0.035
	 0.07	 0.413	 0.31	 0.029
	 0.08	 0.483	 0.32	 0.023
	 0.09	 0.548	 0.33	 0.019
	 0.1	 0.608	 0.34	 0.015
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R E V I E W  Q U E ST  I ONS    6 E

1	 Suppose an experimental weight-loss program is provided for 40 overweight participants. 
A participant is considered partially successful if he or she has lost 5 lb or more after 	
6 months. Suppose that 10 of the 40 participants are partially successful in losing weight.

	 (a)	 What is an estimate of the partial-success rate?

	 (b)	 Derive a 95% CI for the proportion of partial successes.

2	 A participant is considered completely successful if he or she has lost 20 lb or more 
after 6 months. Suppose that 4 of the 40 participants are completely successful at 
losing weight.

	 (a)	 What is an estimate of the complete success rate?

	 (b)	 Derive a 95% CI for the proportion of participants who were completely 	
successful at losing weight.

	 6.9	 E s t i m at i o n  f o r  t h e  P o i s s o n  Di  s t r ib  u t i o n

Point Estimation
In this section, we discuss point estimation for the parameter λ of a Poisson distribution.

	 Example 6.51 	 Cancer, Environmental Health  A study in Woburn, Massachusetts, in the 1970s 
looked at possible excess cancer risk in children, with a particular focus on leukemia. 
This study was later portrayed in the book and movie titled A Civil Action. An impor-
tant environmental issue in the investigation concerned the possible contamination 
of the town’s water supply. Specifically, 12 children (<19 years of age) were diagnosed 
with leukemia in Woburn during the period January 1, 1970 to December 31, 1979. A 
key statistical issue is whether this represents an excessive number of leukemia cases, 
assuming that Woburn has had a constant 12,000 child residents (≤19 years old) dur-
ing this period and that the incidence rate of leukemia in children nationally is 5 cases 
per 100,000 person-years. Can we estimate the incidence rate of childhood leukemia 
in Woburn during the 1970s and provide a CI about this estimate?

We let X = the number of children who developed leukemia in Woburn during 
the 1970s. Because X represents a rare event, we assume that X follows a Poisson 
distribution with parameter µ = λT. We know from Chapter 4 that for a Poisson dis-
tribution, E(X) = λT, where T= time and λ = number of events per unit time.

	De finition 6.16	 A person-year is a unit of time defined as 1 person being followed for 1 year.

This unit of follow-up time is commonly used in longitudinal studies—that is, 
studies in which the same individual is followed over time.

	 Example 6.52 	 Cancer, Environmental Health  How many person-years accumulated in the Woburn 
study in Example 6.51?

	 	 Solution:  In the Woburn study, 12,000 children were each followed for 10 years. 
Thus, a total of 120,000 person-years accumulated. This is actually an approxima-
tion, because the children who developed leukemia over the 10-year period were 
followed only up to the time they developed the disease. It is also common to cur-
tail follow-up for other reasons, such as death or the development of other types of 
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cancer. However, the number of children for whom follow-up is curtailed for these 
reasons is probably small and the approximation is likely to be accurate.

Finally, although children moved in and out of Woburn over the 10-year period, 
we assume there was no net migration in or out of the area during the 1970s.

We now wish to assess how to estimate λ based on an observed number of events 
X over T person-years.

	 Equation 6.21	 �Point Estimation for the Poisson Distribution 
		�  Let’s assume the number of events X over T person-years is Poisson-distributed 

with parameter µ = λT. An unbiased estimator of λ is given by ˆ /λ = X T , where X 
is the observed number of events over T person-years.

If λ is the incidence rate per person-year, T = number of person-years of 
follow-up, and we assume a Poisson distribution for the number of events X over 
T person-years, then the expected value of X is given by E(X) = λT. Therefore,

			 
E E X T

T T

(ˆ) ( )λ
λ λ

=
= =

		  Thus, λ̂ is an unbiased estimator of λ.

	 Example 6.53 	 Cancer, Environmental Health  Estimate the incidence rate of childhood leukemia  
in Woburn during the 1970s based on the data provided in Example 6.51.

	 	 Solution:  There were 12 events over 120,000 person-years, so the estimated inci-
dence rate = 12/120,000 = 1/10,000 = 0.0001 events per person-year. Because can-
cer incidence rates per person-year are usually very low, it is customary to express 
such rates per 100,000 (or 105) person-years—that is, to change the unit of time to 
105 person-years. Thus, if the unit of time = 105 person-years, then T = 1.2 and λ̂ = 
0.0001 (105) = 10 events per 100,000 person-years.

Interval Estimation
The question remains as to how to obtain an interval estimate for λ. We use a similar 
approach as was used to obtain exact confidence limits for the binomial proportion 
p in Equation 6.20 (p. 191). For this purpose, it is easier to first obtain a CI for µ = 
expected number of events over time T of the form (µ1,µ2) and then obtain the cor-
responding CI for λ from (µ1/T, µ2/T). The approach is given as follows:

	 Equation 6.22	 �Exact Method for Obtaining a CI for the Poisson Parameter k 
		�  An exact 100% × (1 − α) CI for the Poisson parameter λ is given by (µ1/T, µ2/T), 

where µ1,µ2 satisfy the equations

			 

Pr X x e k

e k

k

k x

k

k

( | ) !

!

≥ = = =

= −

−

=

∞

−

∑µ µ α µ

µ

µ

µ

1 1

1

2

1

1

1

==

−

−

=

∑

∑≤ = = =

0

1

2
0

22
2

x

k

x
kPr X x e k( | ) !µ µ α µµ

		  and x = observed number of events, T = number of person-years of follow-up.
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As in obtaining exact confidence limits for the binomial parameter p, it is difficult to 
exactly compute µ1, µ2 to satisfy Equation 6.22. Table 7 in the Appendix provides the 
solution to these equations. This table can be used to find 90%, 95%, 98%, 99%, or 
99.8% CIs for µ if the observed number of events (x) is ≤ 50. The observed number 
of events (x) is listed in the first column, and the level of confidence is given in the 
first row. The CI is obtained by cross-referencing the x row and the 1 − α column.

	 Example 6.54 	 Suppose we observe 8 events and assume the number of events is Poisson-distributed 
with parameter µ. Find the 95% CI for µ.

	 	 Solution:  We refer to Table 7 under the x = 8 row and the 0.95 column to find the 
95% CI for µ = (3.45, 15.76).

We see this CI is not symmetric about x (8), because 15.76 − 8 = 7.76 > 8 − 3.45 = 4.55. 
This is true for all exact CIs based on the Poisson distribution unless x is very large.

	 Example 6.55 	 Cancer, Environmental Health  Compute a 95% CI for both the expected number 
of childhood leukemias (µ) and the incidence rate of childhood leukemia per 105 
person-years (λ) in Woburn based on the data provided in Example 6.51.

	 	 Solution:  We observed 12 cases of childhood leukemia over 10 years. Thus, from 
Table 7, referring to x = 12 and level of confidence 95%, we find that the 95% CI for µ = 
(6.20, 20.96). Because there were 120,000 person-years = T, a 95% CI for the incidence 

	 	 rate = 





6 20
120 000

20 96
120 000

.
,

,
.
,

 events per person-year or 6 20
120 000

10
20 96

120 000
105 5.

,
,

.
,

× ×





	 	 events per 105 person-years = (5.2, 17.5) events per 105 person-years = 95% CI for λ.

We can also use the Stata cii command to obtain an exact 95% CI for the inci-
dence rate (λ). The general syntax is

.cii py x, poisson

where py = number of person-years and x = number of events. The results for the 
leukemia data are as follows:

.cii 120000 12, poisson
                                           -- Poisson Exact --
   Variable |   Exposure   Mean    Std. Err.   [95% Conf. Interval]
------------+----------------------------------------------------
             |       120000  .0001   .0000289    .0000517   .0001747  

We see that the 95% CI for λ = (5.2/105, 17.5/105), which agrees with our results from 
Table 7. Stata can also be used to obtain a 95% CI for µ if we just have available a 
number of events, by setting py = 1. 

	 Example 6.56 	 Cancer, Environmental Health  Interpret the results in Example 6.55. Specifically, 
do you feel there was an excess childhood leukemia risk in Woburn, Massachusetts, 
relative to expected U.S. incidence rates?

	 	 Solution:  Referring to Example 6.51, we note that the incidence rate of childhood 
leukemia in the United States during the 1970s was 5 events per 105 person-years. 
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We denote this rate by λ0. Referring to Example 6.55, we see that the 95% CI for λ 
in Woburn = (5.2, 17.5) events per 105 person-years. The lower bound of the 95% CI 
exceeds λ0 (= 5), so we can conclude there was a significant excess of childhood leu-
kemia in Woburn during the 1970s. Another way to express these results is in terms 
of the standardized morbidity ratio (SMR) defined by

		
SMR

incidence rate in Woburn for childhood= lleukemia
U.S. incidence rate for childhood lleukemia

= =10 10
5 10

2
5

5

If the U.S. incidence rate is assumed to be known, then a 95% CI for SMR is given by
5 2
5

17 5
5

1 04 3 50
.

,
.

( . , . )



 = . Because the lower bound of the CI for SMR is > 1, we conclude 

there is a significant excess risk in Woburn. We pursue a different approach in 
Chapter 7, addressing this issue in terms of hypothesis testing and p-values.

In some instances, a random variable representing a rare event over time is assumed 
to follow a Poisson distribution but the actual amount of person-time is either unknown 
or is not reported in an article from the literature. In this instance, it is still possible to 
use Appendix Table 7 or a computer program to obtain a CI for µ, although it is impos-
sible to obtain a CI for λ.

	 Example 6.57 	 Occupational Health  In Example 4.40, a study was described concerning the pos-
sible excess cancer risk among employees with high exposure to ethylene dibromide 
in two plants in Texas and Michigan. Seven deaths from cancer were reported over 
the period 1940−1975, whereas only 5.8 cancer deaths were expected based on mor-
tality rates for U.S. white men. Find a 95% CI for the expected number of deaths 
among the exposed workers, and assess whether their risk differs from that of the 
general population.

	 	 Solution:  In this case, the actual number of person-years used in computing the 
expected number of deaths was not reported in the original article. Indeed, the com-
putation of the expected number of deaths is complex because

	 (1)	 Each worker is of a different age at the start of follow-up.

	 (2)	 The age of a worker changes over time.

	 (3)	 Mortality rates for men of the same age change over time.

However, we can use Appendix Table 7 to obtain a 95% CI for µ. Because x = 7 
events, we have a 95% CI for µ = (2.81, 14.42). The expected number of deaths based 
on U.S. mortality rates for Caucasian males = 5.8, which falls within the preceding 
interval. Thus, we conclude the risk among exposed workers does not differ from the 
general population.

Table 7 can also be used for applications of the Poisson distribution other than those 
based specifically on rare events over time.

	 Example 6.58 	 Bacteriology  Suppose we observe 15 bacteria in a Petri dish and assume the number 
of bacteria is Poisson-distributed with parameter µ. Find a 90% CI for µ.

	 	 Solution:  We refer to the 15 row and the 0.90 column in Table 7 to obtain the 90% 
CI (9.25, 23.10).
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	 6.10	 O n e - Si  d e d  C o n f i d e n c e  I n t e r v a l s

In the previous discussion of interval estimation, what are known as two-sided CIs 
have been described. Frequently, the following type of problem occurs.

	 Example 6.59 	 Cancer  A standard treatment exists for a certain type of cancer, and the patients 
receiving the treatment have a 5-year survival probability of 30%. A new treatment 
is proposed that has some unknown survival probability p. We would only be inter-
ested in using the new treatment if it were better than the standard treatment. Sup-
pose that 40 out of 100 patients who receive the new treatment survive for 5 years. 
Can we say the new treatment is better than the standard treatment?

One way to analyze these data is to construct a one-sided CI, where we are inter-
ested in only one bound of the interval, in this case the lower bound. If 30% is below 
the lower bound, then it is an unlikely estimate of the 5-year survival probability for 
patients getting the new treatment. We could reasonably conclude from this that the 
new treatment is better than the standard treatment in this case.

	 Equation 6.23	� Upper One-Sided CI for the Binomial Parameter p — Normal-Theory Method 

	 	 An upper one-sided 100% × (1 − α) CI is of the form p > p1 such that

			   Pr( )p p> = −1 1 α

		�  If we assume that the normal approximation to the binomial holds true, then 
we can show that this CI is given approximately by

			   p p z pq n> − −ˆ ˆˆ /1 α

		  This interval estimator should only be used if npqˆˆ ≥ 5.

To see this, note that if the normal approximation to the binomial distribution 
holds, then ˆ ( , )p N p pq n∼ . Therefore, by definition

		  Pr p̂ p z pq n<( ) = −−+ 1 1α α

We approximate pq n  by ˆˆpq n  and subtract z pq n1−α ˆˆ  from both sides of the 
equation, yielding

		  ˆ ˆˆp z pq n p− <−1 α

or p p z pq n> − −ˆ ˆˆ1 α  and Pr p p z pq n> −( ) = −−ˆ ˆˆ1 1α α
Therefore, if the normal approximation to the binomial distribution holds, then 
p p z pq n> − −ˆ ˆˆ1 α  is an approximate upper 100% × (1 − α) one-sided CI for p.

Notice that z1−α is used in constructing one-sided intervals, whereas z1 2−α/  was 
used in constructing two-sided intervals.

	 Example 6.60 	 Suppose a 95% CI for a binomial parameter p is desired. What percentile of the nor-
mal distribution should be used for a one-sided interval? For a two-sided interval?

	 	 Solution:  For α = .05, we use z1−.05 = z.95 = 1.645 for a one-sided interval and 
z z1 05 2 975 1 96− = =. . .  for a two-sided interval.
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	 Example 6.61 	 Cancer  Construct an upper one-sided 95% CI for the survival probability based on 
the cancer-treatment data in Example 6.59.

	 	 Solution:  First check that npqˆˆ (. )(. )= = ≥100 4 6 24 5. The CI is then given by

		

Pr

Pr

p z

p

> −  =

>

. . (. ) .

.

.40 4 6 100 95

40

95

−−[ ] =1 645 049 95. (. ) .

 Pr( . ) .p > =319 95

Because .30 is not within the given interval [that is, (.319, 1.0)], we conclude the 
new treatment is better than the standard treatment.

If we were interested in 5-year mortality incidence rather than the 5-year sur-
vival probability, then a one-sided interval of the form Pr(p < p2) = 1 − α would be ap-
propriate because we would only be interested in the new treatment if its mortality 
incidence were lower than that of the standard treatment.

	 Equation 6.24	 �Lower One-Sided CI for the Binomial Parameter p — Normal-Theory Method 

		  The interval p < p2 such that

			   Pr(p < p2) = 1 − α

		  is referred to as a lower one-sided 100% × (1 − α) CI and is given approximately by

			   p p z pq n< + −ˆ ˆˆ1 α

This expression can be derived in the same manner as in Equation 6.23 by starting 
with the relationship

		  Pr p̂ p z pq n> −( ) = −−1 1α α

If we approximate pq n by ˆˆpq n and add z pq n1−α ˆˆ  to both sides of the equation, 
we get

		
Pr p p z pq n< +( ) = −−ˆ ˆˆ1 1α α

	 Example 6.62 	 Cancer  Compute a lower one-sided 95% CI for the 5-year mortality incidence using 
the cancer-treatment data in Example 6.59.

	 	 Solution:  We have ˆ .p = 6. Thus, the 95% CI is given by

		

Pr

Pr

p

p

< +  =

< +

. . . (. ) .

.

6 1 645 6 4 100 95

6 11 645 049 95. (. ) .[ ] =

 
Pr( . ) .p < =681 95

Because 70% is not within this interval [that is, (0, .681)], we can conclude the new 
treatment has a lower 5-year mortality incidence than the old treatment.
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Similar methods can be used to obtain one-sided CIs for the mean and variance 
of a normal distribution, for the binomial parameter p using exact methods, and for 
the Poisson expectation µ using exact methods.

	 6.11	 T h e  B o o t s t r a p

	 Example 6.63 	 Infectious Disease  Suppose we refer to the hospital stay data in Table 2.13 (HOSPI-
TAL.DAT). Obtain a point estimate and a 95% Cl for the duration of hospital stay.

	 	 Solution:  It is reasonable to consider using large sample confidence limits for the 
mean of a normal distribution given in Equation 6.6 (p. 176). Indeed, we have that

	 	 x = 8.6 days, s = 5.72 days, and n = 25.

	 	 Thus, the large sample 95% CI for μ would be:

		

x t s n

8.6 25
8.6

24 .975±

= ± 2.064(5.72)
= ± 2.36
= (6.24,10.96).

,

	 	 However, the confidence interval formula in Equation 6.6 assumes that the distribution 
of hospital stay is normal or that the central limit theorem can be used. To check this 
assumption, we plot the distribution of duration of stay using R as shown in Figure 6.10.

The distribution appears right-skewed and far from being normal. How can we 
check the validity of the 95% Cl computed in Example 6.63? A simulation-based ap-
proach, known as the Bootstrap approach, can be used for this purpose for estimat-
ing confidence intervals.

	De finition 6.17	 Suppose we have an original sample denoted by X = {x1, …, xn}. A bootstrap sample  
Y = {y1, …, ym} is a sample chosen with replacement from X such that each observa-
tion in X has an equal probability of being chosen. Thus, it is possible that the same 
observation xj will be chosen for multiple observations in Y, or that some observa-
tion xk will not be chosen for any observation in Y. Mathematically,

	Fi gure 6.10	 Plot of duration of stay in HOSPITAL.DAT
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Pr(Yl = xj) = 1/n, l = 1, …, m; j = 1,…, n,

where Y1, …, Ym are independent. In most applications, m = n.

The rationale for bootstrap sampling is that the population distribution of X is 
estimated from the empirical distribution {x1, …, xn} each with probability 1/n. The 
advantage is that no specific functional form is assumed for the distribution of X.

	 Example 6.64 	 Hypertension  Suppose we obtain the sample of 10 systolic blood-pressure (SBP) 
measurements taken with an Arteriosonde machine based on Observer 1 in Table 6.6 
(p. 182). Select 10 bootstrap samples of size 10 from this sample.

	 	 Solution:  We will use the first row of random digits in Table 4 (also see Table 6.1) 
to select the bootstrap samples. The digit 0 will correspond to selecting the tenth 
sample point. We will denote the jth sample point in the ith bootstrap sample by yij. 
The samples selected are shown in Table 6.8.

	T able 6.8	 Two bootstrap samples of size 10 selected from a sample of 10 SBP Arteriosonde 
measurements taken by 1 observer.

	 	 Bootstrap sample 1	 Bootstrap sample 2

	 	 Random	 Bootstrap	 Random	 Bootstrap	
ID	 Original Sample	 digits	 sample	 Digits	 sample

  1	 194	 3	 130	 1	 194
  2	 126	 2	 126	 8	 108
  3	 130	 9	 102	 1	 194
  4	   98	 2	 126	 2	 126
  5	 136	 4	 98	 5	 136
  6	 145	 2	 126	 0	 126
  7	 110	 2	 126	 9	 102
  8	 108	 3	 130	 0	 126
  9	 102	 2	 126	 7	 110
 10	 126	 4	 98	 7	 110
	 	 	 	 	
mean	 127.5	 	 118.8	 	 133.2
  sd	 27.9	 	 13.6	 	 33.7

Note that the first random digit is 3 for the first bootstrap sample so that y11 = x3 = 130. The second random digit is 2, 
so y12 = x2 = 126, etc. Also, some original sample points (e.g., x2) are selected multiple times (x2 is selected 5 times in 
the first bootstrap sample), while some other sample points (e.g., x6) are not selected at all. Note that the mean and sd 
are different in each bootstrap sample and are different from the mean and sd of the original sample.

	 Equation 6.25	 Bootstrap confidence intervals

		�  The idea is that if we select many bootstrap samples, compute the mean of each 
sample, and plot the distribution of means, then this will reflect the variation 
in the sample mean from the reference population. Thus, if we wish to obtain a 
100% × (1 − α) CI for µ, we can:

		    1. � Generate N bootstrap samples of size n from the original sample. Typi-
cally, N is large (≥ 1000).

		    2.  Compute the mean of each bootstrap sample.
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		    3. � Sort the means and determine the upper and lower 100% × (α/2) percen-
tile of the distribution (denoted by y1−α/2 and yα/2, respectively).

		    4.  The Bootstrap 100% × (1 − α) CI for µ is given by (yα/2, y1−α/2).

Note that this method of confidence interval estimation makes no assumptions as 
to the underlying distribution of the original sample. If the central limit theorem 
holds, the bootstrap CI in equation 6.25 should be approximately the same as the 
large sample CI in equation 6.6. 

	 Example 6.65 	 Infectious Disease  Determine a 95% CI for the mean duration of stay in the Data 
Set HOSPITAL.DAT (Table 2.13) using bootstrap methods.

	 	 Solution:  We use the sample command of R to select N = 1000 bootstrap samples 
and the mean command to calculate the mean of each of the samples. We then use 
the quantile command to determine the 2.5th and 97.5th percentiles of the 1000 
sample means. The R code used for this purpose is given in Table 6.9.

	T able 6.9	 The R code for obtaining 95% Bootstrap confidence limits for the mean duration of stay 
in HOSPITAL.DAT. 

> a<− numeric(1000)

> for (i in 1:1000){

+ a[i]<−mean(sample(Dur_stay,25,replace=T))}

> quantile(a,c(.025,.975))

2.5% 97.5% 

6.68 11.04

We see that the 95% CI for µ = (6.68, 11.04).
A histogram of the means of the 1000 bootstrap samples is given in Figure 6.11.

	Fi gure 6.11	 Histogram of the mean duration of stay obtained from 1000 bootstrap samples from 
HOSPITAL.DAT
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The distribution of sample means looks slightly positively skewed, which is con-
sistent with the bootstrap 95% CI (6.68, 11.04) being asymmetric with respect to the 
mean in the original sample (8.6) and notably different from the large sample 95% 
CI (6.24, 10.96) given in the solution to Example 6.63. 

Thus, the large sample 95% CI for µ based on n = 25 is probably not ap-
propriate for this type of data and the bootstrap CI is preferable. The bootstrap 
method for obtaining CI can also be used to obtain confidence limits for other 
parameters. More details about bootstrap sampling is provided in Efron and 
Tibshirani [4].

	 6.12	 Summary
This chapter introduced the concept of a sampling distribution. This concept is 
crucial to understanding the principles of statistical inference. The fundamental 
idea is to forget about our sample as a unique entity and instead regard it as a ran-
dom sample from all possible samples of size n that could have been drawn from 
the population under study. Using this concept, X was shown to be an unbiased 
estimator of the population mean µ; that is, the average of all sample means over 
all possible random samples of size n that could have been drawn will equal the 
population mean. Furthermore, if our population follows a normal distribution, 
then X has minimum variance among all possible unbiased estimators and is thus 
called a minimum-variance unbiased estimator of µ. Finally, if our population follows 
a normal distribution, then X also follows a normal distribution. However, even 
if our population is not normal, the sample mean still approximately follows a 
normal distribution for a sufficiently large sample size. This very important idea, 
which justifies many of the hypothesis tests we study in the rest of this book, is 
called the central-limit theorem.

The idea of an interval estimate (or CI) was then introduced. Specifically, a 
95% CI is defined as an interval that will contain the true parameter for 95% of 
all random samples that could have been obtained from the reference population. 
The preceding principles of point and interval estimation were applied to the 
following:

(1)	 Estimating the mean µ of a normal distribution

(2)	 Estimating the variance σ2 of a normal distribution

(3)	 Estimating the parameter p of a binomial distribution

(4)	 Estimating the parameter λ of a Poisson distribution

(5)	 Estimating the expected value µ of a Poisson distribution

The t and chi-square distributions were introduced to obtain interval esti-
mates for (1) and (2), respectively. Finally, the bootstrap CI was introduced to 
obtain confidence limits for the mean when the assumption of normality is 
questionable, and can also be applied to obtain confidence limits for other pa-
rameters from other distributions.

In Chapters 7 through 14, the discussion of statistical inference continues, 
focusing primarily on testing hypotheses rather than on parameter estimation. In 
this regard, some parallels between inference from the points of view of hypothesis 
testing and CIs are discussed.
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Gastroenterology
Suppose we are asked to construct a list of treatment as-
signments for patients entering a study comparing different 
treatments for duodenal ulcer.

6.1  Anticipating that 20 patients will be entered in the 
study and two treatments will be used, construct a list of 
random-treatment assignments starting in the 28th row of 
the random-number table (Table 4 in the Appendix).

6.2  Count the number of people assigned to each treat-
ment group. How does this number compare with the ex-
pected number in each group?

6.3  Suppose we change our minds and decide to enroll 
40 patients and use four treatment groups. Use a computer 
program (such as MINITAB or Excel) to construct the list of 
random-treatment assignments referred to in Problem 6.1.

6.4  Answer Problem 6.2 for the list of treatment assign-
ments derived in Problem 6.3.

Pulmonary Disease
The data in Table 6.10 concern the mean triceps skin-fold 
thickness in a group of normal men and a group of men with 
chronic airflow limitation [5].

Table 6.10  �Triceps skin-fold thickness in normal 
men and men with chronic airflow 
limitation

Group	 Mean	 sd	 n

Normal	 1.35	 0.5	 40
Chronic airflow limitation	 0.92	 0.4	 32

Source: Adapted from Chest, 85(6), 58S−59S, 1984.

*6.5  What is the standard error of the mean for each group?

6.6  Assume that the central-limit theorem is applicable. 
What does it mean in this context?

6.7  Find the upper 1st percentile of a t distribution with 16 df.

6.8  Find the lower 10th percentile of a t distribution with 
28 df.

6.9  Find the upper 2.5th percentile of a t distribution with 7 df.

6.10  What are the upper and lower 2.5th percentiles for a 
chi-square distribution with 2 df? What notation is used to 
denote these percentiles?

Refer to the data in Table 2.13. Regard this hospital as typi-
cal of Pennsylvania hospitals.

6.11  Compute a 95% CI for the mean age.

6.12  Compute a 95% CI for the mean white blood count 
following admission.

6.13  Answer Problem 6.12 for a 90% CI.

P ro  b l e m s

6.14  What is the relationship between your answers to 
Problems 6.12 and 6.13?

*6.15  What is the best point estimate of the percentage 
of males among patients discharged from Pennsylvania 
hospitals?

*6.16  What is the standard error of the estimate obtained 
in Problem 6.15?

*6.17  Provide a 95% CI for the percentage of males among 
patients discharged from Pennsylvania hospitals.

Microbiology
A nine-laboratory cooperative study was performed to 
evaluate quality control for susceptibility tests with 30-µg 
netilmicin disks [6]. Each laboratory tested three standard 
control strains on a different lot of Mueller-Hinton agar, with 
150 tests performed per laboratory. For protocol control, 
each laboratory also performed 15 additional tests on each 
of the control strains using the same lot of Mueller-Hinton 
agar across laboratories. The mean zone diameters for each 
of the nine laboratories are given in Table 6.11.

*6.18  Provide a point and interval estimate (95% CI) for 
the mean zone diameter across laboratories for each type 
of control strain, assuming each laboratory uses different 
media to perform the susceptibility tests.

*6.19  Answer Problem 6.18 assuming each laboratory uses 
a common medium to perform the susceptibility tests.

*6.20  Provide a point and interval estimate (95% CI) for the 
interlaboratory standard deviation of mean zone diameters 
for each type of control strain, assuming each laboratory 
uses different media to perform the susceptibility tests.

*6.21  Answer Problem 6.20 assuming each laboratory uses 
a common medium to perform the susceptibility tests.

6.22  Are there any advantages to using a common medium 
versus using different media for performing the susceptibil-
ity tests with regard to standardization of results across 
laboratories?

Renal Disease
A study of psychological and physiological health in a cohort of 
dialysis patients with end-stage renal disease was conducted 
[7]. Psychological and physiological parameters were initially 
determined at baseline in 102 patients; these parameters were 
determined again in 69 of the 102 patients at an 18-month 
follow-up visit. The data in Table 6.12 were reported.

6.23  Provide a point and interval estimate (95% CI) for the 
mean of each parameter at baseline and follow-up.

6.24  Do you have any opinion on the physiological and 
psychological changes in this group of patients? Explain. 
(Note: A lower score on the PAIS scale indicates worse 
adjustment to illness.)
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Ophthalmology, Hypertension
A study is conducted to test the hypothesis that people with 
glaucoma have higher-than-average blood pressure. The 
study includes 200 people with glaucoma whose mean SBP 
is 140 mm Hg with a standard deviation of 25 mm Hg.

6.25  Construct a 95% CI for the true mean SBP among 
people with glaucoma.

6.26  If the average SBP for people of comparable age is 
130 mm Hg, is there an association between glaucoma and 
blood pressure?

Sexually Transmitted Disease
Suppose a clinical trial is conducted to test the efficacy of a new 
drug, spectinomycin, for treating gonorrhea in females. Forty-six 
patients are given a 4-g daily dose of the drug and are seen 
1 week later, at which time 6 of the patients still have gonorrhea.

*6.27  What is the best point estimate for p, the probability 
of a failure with the drug?

*6.28  What is a 95% CI for p?

*6.29  Suppose we know penicillin G at a daily dose of 4.8 
megaunits has a 10% failure rate. What can be said in com-
paring the two drugs?

	T able 6.12	 Psychological and physiological parameters in patients with end-stage renal disease

	 Baseline (n  = 102)	 18-month follow-up (n = 69)

Variable	 Mean	 sd	 Mean	 sd

Serum creatinine (mmol/L)	 0.97	 0.22	 1.00	 0.19
Serum potassium (mmol/L)	 4.43	 0.64	 4.49	 0.71
Serum phosphate (mmol/L)	 1.68	 0.47	 1.57	 0.40
Psychological Adjustment to Illness (PAIS) scale	 36.50	 16.08	 23.27	 13.79

	T able 6.11	 Mean zone diameters with 30-µg netilmicin disks tested in nine separate laboratories

	 Type of control strain

	 E. coli	 S. aureus	 P. aeruginosa

Laboratory	 Different media	 Common medium	 Different media	 Common medium	 Different media	 Common medium

	 A	 27.5	 23.8	 25.4	 23.9	 20.1	 16.7
	 B	 24.6	 21.1	 24.8	 24.2	 18.4	 17.0
	 C	 25.3	 25.4	 24.6	 25.0	 16.8	 17.1
	 D	 28.7	 25.4	 29.8	 26.7	 21.7	 18.2
	 E	 23.0	 24.8	 27.5	 25.3	 20.1	 16.7
	 F	 26.8	 25.7	 28.1	 25.2	 20.3	 19.2
	 G	 24.7	 26.8	 31.2	 27.1	 22.8	 18.8
	 H	 24.3	 26.2	 24.3	 26.5	 19.9	 18.1
	 I	 24.9	 26.3	 25.4	 25.1	 19.3	 19.2

Pharmacology
Suppose we want to estimate the concentration (µg/mL) 
of a specific dose of ampicillin in the urine after various pe-
riods of time. We recruit 25 volunteers who have received 
ampicillin and find they have a mean concentration of 7.0 
µg/mL with a standard deviation of 2.0 µg/mL. Assume 
the underlying population distribution of concentrations is 
normally distributed.

*6.30  Find a 95% CI for the population mean concentration.

*6.31  Find a 99% CI for the population variance of the 
concentrations.

*6.32  How large a sample would be needed to ensure 
that the length of the CI in Problem 6.30 is 0.5 µg/mL 	
assuming the sample standard deviation remains at 	
2.0 µg/mL?

Environmental Health
Much discussion has taken place concerning possible 
health hazards from exposure to anesthetic gases. In one 
study conducted in 1972, 525 Michigan nurse anesthetists 
were surveyed by mail questionnaires and telephone inter-
views to determine the incidence rate of cancer [8]. Of this 
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group, 7 women reported having a new malignancy other 
than skin cancer during 1971.

6.33  What is the best estimate of the 1971 incidence rate 
from these data?

6.34  Provide a 95% CI for the true incidence rate.

A comparison was made between the Michigan report and 
the 1969 cancer-incidence rates from the Connecticut tu-
mor registry, where the expected incidence rate, based on 
the age distribution of the Michigan nurses, was determined 
to be 402.8 per 100,000 person-years.

6.35  Comment on the comparison between the observed 
incidence rate and the Connecticut tumor registry data.

Obstetrics, Serology
A new assay is developed to obtain the concentration of 
M. hominis mycoplasma in the serum of pregnant women. 
The developers of this assay want to make a statement on 
the variability of their laboratory technique. For this purpose, 
10 subsamples of 1 mL each are drawn from a large serum 
sample for one woman, and the assay is performed on each 
subsample. The concentrations are as follows: 24, 23, 25, 24, 
25 24 23, 24, 24, 25.

*6.36  Assuming the distribution of concentrations in the log 
scale to the base 2 is normal, obtain the best estimate of the 
variance of the concentrations from these data.

*6.37  Compute a 95% CI for the variance of the concentra-
tions.

*6.38  Assuming the point estimate in Problem 6.36 is the 
true population parameter, what is the probability that a par-
ticular assay, when expressed in the log scale to the base 2, 
is no more than 1.5 log units off from its true mean value for 
a particular woman?

*6.39  Answer Problem 6.38 for 2.5 log units.

Hypertension
Suppose 100 hypertensive people are given an antihyper-
tensive drug and the drug is effective in 20 of them. By 
effective, we mean their DBP is lowered by at least 10 mm 
Hg as judged from a repeat blood-pressure measurement 
1 month after taking the drug.

6.40  What is the best point estimate of the probability p of 
the drug being effective?

6.41  Suppose we know that 10% of all hypertensive patients 
who are given a placebo will have their DBP lowered by 10 
mm Hg after 1 month. Can we carry out some procedure to 
be sure we are not simply observing the placebo effect?

6.42  What assumptions have you made to carry out the 
procedure in Problem 6.41?

Suppose we decide a better measure of the effectiveness 
of the drug is the mean decrease in blood pressure rather 

than the measure of effectiveness used previously. Let
d x y ii i i= − =, , . . . ,1 100, where xi = DBP for the ith per-
son before taking the drug and yi = DBP for the ith person 	
1 month after taking the drug. Suppose the sample mean 	
of the di is +5.3 and the sample variance is 144.0.

6.43  What is the standard error of d ?

6.44  What is a 95% CI for the population mean of d?

6.45  Can we make a statement about the effectiveness of 
the drug?

6.46  What does a 95% CI mean, in words, in this case?

S I M U L A T I O N

Draw six random samples of size 5 from the data in Table 6.2 
(p. 160). The data in Table 6.2 are also available in the Data 
Set BIRTHWEIGHT.DAT at www.cengagebrain.com.

6.47  Compute the mean birthweight for each of the six 
samples.

6.48  Compute the standard deviation based on the 
sample of six means. What is another name for this 
quantity?

6.49  Select the third point from each of the six samples, 
and compute the sample sd from the collection of six third 
points.

6.50  What theoretical relationship should there be between 
the standard deviation in Problem 6.48 and the standard 
deviation in Problem 6.49?

6.51  How do the actual sample results in Problems 6.48 
and 6.49 compare?

Obstetrics
Figure 6.4b (p. 172) plotted the sampling distribution of 
the mean from 200 samples of size 5 from the population 
of 1000 birthweights given in Table 6.2. The mean of the 
1000 birthweights in Table 6.2 is 112.0 oz with standard 
deviation 20.6 oz.

*6.52  If the central-limit theorem holds, what proportion of 
the sample means should fall within 0.5 lb of the population 
mean (112.0 oz)?

*6.53  Answer Problem 6.52 for 1 lb rather than 0.5 lb.

*6.54  Compare your results in Problems 6.52 and 6.53 
with the actual proportion of sample means that fall in these 
ranges.

*6.55  Do you feel the central-limit theorem is applicable for 
samples of size 5 from this population? Explain.

Hypertension, Pediatrics
The etiology of high blood pressure remains a subject of 
active investigation. One widely accepted hypothesis is that 
excessive sodium intake adversely affects blood-pressure 
outcomes. To explore this hypothesis, an experiment was  Data set available
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set up to measure responsiveness to the taste of salt and 
to relate the responsiveness to blood-pressure level. The 
protocol used involved giving 3-day-old infants in the new-
born nursery a drop of various solutions, thus eliciting the 
sucking response and noting the vigor with which they 
sucked—denoted by MSB (mean number of sucks per burst 
of sucking). The content of the solution was changed over 
10 consecutive periods: (1) water, (2) water, (3) 0.1 molar 
salt + water, (4) 0.1 molar salt + water, (5) water, (6) water, 
(7) 0.3 molar salt + water, (8) 0.3 molar salt + water, (9) 
water, (10) water. In addition, as a control, the response of 
the baby to the taste of sugar was also measured after the 
salt-taste protocol was completed. In this experiment, the 
sucking response was measured over five different periods 
with the following stimuli: (1) nonnutritive sucking, that is, a 
pure sucking response was elicited without using any exter-
nal substance; (2) water; (3) 5% sucrose + water; (4) 15% 
sucrose + water; (5) nonnutritive sucking.

The data for the first 100 infants in the study are given in 
Data Set INFANTBP.DAT. The format of the data is given in 
Data Set INFANTBP.DOC at www.cengagebrain.com.

Construct a variable measuring the response to salt. For 
example, one possibility is to compute the average MSB for 
trials 3 and 4 − average MSB for trials 1 and 2 = average 
MSB when the solution was 0.1 molar salt + water − aver-
age MSB when the solution was water. A similar index could 
be computed comparing trials 7 and 8 with trials 5 and 6.

6.56  Obtain descriptive statistics and graphic displays for 
these salt-taste indices. Do the indices appear to be normally 
distributed? Why or why not? Compute the sample mean for 
this index, and obtain 95% CIs about the point estimate.

6.57  Construct indices measuring responsiveness to sugar 
taste, and provide descriptive statistics and graphical dis-
plays for these indices. Do the indices appear normally 
distributed? Why or why not? Compute the sample mean 
and associated 95% CIs for these indices.

6.58  We want to relate the indices to blood-pressure level. 
Provide a scatter plot relating mean SBP and mean DBP, 
respectively, to each of the salt-taste and sugar-taste indi-
ces. Does there appear to be a relation between the indices 
and blood-pressure level? We discuss this in more detail in 
our work on regression analysis in Chapter 11.

Genetics
Data Set SEXRAT.DAT, at www.cengagebrain.com, lists 
the sexes of children born in over 50,000 families with more 
than one child.

6.59  Use interval-estimation methods to determine if 	
the sex of successive births is predictable from the sex of 
previous births.

 Data set available

Nutrition
Data Set VALID.DAT, at www.cengagebrain.com, provides 
estimated daily consumption of total fat, saturated fat, and 
alcohol as well as total caloric intake using two different 
methods of dietary assessment for 173 subjects.

6.60  Calculate the large sample and bootstrap 95% CI for 
mean total fat, saturated fat, and alcohol intake based on the 
diet record from this population. Use 1000 bootstrap samples.

6.61  Compare results from the two methods and comment 
on whether the large sample method is appropriate for these 
nutrients.

One issue is that people with higher total caloric intake 
generally have higher intakes of specific nutrients. One 
way to normalize nutrient intake for total caloric intake is to 
compute

Calorie-adjusted total fat = % calories from total fat = total 
fat (g) × 9 / total caloric intake.

Similarly,

Calorie-adjusted saturated fat = saturated fat (g) × 9 / total 
caloric intake.

6.62  Compute the large sample and bootstrap 95% CI for 
mean calorie-adjusted total fat and saturated fat.

6.63  Answer the question in Problem 6.61 for calorie-adjusted 
total fat and calorie-adjusted saturated fat.

Infectious Disease
A cohort of hemophiliacs is followed to elicit information on 
the distribution of time to onset of AIDS following serocon-
version (referred to as latency time). All patients who sero-
convert become symptomatic within 10 years, according to 
the distribution in Table 6.13.

Table 6.13 � Latency time to AIDS among 
hemophiliacs who become HIV positive

Latency time (years)	 Number of patients

	 0	 2
	 1	 6
	 2	 9
	 3	 33
	 4	 49
	 5	 66
	 6	 52
	 7	 37
	 8	 18
	 9	 11
	 10	 4

6.64  Assuming an underlying normal distribution, compute 
95% CIs for the mean and variance of the latency times.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Problems              207

6.65  Still assuming normality, estimate the probability p that 
a patient’s latency time will be at least 8 years.

6.66  Now suppose we are unwilling to assume a normal 
distribution for latency time. Re-estimate the probability p 
that a patient’s latency time will be at least 8 years, and 
provide a 95% CI for p.

Environmental Health
We have previously described Data Set LEAD.DAT (at 
www.cengagebrain.com), in which children were classified 
according to blood-lead level in 1972 and 1973 by the vari-
able lead_grp, where 1 = blood-lead level < 40 µg/100 mL 
in both 1972 and 1973, 2 = blood-lead level ≥ 40 µg/100 
mL in 1973, 3 = blood-lead level ≥ 40 µg/100 mL in 1972 
but < 40 µg/100 mL in 1973.

6.67  Compute the mean, standard deviation, standard error, 
and 95% CI for the mean verbal IQ for children with specific 
values of the variable lead_grp. Provide a box plot compar-
ing the distribution of verbal IQ for subjects with lead_grp = 	
1, 2, and 3. Summarize your findings concisely.

6.68  Answer Problem 6.67 for performance IQ.

6.69  Answer Problem 6.67 for full-scale IQ.

Cardiology
Data Set NIFED.DAT (at www.cengagebrain.com) was 
described earlier. We wish to look at the effect of each 
treatment separately on heart rate and systolic blood pres-
sure (SBP).

6.70  Provide separate point estimates and 95% CIs for the 
changes in heart rate and SBP (level 1 to baseline) for the 
subjects randomized to nifedipine and propranolol, respec-
tively. Also provide box plots of the change scores in the 
two treatment groups.

6.71  Answer Problem 6.70 for level 2 to baseline.

6.72  Answer Problem 6.70 for level 3 to baseline.

6.73  Answer Problem 6.70 for the last available level to 
baseline.

6.74  Answer Problem 6.70 for the average heart rate (or 
blood pressure) over all available levels to baseline.

Occupational Health
6.75  Suppose that there are 6 deaths due to bladder can-
cer among workers in a tire plant from 1/1/64 to 12/31/83, 
while 1.8 are expected based on U.S. mortality rates. Pro-
vide a 95% CI for the expected number of deaths from 
bladder cancer over 20 years among the tire workers. Is the 
number of cases of bladder cancer in this group excessive?

6.76  Suppose that there are 4 deaths due to stomach can-
cer among workers in a tire plant from 1/1/64 to 12/31/83, 

 Data set available

while 2.5 are expected based on U.S. mortality rates. 
Provide a 95% CI for the expected number of deaths from 
stomach cancer over 20 years among the tire workers. Is 
the number of cases of stomach cancer excessive?

Cancer
The value of mammography as a screening test for breast 
cancer has been controversial, particularly among young 
women. A study was recently performed looking at the rate 
of false positives for repeated screening mammograms 
among approximately 10,000 women who were members 
of Harvard Pilgrim Health Care, a large health-maintenance 
organization in New England [9].

The study reported that of a total of 1996 tests given to 	
40- to 49-year-old women, 156 yielded false-positive results.

6.77  What does a false-positive test result mean, in words, 
in this context?

6.78  Some physicians feel a mammogram is not cost-
effective unless one can be reasonably certain (e.g., 95% 
certain) that the false-positive rate is less than 10%. Can 
you address this issue based on the preceding data? (Hint: 
Use a CI approach.)

6.79  Suppose a woman is given a mammogram every 	
2 years starting at age 40. What is the probability that she 
will have at least one false-positive test result among 5 
screening tests during her forties? (Assume the repeated 
screening tests are independent.)

6.80  Provide a two-sided 95% CI for the probability estimate 
in Problem 6.79.

S I M U L A T I O N

Nutrition
On the computer, draw 1000 bootstrap samples of size 5 
from the distribution of 173 values of ln(alcohol DR [diet 	
record] + 1) in the Data Set VALID.DAT, where alcoh_dr is 
the amount of alcohol consumed as reported by diet record 
by a group of 173 American nurses who recorded each 
food eaten on a real-time basis, over four 1-week periods 
spaced approximately 3 months apart over the course of 
1 year. For each sample of size 5, compute the sample 
mean x–, the sample standard deviation s, and the test sta-
tistic t given by

 
t

x
s n

= − µ0

where n = 5 and µ0 = overall mean of ln(alcohol DR + 1) 
over the 173 nurses = 1.7973.

6.81  What distribution should the t-values follow if the 
central-limit theorem holds? Assume µ0 is the population 
mean for ln(alcoh_dr + 1).

6.82  If the central-limit theorem holds, then what percent-
age of t-values should exceed 2.776 in absolute value?
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6.83  Determine the actual percent of t-values that exceed 
2.776 in absolute value. Do you feel the central-limit theo-
rem is applicable to these data for samples of size 5?

Cardiovascular Disease
A study was performed to investigate the variability of cho-
lesterol and other lipid measures in children. The reported 
within-subject standard deviation for cholesterol in children 
was 7.8 mg/dL [10].

6.84  Suppose two total cholesterol determinations are 
obtained from one child, yielding an average value of 200 
mg/dL. What is a two-sided 90% CI for the true mean 
total cholesterol for that child? (Hint: Assume the sample 
standard deviation of cholesterol for the child is known to 
be 7.8 mg/dL.)

6.85  Suppose an average of two total cholesterol determina-
tions is to be used as a screening tool to identify children with 
high cholesterol. The investigators wish to find a value c, such 
that all children whose mean cholesterol values over two de-
terminations are ≥c will be called back for further screening, 
whereas children whose mean cholesterol values are <c will 
not be followed any further. To determine c, the investigators 
want to choose a value c such that the lower one-sided 90% 
CI for µ if the observed average cholesterol over two deter-
minations = c would exclude 250 mg/dL. What is the largest 
value of c that satisfies this requirement?

Endocrinology
Refer to Data Set BONEDEN.DAT at www.cengagebrain.com.

6.86  Assess whether there is a relationship between BMD 
at the femoral neck and cigarette smoking using CI method-
ology. (Hint: Refer to Section 6.6.)

6.87  Assess whether there is a relationship between BMD 
at the femoral shaft and cigarette smoking using CI method-
ology. (Hint: Refer to Section 6.6.)

S I M U L A T I O N

6.88  Using the computer, generate 200 random samples 
from a binomial distribution with n = 10 and p = .6. Derive a 
large sample two-sided 90% CI for p based on each sample.

6.89  What percentage of the CIs include the parameter p?

6.90  Do you think that the large-sample binomial confidence-
limit formula is adequate for this distribution?

6.91  Answer Problem 6.88 for a binomial distribution with 
n = 20 and p = .6.

6.92  Answer Problem 6.89 for a binomial distribution with 
n = 20 and p = .6.

6.93  Answer Problem 6.90 for a binomial distribution with 
n = 20 and p = .6.

 Data set available

6.94  Answer Problem 6.88 for a binomial distribution with 
n = 50 and p = .6.

6.95  Answer Problem 6.89 for a binomial distribution with 
n = 50 and p = .6.

6.96  Answer Problem 6.90 for a binomial distribution with 
n = 50 and p = .6.

Hypertension
A patient who is taking antihypertensive medication is asked 
by her doctor to record her blood pressure at home to 
check that it is in the normotensive range. On each of 10 
days, she took an average of two readings, with results as 
shown in Table 6.14.

Table 6.14 � Home blood-pressure recordings for 
one patient

Day	 SBP (mm Hg)	 DBP (mm Hg)

	 1	 121	 87.5
	 2	 109	 81
	 3	 117.5	 91.5
	 4	 125	 94
	 5	 125	 87.5
	 6	 129	 90.5
	 7	 123	 90
	 8	 118.5	 85.5
	 9	 123.5	 87.5
	10	 127	 89

Mean	 121.85	 88.40
sd		 5.75	 3.56
n	 	 10	 10

The doctor wants to assess whether the underlying mean 
SBP for this woman is <140 or ≥140 mm Hg.

6.97  Provide a 95% CI for true mean SBP for this patient.

6.98  Answer the doctor’s question given the result in Prob-
lem 6.97.

Another issue the doctor wants to study is what the hyper-
tensive status of the patient usually is. A person is classified 
as hypertensive on any one day if either his or her SBP is 
≥140 mm Hg or his or her DBP is ≥90 mm Hg.

6.99  What proportion of days would the woman be classi-
fied as hypertensive based on the preceding data?

A person would be classified as hypertensive overall if his or 
her probability of being hypertensive on an individual day (p) 
is ≥20% based on a large number of days.

6.100  Develop a 95% CI for p based on your answer to 
Problem 6.99.

6.101  Would the person be classified as hypertensive 
overall based on your answer to Problem 6.100? Why or 
why not? Explain your answer.
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Sports Medicine
Injuries are common in football and may be related to a 
number of factors, including the type of playing surface, the 
number of years of playing experience, and whether any pre-
vious injury exists. A study of factors affecting injury among 
Canadian football players was recently reported [11].

The rate of injury to the upper extremity (that is, shoulder to 
hand) on a dry field consisting of natural grass was 2.73 inju-
ries per 1000 games. Assume this rate is known without error.

6.102  The study reported 45 injuries to the upper extrem-
ity on a dry field consisting of artificial turf over the course 
of 10,112 games. What procedure can be used to assess 
whether the risk of injury is different on artificial turf versus 
natural grass?

6.103  Provide a 95% CI for the rate of injury to the upper ex-
tremity on artificial turf. (Hint: Use the Poisson distribution.)	
Express each rate as the number of injuries per 1000 games.

Hypertension
A hypertensive patient has been on antihypertensive medi-
cation for several years. Her physician wants to monitor her 
blood pressure via weekly measurements taken at home. 
Each week for 6 weeks she takes several blood pressure 
readings and averages the readings to get a summary blood 
pressure for the week. The diastolic blood pressure (DBP) 
results are shown in Table 6.15.

Table 6.15 � Weekly mean DBP readings 	
for an individual patient

Week	 Mean DBP 	 	 Mean DBP	
	 (mm Hg)	 Week	 (mm Hg)

  1	 89	 4	 84
  2	 88	 5	 82
  3	 81	 6	 89.5

	 	 Mean	 85.75
	 	 sd	 3.66

6.104  Her doctor is considering taking her off antihyperten-
sive medications but wants to be fairly certain that her “true” 
DBP is less than 90 mm Hg. Use a statistical approach to 
answer this question. (Hint: Consider a CI approach.)

The doctor takes the patient off antihypertensive medica-
tion and instructs her to measure her blood pressure for 
3 consecutive weeks. The doctor will put the patient back 
on antihypertensive medication if her mean DBP over the 
3 weeks is ≥90 mm Hg.

6.105  Suppose there is no real change in the patient’s 
underlying mean blood pressure regardless of whether she 
is on medication. What is the probability that she will be put 
back on antihypertensive medication? (Hint: Assume that 
the true mean and standard deviation of DBP for the patient 

are the same as the measured mean and standard deviation 
over the 6 weeks while the patient is on antihypertensive 
medication.)

Suppose we have a population with a normal distribution 
with mean = 50 and standard deviation = 10.

We draw a sample of 13 observations from this distribution.

6.106  What is the probability that the sample mean will be 
within 1 unit of the population mean?

6.107  Suppose we want to choose a large enough sample 
so that the sample mean is within 1 unit of the population 
mean 99% of the time. What is the minimum sample size to 
achieve this goal?

Radiology, Cancer
A radiologist investigates whether a new (less costly) 
method for identifying esophageal cancer is as effective as 
the gold standard.

He obtains the following test results: false positive = 0, true 
positive = 46, false negative = 1, true negative =17.

6.108  What is the sensitivity of the test?

6.109  Provide a 95% CI for the sensitivity (two decimal 
place accuracy is sufficient). (Hint: The following Excel 
spreadsheet might be useful.)

p	 BINOMDIST	 BINOMDIST	
	 (45,47,p,TRUE)	 (46,47,p,TRUE)

0.80	 1.000	 1.000
0.81	 0.999	 1.000
0.82	 0.999	 1.000
0.83	 0.998	 1.000
0.84	 0.997	 1.000
0.85	 0.996	 1.000
0.86	 0.993	 0.999
0.87	 0.988	 0.999
0.88	 0.982	 0.998
0.89	 0.972	 0.996
0.90	 0.956	 0.993
0.91	 0.933	 0.988
0.92	 0.899	 0.980
0.93	 0.850	 0.967
0.94	 0.782	 0.945
0.95	 0.688	 0.910
0.96	 0.566	 0.853
0.97	 0.414	 0.761
0.98	 0.242	 0.613
0.99	 0.080	 0.376
0.995	 0.023	 0.210
0.999	 0.001	 0.046
0.9995	 0.000	 0.023

Note: These data were provided by Dr. Ori Preis.
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Genetics
The estimation of allele probabilities is essential for the 
closer quantitative identification of inheritance. It requires 
the probabilistic formulation of the applied model of in-
heritance. The hereditary disease phenylketonuria (PKU) is a 
useful example. PKU follows a recessive form of inheritance. 
Suppose there are two alleles at a gene locus denoted by 
a and A where the possible genotypes are (aa), (aA), and 
(AA). An individual will only be affected if the genotype aa 
appears (i.e., a recessive form of inheritance).

6.110  Suppose the probability of an a allele is p. If people 
mate randomly, then what is the probability of the (aa) geno-
type?

Suppose that on a population level it is impossible to geno-
type large numbers of individuals. However, it is known that 
among 10,000 people surveyed in the population, 11 have 
the PKU clinical phenotype.

6.111  Provide a point estimate and 95% CI for the prob-
ability of having the PKU phenotype.

6.112  Provide a point estimate and 95% CI for the a allele 
frequency p.

As an experiment, 10,000 people are completely geno-
typed, of whom 10 have the (aa) genotype, 630 have the 
(aA) genotype [i.e., either (aA) or (Aa)], and 9360 have the 
(AA) genotype.

6.113  Assuming the two alleles of an individual are inde-
pendent random variables, provide a point estimate and a 
95% CI for the a allele frequency p.

6.114  Does genotyping a population provide more accu-
rate estimates of p than obtained by only having the clinical 
phenotype? Why or why not?

6.115  Which of the following sample results yields a 95% 
CI for µ with the smallest width and why?

(i) x = 28, s = 5, n = 61

(ii) x = 32, s = 4, n = 30

(iii) x = 25, s = 3, n = 20

(iv) x = 40, s = 6, n = 121.

6.116  Suppose we observe 30 cases of colon cancer over 
35,000 person-years among women ages 50–54. Provide 
a point estimate and 95% CI for the incidence rate of colon 
cancer in this age-gender group.
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7
	 7.1	 I n t r o d u c t i o n

Chapter 6 discussed methods of point and interval estimation 
for parameters of various distributions. However, researchers 
often have preconceived ideas about what the values of these 
parameters might be and wish to test whether the data conform 
to these ideas.

Hypothesis Testing:  
One-Sample Inference

	 Example 7.1 	 Cardiovascular Disease, Pediatrics  A current area of research interest is the familial 
aggregation of cardiovascular risk factors in general and lipid levels in particular. 
Suppose the “average” cholesterol level in children is 175 mg/dL. A group of men 
who have died from heart disease within the past year are identified, and the choles-
terol levels of their offspring are measured. Two hypotheses are considered:

(1)	 The average cholesterol level of these children is 175 mg/dL.

(2)	 The average cholesterol level of these children is >175 mg/dL.

This type of question is formulated in a hypothesis-testing framework by specify-
ing two hypotheses—a null and an alternative hypothesis. We wish to compare the 
relative probabilities of obtaining the sample data under each of these hypotheses. 
In Example 7.1, the null hypothesis is that the average cholesterol level of the chil-
dren is 175 mg/dL and the alternative hypothesis is that the average cholesterol level 
of the children is >175 mg/dL.

Why is hypothesis testing so important? Hypothesis testing provides an ob-
jective framework for making decisions using probabilistic methods, rather than 
relying on subjective impressions. People can form different opinions by looking 
at data, but a hypothesis test provides a uniform decision-making criterion that is 
consistent for all people.

In this chapter, some of the basic concepts of hypothesis testing are developed 
and applied to one-sample problems of statistical inference. In a one-sample 
problem, hypotheses are specified about a single distribution; in a two-sample 
problem, two different distributions are compared.

	 7.2	 G e n e r a l  C o n c e p t s

	 Example 7.2 	 Obstetrics  Suppose we want to test the hypothesis that mothers with low socio-
economic status (SES) deliver babies whose birthweights are lower than “normal.” 
To test this hypothesis, a list is obtained of birthweights from 100 consecutive, 
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full-term, live-born deliveries from the maternity ward of a hospital in a low-SES 
area. The mean birthweight (x) is found to be 115 oz with a sample standard de-
viation (s) of 24 oz. Suppose we know from nationwide surveys based on millions 
of deliveries that the mean birthweight in the United States is 120 oz. Can we 
actually say the underlying mean birthweight from this hospital is lower than the 
national average?

Assume the 100 birthweights from this hospital come from an underlying nor-
mal distribution with unknown mean µ. The methods in Section 6.10 could be used 
to construct a 95% lower one-sided confidence interval (CI) for µ based on the sam-
ple data—that is, an interval of the form µ < c. If this interval contains 120 oz (that is, 
c ≥ 120), then the hypothesis that the mean birthweight in this hospital is the same 
as the national average would be accepted. If the interval does not contain 120 oz  
(c < 120), then the hypothesis that the mean birthweight in this hospital is lower 
than the national average would be accepted.

Another way of looking at this problem is in terms of hypothesis testing. In 
particular, the hypotheses being considered can be formulated in terms of null and 
alternative hypotheses, which can be defined as follows:

	 Definition 7.1 	 The null hypothesis, denoted by H0, is the hypothesis that is to be tested. The al-
ternative hypothesis, denoted by H1, is the hypothesis that in some sense contradicts 
the null hypothesis.

	 Example 7.3 	 Obstetrics  In Example 7.2, the null hypothesis (H0) is that the mean birthweight in 
the low-SES-area hospital (µ) is equal to the mean birthweight in the United States 
(µ0). This is the hypothesis we want to test. The alternative hypothesis (H1) is that 
the mean birthweight in this hospital (µ) is lower than the mean birthweight in the 
United States (µ0). We want to compare the relative probabilities of obtaining the 
sample data under each of these two hypotheses.

We also assume the underlying distribution is normal under either hypothesis. 
These hypotheses can be written more succinctly in the following form:

	 Equation 7.1 	 	 H H0 0 1 0: :µ µ µ µ= <vs.

Suppose the only possible decisions are whether H0 is true or H1 is true. Actually, for 
ease of notation, all outcomes in a hypothesis-testing situation generally refer to 
the null hypothesis. Hence, if we decide H0 is true, then we say we accept H0. If we 
decide H1 is true, then we state that H0 is not true or, equivalently, that we reject H0. 
Thus, four possible outcomes can occur:

(1)	 We accept H0, and H0 is in fact true.

(2)	 We accept H0, and H1 is in fact true.

(3)	 We reject H0, and H0 is in fact true.

(4)	 We reject H0, and H1 is in fact true.

These four possibilities are shown in Table 7.1.
In actual practice, it is impossible, using hypothesis-testing methods, to prove 

that the null hypothesis is true. Thus, in particular, if we accept H0, then we have 
actually failed to reject H0.
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If H0 is true and H0 is accepted, or if H1 is true and H0 is rejected, then the correct de-
cision has been made. If H0 is true and H0 is rejected, or if H1 is true and H0 is accepted, 
then an error has been made. The two types of errors are generally treated differently.

	 Definition 7.2 	 The probability of a type I error is the probability of rejecting the null hypothesis 
when H0 is true.

	 Definition 7.3 	 The probability of a type II error is the probability of accepting the null hypothesis 
when H1 is true. This probability is a function of µ as well as other factors.

	 Example 7.4 	 Obstetrics  In the context of the birthweight data in Example 7.2, a type I error would 
be the probability of deciding that the mean birthweight in the hospital was lower 
than 120 oz when in fact it was 120 oz. A type II error would be the probability of 
deciding that the mean birthweight was 120 oz when in fact it was lower than 120 oz.

	 Example 7.5 	 Cardiovascular Disease, Pediatrics  What are the type I and type II errors for the 
cholesterol data in Example 7.1?

	 	 Solution:  The type I error is the probability of deciding that offspring of men who 
died from heart disease have an average cholesterol level higher than 175 mg/dL 
when in fact their average cholesterol level is 175 mg/dL. The type II error is the 
probability of deciding that the offspring have normal cholesterol levels when in 
fact their cholesterol levels are above average.

Type I and type II errors often result in monetary and nonmonetary costs.

	 Example 7.6 	 Obstetrics  The birthweight data in Example 7.2 might be used to decide whether 
a special-care nursery for low-birthweight babies is needed in this hospital. If H1 
were true—that is, if the birthweights in this hospital did tend to be lower than the 
national average—then the hospital might be justified in having its own special-care 
nursery. If H0 were true and the mean birthweight was no different from the U.S. 
average, then the hospital probably does not need such a nursery. If a type I error is 
made, then a special-care nursery will be recommended, with all the related extra 
costs, when in fact it is not needed. If a type II error is made, a special-care nursery 
will not be funded, when in fact it is needed. The nonmonetary cost of this decision 
is that some low-birthweight babies may not survive without the unique equipment 
found in a special-care nursery.

D
ec

is
io

n

	 Table 7.1 	 Four possible outcomes in hypothesis testing

	 Truth

  		  H0	 H1

	
Accept H0

	 H1 is true 	 H1 is true 
		  H0 is accepted	 H0 is accepted

	 Reject H0
	 H0 is true	 H1 is true 

		  H0 is rejected	 H0 is rejected
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	 Definition 7.4 	 The probability of a type I error is usually denoted by α and is commonly referred 
to as the significance level of a test.

	 Definition 7.5 	 The probability of a type II error is usually denoted by β.

	 Definition 7.6 	 The power of a test is defined as

	 1 − β = 1 − probability of a type II error = Pr(rejecting H0|H1 true)

	 Example 7.7 	 Rheumatology  Suppose a new drug for pain relief is to be tested among patients 
with osteoarthritis (OA). The measure of pain relief will be the percent change in 
pain level as reported by the patient after taking the medication for 1 month. Fifty 
OA patients will participate in the study. What hypotheses are to be tested? What do 
type I error, type II error, and power mean in this situation?

	 	 Solution:  The hypotheses to be tested are H0 0: µ =  vs. H1 0: µ > , where µ = mean 
decline in level of pain as measured by a pain relief scale over a 1-month period. It is 
assumed that a positive value for µ indicates improvement, whereas a negative value 
indicates decline.

A type I error is the probability of deciding that the drug is an effective pain re-
liever based on data from 50 patients, given that the true state of nature is that the 
drug has no effect on pain relief. The true state of nature here means the effect of the 
drug when tested on a large (infinite) number of patients.

A type II error is the probability of deciding the drug has no effect on pain relief 
based on data from 50 patients given that the true state of nature is that the drug is 
an effective pain reliever.

The power of the test is the probability of deciding that the drug is effective as 
a pain reliever based on data from 50 patients when the true state of nature is that 
it is effective. It is important to note that the power is not a single number but de-
pends on the true degree of pain relief offered by the drug as measured by the true 
mean change in pain-relief score (δ). The higher δ is, the higher the power will be. 
In Section 7.6, we present methods for calculating power in more detail.

The general aim in hypothesis testing is to use statistical tests that make α and β 
as small as possible. This goal requires compromise because making α small involves 
rejecting the null hypothesis less often, whereas making β small involves accepting 
the null hypothesis less often. These actions are contradictory; that is, as α decreases, 
β increases, and as α increases, β decreases. Our general strategy is to fix α at some 
specific level (for example, .10, .05, .01, . . .) and to use the test that minimizes β or, 
equivalently, maximizes the power.

	 7.3	 O n e - S a m p l e  Te  s t  f o r  t h e  Me  a n  o f  a  N o r m a l 

Di  s t r i b u t i o n :  O n e - Si  d e d  A lt e r n at i v e s

Now let’s develop the appropriate hypothesis test for the birthweight data in 
Example 7.2. The statistical model in this case is that the birthweights come from 
a normal distribution with mean µ and unknown variance σ2. We wish to test 
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the null hypothesis, H0, that µ = 120 oz vs. the alternative hypothesis, H1, that 
µ < 120 oz. Suppose a more specific alternative, namely H1 1: µ µ= = 110 oz, is se-
lected. We will show that the nature of the best test does not depend on the value  
chosen for µ1 provided that µ1 is less than 120 oz. We will also fix the α level at .05 
for concreteness.

	 Example 7.8 	 A very simple test could be used by referring to the table of random digits in Table 4  
in the Appendix. Suppose two digits are selected from this table. The null hypoth-
esis is rejected if these two digits are between 00 and 04 inclusive and is accepted if 
these two digits are between 05 and 99. Clearly, from the properties of the random-
number table, the type I error of this test = α = Pr(rejecting the null hypothesis | 

H0 true) = Pr(drawing two random digits between 00 and 04) = 
5

100
 = .05. Thus the 

proposed test satisfies the α-level criterion given previously. The problem with this 
test is that it has very low power. Indeed, the power of the test = Pr(rejecting the null  

hypothesis | H1 true) = Pr(drawing two random digits between 00 and 04) = 
5

100
 = .05.

Note that the outcome of the test has nothing to do with the sample birth-
weights drawn. H0 will be rejected just as often when the sample mean birthweight  
(x) is 110 oz as when it is 120 oz. Thus, this test must be very poor because we would 
expect to reject H0 with near certainty if x is small enough and would expect never 
to reject H0 if x is large enough.

It can be shown that the best (most powerful) test in this situation is based on 
the sample mean (x). If x is sufficiently smaller than µ0, then H0 is rejected; oth-
erwise, H0 is accepted. This test is reasonable because if H0 is true, then the most 
likely values of x tend to cluster around µ0, whereas if H1 is true, the most likely 
values of x tend to cluster around µ1. By “most powerful,” we mean that the test 
based on the sample mean has the highest power among all tests with a given type 
I error of α.

	 Definition 7.7 	 The acceptance region is the range of values of x for which H0 is accepted.

	 Definition 7.8 	 The rejection region is the range of values of x for which H0 is rejected.

For the birthweight data in Example 7.2, the rejection region consists of small 
values of x because the underlying mean under the alternative hypothesis (µ1) is less 
than the underlying mean under the null hypothesis. This type of test is called a 
one-tailed test.

	 Definition 7.9 	 A one-tailed test is a test in which the values of the parameter being studied (in this 
case µ) under the alternative hypothesis are allowed to be either greater than or less 
than the values of the parameter under the null hypothesis (µ0), but not both.

	 Example 7.9 	 Cardiovascular Disease, Pediatrics  The hypotheses for the cholesterol data in 
Example 7.1 are H0 0: µ µ=  vs. H1 0: µ µ> , where µ is the true mean cholesterol level 
for children of men who have died from heart disease. This test is one-tailed because 
the alternative mean is only allowed to be greater than the null mean.
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In the birthweight example, how small should x be for H0 to be rejected? This 

issue can be settled by recalling that the significance level of the test is set at α. Sup-
pose H0 is rejected for all values of x < c and accepted otherwise. The value c should 
be selected so that the type I error = α.

It is more convenient to define the test criteria in terms of standardized values 
rather than in terms of x. Specifically, if we subtract µ0 and divide by S n , we obtain 
the random variable t X S n= −( ) ( )µ0 , which, based on Equation 6.5, follows a tn−1 

distribution under H0. We note that under H0, based on the definition of the percen-
tiles of a t distribution, Pr( ),t tn< =−1 α α. This leads us to the following test procedure.

	 Equation 7.2 	 �One-Sample t Test for the Mean of a Normal Distribution with Unknown Variance 
(Alternative Mean < Null Mean)

		  To test the hypothesis H0 0: ,µ µ σ=  unknown vs. H1 0: ,µ µ σ<  unknown with a
		  significance level of α, we compute

			   t
x
s n

= − µ0

		  If t tn< −1, ,α  then we reject H0.

		  If t tn≥ −1, ,α  then we accept H0.

	 Definition 7.10 	 The value t in Equation 7.2 is called a test statistic because the test procedure is 
based on this statistic.

	 Definition 7.11 	 The value tn−1,α in Equation 7.2 is called a critical value because the outcome of the 
test depends on whether the test statistic t tn< −1,α  = critical value, whereby we reject 
H0 or t tn≥ −1, ,α  whereby we accept H0.

	 Definition 7.12 	 The general approach in which we compute a test statistic and determine the out-
come of a test by comparing the test statistic with a critical value determined by the 
type I error is called the critical-value method of hypothesis testing.

	 Example 7.10 	 Obstetrics  Use the one-sample t test to test the hypothesis H0: µ = 120 vs. H1: µ < 120 
based on the birthweight data given in Example 7.2 and using a significance level  
of .05.

	 	 Solution:  We compute the test statistic

		

t
x
s n

= −

−

− = −

µ0

115 120
24 100

5
2 4

2 08

=

=
.

.
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Using the TINV function of Excel, we see the critical value = t99, .05 = −TINV(.10,99) =  
−1.66. Because t = −2.08 < −1.66, it follows that we can reject H0 at a significance 
level of .05.

	 Example 7.11 	 Obstetrics  Use the one-sample t test to test the hypothesis given in Example 7.10 
using a significance level of .01.

	 	 Solution:  Using Excel, the critical value is t99, .01 = −TINV(.02,99) = −2.36. Because  
t = −2.08 > −2.36, it follows that we accept H0 at significance level = .01.

If we use the critical-value method, how do we know what level of α to use? The 
actual α level used should depend on the relative importance of type I and type II 
errors because the smaller α is made for a fixed sample size (n), the larger β becomes. 
Most people feel uncomfortable with α levels much greater than .05. Traditionally, 
an α level of exactly .05 is used most frequently.

In general, a number of significance tests could be performed at different α 
levels, as was done in Examples 7.10 and 7.11, and whether H0 would be accepted 
or rejected in each instance could be noted. This can be somewhat tedious and is 
unnecessary because, instead, significance tests can be effectively performed at all α 
levels by obtaining the p-value for the test.

	 Definition 7.13 	 The p-value for any hypothesis test is the α level at which we would be indifferent 
between accepting or rejecting H0 given the sample data at hand. That is, the p-value 
is the α level at which the given value of the test statistic (such as t) is on the border-
line between the acceptance and rejection regions.

According to the test criterion in Equation 7.2, if a significance level of p is used, 
then H0 would be rejected if t tn p< −1,  and accepted if t tn p≥ −1, . We would be indiffer-
ent to the choice between accepting or rejecting H0 if t tn p= −1, . We can solve for p as 
a function of t by

	 Equation 7.3 	 p t tn= ≤−Pr( )1

Thus, p is the area to the left of t under a tn−1 distribution.
	 The p-value can be displayed as shown in Figure 7.1.

	 Example 7.12 	 Obstetrics  Compute the p-value for the birthweight data in Example 7.2.

	 	 Solution:  From Equation 7.3, the p-value is

			   Pr t99 2 08≤ −( ).

Using the pt function of R, we find this probability is given by pt (−2.08,99) = .020, 
which is the p-value. 

An alternative definition of a p-value that is useful in other hypothesis-testing 
problems is as follows:

	 Definition 7.14 	 The p-value can also be thought of as the probability of obtaining a test statistic 
as extreme as or more extreme than the actual test statistic obtained, given that the 
null hypothesis is true.
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We know that under the null hypothesis, the t statistic follows a tn−1 distribution. 
Hence, the probability of obtaining a t statistic that is no larger than t under the null 
hypothesis is Pr( )t tn− ≤1  = p-value, as shown in Figure 7.1.

	 Example 7.13 	 Cardiology  A topic of recent clinical interest is the possibility of using drugs to re-
duce infarct size in patients who have had a myocardial infarction within the past 
24 hours. Suppose we know that in untreated patients the mean infarct size is 25  
(ck − g − EQ/m2). Furthermore, in 8 patients treated with a drug the mean infarct 
size is 16 with a standard deviation of 10. Is the drug effective in reducing infarct 
size?

	 	 Solution:  The hypotheses are H0 25: µ =  vs. H1 25: µ < . The p-value is computed 
using Equation 7.3. First we compute the t statistic given by

		
t = − = −16 25

10 8
2 55.

The p-value is then given by p = Pr(t7 < −2.55). Referring to Table 5 in the Appendix, 
we see that t7, .975 = 2.365, and t7, .99 = 2.998. Because 2.365 < 2.55 < 2.998, it follows 
that 1 − .99 < p < 1 − .975 or .01 < p < .025. Using Excel, the exact p-value is given by 
TDIST (2.55,7,1) = .019. Thus, H0 is rejected and we conclude that the drug signifi-
cantly reduces infarct size (all other things being equal).

This can also be interpreted as the probability that mean infarct size among 
a random sample of 8 patients will be no larger than 16, if the null hypothesis is 
true. In this example, the null hypothesis is that the drug is ineffective, or in other 
words, that true mean infarct size for the population of all patients with myocar-
dial infarction who are treated with drug = true mean infarct size for untreated 
patients = 25.

The p-value is important because it tells us exactly how significant our results 
are without performing repeated significance tests at different α levels. A question 
typically asked is: How small should the p-value be for results to be considered statis-
tically significant? Although this question has no one answer, some commonly used 
criteria are given in Equation 7.4.
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	 Figure 7.1 	 Graphic display of a p-value
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	 Equation 7.4 	 Guidelines for Judging the Significance of a p-Value

		  If .01 ≤ p < .05, then the results are significant.
		  If .001 ≤ p < .01, then the results are highly significant.
		  If p < .001, then the results are very highly significant.
		  If p > .05, then the results are considered not statistically significant (sometimes
		  denoted by NS).

		  However, if .05 < p < .10, then a trend toward statistical significance is some-
times noted.

Authors frequently do not specify the exact p-value beyond giving ranges of the 
type shown here because whether the p-value is .024 or .016 is thought to be unim-
portant. Other authors give an exact p-value even for results that are not statistically 
significant so that the reader can appreciate how close to statistical significance the 
results have come. With the advent of statistical packages such as Excel, MINITAB, 
Stata, and R, exact p-values are easy to obtain. These different approaches lead to the 
following general principle.

	 Equation 7.5 	 Determination of Statistical Significance for Results from Hypothesis Tests

		  Either of the following methods can be used to establish whether results from 
		  hypothesis tests are statistically significant:
		  (1)	 The test statistic t can be computed and compared with the critical value  

tn−1, α at an α level of .05. Specifically, if H0 0: µ µ=  vs. H1 0: µ µ<  is being 
tested and t tn< −1 05,. , then H0 is rejected and the results are declared statisti-
cally significant (p < .05). Otherwise, H0 is accepted and the results are de-
clared not statistically significant (p ≥ .05). We have called this approach the 
critical-value method (see Definition 7.12).

		  (2)	 The exact p-value can be computed and, if p < .05, then H0 is rejected and 
the results are declared statistically significant. Otherwise, if p ≥ .05, then H0 

is accepted and the results are declared not statistically significant. We will 
refer to this approach as the p-value method.

These two approaches are equivalent regarding the determination of statistical 
significance (whether p < .05 or p ≥ .05). The p-value method is somewhat more 
precise in that it yields an exact p-value. The two approaches in Equation 7.5 
can also be used to determine statistical significance in other hypothesis-testing 
problems.

	 Example 7.14 	 Obstetrics  Assess the statistical significance of the birthweight data in Example 7.12.

	 	 Solution:  Because the p-value is .020, the results would be considered statistically 
significant and we would conclude that the true mean birthweight is significantly 
lower in this hospital than in the general population.

	 Example 7.15 	 Cardiology  Assess the significance of the infarct-size data in Example 7.13.

	 	 Solution:  The p-value = Pr(t7 < −2.55). Using the pt function of R, we found that  
p = .020. Thus, the results are significant.
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In writing up the results of a study, a distinction between scientific and statistical 
significance should be made because the two terms do not necessarily coincide. The re-
sults of a study can be statistically significant but still can be not scientifically important. 
This situation would occur if a small difference was found to be statistically significant 
because of a large sample size. Conversely, some statistically nonsignificant results can 
be scientifically important, encouraging researchers to perform larger studies to confirm 
the direction of the findings and possibly reject H0 with a larger sample size. This state-
ment is true not only for the one-sample t test but for virtually any hypothesis test.

	 Example 7.16 	 Obstetrics  Suppose the mean birthweight in Example 7.2 was 119 oz, based on a 
sample of size 10,000. Assess the results of the study.

	 	 Solution:  The test statistic would be given by

		
t = − = −119 120

24 10 000
4 17

,
.

Thus, the p-value is given by Pr(t9999 < −4.17). Because a t distribution with 9999 de-
grees of freedom (df ) is virtually the same as an N(0,1) distribution, we can approxi-
mate the p-value by Φ( . ) .− <4 17 001. The results are thus very highly significant but 
are clearly not very important because of the small difference in mean birthweight 
(1 oz) between this hospital and the national average.

	 Example 7.17 	 Obstetrics  Suppose the mean birthweight in Example 7.2 was 110 oz, based on a 
sample size of 10. Assess the results of the study.

	 	 Solution:  The test statistic would be given by

		
t = − = −110 120

24 10
1 32.

The p-value is given by Pr(t9 < −1.32). From Appendix Table 5, because t9,.85 = 1.100 
and t9,.90 = 1.383 and 1.100 < 1.32 < 1.383, it follows that 1 − .90 < p < 1 − .85 or .10 
< p < .15. Using Excel, the p-value = TDIST (1.32,9,1) = .110. These results are not 
statistically significant but could be important if the same trends were also apparent 
in a larger study.

The test criterion in Equation 7.2 was based on an alternative hypothesis that  
µ < µ0. In many situations we wish to use an alternative hypothesis that µ > µ0. In 
this case H0 would be rejected if x, or correspondingly our test statistic t, were large 
(> c) and accepted if t were small (≤ c). The test procedure is given as follows:

	 Equation 7.6 	 One-Sample t Test for the Mean of a Normal Distribution with Unknown Variance 
(Alternative Mean > Null Mean) 

	 	 To test the hypothesis
			   H H0 0 1 0: :µ µ µ µ= >vs.

with a significance level of α, the best test is based on t, where

			   t
x
s n

= − µ0
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	 Figure 7.2 	 p-value for the one-sample t test when the alternative mean (µ1) > null mean (µ0)

0 t

p-value

0.0

0.1
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0.3
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tn–1 distribution

Fr
eq
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cy

			   If t tn> − −1 1, ,α  then H0 is rejected

			   If t tn≤ − −1 1, ,α  then H0 is accepted

The p-value for this test is given by

		  p t tn= >( )−Pr 1

The p-value for this test is depicted in Figure 7.2.

To derive this, if we require a type I error = α, we find c such that

		

α µ µ

µ µ

= >( ) = > =( )
= − ≤ =( )

Pr Pr

Pr

t c H t c

t c

0 0

01

Because t follows a tn−1 distribution under H0, we have

		  α α= − ≤( ) − = ≤( )− −1 11 1Pr Prt c t cn nor

Because Pr( ),t tn n− − −<1 1 1 α  = 1 − α, we have c tn= − −1 1, α. Thus, at level α, H0 is rejected if 
t tn> − −1 1, α and accepted otherwise. The p-value is the probability of observing a test 
statistic at least as large as t under the null hypothesis. Thus, because t follows a tn−1 
distribution under H0, we have

		  p t t t tn n= ≥( ) = − ≤( )− −Pr Pr1 11

	 Example 7.18 	 Cardiovascular Disease, Pediatrics  Suppose the mean cholesterol level of 
10 children whose fathers died from heart disease in Example 7.1 is 200 mg/dL and 
the sample standard deviation is 50 mg/dL. Test the hypothesis that the mean cho-
lesterol level is higher in this group than in the general population.

	 	 Solution:  The hypothesis

		  H H0 1175 175: :µ µ= >vs.

is tested using an α level of .05. H0 is rejected if

			   t t tn> =− −1 1 9 95, ,.α
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	 	 In this case,

	 	 	

t = −

= =

200 175
50 10
25

15 81
1 58

.
.

	 	 From Table 5, we see that t9,.95 = 1.833. Because 1.833 > 1.58, it follows that we accept 
H0 at the 5% level of significance.

	 	 	 If we use the p-value method, the exact p-value is given by

	 	 	 p = Pr(t9 > 1.58)

	 	 Using Appendix Table 5, we find t9,.90 = 1.383 and t9,.95 = 1.833. Thus, because 1.383 
< 1.58 < 1.833, it follows that .05 < p < .10. Alternatively, using the pt function of R, 
we can get the exact p-value = Pr(t9 > 1.58) = 1 − pt (1.58,9) = .074. Because p > .05, 
we conclude that our results are not statistically significant, and the null hypothesis 
is accepted. Thus, the mean cholesterol level of these children does not differ signifi-
cantly from that of an average child.

R E V I E W  QU  E ST  I ONS    7 A

1	 What is the difference between a type I and type II error?

2	 What is the difference between the critical-value method and the p-value method of 
hypothesis testing?

3	 Several studies have shown that women with many children are less likely to get 
ovarian cancer. In a new study, data are collected from 25 women ages 40−49 with 
ovarian cancer. The mean parity (number of children) of these women is 1.8 with 
standard deviation 1.2. Suppose the mean number of children among women in the 
general population in this age group is 2.5.

	 (a) � What test can be used to test the hypothesis that women with ovarian cancer 
have fewer children than women in the general population in the same age 
group?

	 (b)  Perform the test in Review Question 7A.3a using the critical-value method.

	 (c)  What is the p-value based on the test in Review Question 7A.3a?

	 (d)  What do you conclude from this study?

	 7.4	 O n e - S a m p l e  Te  s t  f o r  t h e  Me  a n  o f  a  N o r m a l 

Di  s t r i b u t i o n :  Tw  o - Si  d e d  A lt e r n at i v e s

In the previous section the alternative hypothesis was assumed to be in a specific 
direction relative to the null hypothesis.

	 Example 7.19 	 Obstetrics  Example 7.2 assumed that the mean birthweight of infants from a low-
SES-area hospital was either the same as or lower than average. Example 7.1 assumed 
that the mean cholesterol level of children of men who died from heart disease was 
either the same as or higher than average.

In most instances this prior knowledge is unavailable. If the null hypothesis is not 
true, then we have no idea in which direction the alternative mean will fall.

R
 E

 V
 I 

E 
W

  

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



	 7.4      One-Sample Test for the Mean of a Normal Distribution: Two-Sided Alternatives              223

	 Example 7.20 	 Cardiovascular Disease  Suppose we want to compare fasting serum-cholesterol 
levels among recent Asian immigrants to the United States with typical levels found 
in the general U.S. population. Suppose we assume cholesterol levels in women ages 
21−40 in the United States are approximately normally distributed with mean 190 mg/dL. 
It is unknown whether cholesterol levels among recent Asian immigrants are higher 
or lower than those in the general U.S. population. Let’s assume that levels among 
recent female Asian immigrants are normally distributed with unknown mean 
µ. Hence we wish to test the null hypothesis H0 0 190: µ µ= =  vs. the alternative  
hypothesis H1 0: µ µ≠ . Blood tests are performed on 100 female Asian immigrants 
ages 21−40, and the mean level (x) is 181.52 mg/dL with standard deviation = 40 mg/dL. 
What can we conclude on the basis of this evidence?

The type of alternative given in Example 7.20 is known as a two-sided alternative 
because the alternative mean can be either less than or greater than the null mean.

	 Definition 7.15 	 A two-tailed test is a test in which the values of the parameter being studied (in this 
case µ) under the alternative hypothesis are allowed to be either greater than or less 
than the values of the parameter under the null hypothesis (µ0).

The best test here depends on the sample mean x or, equivalently, on the test 
statistic t, as it did in the one-sided situation developed in Section 7.3. We showed in 
Equation 7.2 (p. 216) that to test the hypothesis H H0 0 1 0: :µ µ µ µ= <versus , the best 
test was of the form: Reject H0 if t tn< −1,α and accept H0 if t tn≥ −1,α. This test is clearly 
only appropriate for alternatives on one side of the null mean, namely µ < µ0. We 
also showed in Equation 7.6 (p. 220) that to test the hypothesis

		  H H0 0 1 0: :µ µ µ µ= >vs.

the best test was correspondingly of the following form: Reject H0 if t tn> − −1 1, α and 
accept H0 if t tn≤ − −1 1, α.

	 Equation 7.7 	 �A reasonable decision rule to test for alternatives on either side of the null mean 
is to reject H0 if t is either too small or too large. Another way of stating the rule is 
that H0 will be rejected if t is either < c1 or > c2 for some constants c1, c2 and H0 
will be accepted if c1 ≤ t ≤ c2.

The question remains: What are appropriate values for c1 and c2? These values are 
again determined by the type I error (α). The constants c1, c2 should be chosen such that

	 Equation 7.8 	 Pr Prreject true or true0 0 2 0H H t c t c H( ) = < >( 1 ))
= <Pr t c11 0 2 0true trueH t c H( ) + >( ) =Pr α

Half of the type I error is assigned arbitrarily to each of the probabilities on the 
left side of the second line of Equation 7.8. Thus, we wish to find c1, c2 so that

	 Equation 7.9 	 Pr Prt c H t c H<( ) = >( ) =1 20 2 0true true α
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tn–1 distribution = distribution of t under H0

Rejection region Rejection region

tn–1, α/2 tn–1, 1–α/20

Acceptance region

0

Value

Fr
eq
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	 Figure 7.3 	 One-sample t test for the mean of a normal distribution (two-sided alternative)

We know t follows a tn−1 distribution under H0. Because tn−1 2,α  and tn− −1 1 2, α  are the 
lower and upper 100% × α/2 percentiles of a tn−1 distribution, it follows that

		  Pr Prt t t tn n<( ) = ( ) =− − −1 2 1 1 2 2, ,α α α>

Therefore,

		  c t t c tn n n1 1 2 1 1 2 2 1 1 2= = − =− − − − −, , ,α α αand

This test procedure can be summarized as follows:

	 Equation 7.10 	 �One-Sample t Test for the Mean of a Normal Distribution with Unknown Variance 
(Two-Sided Alternative) 

		�  To test the hypothesis H0: µ = µ0 vs. H1 0: µ µ≠ , with a significance level of α, the 

best test is based on t x s n= −( ) ( )µ0 .

			   If t tn> − −1 1 2, α

			   then H0 is rejected.

			   If t tn≤ − −1 1 2, α

			   then H0 is accepted.

			   The acceptance and rejection regions for this test are shown in Figure 7.3.

	 Example 7.21 	 Cardiovascular Disease  Test the hypothesis that the mean cholesterol level of re-
cent female Asian immigrants is different from the mean in the general U.S. popula-
tion, using the data in Example 7.20.

	 	 Solution:  We compute the test statistic

		

t
x
s n

= −

−

− = −

µ0

181 52 190
40 100
8 48
4

2 12

=

=

.

.
.
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For a two-sided test with α = .05, the critical values are c t c t1 99 025 2 99 975= =,. ,., .
From Table 5 in the Appendix, because t t99 975 60 975 2 000,. ,. .< = , it follows that c2 < 

2.000. Also, because c1 = −c2 it follows that c1 > −2.000. Because t = −2.12 < −2.000 < 
c1, it follows that we can reject H0 at the 5% level of significance. We conclude that 
the mean cholesterol level of recent Asian immigrants is significantly different from 
that of the general U.S. population.

Alternatively, we might want to compute a p-value as we did in the one-sided 
case. The p-value is computed in two different ways, depending on whether t is less 
than or greater than 0.

	 Equation 7.11 	 �p-Value for the One-Sample t Test for the Mean of a Normal Distribution 	
(Two-Sided Alternative)

		  Let   t
x
s n

= − µ0

			 
p

t t t

t t

n

n

=
× ≤( ) ≤

× − ≤( ) 

−

−

2 0

2 1

1

1

Pr

Pr

,

,

if

iff t >





 0

Thus, in words, if t ≤ 0, then p = 2 times the area under a tn−l distribution to the 
left of t; if t > 0, then p = 2 times the area under a tn−l distribution to the right of t. 
One way to interpret the p-value is as follows.

	 Equation 7.12 	 �The p-value is the probability under the null hypothesis of obtaining a test sta-
tistic as extreme as or more extreme than the observed test statistic, where, be-
cause a two-sided alternative hypothesis is being used, extremeness is measured 
by the absolute value of the test statistic.

Hence, if t > 0, the p-value is the area to the right of t plus the area to the left of −t 
under a tn−l distribution.

However, this area simply amounts to twice the right-hand tail area because the 
t distribution is symmetric around 0. A similar interpretation holds if t < 0.

These areas are illustrated in Figure 7.4.

	 Example 7.22 	 Cardiovascular Disease  Compute the p-value for the hypothesis test in Example 7.20.

	 	 Solution:  Because t = −2.12, the p-value for the test is twice the left-hand tail area, or

			   ( )= × < − = × − =p t pt2 2.12 2 ( 2.12,99) .03799Pr

based on the pt function of R.

Hence, the results are statistically significant with a p-value of .037. 

Finally, if n is large (say, >200), then the percentiles of the t distribution  
(t tn> − −1 1 2, α ) used in determining the critical values in Equation 7.10 can be 
approximated by the corresponding percentiles of an N(0,1) distribution (z1−α/2). 
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Similarly, in computing p-values in Equation 7.11, if n > 200, then Pr( )t tn− ≤1  can be 
approximated by Pr[N(0,1) < t] = Φ(t). We used similar approximations in our work 
on CIs for the mean of a normal distribution with unknown variance in Section 6.5 
on page 177 in Chapter 6.

When is a one-sided test more appropriate than a two-sided test? Generally, 
the sample mean falls in the expected direction from µ0 and it is easier to reject H0 
using a one-sided test than using a two-sided test. However, this is not necessarily 
always the case. Suppose we guess from a previous review of the literature that the 
cholesterol level of Asian immigrants is likely to be lower than that of the general 
U.S. population because of better dietary habits. In this case, we would use a one-
sided test of the form H H0 1190 190: :µ µ= <vs. . From Equation 7.3, the one-sided 

p-value = < − = − = =Pr t pt( 2.12) ( 2.12,99) .018
1
299  (two-sided p-value). Alternatively, 

suppose we guess from a previous literature review that the cholesterol level of Asian 
immigrants is likely to be higher than that of the general U.S. population because 
of more stressful living conditions. In this case, we would use a one-sided test of 
the form H H0 1190 190: :µ µ= >vs. . From Equation 7.6, the p-value = Pr(t99 > −2.12) 
= .982. Thus, we would accept H0 if we use a one-sided test and the sample mean is 
on the opposite side of the null mean from the alternative hypothesis. Generally, 
a two-sided test is always appropriate because there can be no question about the 
conclusions. Also, as just illustrated, a two-sided test can be more conservative be-
cause you need not guess the appropriate side of the null hypothesis for the alterna-
tive hypothesis. However, in certain situations only alternatives on one side of the 
null mean are of interest or are possible, and in this case a one-sided test is better 
because it has more power (that is, it is easier to reject H0 based on a finite sample if 
H1 is actually true) than its two-sided counterpart. In all instances, it is important to 
decide whether to use a one-sided or a two-sided test before data analysis (or prefer-
ably before data collection) begins so as not to bias conclusions based on results of 
hypothesis testing. In particular, do not change from a two-sided to a one-sided test 
after looking at the data.

	 Example 7.23 	 Hypertension  Suppose we are testing the efficacy of a drug to reduce blood pres-
sure. Assume the change in blood pressure (baseline blood pressure minus follow-up 
blood pressure) is normally distributed with mean µ and variance σ2. An appropriate 
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	 Figure 7.4 	 Illustration of the p-value for a one-sample t test for the mean of a normal 
distribution (two-sided alternative)
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hypothesis test might be H H0 10 0: :µ µ= vs. >  because the drug is of interest only if 
it reduces blood pressure, not if it raises blood pressure.

In the rest of this text, we focus primarily on two-sided tests because they are 
much more widely used in the literature.

Using the Computer to Perform the One-Sample t Test
Numerous computer programs can perform the one-sample t test. Many programs 
can perform this test based on raw data. Stata is one of the few programs that can 
perform standard statistical tests based on summary data. To perform the one-
sample t test based on summary data, we use the ttesti program of Stata.

	 Example 7.24 	 Cardiovascular Disease  Use a computer program to compare the mean cholesterol 
level of recent female Asian immigrants ages 21–40 to the United States with those of 
women ages 21–40 in the U.S. population based on the data in Example 7.20 (p. 223).

	 	 Solution:  We use the ttesti program of Stata for this purpose. From Example 7.20, the 
mean ± sd cholesterol level of 100 21- to 40-year-old Asian immigrant women was 
181.52 ± 40 mg/dL. The mean cholesterol of similar aged women in the U.S. popula-
tion was 190 mg/dL. In general, to test the hypothesis 

	 	 H0 : µ = µ0 vs. H1 : µ ≠ µ0, we use the syntax

ttesti n mean sd value

	 	 where value = µ0. Thus, in this case we specify

ttesti 100 181.52 40 190

	 	 The Stata output is as follows:

.ttesti 100 181.52 40 190

	 	 One-sample t test

-------------------------------------------------------------

   |   Obs   Mean   Std. Err.   Std. Dev.   [95% Conf. Interval]

-- + ---------------------------------------------------------

 x |   100  181.52      4            40         173.5831  189.4569

-------------------------------------------------------------

       mean = mean(x)                                       t =  -2.1200

Ho: mean = 190                    degrees of freedom =  99

      Ha: mean < 190            Ha: mean != 190          Ha: mean > 190

Pr(T < t) = 0.0183    Pr(|T| > |t|) = 0.0365    Pr(T > t) = 0.9817

	 	 Both one-sided and two-sided hypothesis tests are performed. The t statistic (−2.12) 
and the two-sided p-value (found under Ha: mean != 190) = 0.037 are the same as 
given in Example 7.22 (!= means not equal in Stata; Ho is the null hypothesis, Ha is 
the alternative hypothesis).

In this section and in Section 7.3, we have presented the one-sample t test, 
which is used for testing hypotheses concerning the mean of a normal distribu-
tion when the variance is unknown. This test is featured in the flowchart in Figure 
7.18 (p. 268) where we display techniques for determining appropriate methods of 
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statistical inference. Beginning at the “Start” box, we arrive at the one-sample t test 
box by answering yes to each of the following four questions: (1) one variable of 
interest? (2) one-sample problem? (3) underlying distribution normal or can central-
limit theorem be assumed to hold? and (4) inference concerning µ? and no to ques-
tion (5) σ known?

One-Sample z Test
In Equations 7.10 and 7.11 (pp. 224–225), the critical values and p-values for the 
one-sample t test have been specified in terms of percentiles of the t distribution, 
assuming the underlying variance is unknown. In some applications, the variance 
may be assumed known from prior studies. In this case, the test statistic t can be 
replaced by the test statistic z x n= −( ) ( )µ σ0 . Also, the critical values based on 
the t distribution can be replaced by the corresponding critical values of a standard 
normal distribution. This leads to the following test procedure:

	 Equation 7.13 	 �One-Sample z Test for the Mean of a Normal Distribution with Known Variance 
(Two-Sided Alternative) 

		�  To test the hypothesis H H0 0 1 0: :µ µ µ µ= ≠vs.  with a significance level of α, 
where the underlying standard deviation σ is known, the best test is based on 
z x n= −( ) ( )µ σ0

			   If z z z z< −α α2 1 2or >

			   then H0 is rejected.

			   If z z zα α2 1 2≤ ≤ −

			   then H0 is accepted.

			   To compute a two-sided p-value, we have

			 

p z z

z z

= ≤
= −[ ] >

2 0

2 1 0

Φ
Φ

( )

( )

if

if

	 Example 7.25 	 Cardiovascular Disease  Consider the cholesterol data in Example 7.21. Assume 
that the standard deviation is known to be 40 and the sample size is 200 instead of 
100. Assess the significance of the results.

	 	 Solution:  The test statistic is

		
z = −

− = −

181 52 190
40 200
8 48

2 828
3 00

.

.
.

.=

We first use the critical-value method with α = 0.05. Based on Equation 7.13, the 
critical values are −1.96 and 1.96. Because z = −3.00 < −1.96, we can reject H0 at a 5% 
level of significance. The two-sided p-value is given by 2 × Φ(−3.00) = .003.

Similarly, we can consider the one-sample z test for a one-sided alternative as 
follows.
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	 Equation 7.14 	 �One-Sample z Test for the Mean of a Normal Distribution with Known Variance 
(One-Sided Alternative) ( µ1 < µ0) 

		�  To test the hypothesis H0: µ = µ0 vs. H1: µ < µ0 with a significance level of α, 
where the underlying standard deviation σ is known, the best test is based on

			   z x n= −( ) ( )µ σ0

		�  If z < zα, then H0 is rejected; if z ≥ zα, then H0 is accepted. The p-value is given by 
p = Φ(z).

	 Equation 7.15 	 �One-Sample z Test for the Mean of a Normal Distribution with Known Variance 
(One-Sided Alternative) ( µ1 > µ0) 

		�  To test the hypothesis H0: µ = µ0 vs. H1: µ > µ0 with a significance level of α, 
where the underlying standard deviation σ is known, the best test is based on

			   z x n= −( ) ( )µ σ0

		�  If z > z1−α, then H0 is rejected; if z ≤ z1−α, then H0 is accepted. The p-value is given 
by p = 1 − Φ(z).

In general, a t distribution with > 200 df can be well approximated by a N(0,1) distri-
bution. Thus, the one sample z test (as given in Equations 7.13–7.15.) can be used as an 
approximation to the one-sample t test with σ replaced by s if n > 200.

In this section we presented the one-sample z test, which is used for testing hy-
potheses concerning the mean of a normal distribution when the variance is known. 
Beginning at the “Start” box of the flowchart (Figure 7.18, p. 268), we arrive at the 
one-sample z test box by answering yes to each of the following five questions: (1) 
one variable of interest? (2) one-sample problem? (3) underlying distribution normal 
or can central-limit theorem be assumed to hold? (4) inference concerning µ? and 
(5) σ known?

	 7.5	 T h e  Re  l at i o n s h i p  Be  t wee   n  H y p o t h e s i s 

Te  s t i n g  a n d  C o n f i d e n c e  I n t e r v a l s

A test procedure was presented in Equation 7.10 for testing the hypothesis  
H0: µ = µ0 vs. H1: µ ≠ µ0. Similarly, a method for obtaining a two-sided CI for the  
parameter µ of a normal distribution when the variance is unknown was discussed in 
Section 6.5. The relationship between these two procedures can be stated as follows.

	 Equation 7.16 	 �The Relationship Between Hypothesis Testing and Confidence Intervals (Two-
Sided Case) 

	 	 Suppose we are testing H0: µ = µ0 vs. H1: µ ≠ µ0. H0 is rejected with a two-sided 
level α test if and only if the two-sided 100% × (1 − α) CI for µ does not contain 
µ0. H0 is accepted with a two-sided level α test if and only if the two-sided 100% 
× (1 − α) CI for µ does contain µ0.

See page 224 for  
Equation 7.10
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To derive this, recall that the two-sided 100% × (1 − α) CI for µ = =c c( , )1 2

± − −αx t s nn 1,1 /2 . Suppose we reject H0 at level α. Then either t < −tn−1,1−α/2 or t > 
tn−1,1−α/2. Suppose that

		  t x s n tn= −( ) ( ) < − − −µ α0 1 1 2, /

We multiply both sides by s n  and obtain

		  x t s nn− < − − −µ α0 1 1 2, /

If we add µ0 to both sides, then

		  x t s nn< − − −µ α0 1 1 2, /

or

		  µ α0 1 1 2 2> + =− −x t s n cn , /

Similarly, if t > tn−1,1−α/2, then

		  x t s nn− > − −µ α0 1 1 2, /

or

		  µ α0 1 1 2 1< − =− −x t s n cn , /

Thus, if we reject H0 at level α using a two-sided test, then either µ0 < c1 or µ0 > c2; 
that is, µ0 must fall outside the two-sided 100% × (1 − α) CI for µ. Similarly, it can be 
shown that if we accept H0 at level α using a two-sided test, then µ0 must fall within 
the two-sided 100% × (1 − α) CI for µ (or, c1 ≤ µ0 ≤ c2).

Hence, this relationship is the rationale for using CIs in Chapter 6 to decide on 
the reasonableness of specific values for the parameter µ. If any specific proposed value 
µ0 did not fall in the two-sided 100% × (1 − α) CI for µ, then we stated that it was an 
unlikely value for the parameter µ. Equivalently, we could have tested the hypothesis 
H0: µ = µ0 vs. H1: µ ≠ µ0 and rejected H0 at significance level α.

Here is another way of expressing this relationship.

	 Equation 7.17 	 �The two-sided 100% × (1 − α) CI for µ contains all values µ0 such that we accept 
H0 using a two-sided test with significance level α, where the hypotheses are H0: 
µ = µ0 vs. H1: µ ≠ µ0. Conversely, the 100% × (1 − α) CI does not contain any value 
µ0 for which we can reject H0 using a two-sided test with significance level α, 
where H0: µ = µ0 and H1: µ ≠ µ0.

	 Example 7.26 	 Cardiovascular Disease  Consider the cholesterol data in Example 7.20 (p. 223). We 
have x = 181 52. mg dL, s = 40 mg/dL, and n = 100. The two-sided 95% CI for µ is 
given by

		
x t s n x t s n,99,.975 99,.975( )− +

		  If we use the qt function of R, this is given by 

		

x s n x s nqt(0.025,99) , qt(0.975,99)

181.52
1.984(40)

10
,181.52

1.984(40)
10

(181.52 7.94, 181.52 7.94) (173.58, 189.46)

= + + 

= − +





= − + =
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This CI contains all values for µ0 for which we accept H0: µ = µ0 and does not con-
tain any value µ0 for which we could reject H0 at the 5% level. Specifically, the 95% 
CI (173.58, 189.46) does not contain µ0 = 190, which corresponds to the decision in 
Example 7.21 (p. 224), where we were able to reject H0: µ = 190 at the 5% level of 
significance.

Another way of stating this is that the p-value computed in Example 7.22 (p. 225) 
for µ0 = 190 = .037, which is less than .05.

	 Example 7.27 	 Cardiovascular Disease  Suppose the sample mean for cholesterol was 185 mg/dL 
for the cholesterol data in Example 7.20. The 95% CI would be

		  ( . , . ) ( . , . )185 7 94 185 7 94 177 06 192 94− + =

which contains the null mean (190). The p-value for the hypothesis test would be

		

p Pr t Pr t

pt

2 (185 190) 4 2 1.25

2 ( 1.25,99)
.214 .05

99 99[ ] ( )= × < − = × < −
= × −
= >

using the pt function of R. So we can accept H0 using α = .05, if µ0 = 190, which is 
consistent with the statement that 190 falls within the above 95% CI. Thus, the con-
clusions based on the CI and hypothesis-testing approaches are also the same here.

A similar relationship exists between the one-sided hypothesis test developed 
in Section 7.3 and the one-sided CI for the parameter µ developed in Section 6.10. 
Equivalent CI statements can also be made about most of the other one-sided or 
two-sided hypothesis tests covered in this text.

Because the hypothesis-testing and CI approaches yield the same conclusions, 
is there any advantage to using one method over the other? The p-value from 
a hypothesis test tells us precisely how statistically significant the results are. 
However, often results that are statistically significant are not very important in 
the context of the subject matter because the actual difference between x and µ0 
may not be very large, but the results are statistically significant because of a large 
sample size. A 95% CI for µ would give additional information because it would 
provide a range of values within which µ is likely to fall. Conversely, the 95% CI 
does not contain all the information contained in a p-value. It does not tell us 
precisely how significant the results are but merely tells us whether they are sig-
nificant at the 5% level. Hence, it is good practice to compute both a p-value and 
a 95% CI for µ.

Unfortunately, some researchers have become polarized on this issue, with some 
statisticians favoring only the hypothesis-testing approach and some epidemiolo-
gists favoring only the CI approach. These issues have correspondingly influenced 
editorial policy, with some journals requiring that results be presented in one format 
or the other. The crux of the issue is that, traditionally, results need to be statistically 
significant (at the 5% level) to demonstrate the validity of a particular finding. One 
advantage of this approach is that a uniform statistical standard is provided (the 5% 
level) for all researchers to demonstrate evidence of an association. This protects the 
research community against scientific claims not based on any statistical or empiri-
cal criteria whatsoever (such as solely on the basis of clinical case reports). Advocates 
of the CI approach contend that the width of the CI provides information on the 
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likely magnitude of the differences between groups, regardless of the level of signifi-
cance. My opinion is that significance levels and confidence limits provide comple-
mentary information and both should be reported, where possible.

	 Example 7.28 	 Cardiovascular Disease  Consider the cholesterol data in Examples 7.22 and 7.26. The 
p-value of .037, obtained in Example 7.22, tells us precisely how significant the results 
are. The 95% CI for µ = (173.58, 189.46) obtained in Example 7.26 gives a range of 
likely values that µ might assume. The two types of information are complementary.

	 7.6	 T h e  P o we  r  o f  a  Te  s t

The calculation of power is used to plan a study, usually before any data have been 
obtained, except possibly from a small preliminary study called a pilot study. Also, 
we usually make a projection concerning the standard deviation without actually 
having any data to estimate it. Therefore, we assume the standard deviation is 
known and base power calculations on the one-sample z test as given in Equations 
7.13, 7.14, and 7.15 (pp. 228–229).

	 Example 7.29 	 Ophthalmology  A new drug is proposed to prevent the development of glaucoma 
in people with high intraocular pressure (IOP). A pilot study is conducted with the 
drug among 10 patients. After 1 month of using the drug, their mean IOP decreases by 
5 mm Hg with a standard deviation of 10 mm Hg. The investigators propose to study 
30 participants in the main study. Is this a sufficient sample size for the study?

	 	 Solution:  To determine whether 30 participants are enough, we need to do a power 
calculation. The power of the study is the probability that we will be able to declare 
a significant difference with a sample of size 30 if the true mean decline in IOP is 
5 mm Hg with a standard deviation of 10 mm Hg. Usually we want a power of at 
least 80% to perform a study. In this section we examine formulas for computing 
power and addressing the question just asked.

One-Sided Alternatives
In Section 7.4 (Equation 7.14) the appropriate hypothesis test was derived to test

		
H H0 0 1 0: :µ µ µ µ= <vs.

where the underlying distribution was assumed to be normal and the population 
variance was assumed to be known. The best test was based on the test statistic z. In 
particular, from Equation 7.14 for a type I error of α, H0 is rejected if z < zα and H0 
is accepted if z ≥ zα. The form of the best test does not depend on the alternative mean 
chosen (µ1) as long as the alternative mean is less than the null mean µ0.

Hence, in Example 7.2, where µ0 = 120 oz, if we were interested in an alternative 
mean of µ1 = 115 oz rather than µ1 = 110 oz, then the same test procedure would 
still be used. However, what differs for the two alternative means is the power of the 
test = 1 − Pr(type II error). Recall from Definition 7.6 (p. 214) that

		  Power = Pr Prreject falseH H Z z0 0 1( ) = < =( )α µ µ

			 

= − < =






= < + =( )
Pr

Pr

X
n

z

X z n

µ
σ

µ µ

µ σ µ µ

α

α

0
1

0 1
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We know that under H X N n1 1
2, ~ ( , )µ σ . Hence, on standardization of limits,

		  Power =  Φ Φµ σ µ σ µ µ
σα α0 1

0 1+ −( ) ( )



 = + −





z n n z n
( )

This power is depicted graphically in Figure 7.5.

Note that the area to the left of µ σα0 + z n  under the H0 distribution is the 
significance level α, whereas the area to the left of µ σα0 + z n  under the H1 distribu-
tion is the power = 1 − β.

Why should power concern us? The power of a test tells us how likely it is that a 
statistically significant difference will be detected based on a finite sample size n, if 
the alternative hypothesis is true (i.e., if µ = µ1) that is, if the true mean µ differs from 
the mean under the null hypothesis (µ0). If the power is too low, then there is little 
chance of finding a significant difference and nonsignificant results are likely even 
if real differences exist between the true mean µ of the group being studied and the 
null mean µ0. An inadequate sample size is usually the cause of low power to detect 
a scientifically meaningful difference.

	 Example 7.30 	 Obstetrics  Compute the power of the test for the birthweight data in Example 7.2 
(p. 211) with an alternative mean of 115 oz and α = .05, assuming the true standard 
deviation = 24 oz.

	 	 Solution:  We have µ0 = 120 oz, µ1 = 115 oz, α = .05, σ = 24, n = 100. Thus

		  Power = + −  = − +Φ Φz. ( ) . (05 120 115 100 24 1 645 5 10)) ( . ) .24 0 438 669[ ] = =Φ

Therefore, there is about a 67% chance of detecting a significant difference using a 
5% significance level with this sample size.

We have focused on the situation where µ µ1 0< . We are also interested in power 
when testing the hypothesis

		  H H0 0 1 1 0: :µ µ µ µ µ= = >vs.

0 µ1 µ0 Value

Fr
eq

u
en

cy

µ0 + zασ/  n

Acceptance
region

Power =
1 – β

Distribution of X
under H1

N(µ1, σ 2/n)

Distribution of X
under H0

N(µ0, σ 2/n)

Rejection
region

Area = α

	 Figure 7.5 	 Illustration of power for the one-sample test for the mean of a normal distribution 
with known variance (µ1 < µ0)
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as was the case with the cholesterol data in Example 7.1. The best test for this situ-
ation was presented in Equation 7.15, where H0 is rejected if z > z1−α and accepted if
z z≤ −1 α. Using a similar derivation, we obtain the following expression for power.

		  Φ Φ− +
−( )











= +
−( )






−z

n
z

n
1

1 0 1 0
α α

µ µ
σ

µ µ
σ 




>if µ µ1 0

This power is displayed in Figure 7.6.

	 Example 7.31 	 Cardiovascular Disease, Pediatrics  Using a 5% level of significance and a sample 
of size 10, compute the power of the test for the cholesterol data in Example 7.18 
(p. 221), with an alternative mean of 190 mg/dL, a null mean of 175 mg/dL, and a stan-
dard deviation (σ) of 50 mg/dL.

	 	 Solution:  We have µ0 = 175, µ1 = 190, α = .05, σ = 50, n = 10. Thus,

		

Power = − + − 

= −

Φ

Φ

1 645 190 175 10 50. ( )

11 645 15 10 50 0 696

1 0 69

. ( . )

( .

+( ) = −

= −

Φ

Φ 66 1 757 243) . .= − =

Therefore, the chance of finding a significant difference in this case is only 24%. 
Thus, it is not surprising that a significant difference was not found in Example 7.18 
because the sample size was too small.

The power formulas presented in this section can be summarized as follows:

	 Equation 7.18 	 �Power for the One-Sample z Test for the Mean of a Normal Distribution with 
Known Variance (One-Sided Alternative) 

The power of the test for the hypothesis
		  H H0 0 1 1: :µ µ µ µ= =vs.

0 µ1µ0 Value

Fr
eq

u
en

cy

µ0 + z1–ασ/  n

Acceptance
region

Distribution of X
under H0

N(µ0, σ2/n)

Distribution of X
under H1

N(µ1, σ2/n)

Rejection
region

Area = α

Power = 1 – β

	 Figure 7.6 	 Illustration of power for the one-sample test for the mean of a normal distribution 
with known variance ( µ1 > µ0)
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where the underlying distribution is normal and the population variance (σ2) is 
assumed known is given by

		
Φ Φz n z nα αµ µ σ µ µ σ+ −( ) = − + −( )−0 1 1 0 1

Notice from Equation 7.18 that the power depends on four factors: α, |µ0 − µ1|, 
n, and σ.

	 Equation 7.19 	 Factors Affecting the Power

(1)	 If the significance level is made smaller (α decreases), zα increases and hence 
the power decreases.

(2)	 If the alternative mean is shifted farther away from the null mean (|µ0 − µ1| 
increases), then the power increases.

(3)	 If the standard deviation of the distribution of individual observations in-
creases (σ increases), then the power decreases.

(4)	 If the sample size increases (n increases), then the power increases.

	 Example 7.32 	 Cardiovascular Disease, Pediatrics  Compute the power of the test for the choles-
terol data in Example 7.31 with a significance level of .01 vs. an alternative mean of 
190 mg/dL.

	 	 Solution:  If α = .01, then the power is given by

		

Φ Φz. ( ) .01 190 175 10 50 2 326 15 10 50+ −  = − +( )
== − = − = − ≈Φ Φ( . ) ( . ) . %1 377 1 1 377 1 9158 8

which is lower than the power of 24% for α = .05, computed in Example 7.31. What 
does this mean? It means that if the α level is lowered from .05 to .01, the β error will  
be higher or, equivalently, the power, which decreases from .24 to .08, will be lower.

	 Example 7.33 	 Obstetrics  Compute the power of the test for the birthweight data in Example 7.30 
with µ1 = 110 oz rather than 115 oz.

	 	 Solution:  If µ1 = 110 oz, then the power is given by

		  Φ Φ− + −[ ] = = ≈1 645 120 110 10 24 2 522 994 99. ( ) ( . ) . %

which is higher than the power of 67%, as computed in Example 7.30 for µ1 = 115 oz. 
What does this mean? It means that if the alternative mean changes from 115 oz to 
110 oz, then the chance of finding a significant difference increases from 67% to 99%.

	 Example 7.34 	 Cardiology  Compute the power of the test for the infarct-size data in Example 7.13 
(p. 218) with σ = 10 and σ = 15 using an alternative mean of 20 (ck − g − EQ/m2) and 
α = .05.

	 	 Solution:  In Example 7.13, µ0 = 25 and n = 8. Thus, if σ = 10, then

		

Power = − + −  = −Φ Φ1 645 25 20 8 10 0 23. ( ) ( . )

= − = − = ≈1 0 23 1 591 409 41Φ( . ) . . %
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whereas if σ = 15, then
		

Power = − + −  = −Φ Φ1 645 25 20 8 15 0 702. ( ) ( . )

= − = ≈1 759 241 24. . %

What does this mean? It means the chance of finding a significant difference de-
clines from 41% to 24% if σ increases from 10 to 15.

	 Example 7.35 	 Obstetrics  Assuming a sample size of 10 rather than 100, compute the power for the  
birthweight data in Example 7.30 with an alternative mean of 115 oz and α = .05.

	 	 Solution:  We have µ0 = 120 oz, µ1 =115 oz, α = .05, σ = 24, and n = 10. Thus,

		
Power = + −  = − +Φ Φz. ( ) .05 120 115 10 24 1 645 5 10 24(( )

= − = − =Φ( . ) . .0 986 1 838 162

What does this mean? It means there is only a 16% chance of finding a significant 
difference with a sample size of 10, whereas there was a 67% chance with a sample 
size of 100 (see Example 7.30). These results imply that if 10 infants were sampled, 
we would have virtually no chance of finding a significant difference and would 
almost surely report a false-negative result.

For given levels of α (.05), σ (24 oz), n (100), and µ0 (120 oz), a power curve can 
be drawn for the power of the test for various alternatives µ1. Such a power curve is 
shown in Figure 7.7 for the birthweight data in Example 7.2. The power ranges from 
99% for µ1 = 110 oz to about 20% when µ1 = 118 oz.

Two-Sided Alternatives
The power formula in Equation 7.18 is appropriate for a one-sided significance test 
at level α for the mean of a normal distribution with known variance. Using a two-
sided test with hypotheses H H0 0 1 0: :µ µ µ µ= ≠vs. , the following power formula is 
used.
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	 Figure 7.7 	 Power curve for the birthweight data in Example 7.2
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	 Equation 7.20 	 �Power for the One-Sample z Test for the Mean of a Normal Distribution (Two-
Sided Alternative) 

	 	 	 The power of the two-sided test H0: µ = µ0 vs. H1: µ ≠ µ0 for the specific alternative 
µ = µ1, where the underlying distribution is normal and the population variance 
(σ2) is assumed known, is given exactly by

		
(a)
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The power formula in equation 7.20(a) is displayed in Figure 7.8.

The derivation of the formula is given in Section 7.12 (p. 265).
Equation 7.20(a) is more tedious to use than is usually necessary. Specifically, if 

µ1 < µ0, then the second term is usually negligible relative to the first term. However, 
if µ1 > µ0, then the first term is usually negligible relative to the second term. There-
fore, the approximate power formula in Equation 7.20(b) is usually used for a two-
sided test because it represents the first term in Equation 7.20(a) if µ0 > µ1 and the 
second term in Equation 7.20(b) if µ1 > µ0. The power is displayed in Figure 7.8. Note 
that the approximate power formula for the two-sided test in Equation 7.20(b) is the 
same as the formula for the one-sided test in Equation 7.18, with α replaced by α/2.

	 Example 7.36 	 Cardiology  A new drug in the class of calcium-channel blockers is to be tested for 
the treatment of patients with unstable angina, a severe form of angina. The effect 
this drug will have on heart rate is unknown. Suppose 20 patients are to be studied 
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	 Figure 7.8 	 Illustration of power for a two-sided test for the mean of a normal distribution with 
known variance
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and the change in heart rate after 48 hours is known to have a standard deviation of 
10 beats per minute. What power would such a study have of detecting a significant 
difference in heart rate over 48 hours if it is hypothesized that the true mean change 
in heart rate from baseline to 48 hours could be either a mean increase or a decrease 
of 5 beats per minute?

	 	 Solution:  Use Equation 7.20(b) with σ = 10, | µ0 − µ1| = 5, α = .05, n = 20. We have

		  Power = − +( ) = − + =−Φ Φ Φz1 05 2 5 20 10 1 96 2 236 0. / ( . . ) ( .. ) . .276 609 61= ≈

Thus, the study would have a 61% chance of detecting a significant difference.

Using the Computer to Estimate Power
There are numerous computer programs that can be used to compute power. One 
of the easiest to use and most comprehensive is the sampsi command of Stata. 
Suppose we wish to implement the power formula in Equation 7.20. We would 
use the syntax
sampsi value mean, sd(xx) n(yy) onesample

where µ0 = value, µ1 = mean, σ = xx, sample size = yy. In Stata, the options for 
each command are specified after a comma(,). The one-sample option indicates 
that power is desired for a one-sample t test (rather than a two-sample t test, 
which will be covered in Chapter 8).

	 Example 7.37 	 Ophthalmology  Suppose we consider the proposed study of a new drug to pre-
vent glaucoma among people with high intraocular pressure (IOP) presented in 
Example 7.29 (p. 232). We estimate that after using the drug for one month, mean 
IOP decreases by 5 mm Hg with a standard deviation = 10 mm Hg. How much power 
will we have to demonstrate a significant difference if a two-sided test with α = 0.05 
is used and 30 patients will be enrolled?

	 	 Solution:  We use the sampsi command of Stata with results as follows:

. sampsi 0 -5, sd(10) n(30) onesample

	 	 Estimated power for one-sample comparison of mean to hypothesized value

Test Ho: m = 0, where m is the mean in the population

	 	 Assumptions:

    alpha = 0.0500  (two-sided)

alternative m = -5

    sd = 10

sample size n = 30

	 	 Estimated power:

    power = 0.7819

We see that we will have 78% power to detect a significant difference. We used a 
two-sided test because it is a new drug and it is unknown a priori whether mean IOP 
would increase or decrease after using the drug.
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	 7.7	 S a m p l e - Si  z e  De  t e r m i n at i o n

One-Sided Alternatives
For planning purposes, we frequently need some idea of an appropriate sample size 
for investigation before a study actually begins. One possible result of making these 
calculations is finding out that the appropriate sample size is far beyond the finan-
cial means of the investigator(s) and thus abandoning the proposed investigation. 
Obviously, reaching this conclusion before a study starts is much better than after it 
is in progress.

What does “an appropriate sample size for investigation” actually mean? 
Consider the birthweight data in Example 7.2. We are testing the null hypothesis  
H0: µ = µ0 vs. the alternative hypothesis H1: µ = µ1, assuming that the distribution of 
birthweights is normal in both cases and that the standard deviation σ is known. 
We are presumably going to conduct a test with significance level α and have some 
idea of what the magnitude of the alternative mean µ1 is likely to be. If the test pro-
cedure in Equation 7.14 is used, then H0 would be rejected if z < zα or equivalently 
if x z n< +µ σα0  and accepted if z ≥ zα or equivalently if x z n≥ +µ σα0 . Suppose 
the alternative hypothesis is actually true. The investigator should have some idea 
as to what he or she would like the probability of rejecting H0 to be in this instance. 
This probability is, of course, nothing other than the power, or 1 − β. Typical values 
for the desired power are 80%, 90%, . . . , and so forth. The problem of determining 
sample size can be summarized as follows: Given that a one-sided significance test 
will be conducted at level α and that the true alternative mean is expected to be µ1, 
what sample size is needed to be able to detect a significant difference with prob-
ability 1 − β? The situation is displayed in Figure 7.9.

In Figure 7.9, the underlying sampling distribution of X is shown under the 
null and alternative hypotheses, respectively, and the critical value µ σα0 + z n  has 
been identified. H0 will be rejected if  x z n< +µ σα0 . Hence, the area to the left of 
µ σα0 + z n  under the rightmost curve is α. However, we also want the area to the 
left of  µ σα0 + z n  under the leftmost curve, which represents the power, to be 1 − β. 
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	 Figure 7.9 	 Requirements for appropriate sample size
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These requirements will be met if n is made sufficiently large, because the variance of 
each curve (σ2/n) will decrease as n increases and thus the curves will separate. From 
the power formula in Equation 7.18 (p. 234),

		  Power = + −( ) = −Φ z nα µ µ σ β0 1 1

We want to solve for n in terms of α, β, |µ0 − µ1|, and σ. To accomplish this, recall that 
Φ(z1−β) = 1 − β and therefore,

		
z n zα βµ µ σ+ − = −0 1 1

Subtract zα from both sides of the equation and multiply by σ/|µ0 − µ1| to obtain

		  n
z z

=
− +( )

−
−α β σ

µ µ
1

0 1

Replace −zα by z1−α and square both sides of the equation to obtain

		  n
z z

=
+( )

−( )
− −1 1

2 2

0 1
2

α β σ

µ µ
Similarly, if we were to test the hypothesis

		
H H0 0 1 1 0: . :µ µ µ µ µ= = >vs

as was the case with the cholesterol data in Example 7.1, using a significance level 
of α and a power of 1 − β, then, from Equation 7.18, the same sample-size formula 
would hold. This procedure can be summarized as follows.

	 Equation 7.21 	 �Sample-Size Estimation When Testing for the Mean of a Normal Distribution 	
(One-Sided Alternative) 

	 	 	 Suppose we wish to test
		

H H0 0 1 1: . :µ µ µ µ= =vs

where the data are normally distributed with mean µ and known variance σ2. 
The sample size needed to conduct a one-sided test with significance level α 
and probability of detecting a significant difference = 1 − β is

			   n
z z

=
+( )

−( )
− −σ

µ µ
β α

2
1 1

2

0 1
2

	 Example 7.38 	 Obstetrics  Consider the birthweight data in Example 7.2. Suppose that µ0 = 120 oz, 
µ1 = 115 oz, σ = 24, α = .05, 1 − β = .80, and we use a one-sided test. Compute the 
appropriate sample size needed to conduct the test.

	 	 Solution:     n
z z= + = + =24

25
23 04 0 84 1 645 23 04

2
8 95

2
2( )

. ( . . ) .. . (( . ) .6 175 142 3=

The sample size is always rounded up, so we can be sure to achieve at least the 
required level of power (in this case, 80%). Thus, a sample size of 143 is needed to 
have an 80% chance of detecting a significant difference at the 5% level if the alter-
native mean is 115 oz and a one-sided test is used.
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Notice that the sample size is very sensitive to the alternative mean chosen. We 
see from Equation 7.21 that the sample size is inversely proportional to (µ0 − µ1)

2. 
Thus, if the absolute value of the distance between the null and alternative means is 
halved, then the sample size needed is four times as large. Similarly, if the distance 
between the null and alternative means is doubled, then the sample size needed is 
1/4 as large.

	 Example 7.39 	 Obstetrics  Compute the sample size for the birthweight data in Example 7.2 if  
µ1 = 110 oz rather than 115 oz.

	 	 Solution:  The required sample size would be 1/4 as large because (µ0 − µ1)
2 = 100 

rather than 25. Thus, n = 35.6, or 36 people, would be needed.

	 Example 7.40 	 Cardiovascular Disease, Pediatrics  Consider the cholesterol data in Example 7.1. 
Suppose the null mean is 175 mg/dL, the alternative mean is 190 mg/dL, the stan
dard deviation is 50, and we wish to conduct a one-sided significance test at the 5% 
level with a power of 90%. How large should the sample size be?

	 	 Solution:     n
z z z z=

+
−

= +− −σ
µ µ

β α
2

1 1
2

0 1
2

2
9 95

250
190

( )

( )
( )

(
. .

−−

= + =

175

2500 1 28 1 645
15

2500 8 556
225

2

2

2

)

( . . ) ( . ) == 95 1.

Thus, 96 people are needed to achieve a power of 90% using a 5% significance level. 
We should not be surprised that we did not find a significant difference with a 
sample size of 10 in Example 7.18.

Based on Equation 7.21, the required sample size is related to the following four 
quantities.

	 Equation 7.22 	 Factors Affecting the Sample Size

(1)	 The sample size increases as σ2 increases.

(2)	 The sample size increases as the significance level is made smaller  
(α decreases).

(3)	 The sample size increases as the required power increases (1 − β increases).

(4)	 The sample size decreases as the absolute value of the distance between the 
null and alternative mean (|µ0 − µ1|) increases.

	 Example 7.41 	 Obstetrics  What would happen to the sample-size estimate in Example 7.38 if σ 
were increased to 30? If α were reduced to .01? If the required power were increased 
to 90%? If the alternative mean were changed to 110 oz (keeping all other param-
eters the same in each instance)?

	 	 Solution:  From Example 7.38 we see that 143 infants need to be studied to achieve 
a power of 80% using a 5% significance level with a null mean of 120 oz, an alterna-
tive mean of 115 oz, and a standard deviation of 24 oz.

If σ increases to 30, then we need

		  n z z= +( ) −( ) = +( )30 120 115 900 0 84 1 6452
8 95

2 2 2
. . . . 225 222 3= . , or 223 infants
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If α were reduced to .01, then we need

		  n z z= +( ) −( ) = +( )24 120 115 576 0 84 2 3262
8 99

2 2 2
. . . . 225 230 9 231= . , or infants

If 1 − β were increased to .9, then we need

		  n z z= +( ) −( ) = +( )24 120 115 576 1 28 1 6452
9 95

2 2 2
. . . . 225 197 1 198= . , or infants

If µ1 is decreased to 110 or, equivalently, if |µ0 − µ1| is increased from 5 to 10, then 
we need

		  n z z= +( ) −( ) = +( )24 120 110 576 0 84 1 6452
8 95

2 2 2
. . . . 1100 35 6 36= . , or infants

Thus, the required sample size increases if σ increases, α decreases, or 1 − β increases. 
The required sample size decreases if the absolute value of the distance between the 
null and alternative mean increases.

One question that arises is how to estimate the parameters necessary to com-
pute sample size. It usually is easy to specify the magnitude of the null mean (µ0). 
Similarly, by convention the type I error (α) is usually set at .05. What the level of 
the power should be is somewhat less clear, although most investigators seem to feel 
uncomfortable with a power of less than .80. The appropriate values for µ1 and σ2 
are usually unknown. The parameters µ1, σ

2 may be obtained from previous work, or 
prior knowledge of the underlying distribution. In the absence of such information, 
the parameter µ1 is sometimes estimated by assessing what a scientifically important 
difference |µ0 − µ1| would be in the context of the problem being studied. Conducting 
a small pilot study is sometimes valuable. Such a study is generally inexpensive, and 
one of its principal aims is to obtain estimates of µ1 and σ2 for the purpose of esti-
mating the sample size needed to conduct the major investigation.

Keep in mind that most sample-size estimates are “ballpark estimates” because 
of the inaccuracy in estimating µ1 and σ2. These estimates are often used merely to 
check that the proposed sample size of a study is close to what is actually needed 
rather than to identify a precise sample size.

Sample-Size Determination (Two-Sided Alternatives)
The sample-size formula given in Equation 7.21 was appropriate for a one-sided sig-
nificance test at level α for the mean of a normal distribution with known variance. 
If it is not known whether the alternative mean (µ1) is greater or less than the null 
mean (µ0), then a two-sided test is appropriate, and the corresponding sample size 
needed to conduct a study with power 1 − β is given by

	 Equation 7.23 	 �Sample-Size Estimation When Testing for the Mean of a Normal Distribution (Two-
Sided Alternative) 

	 	 	 Suppose we wish to test H0: µ = µ0 vs. H0: µ = µ1, where the data are normally 
distributed with mean µ and known variance σ2. The sample size needed to con-
duct a two-sided test with significance level α and power 1 − β is

		
n

z z
=

+( )
−( )

− −σ

µ µ
β α

2
1 1 2

2

0 1
2

/

	 	 	 Note that this sample size is always larger than the corresponding sample size for  
a one-sided test, given in Equation 7.21, because z1−α/2 is larger than z1−α. The 
derivation of Equation 7.23 is given in Section 7.12.
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	 Example 7.42 	 Cardiology  Consider a study of the effect of a calcium-channel-blocking agent on 
heart rate for patients with unstable angina, as described in Example 7.36 (p. 237). 
Suppose we want at least 80% power for detecting a significant difference if the 
effect of the drug is to change mean heart rate by 5 beats per minute over 48 hours 
in either direction and σ = 10 beats per minute. How many patients should be en-
rolled in such a study?

	 	 Solution:  We assume α = .05 and σ = 10 beats per minute, as in Example 7.36. We 
intend to use a two-sided test because we are not sure in what direction the heart 
rate will change after using the drug. Therefore, the sample size is estimated using 
the two-sided formulation in Equation 7.23. We have

		

n
z z

z z

=
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−( )

=
+( )

− −σ

µ µ
β α

2
1 1 2

2

0 1
2

2
8 975
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5

/

. .
22

2100 0 84 1 96
25

4 7 84 31 36

= +

= =

( . . )

( . ) . , or 32 patieents

Thus, 32 patients must be studied to have at least an 80% chance of finding a 
significant difference using a two-sided test with α = .05 if the true mean change 
in heart rate from using the drug is 5 beats per minute. Note that in Example 
7.36 the investigators proposed a study with 20 patients, which would provide 
only 61% power for testing the preceding hypothesis, which would have been 
inadequate.

If the direction of effect of the drug on heart rate were well known, then a 
one-sided test might be justified. In this case, the appropriate sample size could be 
obtained from the one-sided formulation in Equation 7.21, whereby
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z z z z
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2
1 1

2

0 1
2

2
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2
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4 6 175 24 7 25
2( . . )

( . ) . ,
+ = = or patientts

Thus, we would need to study only 25 patients for a one-sided test instead of the  
32 patients needed for a two-sided test.

Using the Computer to Estimate Sample Size
The Stata program sampsi can also be used for sample size calculations. Suppose we 
wish to implement the sample size formula in Equation 7.23 to compute sample size 
needed for the one-sample t test. The syntax is as follows:

sampsi value mean, sd(xx) power(0.yy) onesample

where µ0 = value, µ1 = mean, σ = xx and power = 0.yy.

	 Example 7.43 	 Ophthalmology  Suppose we consider the proposed study of a new drug to pre-
vent glaucoma among people with high intraocular pressure (IOP) presented in 
Example 7.29 (p. 232). In Example 7.37 (p. 238) we obtained the power of the study 
for a prespecified sample size of n = 30. Suppose instead that the sample size is flex-
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ible and we wish to determine the sample size needed to achieve 90% power using a 
two-sided test with α = 0.05. How many subjects should we enroll?

	 	 Solution:  We use the sampsi command of Stata with syntax

sampsi 0  -5, sd(10) power(0.90) onesample

	 	 The output is as follows:

. sampsi 0 -5, sd(10) power(0.90) onesample

	 	 Estimated sample size for one-sample comparison of mean to hypothesized value

Test Ho: m = 0, where m is the mean in the population

	 	 Assumptions:

           alpha =   0.0500  (two-sided)

           power =   0.9000

alternative m =       −5

              sd =       10

	 	 Estimated required sample size:
                n =       43

We see that we need to enroll 43 subjects to achieve 90% power. In general, if sample 
size is prespecified, then a power calculation is needed; if sample size is flexible and 
power is prespecified, then a sample size calculation is needed.

Sample-Size Estimation Based on CI Width
In some instances, it is well known that the treatment has a significant effect on 
some physiologic parameter. Interest focuses instead on estimating the effect with a 
given degree of precision.

	 Example 7.44 	 Cardiology  Suppose it is well known that propranolol lowers heart rate over 48 
hours when given to patients with angina at standard dosage levels. A new study is 
proposed using a higher dose of propranolol than the standard one. Investigators are 
interested in estimating the drop in heart rate with high precision. How can this be 
done?

Suppose we quantify the precision of estimation by the width of the two-sided 
100% × (1 − α) CI. Based on Equation 6.6, the two-sided 100% × (1 − α) CI for µ = 
true decline in heart rate is x t s nn± − −1 1 2, /α . The width of this CI is 2 1 1 2t s nn− −, /α . 
If we wish this interval to be no wider than L, then

		    2 1 1 2t s n Ln− − =, /α

We multiply both sides of the equation by n L and obtain

		    2 1 1 2t s L nn− − =, /α

or, on squaring both sides,

		    n t s Ln= − −4 1 1 2
2 2 2

, /α
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We usually approximate tn−1,1−α/2 by z1−α/2 and obtain the following result:

	 Equation 7.24 	 Sample-Size Estimation Based on CI Width 

	 	 	 Suppose we wish to estimate the mean of a normal distribution with sample 
variance s2 and require that the two-sided 100% × (1 − α) CI for µ be no wider 
than L. The number of subjects needed is approximately

		  n z s L= −4 1 2
2 2 2

α/

	 Example 7.45 	 Cardiology  Find the minimum sample size needed to estimate the change in heart 
rate (µ) in Example 7.44 if we require that the two-sided 95% CI for µ be no wider 
than 5 beats per minute and the sample standard deviation for change in heart rate 
equals 10 beats per minute.

	 	 Solution:  We have α = .05, s = 10, L = 5. Therefore, from Equation 7.24,

		

n z= ( ) ( )
= =

4 10 5

4 1 96 100 25 61 5

975
2 2 2

2

. ( )

( . ) ( ) .

Thus, 62 patients need to be studied.

R E V I E W  QU  E ST  I ONS    7 B

1	 In the BMD study referred to in Case Study 2 (p. 32), the mean weight differ-
ence between the heavier-smoking twin and the lighter-smoking twin was −5.0% 
± 3.1% (mean ± se) based on 41 pairs (expressed as a percentage of the pair 
mean). Is there a significant difference in weight between the heavier- and the 
lighter-smoking twin?

2	 What is the power of a test? What factors affect the power and in what way?

3	 What factors affect the sample-size estimate for a study? What is the principal  
difference between a power estimate and a sample-size estimate? When do we 
use each?

	 7.8	 O n e - S a m p l e  χ 2  Te  s t  f o r  t h e  V a r i a n c e  

o f  a  N o r m a l  Di  s t r i b u t i o n

	 Example 7.46 	 Hypertension  Consider Example 6.39, concerning the variability of blood-pressure 
measurements taken on an Arteriosonde machine. We were concerned with the 
difference between measurements taken by two observers on the same person = 
di = x1i − x2i, where x1i = the measurement on the ith person by the first observer 
and x2i = the measurement on the ith person by the second observer. Let’s assume 
this difference is a good measure of interobserver variability, and we want to com-
pare this variability with the variability using a standard blood-pressure cuff. We 
have reason to believe that the variability of the Arteriosonde machine may dif-
fer from that of a standard cuff. Intuitively, we think the variability of the new 
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method should be lower. However, because the new method is not as widely 
used, the observers are probably less experienced in using it; therefore, the vari-
ability of the new method could possibly be higher than that of the old method. 
Thus a two-sided test is used to study this question. Suppose we know from previ-
ously published work that σ2 = 35 for di obtained from the standard cuff. We want  
to test the hypothesis H0

2
0
2 35: σ σ= =  vs. H1

2
0
2: σ σ≠ . How should we perform this 

test?

If x1, . . . , xn are a random sample, then we can reasonably base the test on 
s2 because it is an unbiased estimator of σ2. We know from Equation 6.15 that if  
x1, . . . , xn are a random sample from an N(µ, σ2) distribution, then under H0,

		
X

n S
n

2
2

2 1
21= −

−
( )

~
σ

χ

Therefore,

		  Pr X Pr Xn n
2

1 2
2 2

1 1 2
22<( ) = = >( )− − −χ α χα α, / , //

Hence, the test procedure is given as follows.

	 Equation 7.25 	 �One-Sample χ2 Test for the Variance of a Normal Distribution (Two-Sided 	
Alternative) 

	 	 	 We compute the test statistic X n s2 2
0
21= −( ) σ .

If X Xn n
2

1 2
2 2

1 1 2
2< >− − −χ χα α, / , /or , then H0 is rejected.

If χ χα αn nX− − −≤ ≤1 2
2 2

1 1 2
2

, / , / , then H0 is accepted.

The acceptance and rejection regions for this test are shown in Figure 7.10.

Alternatively, we may want to compute a p-value for our experiment. The computa-
tion of the p-value will depend on whether s2 ≤ σ0

2 or s2
0
2> σ . The rule is given as follows.

	 Figure 7.10 	 Acceptance and rejection regions for the one-sample b2 test for the variance of a 
normal distribution (two-sided alternative)
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	 Equation 7.26 	 �p-Value for a One-Sample χ2 Test for the Variance of a Normal Distribution	
(Two-Sided Alternative)

	 	 Let the test statistic X
n s2

2

0
2
1= −( )

σ
.

If s p X2
0
2 22≤ = ×σ , - (then value area to the leftof underr a distributionχn−1

2 ).

If s p X2
0
2 22> = ×σ , - (then value area to the rightof undeera distributionχn−1

2 )).

The p-values are illustrated in Figure 7.11.

	 Example 7.47 	 Hypertension  Assess the statistical significance of the Arteriosonde-machine data in 
Example 7.46.

	 	 Solution:  We know from Example 6.39 that s2 = 8.178, n = 10. From Equation 7.25, 
we compute the test statistic X2 given by

		
X

n s2
2

0
2
1 9 8 178

35
2 103= − = =( ) ( . )
.

σ

	 Figure 7.11 	 Illustration of the p-value for a one-sample χ2 test for the variance 	
of a normal distribution (two-sided alternative)
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	 Table 7.2 	 Computation of the exact p-value for the Arteriosonde-machine data in Example 7.47 
using a one-sample χ2 test with Microsoft Excel

Microsoft Excel	

x	 2.103

df	 9

cdf=CHIDIST(2.103,9)	 0.989732

p-value(1-tail) = 1 – CHIDIST(2.103,9)	 0.010268

p-value(2-tail) = 2 ×[1 – CHIDIST(2.103,9)]	 0.020536

Under H0, X
2 follows a χ2 distribution with 9 degrees of freedom. Thus, the 

critical values are χ9 025
2

,.  = 2.70 and χ9 975
2 19 02,. .= . Because X2 = 2.103 < 2.70, it fol-

lows that H0 is rejected using a two-sided test with α = .05. To obtain the p-value, 
refer to Equation 7.26. Because s2

0
28 178 35= < =. σ , the p-value is computed as 

follows:

		  p Pr= × <( )2 2 1039
2χ .

From Table 6 of the Appendix we see that

		  χ χ9 025
2

9 01
22 70 2 09,. ,.. , .= =

Thus, because 2.09 < 2.103 < 2.70, we have .01 < p/2 < .025 or .02 < p < .05.

To obtain the exact p-value, use Microsoft Excel to evaluate areas under the χ2 
distribution. The CHIDIST function computes the area to the right of 2.103 for a
χ9

2 9897distribution = . . Thus, subtract from 1 and multiply by 2 to obtain the exact 
two-sided p-value = .021. The details are given in Table 7.2.

Therefore, the results are statistically significant, and we conclude the 
interobserver variance using the Arteriosonde machine significantly differs from the 
interobserver variance using the standard cuff. To quantify how different the two 
variances are, a two-sided 95% CI for σ2 could be obtained, as in Example 6.42. This 
interval was (3.87, 27.26). Of course, it does not contain 35 because the p-value is 
less than .05.

In general, the assumption of normality is particularly important for hypothesis 
testing and CI estimation for variances. If this assumption is not satisfied, then the 
critical regions and p-values in Equations 7.25 and 7.26 and the confidence limits in 
Equation 6.11 will not be valid.

In this section, we have presented the one-sample χ2 test for variances, 
which is used for testing hypotheses concerning the variance of a normal dis-
tribution. Beginning at the “Start” box of the flowchart (Figure 7.18, p. 268), 
we arrive at the one-sample χ2 test for variances by answering yes to each of the 
following three questions: (1) one variable of interest? (2) one-sample problem? 
and (3) underlying distribution normal or can central-limit theorem be assumed 
to hold? and by answering no to (4) inference concerning µ? and yes to (5) 
inference concerning σ?

See page 185 for  
Equation 6.11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



	 7.9      One-Sample Inference for the Binomial Distribution              249

	 7.9	 O n e - S a m p l e  I n f e r e n c e  f o r  t h e  Bi  n o m i a l 

Di  s t r i b u t i o n

Normal-Theory Methods
	 Example 7.48 	 Cancer  Consider the breast-cancer data in Example 6.45. In that example we were 

interested in the effect of having a family history of breast cancer on the incidence 
of breast cancer. Suppose that 400 of the 10,000 women ages 50–54 sampled whose 
mothers had breast cancer had breast cancer themselves at some time in their lives. 
Given large studies, assume the prevalence rate of breast cancer for U.S. women in 
this age group is about 2%. The question is: How compatible is the sample rate of 4% 
with a population rate of 2%?

Another way of asking this question is to restate it in terms of hypothesis testing: 
If p = prevalence rate of breast cancer in 50- to 54-year-old women whose moth‑ 
ers have had breast cancer, then we want to test the hypothesis H0: p = .02 = p0 vs.  
H1: p ≠ .02. How can this be done?

The significance test is based on the sample proportion of cases p̂ . Assume 
the normal approximation to the binomial distribution is valid. This assump-
tion is reasonable when np0q0 ≥ 5. Therefore, from Equation 6.17 we know that 
under H0

		
ˆ ~ ,p N p

p q
n0
0 0





It is more convenient to standardize p̂. For this purpose, we subtract the expected 
value of p̂ under H0 = p0 and divide by the standard error of p̂ under H p q n0 0 0= , 
creating the test statistic z given by

		
z

p p
p q n

= −ˆ 0

0 0

It follows that under H0, z ~ N(0,1).

However, a better approximation of the binomial by the normal distribution is 
obtained if we use a continuity-corrected version of the test statistic. Specifically

If p̂ < p0, then

		
z

p p
n

p q n

ˆ 1
20

0 0
=

− +
,

while if p̂ ≥ p0, then

		
z

p p
n

p q n

ˆ 1
20

0 0
=

− −
.

We can generalize these expressions by defining:

		
z

p p
n

p q n

ˆ 1
2

corr

0

0 0
=

− −
,

and for a two-sided test at level α, rejecting if zcorr > z1−α/2.
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Thus, the test takes the following form.

	 Equation 7.27 	 �One-Sample Test for a Binomial Proportion—Normal-Theory Method (Two-Sided 
Alternative) 

Let the test statistic z p p
n

p q nˆ 1
2corr 0 0 0= − −



 .

If zcorr > z1−α/2, then H0 is rejected. If zcorr < z1−α/2, then H0 is accepted. This test 
should only be used if np0q0 ≥ 5.

The acceptance and rejection regions are shown in Figure 7.12.

Alternatively, a p-value could be computed, where

		  p-value = 2 × area to the right of zcorr under an N(0, 1) curve

This is summarized as follows.

	 Equation 7.28 	 �Computation of the p-Value for the One-Sample Binomial Test—Normal-Theory 
Method (Two-Sided Alternative)

Let the test statistic z p p
n

p q nˆ 1
2corr 0 0 0= − −



 .

The p-value = 2 × [1 − Φ(zcorr)] = twice the area to the right of zcorr under an N(0, 1) 
curve. The calculation of the p-value is illustrated in Figure 7.13.

Alternatively, we can also compute

X
p p

n
p q n

ˆ 1
2

corr
2

0

2

0 0
1
2=

− −





∼ χ  under H0,

with p-value given by

p Pr X .corr1
2 2( )= χ >

This is the same p-value as obtained with zcorr in Figure 7.13.

	 Figure 7.12 	 Acceptance and rejection regions for the one-sample binomial test— 	
normal-theory method (two-sided alternative)
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These definitions of a p-value are again compatible with the idea of a p-value as 
the probability of obtaining results as extreme as or more extreme than the results 
in our particular sample.

	 Example 7.49 	 Cancer  Assess the statistical significance of the data in Example 7.48.

	 	 Solution:  Using the critical-value method, we compute the test statistic

		

p p
n

p q n
Z

ˆ 1
2

.04 .02
1

2(10,000)
.02(.98) 10,000

.0200

.0014
14.3

corr

0

0 0

=
− −

=
− −

= =

Because z1−α/2 = z.975 = 1.96, it follows that H0 can be rejected using a two-sided test 
with α = .05. To compute the p-value, we have

		

p z-value 2 1 ( )

2 1 (14.3) .001
corr[ ]

[ ]
= × − Φ

= × − Φ <

Thus, the results are very highly significant.

Using the Computer to Perform the One-Sample Binomial Test 
(Normal Theory Method)
We can use the prop.test command of R to implement the large sample version of 
the one-sample binomial test. The syntax of this command is:

prop.test(x, n, p = p0, alternative = “two.sided”, correct = TRUE)

where x = number of successes, n = number of trials, and p0 is the value of p under H0.

	 Example 7.50 	 Obstetrics  Suppose that in the general population, 20% of women who are trying 
to conceive take 12 months or more to get pregnant (which we will define as infertil-
ity). Suppose a SNP is proposed that may affect infertility. The SNP has 2 genotypes 

p/2

0 z
0

Value

Fr
eq

u
en

cy

N(0, 1) distribution
p-value = 2 × area
to the right of zcorr under
an N(0, 1) curve.

	 Figure 7.13 	 Illustration of the p -value for a one-sample binomial test—normal-theory 	
method (two-sided alternative)
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(a,c) of which the c allele is the wild type and the a allele may be a mutant allele. 
In a pilot study, 200 women who are trying to get pregnant are genotyped for this 
SNP. It is found that among 40 women who are homozygous for the SNP (i.e., have 
the aa genotype), 10 are infertile according to the above definition. Test whether 
this represents a significant difference in the rate of infertility  among homozy-
gous women (compared with the general population of women trying to become 
pregnant).

	 	 Solution:  We will use the prop.test command of R to solve this problem. We use the 
syntax:

prop.test(10, 40, p = 0.20, alternative = “two.sided”, correct = TRUE). The results are 
given in Table 7.3.

	 Table 7.3 	 Results for infertility gene study using R

> prop.test(10,40, p=0.20, alternative=”two.sided”, correct = TRUE)

    1-sample proportions test with continuity correction

data:  10 out of 40, null probability 0.2

X-squared = 0.3516, df = 1, p-value = 0.5532

alternative hypothesis: true p is not equal to 0.2

Note that R uses the chi-square version of the large sample one-sample binomial 
test. The p-value = 0.55, which indicates that there is no significant difference be-
tween the rate of infertility for women who are homozygous for this SNP (i.e., have 
the aa genotype) and the general population infertility rate.

Exact Methods
The test procedure presented in Equations 7.27–7.28 to test the hypothesis H0: p = 
p0 vs. H1: p ≠ p0 depends on the assumption that the normal approximation to the 
binomial distribution is valid. This assumption is only true if np0q0 ≥ 5. How can the 
preceding hypothesis be tested if this criterion is not satisfied?

We will base our test on exact binomial probabilities. In particular, let X be a 
binomial random variable with parameters n and p0 and let p̂ x n= , where x is the 
observed number of events. The computation of the p-value depends on whether 
p̂ p≤ 0 or p̂ p> 0. If p̂ p≤ 0, then

		

p Pr x n H

n
k

pk

k

2 0

0

= ≤( )

=






successes in trials |

==

−∑ −( )
0

01
x

n kp

If p̂ p> 0, then

		

p Pr x n H

n
kk x

n

2 0= ≥( )

=




=

successes in trials |

∑∑ −( ) −p pk n k
0 01

This is summarized as follows.
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	 Equation 7.29 	 �Computation of the p -Value for the One-Sample Binomial Test—Exact Method 
(Two-Sided Alternative)

		

If ˆ , ( ) min (p p p Pr X x
n
k

pk

k

x

≤ = × ≤ =






−
=
∑0 0

0

2 2 1 pp

p p p Pr X x
n
k

n k
0

0

1

2 2

) ,

ˆ , ( ) min

−









> = × ≥ =



If 



−










=

−∑ p pk

k x

n
n k

0 01 1( ) ,

The computation of the p-value is depicted in Figure 7.14, in the case of n = 30, 
p0 = .5 and x = 10 and 20, respectively.

In either case the p-value corresponds to the sum of the probabilities of all 
events that are as extreme as or more extreme than the sample result obtained.

	 Example 7.51 	 Occupational Health, Cancer  The safety of people who work at or live close to 
nuclear-power plants has been the subject of widely publicized debate in recent 
years. One possible health hazard from radiation exposure is an excess of cancer 
deaths among those exposed. One problem with studying this question is that 
because the number of deaths attributable to either cancer in general or specific 
types of cancer is small, reaching statistically significant conclusions is difficult 
except after long periods of follow-up. An alternative approach is to perform a 
proportional-mortality study, whereby the proportion of deaths attributed to a spe-
cific cause in an exposed group is compared with the corresponding proportion 
in a large population. Suppose, for example, that 13 deaths have occurred among 
55- to 64-year-old male workers in a nuclear-power plant and that in 5 of them 
the cause of death was cancer. Assume, based on vital-statistics reports, that ap-
proximately 20% of all deaths can be attributed to some form of cancer. Is this 
result significant?

	 Figure 7.14 	 Illustration of the p -value for a one-sample binomial test—exact method 	
(two-sided alternative)
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If p ≤ p0, then
p/2 = sum of binomial probabilities for X ≤ x
      = sum of vertical bars shown

If p � p0, then
p/2 = sum of binomial probabilities for X ≥ x
      = sum of vertical bars shown
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	 	 Solution:  We want to test the hypothesis H0: p = .20 vs. H1: p ≠ .20, where p = prob-
ability that the cause of death in nuclear-power workers was cancer. The normal ap-
proximation to the binomial cannot be used, because

		  np q0 0 13 2 8 2 1 5= = <(. )(. ) .

However, the exact procedure in Equation 7.29 can be used:

		
ˆ . .p = = >5

13
38 20

Therefore, p
k kk

k k=




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( ) = × −

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
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−∑2
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2 8 2 1
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13
13(. ) .


( )



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


−

=
∑ (. ) .2 8 13

0

4
k k

k

From Table 1 in the Appendix, with n = 13, p = .2, we have

		

Pr
Pr
Pr
Pr

( ) .
( ) .
( ) .
( ) .

0 0550
1 1787
2 2680
3 245

=
=
=
= 77

4 1535Pr( ) .=		

Pr
Pr
Pr
Pr

( ) .
( ) .
( ) .
( ) .

0 0550
1 1787
2 2680
3 245

=
=
=
= 77

4 1535Pr( ) .=

Therefore,  p = 2 × [1 − (.0550 + .1787 + .2680 + .2457 + .1535)]
				    = 2 × (1 − .9009) = .198

In summary, the proportion of deaths from cancer is not significantly different for 
nuclear-power-plant workers than for men of comparable age in the general population.

Using the Computer to perform the One-Sample Binomial  
Test (Exact Version)
We can use the bitesti command of Stata to perform the exact version of the one-sample 
binomial test. However, the procedure is different from that given in Equation 7.29.

	 Equation 7.30 	 One-Sample Binomial Test—Exact Version (Stata Routine)

Suppose we observe x successes in n trials and wish to test the hypothesis
H0 : p = p0 vs. H1 : p ≠ p0.
The two-sided p-value is given by:

		

n
k

p qp-value
k k x

k n k
exact,Stata

{ :Pr( ) Pr( )
0 0∑=





≤

−

Thus, the two-sided p-value = sum of probabilities of all possible outcomes  
k where Pr(k) ≤ Pr(x). The syntax for this command is 

bitesti n x p0

where n = number of trials, x = number of successes, and p0 = value of p under H0.

	 Example 7.52  	 Occupational Health  Use the bitesti command of Stata to assess the significance of 
the results in Example 7.51.

	 	 Solution:  In this case, n = 13, x = 5, and p0 = 0.2. Thus, we have:

. bitesti 13 5 0.2
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    N    Observed k    Expected k    Assumed p    Observed p

-------------------------------------------------------------------------------------------------------
    13        5              2.6          0.20000       0.38462

Pr(k ≥ 5)              = 0.099131  (one-sided test)

Pr(k ≤ 5)              = 0.969965  (one-sided test)

Pr(k ≤ 0 or k ≥ 5)  = 0.154106  (two-sided test)

Thus, the two-sided p-value from Stata = 0.15 vs. the p-value = 0.20 based on 
Equation 7.29 in Example 7.51.

	 Equation 7.31 	 �Comparison of Stata (Equation 7.30) and Textbook (Equation 7.29) Versions of the 
One-Sample Binomial Test (Small Sample Version)

The rationale for the textbook version of the one-sample binomial test is that it 
achieves the following desirable property. Suppose we wish to test the hypothesis

H0 : p = p0 vs. H1 : p ≠ p0,

and specify the two-sided p-value as

		
∑∑= ×







,






,0.5











− −

==
p n

k
p q n

k
p q-value 2 min .k n k k n k

k x

n

k

x

0 0 0 0
0

The two-sided p-value will be < α if and only if the exact two-sided 100% × (1−α) 
CI for p given in Equation 6.20 excludes p0. Conversely, the two-sided p-value will 
be > α if and only if the exact two-sided 100% × (1−α) CI for p includes p0. This 
property is not achieved by the Stata version of the test given in Equation 7.30.

	 Example 7.53 	 General  Suppose we wish to test the hypothesis

H0: p = 0.35 vs. H1: p ≠ 0.35

and have achieved 2 successes in 17 trials. Compare the two-sided exact p-value using 
Equation 7.29 and Equation 7.30, and provide an exact two-sided 95% CI for p.

	 	 Solution:  The exact 95% CI for p obtained from the cii command of Stata is given by

. cii 17 2

                                  Binomial Exact 

   Variable |    Obs    Mean     Std. Err.    [95% Conf. Interval]

--------- + ----------------------------------------------------

              |    17   .1176471   .0781425     .0145793   .3644092

The exact two-sided p-value from Equation 7.29 is given by

		
p

k k
-value 2 min 17 0.35 0.65 17 0.35 0.65k k k k

kk

17 17

2

17

0

2

∑∑ ( ) ( ) ( ) ( )= ×

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
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,




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,0.5











− −

==

We use the binomialtail command of Stata to evaluate these probabilities as follows: 
p-value = 2 × min[1 − binomialtail(17,3,0.35), binomialtail(17,2,0.35),0.5]
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We have:

. display binomialtail(17,3,0.35)

.96727464

. display binomialtail(17,2,0.35)

.99329872

Thus, p-value = 2 × min(1 − 0.9673, 0.9933, 0.5) = 0.065.

The exact two-sided p-value from Equation 7.30 is given by

. bitesti 17 2 0.35

   N    Observed k    Expected k    Assumed p    Observed p

--------------------------------------------------------

  17        2             5.95         0.35000       0.11765

Pr(k >= 2)               = 0.993299  (one-sided test)

Pr(k <= 2)               = 0.032725  (one-sided test)

Pr(k <= 2 or k >= 11) = 0.044752  (two-sided test)

Notice that the textbook p-value (Equation 7.29) is > 0.05, while the Stata p-value 
(Equation 7.30) is < 0.05. However, the exact two-sided 95% CI includes 0.35(p0), 
which is consistent with the textbook but not the Stata version. 

In the author’s opinion, the textbook version is preferable due to consistency be-
tween the hypothesis testing and confidence interval approaches.

Power and Sample-Size Estimation
The power of the one-sample binomial test can also be considered using the large-
sample test procedure given on page 250. Suppose we are conducting a two-tailed 
test at level α, where p = p0 under the null hypothesis. Under the alternative hypoth-
esis of p = p1, the power is given by the following formula.

	 Equation 7.32 	 �Power for the One-Sample Binomial Test (Two-Sided Alternative)

The power of the one-sample binomial test for the hypothesis

		  H p p H p p0 0 1 0: . := ≠vs

for the specific alternative p = p1 is given by

		
Φ p q

p q
z

p p n

p q
0 0

1 1
2

0 1

0 0
α/ +

−

















To use this formula, we assume that np0q0 ≥ 5 so that the normal-theory meth-
ods in this section on page 250 are valid.

	 Example 7.54 	 Cancer  Suppose we wish to test the hypothesis that women with a sister history of 
breast cancer are at higher risk of developing breast cancer themselves. Suppose we 
assume, as in Example 7.48 (p. 249), that the prevalence rate of breast cancer is 2% 
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among 50- to 54-year-old U.S. women, whereas it is 5% among women with a sister 
history. We propose to interview 500 women 50 to 54 years of age with a sister his-
tory of the disease. What is the power of such a study assuming that we conduct a 
two-sided test with α = .05?

	 	 Solution:  We have α = .05, p0 = .02, p1 = .05, n = 500. The power, as given by 
Equation 7.32, is

		

Power = +
( )

Φ . (. )
. (. )

.

. .
.

02 98
05 95

03 500

02 98
025z























= − +[ ] =Φ Φ. ( . . ) ( .642 1 96 4 792 1 8199 966) .=

Thus, there should be a 96.6% chance of finding a significant difference based on 
a sample size of 500, if the true rate of breast cancer among women with a sister 
history is 2.5 times as high as that of typical 50- to 54-year-old women.

Similarly, we can consider the issue of appropriate sample size if the one-sample 
binomial test for a given α, p0, p1, and power is being used. The sample size is given 
by the following formula.

	 Equation 7.33 	 �Sample-Size Estimation for the One-Sample Binomial Test (Two-Sided Alternative)

Suppose we wish to test H0: p = p0 vs. H1: p ≠ p0. The sample size needed to conduct 
a two-sided test with significance level α and power 1 − β vs. the specific alterna-
tive hypothesis p = p1 is

		
n

p q z z
p q
p q

p p
=

+




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−

− −0 0 1 2 1
1 1

0 0

2

1 0
2

α β

( )

	 Example 7.55 	 Cancer  How many women should we interview in the study proposed in Example 
7.54 to achieve 90% power if a two-sided significance test with α = .05 is used?

	 	 Solution:  We have α β= − = = =. , . , . , .05 1 90 02 050 1p p . The sample size is given by 
Equation 7.33:

		

n
z z

=
+
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. ,= or 341 women

Thus, 341 women with a sister history of breast cancer must be interviewed in order 
to have a 90% chance of detecting a significant difference using a two-sided test 
with α = .05 if the true rate of breast cancer among women with a sister history is 2.5 
times as high as that of a typical 50- to 54-year-old woman.

Note that if we wish to perform a one-sided test rather than a two-sided test at 
level α, then α is substituted for α/2 in the power formula in Equation 7.32 and the 
sample-size formula in Equation 7.33.
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Using the Computer to Estimate Power and Sample Size for 
the One-Sample Binomial Test
We can again use the sampsi command of Stata to compute power and sample size 
for the one-sample binomial test. To compute power, we specify

sampsi p0 p1, n (xx) onesample 

To compute sample size, we specify

sampsi p0 p1, power (0.xx) onesample 

	 Example 7.56 	 Cancer  Compute the power and sample size estimates in Examples 7.54 and 7.55 
using Stata.

	 	 Solution:

	 	 Power:  We have

. sampsi 0.02 0.05, n(500) onesample

Estimated power for one-sample comparison of proportion to hypothesized value 
Test Ho: p = 0.0200, where p is the proportion in the population

Assumptions:

           alpha =   0.0500  (two-sided)

alternative p =   0.0500

sample size n =      500

Estimated power:

            power =   0.9655

Sample size:  We have

. sampsi 0.02 0.05, power(0.90) onesample

Estimated sample size for one-sample comparison of proportion to hypothesized 
value

Test Ho: p = 0.0200, where p is the proportion in the population

Assumptions:

           alpha =   0.0500  (two-sided)

           power =   0.9000

alternative p =   0.0500

Estimated required sample size:

               n =      341

The results agree with the solutions given to Examples 7.54 and 7.55.

In this section, we have presented the one-sample binomial test, which is 
used for testing hypotheses concerning the parameter p of a binomial distribution. 
Beginning at the “Start” box of the flowchart (Figure 7.18, p. 268), we arrive at the 
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one-sample binomial test by answering yes to (1) one variable of interest? and (2) 
one-sample problem? no to (3) underlying distribution normal or can central-limit 
theorem be assumed to hold? and yes to (4) underlying distribution is binomial?

R E V I E W  QU  E ST  I ONS    7 C

1	 A sample of 120 high-school students (60 boys, 60 girls) are weighed in their 
physical-education class. Of the students, 15% are above the 95th percentile for 
body-mass index (BMI) [wt(kg)/ht2(m2)] as determined by national norms. Health 
educators at the school want to determine whether the obesity profile in the school 
differs from what is expected.

	 (a)  What hypotheses can be used to address this question?

	 (b)  What test can be used to test these hypotheses?

	 (c)  Write down the test statistic for this test.

	 (d)  What is the p-value of the test?

	 (e)  What is your overall conclusion based on your findings?

2	 The principal at the school also wants to address the questions in Review Question 
7C.1 (a)−(e) for specific ethnic groups. Of the 50 Hispanic students at the school, 
10 are above the 95th percentile for BMI.

	 (a) � What test can be used to address the question in Review Question 7C.1 
(a)−(e) among the Hispanic students?

	 (b)  What is the p-value of the test?

	 (c)  What is your overall conclusion based on your results?

3	 How much power did the test in Review Question 7C.1 have if the true percentage 
of students in the school above the 95th percentile for BMI is 15%?

	 7.10	 O n e - S a m p l e  I n f e r e n c e  f o r  t h e  P o i s s o n 

Di  s t r i b u t i o n

	 Example 7.57 	 Occupational Health  Many studies have looked at possible health hazards faced by 
rubber workers. In one such study, a group of 8418 white male workers ages 40–84 
(either active or retired) on January 1, 1964, were followed for 10 years for various 
mortality outcomes [1]. Their mortality rates were then compared with U.S. white 
male mortality rates in 1968. In one of the reported findings, 4 deaths due to Hodgkin’s 
disease were observed compared with 3.3 deaths expected from U.S. mortality rates. 
Is this difference significant?

One problem with this type of study is that workers of different ages in 1964 
have very different mortality risks over time. Furthermore, different workers may 
be followed for different lengths of time. Thus the test procedures in Equations 7.27 
(p. 250) and 7.29 (p. 253), which assume a constant p for all people in the sample, 
are not applicable. However, these procedures can be generalized to take account of 
the different mortality risks of different individuals. Let

		  X = total observed number of deaths for members of the study population

		  pi = probability of death for the ith individual ≅ λi ti.

		  where λi = incidence rate for the ith person, ti = follow-up time this for the ith person

R
 E

 V
 I 

E 
W
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Under the null hypothesis that the death rates for the study population are the same 
as those for the general U.S. population, the expected number of events µ0 is given by

		  
µ0

1

=
=
∑ pi
i

n

If the disease under study is rare, then the observed number of events may be 
considered approximately Poisson-distributed with unknown expected value = µ. We 
wish to test the hypothesis H H0 0 1 0: :µ µ µ µ= ≠vs. .

One approach for significance testing is to use the critical-value method. We know 
from Section 7.5 that the two-sided 100% × (l − α) CI for µ given by (c1, c2) contains all 
values µ0 for which we would accept H0 based on the preceding hypothesis test. Thus, 
if c1 ≤ µ0 ≤ c2, then we accept H0, whereas if either µ0 < c1 or µ0 > c2, then we reject H0. 
Table 7 in the Appendix contains exact confidence limits for the Poisson expectation 
µ, and this leads us to the following simple approach for hypothesis testing.

	 Equation 7.34 	 �One-Sample Inference for the Poisson Distribution (Small-Sample Test—	
Critical-Value Method) 

	 	 Let X be a Poisson random variable with expected value = µ. To test the hypoth-
esis H H0 0 1 0: :µ µ µ µ= ≠vs.  using a two-sided test with significance level α,

  (1)	� Obtain the two-sided 100% × (l − α) CI for µ based on the observed value x of 
X. Denote this CI by (c1, c2).

  (2)	 If µ0 < c1 or µ0 > c2, then reject H0.

		  If c1 ≤ µ0 ≤ c2, then accept H0.

	 Example 7.58 	 Occupational Health  Test for the significance of the findings in Example 7.57 using 
the critical-value method with a two-sided significance level of .05.

	 	 Solution:  We wish to test the hypothesis H H0 13 3 3 3: . : .µ µ= ≠vs. . We observed 4 
events = x. Hence, referring to Table 7, the two-sided 95% CI for µ based on x = 4 is 
(1.09, 10.24). From Equation 7.34, because 1.09 ≤ 3.3 ≤ 10.24, we accept H0 at the 5%  
significance level.

Another approach to use for significance testing is the p-value method. We wish 
to reject H0 if x is either much larger or much smaller than µ0. This leads to the fol-
lowing test procedure.

	 Equation 7.35 	 �One-Sample Inference for the Poisson Distribution (Small-Sample Test—p -Value 
Method) 

	 	 Let µ = expected value of a Poisson distribution. To test the hypothesis H H0 0 1 0: :µ µ µ µ= ≠vs.
H H0 0 1 0: :µ µ µ µ= ≠vs. ,

(1)	 Compute

	   x = observed number of deaths in the study population

(2)	 Under H0, the random variable X will follow a Poisson distribution with 
parameter µ0. Thus, the exact two-sided p-value is given by

		    
min

!
,2 1

0
0

0

×






<

−

=
∑ e
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x
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These computations are shown in Figure 7.15 for the case of µ0 = 5, with x = 3 
and 8, respectively.

	 Example 7.59 	 Occupational Health  Test for the significance of the findings in Example 7.58 using 
the p-value method.

	 	 Solution:  We refer to Equation 7.35. Because x = 4 > µ0 = 3.3 the p-value is given by
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From the Poisson distribution, we have
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Thus, there is no significant excess or deficit of Hodgkin’s disease in this population.

An index frequently used to quantify risk in a study population relative to the 
general population is the standardized mortality ratio (SMR).

	 Definition 7.16	 The standardized mortality ratio is defined by 100% × O/E = 100% × the ob-
served number of deaths in the study population divided by the expected number 

	 Figure 7.15 	 Computation of the exact p-value for the one-sample Poisson test
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If x < µ0, then
p/2 = sum of Poisson probabilities ≤ x
  for a Poisson distribution with mean µ0
  = sum of vertical bars shown

If x ≥ µ0, then
p/2 = sum of Poisson probabilities ≥ x
  for a Poisson distribution with mean µ0
  = sum of vertical bars shown
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of deaths in the study population under the assumption that the mortality rates for 
the study population are the same as those for the general population. For nonfatal 
conditions the SMR is sometimes known as the standardized morbidity ratio.

Thus,

■	 If SMR > 100%, there is an excess risk in the study population relative to the 
general population.

■	 If SMR < 100%, there is a reduced risk in the study population relative to the 
general population.

■	 If SMR = 100%, there is neither an excess nor a deficit of risk in the study popu-
lation relative to the general population.

	 Example 7.60 	 Occupational Health  What is the SMR for Hodgkin’s disease using the data in  
Example 7.57?

	 	 Solution:  SMR = 100% × 4/3.3 = 121%

The test procedures in Equations 7.34 and 7.35 can also be interpreted as tests of 
whether the SMR is significantly different from 100%.

	 Example 7.61 	 Occupational Health  In the rubber-worker data described in Example 7.57, there 
were 21 bladder cancer deaths and an expected number of events from general-popu-
lation cancer mortality rates of 18.1. Evaluate the statistical significance of the results.

	 	 Solution:  We refer to the 21 row and the .95 column in Appendix Table 7 and find 
the 95% CI for µ = (13.00, 32.10). Because µ0 = expected number of deaths = 18.1 is 
within the 95% CI, we can accept H0 at the 5% level of significance. To get an exact 
p-value, we refer to Equation 7.35 and compute

		
p e kk

k

= × −






−

=
∑2 1 18 118 1

0

20
. ( . ) !

This is a tedious calculation, so we have used the ppois function of R, as shown in 
Table 7.4. From R, we see that Pr( . ) .X ≤ = =20 18 1 7227µ . Therefore, the p-value = 
2 × (1 − .7227) = .55. Thus, there is no significant excess or deficit of bladder can-
cer deaths in the rubber-worker population. The SMR for bladder cancer = 100% × 
21/18.1 = 116%. Another interpretation of the significance tests in Equations 7.34 
and 7.35 is that the underlying SMR in the reference population does not signifi-
cantly differ from 100%.

	 Table 7.4 	 Computation of the exact p-value for the bladder cancer data in Example 7.61

We use the R code for this purpose as follows:

> a<-ppois(20,18.1)

> a

> 0.7227

> p_value<-2*(1-a)

> p_value

[1] 0.5546078

Thus, the exact two-sided p-value = 0.55.
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The test procedures in Equations 7.34 and 7.35 are exact methods. If the expected 
number of events is large, then the following approximate method can be used.

	 Equation 7.36 	 �One-Sample Inference for the Poisson Distribution (Large-Sample Test) 

Let µ = expected value of a Poisson random variable. To test the hypothesis 
H H0 0 1 0: :µ µ µ µ= ≠vs. ,

(1)	 Compute x = observed number of events in the study population.

(2)	 Compute the test statistic

		  
= =

− µ −
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x
H

1
2 undercorr

2 2
0

2
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(3)	 For a two-sided test at level α, H0 is rejected if

			   Xcorr
2

1 1 .
2> χ , −α

		  and H0 is accepted if  ≤ χ , −αXcorr
2

11
2

(4)	 The p-value is given by ( )χ > XPr .corr1
2 2

(5)	 This test should only be used if µ0 10≥ .

The acceptance and rejection regions for this test are depicted in Figure 7.16. 

The computation of the p-value is given in Figure 7.17.

	 Example 7.62 	 Occupational Health  Assess the statistical significance of the bladder cancer data in 
Example 7.61 using the large-sample test.

	 	 Solution:  We wish to test the hypothesis H H0 118 1 18 1: . : .µ µ= ≠vs. . In this case, x = 
21 and we have the test statistic
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	 Figure 7.16 	 Acceptance and rejection regions for the one-sample Poisson test (large-sample test)
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Because χ1 95
2 23 84 05,. . , .= > >X p  and H0 is accepted. Therefore, the rubber workers 

in this plant do not have a significantly increased risk of bladder cancer mortality 
relative to the general population. Using MINITAB to compute the p-value for the 
large-sample test yields a p-value = χ > =Pr( 0.32) .571

2  to two decimal places.

	 Equation 7.37 	 Large Sample Confidence Limit Estimates for the Poisson Distribution

  (a)	� Based on Equation 7.36, if we assume that X is normally distributed with 
mean = µ and variance = µ, then a large sample 100% × (1−α) CI for  µ is 
given by

			   ± −αx z x.1 /2

  (b)	� However, it can be shown that for a Poisson distribution, ln(x) is more 
closely normally distributed than x. Furthermore, an approximate variance 
of ln(x) = 1/x. 

			 

µ

µ

,

( )

( ) ( )

, × − α

± ≡ , × − α

 

−α x c c

c

Hence a 100% (1 ) CI for ln( ) is given by:

ln(x) z / . The corresponding 100% (1 ) CI for is

given by:

exp c exp .

1 /2 1 2

1 2

	 Example 7.63 	 Occupational Health  Provide a 95% CI for µ based on the data in Example 7.61.

	 	 Solution:  An approximate 95% CI for µ based on Equation 7.37 method (a) is given by

,( )± =21 1.96 21 12.0 30.0 .

Based on method (b), an approximate 95% CI for ln(µ) is given by

In(21) 1.96 / 21
3.044 0.428 (2.617 3.472).

The corresponding 95% CI for is given by:

exp 2.617 exp 3.472 13.7 .

,
µ

[ ] ( )( ) ( )

±
= ± =

, = , 32.2

	 Figure 7.17 	 Computation of the p-value for the one-sample Poisson test (large-sample test)

0
0

Value

Fr
eq

u
en

cy χ1 distribution2

p

X2
corr

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



7.12      Derivation of Selected Formulas              265

Using Appendix Table 7, the exact 95% CI for µ = (13.0, 32.1).

Clearly, method (b) provides a better large sample approximation for the 95% CI. 

In general, exact methods are preferred for inference concerning the Poisson 
distribution.

In this section, we have presented the one-sample Poisson test, which is used 
for testing hypotheses concerning the parameter µ of a Poisson distribution. Beginning 
at the “Start” box of the flowchart (Figure 7.18, p. 268), we arrive at the one-sample 
Poisson test by answering yes to (1) one variable of interest? and (2) one-sample 
problem? no to (3) underlying distribution normal or can central-limit theorem be 
assumed to hold? and (4) underlying distribution is binomial? and yes to (5) under-
lying distribution is Poisson?

	 7.11	 C a s e  S t u d y :  E f f e c t s  o f  T o b a c c o  U s e  o n 

B o n e - Mi  n e r a l  De  n s i t y  i n  Mi  d d l e - Age   d  W o m e n

In Chapter 6, we compared the bone-mineral density (BMD) of the lumbar spine 
between heavier- and lighter-smoking twins using CI methodology. We now want to 
consider a similar issue based on hypothesis-testing methods.

	 Example 7.64 	 Endocrinology  The mean difference in BMD at the lumbar spine between the 
heavier- and lighter-smoking twins when expressed as a percentage of the twin pair 
mean was −5.0% ± 2.0% (mean ± se) based on 41 twin pairs. Assess the statistical 
significance of the results.

	 	 Solution:  We will use the one-sample t test to test the hypothesis H H0 10 0: :µ µ= ≠vs. ,  
where µ = underlying mean difference in BMD between the heavier- and lighter-
smoking twins. Using Equation 7.10, we have the test statistic

		
t

x
s n

= − µ0

Because µ0 = 0 and s n se= , it follows that

		
t

x
se

t H= = − = −5 0
2 0

2 5 40 0
.

.
. ~ under

Using Table 5 in the Appendix, we see that t t40 99 40 9952 423 2 704,. ,.. , .= = . Because 
2.423 < 2.5 < 2.704, it follows that 1 − .995 < p/2 < 1 − .99 or .005 < p/2 < .01 or .01 
< p < .02. The exact p-value from Excel = 2 × Pr(t40 < −2.5) = TDIST (2.5,40,2) = .017. 
Hence, there is a significant difference in mean BMD between the heavier- and 
lighter-smoking twins, with the heavier-smoking twins having lower mean BMD.

	 7.12	 d e r i v at i o n  o f  s e l e c t e d  f o r m u l a s

Derivation of power formula in Equation 7.20.

To see this, note that from Equation 7.13 we reject H0 if
		

z
x

n
z z

x
n

z= − < = − > −
µ

σ
µ

σα α
0

2
0

1 2/ /or

See page 224 for  
Equation 7.10

See page 228 for  
Equation 7.13
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If we multiply each inequality by σ n  and add µ0, we can re-express the rejection 
criteria in terms of x, as follows:

	 Equation 7.38 	 x z n x z n< + > + −µ σ µ σα α0 2 0 1 2/ /or

The power of the test vs. the specific alternative µ = µ1 is given by

	 Equation 7.39 	 Power = < + =( ) + > + =−Pr X z n Pr X z nµ σ µ µ µ σ µα α0 2 1 0 1 2/ / µµ
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Using the relationship 1 − Φ(x) = Φ(−x), the last two terms can be combined as follows:

	 Equation 7.40 	 Power = + −


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Finally, recalling the relationship zα/2 = −z1− α/2, we have

	 Equation 7.41 	 z
n

z
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Derivation of Equation 7.23
We use the approximate power formula in Equation 7.20(b) and solve for n in terms 
of the other parameters, whereby

	 Equation 7.42 	 Φ − +
−





= −−z

n
1 2

0 1 1α
µ µ

σ
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z1 2
0 1

1α β
µ µ
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If z1−α/2 is added to both sides of the equation and the result is multiplied by  
σ/| µ0 − µ1|, we get

	 Equation 7.43 	 n
z z

=
+( )

−
− −1 1 2

0 1

β α σ
µ µ

/
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If both sides of the equation are squared, we get

	 Equation 7.44 	 n
z z

=
+( )

−( )
− −1 1 2

2 2

0 1
2

β α σ

µ µ
/

	 7.13	 S u m m a r y

In this chapter some of the fundamental ideas of hypothesis testing were introduced: 
(1) specification of the null (H0) and alternative (H1) hypotheses; (2) type I error (α), 
type II error (β), and power (1 − β) of a hypothesis test; (3) the p-value of a hypothesis 
test; and (4) the distinction between one-sided and two-sided tests. Methods for esti-
mating the appropriate sample size for a proposed study as determined by the prespec-
ified null and alternative hypotheses and type I and type II errors were also discussed.

These general concepts were applied to several one-sample hypothesis-testing 
situations:

(1)	 The mean of a normal distribution with unknown variance (one-sample t test)

(2)	 The mean of a normal distribution with known variance (one-sample z test)

(3)	 The variance of a normal distribution (one-sample χ2 test)

(4)	 The parameter p of a binomial distribution (one-sample binomial test)

(5)	 The expected value µ of a Poisson distribution (one-sample Poisson test) 

Each of the hypothesis tests can be conducted in one of two ways:

(1)	 Specify critical values to determine the acceptance and rejection regions 
(critical-value method) based on a specified type I error α.

(2)	 Compute p-values ( p-value method).

These methods were shown to be equivalent in the sense that they yield the same 
inferences regarding acceptance and rejection of the null hypothesis.

Furthermore, the relationship between the hypothesis-testing methods in this 
chapter and the CI methods in Chapter 6 was explored. We showed that the infer-
ences that can be drawn from using these methods are usually the same. 

Many hypothesis tests are covered in this book. A master flowchart (pp. 895–902) 
is provided at the back of the book to help clarify the decision process in selecting the 
appropriate test. The flowchart can be used to choose the proper test by answering a 
series of yes/no questions. The specific hypothesis tests covered in this chapter have 
been presented in an excerpt from the flowchart shown in Figure 7.18 and have been 
referred to in several places in this chapter. For example, if we are interested in per-
forming hypothesis tests concerning the mean of a normal distribution with known 
variance, then, beginning at the “Start” box of the flowchart, we would answer yes 
to each of the following questions: (1) only one variable of interest? (2) one-sample 
problem? (3) underlying distribution normal or can central-limit theorem be assumed 
to hold? (4) inference concerning µ? (5) σ known? The flowchart leads us to the box 
on the lower left of the figure, indicating that the one-sample z test should be used. In 
addition, the page number(s) where a specific hypothesis test is discussed is also pro-
vided in the appropriate box of the flowchart. The boxes marked “Go to 1” and “Go to 
4” refer to other parts of the master flowchart in the back of the book.

The study of hypothesis testing is extended in Chapter 8 to situations in which 
two different samples are compared. This topic corresponds to the answer yes to the 
question (1) only one variable of interest? and no to (2) one-sample problem?

S
u

m
m

a
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y
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Figure 7.18 	 Flowchart for appropriate methods of statistical inference
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Renal Disease
The mean serum-creatinine level measured in 12 patients 
24 hours after they received a newly proposed antibiotic 
was 1.2 mg/dL.

*7.1  If the mean and standard deviation of serum creatinine 
in the general population are 1.0 and 0.4 mg/dL, respec-
tively, then, using a significance level of .05, test whether 
the mean serum-creatinine level in this group is different 
from that of the general population.

*7.2  What is the p-value for the test?

*7.3  Suppose the sample standard deviation of serum cre-
atinine in Problem 7.1 is 0.6 mg/dL. Assume that the stan-
dard deviation of serum creatinine is not known, and perform 
the hypothesis test in Problem 7.1. Report a p-value.

*7.4  Compute a two-sided 95% CI for the true mean 
serum-creatinine level in Problem 7.3.

*7.5  How does your answer to Problem 7.4 relate to your 
answer to Problem 7.3.

7.6  Suppose 
− µ

= −
x

s n
1.520  and a one-sample t test is 

performed based on seven subjects. What is the two-tailed 
p-value?

7.7  Use a computer program to compute the probability 
that a t distribution with 36 df exceeds 2.5.

7.8  Use a computer program to compute the lower 10th 
percentile of a t distribution with 54 df.

Diabetes
Plasma-glucose levels are used to determine the presence 
of diabetes. Suppose the mean ln (plasma-glucose) concen-
tration (mg/dL) in 35- to 44-year-olds is 4.86 with standard 
deviation = 0.54. A study of 100 sedentary people in this age 
group is planned to test whether they have a higher or lower 
level of plasma glucose than the general population.

7.9  If the expected difference is 0.10 ln units, then what is 
the power of such a study if a two-sided test is to be used 
with α = .05?

7.10  Answer Problem 7.9 if the expected difference is 0.20 
ln units.

7.11  How many people would need to be studied to have 
80% power under the assumptions in Problem 7.9?

Cardiovascular Disease
Suppose the incidence rate of myocardial infarction (MI) 
was 5 per 1000 among 45- to 54-year-old men in 2000. 
To look at changes in incidence over time, 5000 men in this 
age group were followed for 1 year starting in 2010. Fifteen 
new cases of MI were found.

P r o b l e m s

7.12  Using the critical-value method with α = .05, test the 
hypothesis that incidence rates of MI changed from 2000 
to 2010.

7.13  Report a p-value to correspond to your answer to 
Problem 7.12.

Suppose that 25% of patients with MI in 2000 died within 
24 hours. This proportion is called the 24-hour case-fatality 
rate.

7.14  Of the 15 new MI cases in the preceding study, 
5 died within 24 hours. Test whether the 24-hour case-
fatality rate changed from 2000 to 2010.

7.15  Suppose we eventually plan to accumulate 50 MI 
cases during the period 2010–2015. Assume that the  
24-hour case-fatality rate is truly 20% during this period. 
How much power would such a study have in distinguishing 
between case-fatality rates in 2000 and 2010–2015 if a 
two-sided test with significance level .05 is planned?

7.16  How large a sample is needed in Problem 7.15 to 
achieve 90% power?

Pulmonary Disease
Suppose the annual incidence of asthma in the general 
population among children 0–4 years of age is 1.4% for 
boys and 1% for girls.

*7.17  If 10 cases are observed over 1 year among 
500 boys 0–4 years of age with smoking mothers, then test 
whether there is a significant difference in asthma incidence 
between this group and the general population using the 
critical-value method with a two-sided test.

*7.18  Report a p-value corresponding to your answer to 
Problem 7.17.

*7.19  Suppose that four cases are observed over 1 year 
among 300 girls 0–4 years of age with smoking mothers. 
Answer Problem 7.17 based on these data.

*7.20  Report a p-value corresponding to your answer to 
Problem 7.19.

Genetics
Ribosomal 5S RNA can be represented as a sequence 
of 120 nucleotides. Each nucleotide can be represented 
by one of four characters: A (adenine), G (guanine), C 
(cytosine), or U (uracil). The characters occur with different 
probabilities for each position. We wish to test whether a 
new sequence is the same as ribosomal 5S RNA. For this 
purpose, we replicate the new sequence 100 times and find 
there are 60 A’s in the 20th position.

7.21  If the probability of an A in the 20th position in 
ribosomal 5S RNA is .79, then test the hypothesis that the 
new sequence is the same as ribosomal 5S RNA using the 
critical-value method.
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7.22  Report a p-value corresponding to your results in 
Problem 7.21.

Suppose we wish to test the hypothesis H0: µ = 45 vs. H1: 
µ > 45.

7.23  What will be the result if we conclude that the mean is 
greater than 45 when the actual mean is 45?

(i)	 We have made a type I error.

(ii)	 We have made a type II error.

(iii)	 We have made the correct decision.

7.24  What will be the result if we conclude that the mean is 
45 when the actual mean is 50?

(i)	 We have made a type I error.

(ii)	 We have made a type II error.

(iii)	 We have made the correct decision.

Suppose we wish to test H0: µ = 30 vs. H1: µ ≠ 30 based on 
a sample of size 31. 

7.25  Which of the following sample results yields the small-
est p-value and why?

(i)	 x = 28, s = 6

(ii)	 x = 27, s = 4

(iii)	 x = 32, s = 2

(iv)	 x = 26, s = 9

Cancer
7.26  Suppose we identify 50 women 50 to 54 years of age 
who have both a mother and a sister with a history of breast 
cancer. Five of these women themselves have developed 
breast cancer at some time in their lives. If we assume that 
the expected prevalence rate of breast cancer in women 
whose mothers have had breast cancer is 4%, does having 
a sister with the disease add to the risk? Explain.

Obstetrics
The drug erythromycin has been proposed to possibly lower 
the risk of premature delivery. A related area of interest is 
its association with the incidence of side effects during 
pregnancy. Assume 30% of all pregnant women complain 
of nausea between weeks 24 and 28 of pregnancy. Further-
more, suppose that of 200 women who are taking erythro-
mycin regularly during the period, 110 complain of nausea.

*7.27  Test the hypothesis that the incidence rate of nausea 
for the erythromycin group is the same for a typical pregnant 
woman.

Hypertension
A pilot study of a new antihypertensive agent is performed 
for the purpose of planning a larger study. Five patients who 
have a mean DBP of at least 95 mm Hg are recruited for the 
study and are kept on the agent for 1 month. After 1 month 
the observed mean decline in DBP in these five patients is 
4.8 mm Hg with a standard deviation of 9 mm Hg.

*7.28  If µd = true mean difference in DBP between baseline 
and 1 month, then how many patients would be needed to 
have a 90% chance of detecting a significant change in DBP 
over 1 month using a one-tailed test with a significance level of 
5%? Assume that the true mean and standard deviation of the 
DBP difference were the same as observed in the pilot study.

*7.29  Suppose we conduct a study of the preceding 
hypothesis based on 20 participants. What is the probabil-
ity we will be able to reject H0 using a one-sided test at the 
5% level if the true mean and standard deviation of the DBP 
difference are the same as in the pilot study?

Occupational Health
The proportion of deaths due to lung cancer in males ages 
15–64 in England and Wales during the period 1970–
1972 was 12%. Suppose that of 20 deaths that occur 
among male workers in this age group who have worked 
for at least 1 year in a chemical plant, 5 are due to lung 
cancer. We wish to determine whether there is a difference 
between the proportion of deaths from lung cancer in this 
plant and the proportion in the general population.

7.30  State the hypotheses to use in answering this question.

7.31  Is a one-sided or two-sided test appropriate here?

7.32  Perform the hypothesis test, and report a p-value.

After reviewing the results from one plant, the company 
decides to expand its study to include results from three 
additional plants. It finds that of 90 deaths occurring among 
15- to 64-year-old male workers who have worked for a 
least 1 year in these four plants, 19 are due to lung cancer.

7.33  Answer Problem 7.32 using the data from four plants, 
and report a p-value.

One criticism of studies of this type is that they are biased 
by the “healthy worker” effect. That is, workers in general are 
healthier than the general population, particularly regarding 
cardiovascular endpoints, which makes the proportion of 
deaths from noncardiovascular causes seem abnormally high.

7.34  If the proportion of deaths from ischemic heart dis-
ease (IHD) is 40% for all 15- to 64-year-old men in England 
and Wales, whereas 18 of the preceding 90 deaths are 
attributed to IHD, then answer Problem 7.33 if deaths 
caused by IHD are excluded from the total.

Nutrition
Iron-deficiency anemia is an important nutritional health 
problem in the United States. A dietary assessment was 
performed on 51 boys 9 to 11 years of age whose families 
were below the poverty level. The mean daily iron intake 
among these boys was found to be 12.50 mg with standard 
deviation 4.75 mg. Suppose the mean daily iron intake 
among a large population of 9- to 11-year-old boys from 
all income strata is 14.44 mg. We want to test whether the 
mean iron intake among the low-income group is different 
from that of the general population.
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*7.35  State the hypotheses that we can use to consider 
this question.

*7.36  Carry out the hypothesis test in Problem 7.35 using 
the critical-value method with an α level of .05, and sum-
marize your findings.

*7.37  What is the p-value for the test conducted in Problem 
7.36?

The standard deviation of daily iron intake in the larger pop-
ulation of 9- to 11-year-old boys was 5.56 mg. We want to 
test whether the standard deviation from the low-income 
group is comparable to that of the general population.

*7.38  State the hypotheses that we can use to answer this 
question.

*7.39  Carry out the test in Problem 7.38 using the critical-
value method with an α level of .05, and summarize your 
findings.

*7.40  What is the p-value for the test conducted in Problem 
7.39?

*7.41  Compute a 95% CI for the underlying variance of 
daily iron intake in the low-income group. What can you 
infer from this CI?

7.42  Compare the inferences you made from the proce-
dures in Problems 7.39, 7.40, and 7.41.

General
Suppose a new test is proposed to identify patients with a 
specific condition.

One specimen is obtained from each of 220 subjects in the 
population to whom the test will be applied. Fifty-one (51) 
subjects have the condition and 169 do not, according to a 
gold standard used to assess the presence of the condition 
(referred to as a reference standard below). The following 
results are obtained:

Table 7.5  � Comparison of a new test with a 
reference standard

	 Reference standard

			   Condition	 Condition	  
			   present	 absent	 Total

New test	 +	 44	       1	   45
		  −	  7	 168	 175
		  Total	 51	 169	 220

7.43  What is the estimated sensitivity of the test?

7.44  Provide a 95% CI for the sensitivity.

7.45  What is the estimated specificity of the test?

7.46  Provide a 95% CI for the specificity (Hint: Use a com-
puter program.) 

Suppose a quality score is constructed for the test. A true 
positive identified by the test is given a score of +20. A 

true negative identified by the test is given a score of +10. 
A false positive identified by the test is given a score of 
-5. A false negative identified by the test is given a score 
of -20.

7.47  The FDA will approve the new test if the lower bound 
of a 90% CI for the mean score is ≥+5.  Should the FDA 
approve the test?  A yes/no answer is not sufficient.

Hint:  Assume that the score distribution is approximately 
normal or that the central limit theorem is applicable.

Hint:  Assume that a t-distribution with > 200 df is approxi-
mately normal.

Hint: To compute the mean and variance from grouped 
data, use the formulas
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where x i is the ith score value, fi is the frequency of 
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Occupational Health
The mortality experience of 8146 male employees of a 
research, engineering, and metal-fabrication plant in Tonawa-
nda, New York, was studied from 1946 to 1981 [2]. Potential 
workplace exposures included welding fumes, cutting oils, 
asbestos, organic solvents, and environmental ionizing ra-
diation, as a result of waste disposal during the Manhattan 
Project of World War II. Comparisons were made for specific 
causes of death between mortality rates in workers and U.S. 
white-male mortality rates from 1950 to 1978.

Suppose that 17 deaths from cirrhosis of the liver were 
observed among workers who were hired prior to 1946 and 
who had worked in the plant for 10 or more years, whereas 
6.3 were expected based on U.S. white-male mortality rates.

7.48  What is the SMR for this group?

7.49  Perform a significance test to assess whether there is 
an association between long duration of employment and 
mortality from cirrhosis of the liver in the group hired prior to 
1946. Report a p-value.

7.50  A similar analysis was performed among workers who 
were hired after 1945 and who were employed for 10 or more 
years. It found 4 deaths from cirrhosis of the liver, whereas only 
3.4 were expected. What is the SMR for this group?

7.51  Perform a significance test to assess whether there is 
an association between mortality from cirrhosis of the liver 
and duration of employment in the group hired after 1945. 
Report a p-value.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



272              C H A P T E R  7      Hypothesis Testing: One-Sample Inference

Ophthalmology
Researchers have reported that the incidence rate of cata-
racts may be elevated among people with excessive expo-
sure to sunlight. To confirm this, a pilot study is conducted 
among 200 people ages 65–69 who report an excessive 
tendency to burn on exposure to sunlight. Of the 200 peo-
ple, 4 develop cataracts over a 1-year period. Suppose the 
expected incidence rate of cataracts among 65- to 69-year-
olds is 1% over a 1-year period.

*7.52  What test procedure can be used to compare the 
1-year rate of cataracts in this population with that in the 
general population?

*7.53  Implement the test procedure in Problem 7.52, and 
report a p-value (two-sided).

The researchers decide to extend the study to a 5-year pe-
riod and find that 20 of the 200 people develop a cataract 
over a 5-year period. Suppose the expected incidence of 
cataracts among 65- to 69-year-olds in the general popula-
tion is 5% over a 5-year period.

*7.54  Test the hypothesis that the 5-year incidence rate 
of cataracts is different in the excessive-sunlight-exposure 
group compared with the general population, and report a 
p-value (two-sided).

*7.55  Construct a 95% CI for the 5-year true rate of cata-
racts among the excessive-sunlight-exposure group.

Cardiovascular Disease, Pediatrics
Left ventricular mass (LVM) is an important risk factor for 
subsequent cardiovascular disease. A study is proposed to 
assess the relationship between childhood blood pressure 
levels and LVM in children as determined from echocar-
diograms. The goal is to stratify children into a normal bp 
group (< 80th percentile for their age, gender, and height) 
and an elevated bp group (≥ 90th percentile for their age, 
gender, and height) and compare change in LVM between 
the 2 groups. Before this can be done, one needs to dem-
onstrate that LVM actually changes in children over a 4-year 
period. 

To help plan the main study, a pilot study is conducted 
where echocardiograms are obtained from 10 random chil-
dren from the Bogalusa Heart Study at baseline and after 4 
years of follow-up. The data are given in Table 7.6. 

7.56  What test can be used to assess if there is a change 
in mean LVM over 4 years? 

7.57  Implement the test in Problem 7.56 and provide a 
two-tailed p-value.

7.58  Provide a 95% CI for the change in LVM over 4 years 
based on the data in Table 7.6. 

7.59  Since this was a pilot study, the main question of 
interest is how many subjects would be needed to detect 
an increase of 10 g in mean LVM over 4 years using a two-
sided test with α = 0.05 and power = 80%? Hint: Assume 
that the estimated variance of change in LVM in the pilot 
study is the true variance of change in LVM.

Nutrition, Cardiovascular Disease
Previous studies have shown that supplementing the diet 
with oat bran may lower serum-cholesterol levels. However, 
it is not known whether the cholesterol is reduced by a direct 
effect of oat bran or by replacing fatty foods in the diet. To 
address this question, a study was performed to compare 
the effect of dietary supplementation with high-fiber oat bran 
(87 g/day) to dietary supplementation with a low-fiber refined 
wheat product on the serum cholesterol of 20 healthy partici-
pants ages 23–49 years [3]. Each subject had a cholesterol 
level measured at baseline and then was randomly assigned 
to receive either a high-fiber or a low-fiber diet for 6 weeks. A 
2-week period followed during which no supplements were 
taken. Participants then took the alternate supplement for a 
6-week period. The results are shown in Table 7.7.

Table 7.6  � Pilot data on left ventricular mass (LVM) in 
children from the Bogalusa Heart Study

  ID	 Baseline LVM (g)	 4-year LVM (g)	 Change (g)*

  1	 139	 163	 24
  2	 134	 126	 −8
  3	 86	 142	 56
  4	 98	 96	 −2
  5	 78	 111	 33
  6	 90	 108	 18
  7	 102	 167	 65
  8	 73	 82	 9
  9	 93	 77	 −16
10	 162	 172	 10
Mean	 105.5	 124.4	 18.9
sd	 29.4	 35.2	 26.4

*4-year LVM minus baseline LVM

Table 7.7   Serum-cholesterol levels before and during high-fiber and low-fiber supplemention

					     Difference 	 Difference	 Difference 
			   High	 Low	 (high fiber – 	 (high fiber –	 (low fiber – 
	 n	 Baseline	 fiber	 fiber	 low fiber)	 baseline)	 baseline)

Total cholesterol (mg/dL)	 20	 186 ± 31	 172 ± 28	 172 ± 25	 -1	 -14 	 -13  
					     (-8, +7)	 (-21, -7)	 (-20, -6)

Note: Plus–minus (±) values are mean ± sd. Values in parentheses are 95% confidence limits.
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7.60  Test the hypothesis that the high-fiber diet has an 
effect on cholesterol levels as compared with baseline 
(report your results as p < .05 or p > .05).

7.61  Test the hypothesis that the low-fiber diet has an 
effect on cholesterol levels as compared with baseline 
(report your results as p < .05 or p > .05).

7.62  Test the hypothesis that the high-fiber diet has a dif-
ferential effect on cholesterol levels compared with a low-
fiber diet (report your results as p < .05 or p > .05).

7.63  What is the approximate standard error of the mean 
for the high-fiber compared with the low-fiber diet (that is, 
the mean difference in cholesterol level between high- and 
low-fiber diets)?

7.64  How many participants would be needed to have a 
90% chance of finding a significant difference in mean cho-
lesterol lowering between the high- and low-fiber diets if the 
high-fiber diet lowers mean cholesterol by 5 mg/dL more 
than the low-fiber diet and a two-sided test is used with 
significance level = .05?

Nutrition
Refer to Data Set VALID.DAT, at www.cengagebrain.com.

7.65  Assess whether reported nutrient consumption (satu-
rated fat, total fat, alcohol consumption, total caloric intake) 
is comparable for the diet record and the food-frequency 
questionnaire. Use either hypothesis-testing and/or CI 
methodology.

7.66  Answer Problem 7.65 for the percentage of calories 
from fat (separately for total fat and saturated fat) as 
reported on the diet record and the food-frequency ques-
tionnaire. Assume there are 9 calories from fat for every 
gram of fat consumed.

Demography
Refer to Data Set SEXRAT.DAT at www.cengagebrain.com.

7.67  Apply hypothesis-testing methods to answer the 
questions posed in Problem 4.53.

Cardiology
Refer to Data Set NIFED.DAT at www.cengagebrain.com.

7.68  Use hypothesis-testing methods to assess whether 
either treatment affects blood pressure or heart rate in 
patients with severe angina.

Cancer
The combination of photochemotherapy with oral methoxsalen 
(psoralen) and ultraviolet A radiation (called PUVA treatment) 
is an effective treatment for psoriasis. However, PUVA is 
mutagenic, increases the risk of squamous-cell skin cancer, 

and can cause irregular, pigmented skin lesions. Stern et al. 
[4] performed a study to assess the incidence of melanoma 
among patients treated with PUVA. The study identified 1380 
patients with psoriasis who were first treated with PUVA in 
1975 or 1976. Patients were subdivided according to the total 
number of treatments received (<250 or ≥250 from 1975 
to 1996). Within each group, the observed number of mela-
nomas was determined from 1975 to 1996 and compared 
with the expected number of melanomas as determined by 
published U.S. age- and gender-specific melanoma incidence 
rates. The results were as in Table 7.8.

Table 7.8  � Relationship of PUVA treatment 	
to incidence of melanoma

	 Observed	 Expected

<250 treatments	 5	 3.7

≥250 treatments	 6	 1.1

7.69  Suppose we want to compare the observed and 
expected number of events among the group with <250 
treatments. Perform an appropriate significance test, and 
report a two-tailed p-value.

7.70  Provide a 95% CI for the expected number of events 
in the group with ≥ 250 treatments.

7.71  Interpret the results for Problems 7.69 and 7.70.

Cancer
Breast cancer is strongly influenced by a woman’s reproduc-
tive history. In particular, the longer the length of time from the 
age at menarche (the age when menstruation begins) to the 
age at first childbirth, the greater the risk is for breast cancer.

A projection was made based on a mathematical model that 
the 30-year risk of a woman in the general U.S. population 
developing breast cancer from age 40 to age 70 is 7%. 
Suppose a special subgroup of five hundred 40-year-old 
women without breast cancer was studied whose age at 
menarche was 17 (compared with an average age at men-
arche of 13 in the general population) and age at first birth 
was 20 (compared with an average age at first birth of 25 
in the general population). These women were followed for 
development of breast cancer between ages 40 and 70. 
The study found that 18 of the women developed breast 
cancer between age 40 and age 70.

7.72  Test the hypothesis that the underlying rate of breast 
cancer is the same or different in this group as in the gen-
eral population.

7.73  Provide a 95% CI for the true incidence rate of breast 
cancer over the period from age 40 to 70 in this special 
subgroup.

7.74  Suppose 100 million women in the U.S. popula-
tion have not developed breast cancer by the age of 40.   Data set available

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



274              C H A P T E R  7      Hypothesis Testing: One-Sample Inference

What is your best estimate of the number of breast-cancer 
cases that would be prevented from age 40 to 70 if all 
women in the U.S. population reached menarche at age 17 
and gave birth to their first child at age 20? Provide a 95% 
CI for the number of breast-cancer cases prevented.

Ophthalmology
An investigator wants to test a new eye drop that is supposed 
to prevent ocular itching during allergy season. To study the 
drug, she uses a contralateral design whereby for each 
participant one eye is randomized (using a random-number 
table) to get active drug (A) while the other eye gets placebo 
(P). The participants use the eye drops three times a day for a 
1-week period and then report their degree of itching in each 
eye on a 4-point scale (1 = none, 2 = mild, 3 = moderate, 4 = 
severe) without knowing which eye drop is used in which eye. 
Ten participants are randomized into the study.

7.75  What is the principal advantage of the contralateral 
design?

Suppose the randomization assignment is as given in  
Table 7.9.

Table 7.9   Randomization assignment

	 Eyea	 Eye

Subject	 L	 R	 Subject	 L	 R

  1	 A	 P	 6	 A	 P
  2	 P	 A	 7	 A	 P
  3	 A	 P	 8	 P	 A
  4	 A	 P	 9	 A	 P

  5	 P	 A	 10	 A	 P

aA = active drug, P = placebo.

7.76  More left eyes seem to be assigned to A than to P, 
and the investigator wonders whether the assignments are 
really random. Perform a significance test to assess how 
well the randomization is working. (Hint: Use the binomial 
tables.)

Table 7.10 gives the itching scores reported by the partici-
pants.

7.77  What test can be used to test the hypothesis that the 
mean degree of itching is the same for active vs. placebo 
eyes?

7.78  Implement the test in Problem 7.77 using a two-sided 
test (report a p-value).

Endocrinology
Refer to Data Set BONEDEN.DAT at www.cengagebrain 
.com.

7.79  Perform a hypothesis test to assess whether there are 
significant differences in mean BMD for the femoral neck 
between the heavier- and lighter-smoking twins.

7.80  Answer Problem 7.79 for mean BMD at the femoral 
shaft.

Infectious Disease
Concurrent sexual partnerships are widely believed to be one 
of the main drivers of the HIV epidemic in sub-Saharan Africa. 
F. Tanser and colleagues followed 7284 initially HIV-negative 
women (≥15 years of age) residing in KwaZulu-Natal, South 
Africa, for an average of 5 years to evaluate relationships 
of the patterns of sexual activity with incidence of HIV [5]. 
Investigators surveyed men residing in the neighborhoods of 
the female study participants to determine patterns of sexual 
activity within each neighborhood. The table below shows the 
incidence of HIV acquisition according to whether a study 
participant resided in a neighborhood that was above vs. 
below the median in terms of the typical number of lifetime 
sexual partners among men in her neighborhood.

Table 7.11  � Relationship between HIV incidence 
rate and lifetime number of sexual 
partners in KwaZulu-Natal, South Africa

Lifetime sexual partners	 Person-years	 HIV cases*
<6.2 partners
(i.e., below the median)	 9735.66	 305
≥6.2 partners
(i.e., above the median)	 9539.92	 388

*Incidence of HIV acquisition (i.e., number of new cases) Data set available

Table 7.10   Itching scores reported by participants

	 Eye

Subject	 L	 R	 Differencea

    1	 1	 2	 −1
    2	 3	 3	 0
    3	 4	 3	 1
    4	 2	 4	 −2
    5	 4	 1	 3
    6	 2	 3	 −1
    7	 2	 4	 −2
    8	 3	 2	 1
    9	 4	 4	 0
  10	 1	 2	 −1

Mean	 2.60	 2.80	 −0.20
sd	 1.17	 1.03	 1.55

N	 10	 10	 10

aItching score left eye – itching score right eye
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7.81  Give an estimate for the incidence of HIV per 
100 person-years among women who reside in neigh-
borhoods with above-median numbers of sexual partners 
among men, and an estimate for the 5-year probability that a 
woman in this region will develop HIV.

7.82  Provide a 95% CI for the estimate in Problem 7.81.

7.83  Suppose 100 women who reside in a neighborhood 
with above-median numbers of sexual partners among men 
are followed for an average of 5 years.  What is the prob-
ability that exactly 20 of the women will develop HIV?

7.84  What is the probability that 20 or more of these 
women will develop HIV?

7.85  Assume the rate of HIV in neighborhoods with below 
the median number of sexual partners is known (without 
error) to be 3.15 cases per 100 person years. Test whether 
the rate in women from neighborhoods above the median 
in lifetime sexual partners (≥6.2 partners) is significantly 
different than the rate in neighborhoods below the median 
number of sexual partners.

Simulation
Consider the birthweight data in Example 7.2.

7.86  Suppose that the true mean birthweight for the low-
SES babies is 120 oz, the true standard deviation is 24 oz, 
and the distribution of birthweights is normal. Generate 
100 random samples of size 100 each from this distribution. 
Perform the appropriate t test for each sample to test the 
hypothesis stated in Example 7.2, and compute the propor-
tion of samples for which we declare a significant difference 
using a 5% level of significance with a one-tailed test.

7.87  What should this proportion be for a large number of 
simulated samples? How do the results in Problem 7.86 
compare with this?

7.88  Now assume that the true mean birthweight is 115 
oz and repeat the exercise in Problem 7.86, assuming that 
the other conditions stated in Problem 7.86 are still correct.

7.89  For what proportion of samples do you declare a 
significant difference? What should this proportion be for a 
large number of simulated samples?

Cancer
A screening program for neuroblastoma (a type of cancer) 
was undertaken in Germany among children born between 
November 1, 1993, and June 30, 2000, who were 9 to 18 
months of age between May 1995 and April 2000 [6].

A total of 1,475,773 children participated in the screening 
program, of whom 204 were diagnosed between 12 and 60 
months of age. The researchers expected the incidence rate 
of neuroblastoma to be 7.3 per 100,000 children during this 
period in the absence of screening.

7.90  Test whether the number of cases detected by the 
screening program is significantly greater than expected. 

Provide a one-tailed p-value. (Hint: Use the normal approxi-
mation to the binomial distribution.)

7.91  Provide a 95% CI for the incidence rate of neuroblas-
toma in the screened population. Express the 95% CI as 
(p1, p2), where p1 and p2 are in the units of number of cases 
per 100,000 children. Is p0 (7.3 cases per 100,000 chil-
dren) in this interval?

Another issue investigated in this study was the case-fatality 
rate (number of patients who died from neuroblastoma / 
number of cases identified by the screening program).

7.92  Suppose the case-fatality rate from neuroblastoma is 
usually 1/6. Furthermore, 17 fatal cases occurred among the 
204 cases identified in the screening program. Test whether 
the case-fatality rate under the screening program is different 
from the usual case-fatality rate. Provide a two-tailed p-value.

Environmental Health, Pulmonary Disease
A clinical epidemiologic study was conducted to determine 
the long-term health effects of workplace exposure to the 
process of manufacturing the herbicide (2,4,5 trichloro-
phenoxy) acetic acid (2,4,5-T), which contains the contami-
nant dioxin [7]. This study was conducted among active and 
retired workers of a Nitro, West Virginia, plant who were 
exposed to the 2,4,5-T process between 1948 and 1969. 
It is well known that workers exposed to 2,4,5-T have high 
rates of chloracne (a generalized acneiform eruption). Less 
well known are other potential effects of 2,4,5-T exposure. 
One of the variables studied was pulmonary function.

Suppose the researchers expect from general population 
estimates that 5% of workers have an abnormal forced expi-
ratory volume (FEV); defined as less than 80% of predicted, 
based on their age and height. They found that 32 of 203 
men who were exposed to 2,4,5-T while working at the 
plant had an abnormal FEV.

7.93  What hypothesis test can be used to test the hypoth-
esis that the percentage of abnormal FEV values among 
exposed men differs from the general-population estimates?

7.94  Implement the test in Problem 7.93, and report a  
p-value (two-tailed).

Another type of outcome reported was fetal deaths. Sup-
pose the investigators expect, given general population 
pregnancy statistics at the time of the survey, that 1.5% 
of pregnancies will result in a fetal death. They found that 
among 586 pregnancies where an exposed worker was the 
father, 11 resulted in a fetal death.

7.95  Provide a 95% CI for the underlying fetal death rate 
among offspring of exposed men. Given the CI, how do you 
interpret the results of the study?

Ophthalmology
An experiment was performed to assess the efficacy of an 
eye drop in preventing “dry eye.” A principal objective mea-
sure used to assess efficacy is the tear breakup time (TBUT), 
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which is reduced in people with dry eye and which the 
researchers hope will be increased after use of the eye drop.

In the actual study, participants will be randomized to either 
active drug or placebo, based on a fairly large sample size. 
However, a pilot study was first performed based on 14 par-
ticipants. Under protocol A, the participants had their TBUT 
measured at baseline and were then instructed to not blink 
their eyes for 3 seconds, after which time the placebo eye 
drop was instilled. The TBUT was measured again imme-
diately after instillation as well as at 5, 10, and 15 minutes 
postinstillation, during which time the study participants 
were in a controlled-chamber environment with low humidity 
to exacerbate symptoms of dry eye. On 2 other days partici-
pants received protocols B and C. Protocol B was identical 
to protocol A except that participants were told not to blink 
for 6 seconds prior to drop instillation. Protocol C was 
identical to protocol A except that participants were told not 
to blink their eyes for 10 seconds prior to drop instillation. 
Note that the same participants were used for each protocol 
and that for each protocol data are available for each of two 
eyes. Also, for each eye, two replicate measurements were 
provided.

The data are available in TEAR.DAT with documentation in 
TEAR.DOC at www.cengagebrain.com. For each protocol, 
TBUT (in seconds) was measured (1) at baseline (before 
drop instillation), (2) immediately after drop instillation, 
(3) 5 minutes after instillation, (4) 10 minutes after instilla-
tion, and (5) 15 minutes after instillation.

The standard protocol used in previous clinical studies 
of TBUT is a 6-second nonblink interval (protocol B). All 
the following questions concern protocol B data. For this 
purpose, average TBUT over two replicates and over both 
eyes to find a summary value for each time period for each 
participant.

7.96  Is there an immediate effect of the eye drop on TBUT? 
(Hint: Compare mean TBUT immediately postinstillation vs. 
mean TBUT preinstillation.)

7.97  Does the effect of the placebo eye drop change over 
time after drop instillation? (Hint: Compare mean TBUT at 
5, 10, and 15 minutes postinstillation vs. mean TBUT imme-
diately after drop instillation.)

Hospital Epidemiology
Medical errors are common in hospitals throughout the 
world. One possible causal factor is the long work hours of 
hospital personnel. In a pilot study investigating this issue, 
medical residents were encouraged to sleep 6–8 hours per 
night for a 3-week period instead of their usual irregular 
sleep schedule. The researchers expected, given previous 
data, that there would be one medical error per resident per 
day on their usual irregular sleep schedule.

Suppose two residents participate in the program (each for 
3 weeks), and chart review finds a total of 20 medical errors 
made by the two residents combined.

7.98  What test can be used to test the hypothesis that an 
increase in amount of sleep will change the number of medi-
cal errors per day?

7.99  Implement the test in Problem 7.98, and report a two-
tailed p-value.

Suppose the true effect of the intervention is to reduce the 
number of medical errors per day by 20% (to 0.8 medical 
errors per day). Suppose that in the actual study 10 resi-
dents participate in the program, each for a 3-week period.

7.100  What would be the power of the type of test used 
in Problem 7.99 under these assumptions? (Hint: Use the 
normal approximation to the Poisson distribution.)

Ophthalmology
A study was performed among patients with glaucoma, an 
important eye disease usually manifested by high intraocular 
pressure (IOP); left untreated, glaucoma can lead to blindness.

The patients were currently on two medications (A and B) to 
be taken together for this condition. The purpose of this study 
was to determine whether the patients could drop medica-
tions A and B and be switched to a third medication (medi-
cation C) without much change in their IOP. Ten patients 
were enrolled in the study. They received medications A + B 
for 60 days and had their IOP measured at the end of the  
60-day period (referred to as IOPA+B). They were then taken 
off medications A and B and switched to medication C, 
which they took for an additional 60 days. IOP was mea-
sured a second time at the end of the 60-day period while 
the patient was on medication C (referred to as IOPC). The 
results were as shown in Table 7.12.

Table 7.12  � Effect of medication regimen on 	
IOP among glaucoma patients

Patient number	 I0PA + B (mm Hg)	 IOPC (mm Hg)

   1	 18.0	 14.5
   2	 16.0	 18.0
   3	 17.0	 11.5
   4	 18.0	 18.0
   5	 20.0	 21.0
   6	 19.0	 22.0
   7	 19.0	 24.0
   8	 12.0	 14.0
   9	 17.0	 16.0
10	 21.5	 19.0

7.101  What procedure can be used to test the hypothesis 
that there has been no mean difference in IOP after 60 days 
between the two drug regimens? Data set available
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7.102  Perform the procedure mentioned in Problem 7.101, 
and report a two-tailed p-value.
A goal of the study was to establish whether switching 
to medication C is “equivalent” to the original regimen of 
medication A and B. “Equivalence” here means that the 
underlying mean IOP after switching to medication C has 
not changed by more than 2 mm Hg in either direction.
7.103  What procedure can be used to establish equiv-
alence? Is equivalence the same as accepting the null 
hypothesis in Problem 7.101? Why or why not?
7.104  Implement the procedure in Problem 7.103 to address 
the question of whether the regimens are equivalent.

Endocrinology
Osteoporosis is an important cause of morbidity in middle-
aged and elderly women. Several drugs are currently used 
to prevent fractures in postmenopausal women.

Suppose the incidence rate of fractures over a 4-year 
period is known to be 5% among untreated postmeno-
pausal women with no previous fractures.

A pilot study conducted among 100 women without previ-
ous fractures aims to determine whether a new drug can 
prevent fractures. It is found that two of the women have 
developed fractures over a 4-year period.
7.105  Is there a significant difference between the fracture 
rate in individual treated women and the fracture rate in the 
untreated women? (Report a two-tailed p-value.)
Suppose that 8 of the previous 100 women have developed 
abdominal pain during the trial, while only 1.5% would be 
expected to develop abdominal pain based on previous 
natural history studies.
7.106  Provide a 95% CI for the rate of abdominal pain 
among the active treated women. Interpret the results com-
pared with previous natural history studies.
7.107  Suppose the new drug is hypothesized to yield a frac-
ture rate of 2.5% over a 4-year period. How many subjects 
need to be studied to have an 80% chance of detecting a 
significant difference between the incidence rate of fractures 
in treated women and the incidence rate of fractures in un-
treated women (assumed to be 5% from Problem 7.105)?

General
7.108  What is the 25th percentile of a χ2 distribution with 
20 degrees of freedom? What symbol is used to denote 
this value?
7.109  Suppose we wish to test the hypothesis H0: µ = 2 vs. 
H1: µ ≠ 2. We find a two-sided p-value of .03 and a 95% CI 
for µ of (1.5, 4.0). Are these two results possibly compat-
ible? Why or why not?

Cardiovascular Disease
Treatment with statins can reduce the risk of a major cardio-
vascular event in people with specified risk factors. During 

about 2 years of follow-up in the JUPITER trial (P. M. Ridker 
et al. [8]) , 142 of 8901 subjects treated with a statin had a 
major cardiovascular event.   

7.110  Estimate the 2-year risk, and give a 95% confidence 
interval for this estimate.

7.111  Assuming that risk remains constant over time, give 
an estimate of the 10-year risk of a major cardiovascular 
event on statin therapy.

7.112  Suppose the expected 2-year risk of a major car-
diovascular event in similar but untreated people is 0.028.  
Test whether the 2-year risk in those treated with a statin is 
significantly different from this expected risk at the 5% level.  
Make sure to state your null and alternative hypotheses and 
specify your conclusion.

7.113  Controversy persists about whether statins reduce 
risk of cardiovascular events entirely through their effects 
on cholesterol levels or whether other pathways, such as 
reductions in inflammation, are also relevant.  In JUPITER, 
statin therapy was associated with an average reduction 
of 1.2 mmol per liter in concentration of LDL (low-density 
lipoprotein) cholesterol. Based on average effects over 
multiple clinical trials (C. Baigent et al. [9]), it is estimated 
that each 1 mmol per liter reduction in LDL cholesterol is 
associated with a 20% reduction in risk of major cardiovas-
cular events.  Hence, the expected event rate due to LDL 
reduction would be 

0.028 − .2(.028)(1.2) = .0213.

Assess whether the observed 2-year risk in the Jupiter study 
is consistent with this event rate at the 5% level. Hint: Use a 
confidence interval approach. 

Cancer
A study was conducted in Sweden to relate the age at sur-
gery for undescended testis to the subsequent risk of tes-
ticular cancer [10]. Twelve events were reported in 22,884 
person-years of follow-up among men who were 13–15 
years at age of surgery.

7.114  What is the estimated incidence rate of testicular 
cancer among this group of men? Express the rate per 
100,000 person-years.

It was reported that the standardized incidence rate in this 
group compared with men in the general Swedish popula-
tion was 5.06.

7.115  What is the expected number of events in the gen-
eral population over 22,884 person-years of follow-up?

7.116  Provide a 95% CI for the number of events among 
men who were 13–15 years at age of surgery.

7.117  Is there a significant difference (p < .05) between the 
incidence of testicular cancer in men treated surgically for 
undescended testis at age 13–15 vs. the general population?

7.118  What is the lifetime risk (from age 15 to age 70) 
of testicular cancer for men with age at surgery = 15, 
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assuming that the incidence rate remains constant over 
time? Assume that all men do not die of any other disease 
up to age 70.

Cancer
Data from the Surveillance Epidemiology and End Results 
(SEER) registry provides incidence data for different can-
cers according to age and sex for various tumor registries 
throughout the world. The data in Table 7.13 were obtained 
for colon cancer in women from the Connecticut Tumor 
Registry from 1988−1992.

Table 7.13  � Connecticut Tumor Registry data: 	
Annual incidence rates for colon cancer 
from 1988−1992 for females

 	 Annual incidence rate  
Age	 (per 105 person-years)

40–44	 8
45–49	 16
50–54	 27
55–59	 50

7.119  What is the probability that a 40-year-old woman will 
develop colon cancer over the next 5 years?

7.120  What is the probability that a 40-year-old woman will 
develop colon cancer over the next 20 years (i.e., from age 
40.0 to age 59.9)?

The data in Table 7.14 were obtained from the Nurses’ 
Health Study on colon cancer incidence over the time 
period 1980−2004.

Table 7.14  � Nurses’ Health Study colon cancer 
incidence data from 1980−2004

Age	 Cases	 Person-years

40–44	 10	 139,922
45–49	 35	 215,399
50–54	 79	 277,027
55–59	 104	 321,250

7.121  Do the SEER rates provide a good fit with the 
Nurses’ Health Study incidence data? Perform a separate 
test for each age group and simply report p > .05 or p < .05.  
(Hint: Use the Poisson distribution.)
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8
	 8.1	 I n t r o d u c t i o n

All the tests introduced in Chapter 7 were one-sample tests, 
in which the underlying parameters of the population from 
which the sample was drawn were compared with compa-
rable values from other generally large populations whose 
parameters were assumed to be known.

	 Example 8.1 	 Obstetrics  In the birthweight data in Example 7.2, the underlying mean birth-
weight in one hospital was compared with the underlying mean birthweight in the 
United States, the value of which was assumed known.

A more frequently encountered situation is the two-sample hypothesis-testing 
problem.

	De finition 8.1	 In a two-sample hypothesis-testing problem, the underlying parameters of two differ-
ent populations, neither of whose values is assumed known, are compared.

	 Example 8.2 	 Hypertension  Let’s say we are interested in the relationship between oral contra-
ceptive (OC) use and blood pressure in women.

Two different experimental designs can be used to assess this relationship. One 
method involves the following design:

	 Equation 8.1	 Longitudinal Study

		  (1)	 Identify a group of nonpregnant, premenopausal women of childbearing 
age (16–49 years) who are not currently OC users, and measure their blood 
pressure, which will be called the baseline blood pressure.

		  (2)	 Rescreen these women 1 year later to ascertain a subgroup who have re-
mained nonpregnant throughout the year and have become OC users. This 
subgroup is the study population.

		  (3)	 Measure the blood pressure of the study population at the follow-up visit.

		  (4)	 Compare the baseline and follow-up blood pressure of the women in the 
study population to determine the difference between blood pressure levels 
of women when they were using the pill at follow-up and when they were 
not using the pill at baseline.

Hypothesis Testing: 
Two-Sample Inference
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Another method involves the following design:

	 Equation 8.2	 Cross-Sectional Study

		  (1)	 Identify both a group of OC users and a group of non-OC users among non-
pregnant, premenopausal women of childbearing age (16–49 years), and 
measure their blood pressure.

		  (2)	 Compare the blood pressure level between the OC users and nonusers.

	De finition 8.2	 In a longitudinal or follow-up study the same group of people is followed over time.

	De finition 8.3	 In a cross-sectional study, the participants are seen at only one point in time.

There is another important difference between these two designs. The longitudi-
nal study represents a paired-sample design because each woman is used as her own 
control. The cross-sectional study represents an independent-sample design because 
two completely different groups of women are being compared.

	De finition 8.4	 Two samples are said to be paired when each data point in the first sample is matched 
and is related to a unique data point in the second sample.

	 Example 8.3 	 The paired samples may represent two sets of measurements on the same people. In 
this case each person is serving as his or her own control, as in Equation 8.1. The 
paired samples may also represent measurements on different people who are cho-
sen on an individual basis using matching criteria, such as age and sex, to be very 
similar to each other.

	De finition 8.5	 Two samples are said to be independent when the data points in one sample are unre-
lated to the data points in the second sample.

	 Example 8.4 	 The samples in Equation 8.2 are completely independent because the data are ob-
tained from unrelated groups of women.

Which type of study is better in this case? The first type of study is probably 
more definitive because most other factors that influence a woman’s blood pressure 
at the first screening (called confounders) will also be present at the second screen-
ing and will not influence the comparison of blood-pressure levels at the first and 
second screenings. However, the study would benefit from having a control group 
of women who remained non-OC users throughout the year. The control group 
would allow us the chance of ruling out other possible causes of blood pressure 
change besides changes in OC status. The second type of study, by itself, can only be 
considered suggestive because other confounding factors may influence blood pres-
sure in the two samples and cause an apparent difference to be found where none is 
actually present.

For example, OC users are known to weigh less than non-OC users. Low weight 
tends to be associated with low BP, so the blood-pressure levels of OC users as a 
group would appear lower than the levels of non-OC users.
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However, a follow-up study is more expensive than a cross-sectional study. Therefore, 
a cross-sectional study may be the only financially feasible way of doing the study.

In this chapter, the appropriate methods of hypothesis testing for both the 
paired-sample and independent-sample situations are studied.

	 8.2	 T h e  P a i r e d  t  Te  s t

Suppose the paired-sample study design in Equation 8.1 is adopted and the sample 
data in Table 8.1 are obtained. The systolic blood-pressure (SBP) level of the ith 
woman is denoted at baseline by xi1 and at follow-up by xi2.

	 Equation 8.3	 Assume that the SBP of the ith woman is normally distributed at baseline with mean 
µi and variance σ2 and at follow-up with mean µi + ∆ and variance σ2.

We are thus assuming that the underlying mean difference in SBP between  
follow-up and baseline is ∆. If ∆ = 0, then there is no difference between mean base-
line and follow-up SBP. If ∆ > 0, then using OC pills is associated with a raised mean 
SBP. If ∆ < 0, then using OC pills is associated with a lowered mean SBP.

We want to test the hypothesis H0: ∆ = 0 vs. H1: ∆ ≠ 0. How should we do this? 
The problem is that µi is unknown, and we are assuming, in general, that it is differ-
ent for each woman. However, consider the difference di = xi2 − xi1. From Equation 8.3 
we know that di is normally distributed with mean ∆ and variance that we denote by 
σd

2. Thus, although blood pressure levels µi are different for each woman, the differ-
ences in blood pressure between baseline and follow-up have the same underlying 
mean (∆) and variance σd

2( ) over the entire population of women. The hypothesis-
testing problem can thus be considered a one-sample t test based on the differences (di). 
From our work on the one-sample t test in Section 7.4, we know that the best test 
of the hypothesis H0: ∆ = 0 vs. H1: ∆ ≠ 0, when the variance is unknown, is based on 
the mean difference

		  d d d d nn= + + +( )1 2 L

	T able 8.1	 SBP levels (mm Hg) in 10 women while not using (baseline) and while 	
using (follow-up) OCs

	 SBP level	 SBP level	  
  i	 while not using OCs (xi1)	 while using OCs (xi2)	 di

*

  1	 115	 128	 13
  2	 112	 115	 3
  3	 107	 106	 −1
  4	 119	 128	 9
  5	 115	 122	 7
  6	 138	 145	 7
  7	 126	 132	 6
  8	 105	 109	 4
  9	 104	 102	 −2
10	 115	 117	 2

*di = xi2 − xi1
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Specifically, from Equation 7.10 for a two-sided level α test, we have the following 
test procedure, called the paired t test.

	 Equation 8.4	 Paired t Test 

		  �Denote the test statistic d s nd( ) by t, where sd is the sample standard deviation of 
the observed differences:

			   s d d n nd i
i

n

i
i

n

= −


















−( )
= =
∑ ∑2

1 1

2

1

			   n = number of matched pairs

		  If t > tn−1,1−α/2  or  t < −tn−1,1−α/2

		  then H0 is rejected.

		  If −tn−1,1−α/2 ≤ t ≤ tn−1,1−α/2

		�  then H0 is accepted. The acceptance and rejection regions for this test are shown 
in Figure 8.1.

Similarly, from Equation 7.11, a p-value for the test can be computed as follows.

	 Equation 8.5	 Computation of the p-Value for the Paired t Test

		  If t < 0,

			   p = 2 × [the area to the left of t d s nd= ( ) under a tn−l distribution]

		  If t ≥ 0,

			   p = 2 × [the area to the right of t under a tn−l distribution]

		  The computation of the p-value is illustrated in Figure 8.2.

	Fi gure 8.1	 Acceptance and rejection regions for the paired t test

–tn – 1, 1 – α/2 tn – 1, 1 – α/2

t < – tn – 1, 1 – α/2
Rejection region

t > tn – 1, 1 – α/2
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	 Example 8.5 	 Hypertension  Assess the statistical significance of the OC–blood pressure data in 
Table 8.1.

	 	 Solution: 

	 	 d

sd

= + + + =

= − + + −

( ) .

( . ) ( . )

13 3 2 10 4 80

13 4 8 2 4 82 2 2

L

L  =

= =

= ( )

9 20 844

20 844 4 566

4 80 4 566 10

.

. .

. .

s

t

d

== =4 80 1 444 3 32. . .

The critical-value method is first used to perform the significance test. There are  
10 − 1 = 9 degrees of freedom (df  ), and from Table 5 in the Appendix we see that 
t9,.975 = 2.262. Because t = 3.32 > 2.262, it follows from Equation 8.4 that H0 can be re-
jected using a two-sided significance test with α = .05. To compute an approximate 
p-value, refer to Table 5 and note that t9,.9995 = 4.781, t9,.995 = 3.250. Thus, because 
3.25 < 3.32 < 4.781, it follows that .0005 < p/2 < .005 or .001 < p < .01. To compute 
a more exact p-value, a computer program must be used. The results in Table 8.2 
were obtained using the t.test program of R.

	Fi gure 8.2	 Computation of the p-value for the paired t test
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under a tn – 1 distribution).
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	T able 8.2 	 Using R to perform the paired t test based on the blood-pressure data in Table 8.1

> t.test(sbp.oc.no,sbp.oc.yes,paired=TRUE}

Paired t-test

data: sbp.oc.no and sbp.oc.yes

t = -3.3247, df = 9, p-value = 0.008874

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-8.066013 -1.533987

sample estimates:

mean of the differences

-4.8

To use the program, we use the following syntax:

t.test(x,y,paired = TRUE)

where x and y are the paired samples being compared. In this particular case, we 
have labeled x = sbp.oc.no and y = sbp.oc.yes (i.e., the blood pressures when ocs are 
not and are being used, respectively. Also, in t.test, the differences di = xi - yi = SBPoc.no,i - 
SBPoc.yes,i. Hence, d  = -4.8 rather than 4.8 as in Example 8.5.

Note from Table 8.2 that the exact two-sided p-value = .009. Therefore, we can 
conclude that starting OC use is associated with a significant change in blood pressure.

Example 8.5 is a classic example of a paired study because each woman is used 
as her own control. In many other paired studies, different people are used for the 
two groups, but they are matched individually on the basis of specific matching 
characteristics.

	 Example 8.6 	 Gynecology  A topic of recent clinical interest is the effect of different contracep-
tive methods on fertility. Suppose we wish to compare how long it takes users of 
either OCs or diaphragms to become pregnant after stopping contraception. A study 
group of 20 OC users is formed, and diaphragm users who match each OC user with 
regard to age (within 5 years), race, parity (number of previous pregnancies), and 
socioeconomic status (SES) are found. The investigators compute the differences in 
time to fertility between previous OC and diaphragm users and find that the mean 
difference d  (OC minus diaphragm) in time to fertility is 4 months with a standard 
deviation (sd) of 8 months. What can we conclude from these data?

	 	 Solution:  Perform the paired t test. We have

		  t d s n td= ( ) = ( ) = =4 8 20 4 1 789 2 24 19. . ∼

under H0. Referring to Table 5 in the Appendix, we find that

		  t t19 975 19 992 093 2 539,. ,.. .= =and
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Thus, because 2.093 < 2.24 < 2.539, it follows that .01 < p/2 < .025 or .02 < p < .05. 
Therefore, previous OC users take a significantly longer time to become pregnant 
than do previous diaphragm users.

The exact p-value obtained from Excel is TDIST (2.24, 19, 2) = 0.038.

In this section, we have introduced the paired t test, which is used to compare 
the mean level of a normally distributed random variable (or a random variable with 
sample size large enough so that the central-limit theorem can be assumed to hold) 
between two paired samples. If we refer to the flowchart (Figure 8.13, p. 321), start-
ing from position 1, we answer yes to (1) two-sample problem? (2) underlying distri-
bution normal or can central-limit theorem be assumed to hold? and (3) inferences 
concerning means? and no to (4) are samples independent? This leads us to the box 
labeled “Use paired t test.”

	 8.3	 I n t e r v a l  E s t i m at i o n  f o r  t h e  C o m p a r i s o n 

o f  Me  a n s  f r o m  T w o  P a i r e d  S a m p l e s

In the previous section, methods of hypothesis testing for comparing means from two 
paired samples were discussed. It is also useful to construct confidence limits for the 
true mean difference (∆). The observed difference scores (di) are normally distributed 
with mean ∆ and variance σd

2. Thus, the sample mean difference (d ) is normally distrib-
uted with mean ∆ and variance σd n2 , where σd

2 is unknown. The methods of CI estima-
tion in Equation 6.6 can be used to derive a 100% × (1 − α) CI for ∆, which is given by

		  d t s n d t s nn d n d− +( )− − − −1 1 2 1 1 2, / , /,α α

	 Equation 8.6	 �Confidence Interval for the True Difference (∆) Between the Underlying Means of 	
Two Paired Samples (Two-Sided) 

		�  A two-sided 100% × (1 − α) CI for the true mean difference (∆) between two 
paired samples is given by

			   d t s n d t s nn d n d− +( )− − − −1 1 2 1 1 2, / , /,α α

	 Example 8.7 	 Hypertension  Using the data in Table 8.1, compute a 95% CI for the true increase in 
mean SBP after starting OCs.

	 	 Solution:  From Example 8.5 we have d = 4 80. mm Hg, sd = 4.566 mm Hg, n = 10. 
Thus, from Equation 8.6, a 95% CI for the true mean SBP change is given by

		

d t s n tn d± = ±
= ±

−1 975 9 9754 80 1 444

4 80 2 2
,. ,.. ( . )

. . 662 1 444 4 80 3 27 1 53 8 07( . ) . . ( . , . )= ± = mm Hg

Thus, the true change in mean SBP is most likely between 1.5 and 8.1 mm Hg. We 
can also obtain the 95% CI from the t-test program of R as shown in the R-output 
in Table 8.2.

	 Example 8.8 	 Gynecology  Using the data in Example 8.6, compute a 95% CI for the true mean 
difference between OC users and diaphragm users in time to fertility.
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	 	 Solution:  From Example 8.6, we have d  = 4 months, sd = 8 months, n = 20. Thus, the 
95% CI for µd is given by

		

d
t s

n

tn d± = ±

= ±

−1 975 19 9754
8

20

4
2 093 8

20

,. ,. ( )

. ( ) == ± =4 3 74 0 26 7 74. ( . , . ) months

Thus, the true lag in time to fertility can be anywhere from about 0.25 month to 
nearly 8 months. A much larger study is needed to narrow the width of this CI.

R E V I E W  QU  E ST  I ONS    8 A

1	 How do a paired-sample design and an independent-sample design differ?

2	 A man measures his heart rate before using a treadmill and then after walking on 
a treadmill for 10 minutes on 7 separate days. His mean heart rate at baseline and  
10 minutes after treadmill walking is 85 and 93 beats per minute (bpm), respec-
tively. The mean change from baseline to 10 minutes is 8 bpm with a standard 
deviation of 6 bpm.

	 (a)  What test can we use to compare pre- and post-treadmill heart rate?

	 (b)  �Implement the test in Review Question 8A.2a, and report a two-tailed  
p-value.

	 (c)  �Provide a 90% confidence interval (CI) for the mean change in heart rate after 
using the treadmill for 10 minutes.

	 (d)  What is your overall conclusion concerning the data?

	 8.4	 T w o - S a m p l e  t  Te  s t  f o r  I n d e p e n d e n t 

S a m p l e s  w i t h  E q u a l  V a r i a n c e s

Let’s now discuss the question posed in Example 8.2, assuming that the cross-
sectional study defined in Equation 8.2 is being used, rather than the longitudinal 
study defined in Equation 8.1.

	 Example 8.9 	 Hypertension  Suppose a sample of eight 35- to 39-year-old nonprenant, premeno-
pausal OC users who work in a company and have a mean systolic blood pres-
sure (SBP) of 132.86 mm Hg and sample standard deviation of 15.34 mm Hg are 
identified. A sample of 21 nonpregnant, premenopausal, non-OC users in the same 
age group are similarly identified who have mean SBP of 127.44 mm Hg and sample 
standard deviation of 18.23 mm Hg. What can be said about the underlying mean 
difference in blood pressure between the two groups?

Assume SBP is normally distributed in the first group with mean µ1 and variance 
σ1

2 and in the second group with mean µ2 and variance σ2
2. We want to test the  

hypothesis H0: µ1 = µ2 vs. H1: µ1 ≠ µ2. Assume in this section that the underlying 
variances in the two groups are the same (that is, σ σ σ1

2
2
2 2= = ). The means and  

variances in the two samples are denoted by x1 x2 , s1
2 , s2

2 , respectively.
It seems reasonable to base the significance test on the difference between the 

two sample means, x x1 2− . If this difference is far from 0, then H0 will be rejected; 

R
 E

 V
 I 

E 
W
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otherwise, it will be accepted. Thus, we wish to study the behavior of x x1 2−  under 
H0. We know X1 is normally distributed with mean µ1 and variance σ2/n1 and X2 is 
normally distributed with mean µ2 and variance σ2/n2. Hence, from Equation 5.10, 
because the two samples are independent, X X1 2−  is normally distributed with mean 
µ1 − µ2 and variance σ2(1/n1 + 1/n2). In symbols,

	 Equation 8.7	 X X N
n n1 2 1 2

2

1 2

1 1− − +














∼ µ µ σ,

Under H0, we know that µ1 = µ2. Thus, Equation 8.7 reduces to

	 Equation 8.8	 X X N
n n1 2

2

1 2
0

1 1− +














∼ ,σ

If σ2 were known, then X X1 2−  could be divided by σ 1 11 2n n+ . From Equation 8.8, 

	 Equation 8.9	
X X

n n

N1 2

1 2

1 1
0 1

−

+σ
∼ ( , )

and the test statistic in Equation 8.9 could be used as a basis for the hypothesis test. 
Unfortunately, σ2 in general is unknown and must be estimated from the data. How 
can σ2 be best estimated in this situation?

From the first and second samples, the sample variances are s1
2  and s2

2, 
respectively, each of which could be used to estimate σ2. The average of s1

2 and 
s2

2 could simply be used as the estimate of σ2. However, this average will weight 
the sample variances equally even if the sample sizes are very different from each 
other. The sample variances should not be weighted equally because the variance 
from the larger sample is probably more precise and should be weighted more 
heavily. The best estimate of the population variance σ2, which is denoted by s2, is 
given by a weighted average of the two sample variances, where the weights are the 
number of df in each sample.

	 Equation 8.10	 The pooled estimate of the variance from two independent samples is given by

			 
s

n s n s
n n

2 1 1
2

2 2
2

1 2

1 1
2

=
−( ) + −( )

+ −

In particular, s2 will then have n1 − 1 df from the first sample and n2 − 1 df from the 
second sample, or

		  n n n n df1 2 1 21 1 2−( ) + −( ) = + −

overall. Then s can be substituted for σ in Equation 8.9, and the resulting test sta-
tistic can then be shown to follow a t distribution with n1 + n2 − 2 df rather than 
an N(0,1) distribution because σ2 is unknown. Thus, the following test procedure  
is used.
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	 Equation 8.11	 �Two-Sample t Test for Independent Samples with Equal Variances

		  �Suppose we wish to test the hypothesis H0: µ1 = µ2 vs. H1: µ1 ≠ µ2 with a significance 
level of α for two normally distributed populations, where σ2 is assumed to be 
the same for each population.

		  	 Compute the test statistic:

			 
t

x x

s
n n

= −

+

1 2

1 2

1 1

		  where  s n s n s n n= −( ) + −( )  + −( )1 1
2

2 2
2

1 21 1 2

		  If  t tn n> + − −1 2 2 1 2, /α   or  t tn n< − + − −1 2 2 1 2, /α

		  then H0 is rejected.

		  If  − ≤ ≤+ − − + − −t t tn n n n1 2 1 22 1 2 2 1 2, / , /α α or − ≤ ≤+ − − + − −t t tn n n n1 2 1 22 1 2 2 1 2, / , /α α

		  then H0 is accepted.

			   The acceptance and rejection regions for this test are shown in Figure 8.3.

Similarly, a p-value can be computed for the test. Computation of the p-value  
depends on whether x x t1 2 0≤ ≤( ) or x x t1 2 0> >( ). In each case, the p-value cor-
responds to the probability of obtaining a test statistic at least as extreme as the 
observed value t. This is given in Equation 8.12.

	 Equation 8.12	 �Computation of the p-Value for the Two-Sample t Test for Independent Samples with 
Equal Variances

		  Compute the test statistic:

			 
t

x x

s
n n

= −

+

1 2

1 2

1 1

		  where  s n s n s n n= − + −  + −( ) ( ) ( )1 1
2

2 2
2

1 21 1 2

		  If t ≤ 0, p = 2 × (area to the left of t under a tn n1 2 2+ −  distribution).

		  If t > 0, p = 2 × (area to the right of t under a tn n1 2 2+ −  distribution).

		  The computation of the p-value is illustrated in Figure 8.4.

	 Example 8.10 	 Hypertension  Assess the statistical significance of the data in Example 8.9.

	 	 Solution:  The common variance is first estimated:

		  s2
2 27 15 34 20 18 23

27
8293 9

27
307 18= + = =( . ) ( . ) .

.

or s = 17.527. The following test statistic is then computed:

		  t = −
+

=
×

132 86 127 44
17 527 1 8 1 21

5 42
17 527 0 41

. .
.

.
. . 55

5 42
7 282

0 74= =.
.

.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



              289

	Fi gure 8.4	 Computation of the p-value for the two-sample t test for independent 	
samples with equal variances

t 0

0

p/2

tn1 + n2 – 2 distribution

tn1 + n2 – 2 distribution

0.0

Value

Fr
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u
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cy

If t = (x1 – x2)/                      ≤ 0, then p = 2 × (area to

the left of t under a tn1 + n2 – 2 distribution).
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If t = (x1 – x2)/                      > 0, then p = 2 × (area to

the right of t under a tn1 + n2 – 2 distribution).

s
n1

1 +
n2

1

	Fi gure 8.3	 Acceptance and rejection regions for the two-sample t test for independent 	
samples with equal variances
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If the critical-value method is used, then note that under H0, t comes from a t27 

distribution. Referring to Table 5 in the Appendix, we see that t27,.975 = 2.052. Because 
−2.052 ≤ 0.74 ≤ 2.052, it follows that H0 is accepted using a two-sided test at the 5% 
level, and we conclude that the mean blood pressures of the OC users and non-OC 
users do not significantly differ from each other. In a sense, this result shows the 
superiority of the longitudinal design in Example 8.5. Despite the similarity in the 
magnitudes of the mean blood-pressure differences between users and nonusers in 
the two studies, significant differences could be detected in Example 8.5, in contrast 
to the nonsignificant results that were obtained using the preceding cross-sectional 
design. The longitudinal design is usually more efficient because it uses people as 
their own controls.

To compute an approximate p-value, note from Table 5 that t27,.75 = 0.684, t27,.80 = 
0.855. Because 0.684 < 0.74 < 0.855, it follows that .2 <p/2 < .25 or .4 < p < .5. The 
exact p-value obtained from MINITAB is p = 2 × P(t27 > 0.74) = .46.

	 8.5	 I n t e r v a l  E s t i m at i o n  f o r  t h e  C o m p a r i s o n 

o f  Me  a n s  f r o m  T w o  I n d e p e n d e n t  S a m p l e s 

( E q u a l  V a r i a n c e  C a s e )

In the previous section, methods of hypothesis testing for the comparison of 
means from two independent samples were discussed. It is also useful to com-
pute 100% × (1 − α) CIs for the true mean difference between the two groups = 
µ1 − µ2. 

	 Equation 8.13	 �Confidence Interval for the Underlying Mean Difference (µ1 − µ2) Between Two Groups 
(Two-Sided) (σ2 = σ2

 ) 

		�  A two-sided 100% × (1 − α) CI for the true mean difference µ1 − µ2 based on two 
independent samples with equal variance is given by

			 
x x t s

n n
x x tn n n n1 2 2 1 2

1 2
1 2 21 2 1 2

1 1− − + − ++ − − + −, / ,α ,, /1 2
1 2

1 1
− +






α s
n n

			   where s2 = pooled variance estimate given in Equation 8.12.

			   The derivation of this formula is provided in Section 8.11.

	 Example 8.11 	 Hypertension  Using the data in Examples 8.9 and 8.10, compute a 95% CI for the 
true mean difference in systolic blood pressure (SBP) between 35- to 39-year-old OC 
users and non-OC users.

	 	 Solution:  A 95% CI for the underlying mean difference in SBP between the population of  
35- to 39-year-old OC users and non-OC users is given by

		

5 42 7 282 5 42 7 28227 975 27 975. ( . ), . ( . ),. ,.− + t t 
= − +[ ] =5 42 2 052 7 282 5 42 2 052 7 282. . ( . ), . . ( . ) (−−9 52 20 36. , . )

1 2
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This interval is rather wide and indicates that a much larger sample is needed to  
accurately assess the true mean difference.

	 Example 8.12 	 Hypertension  The data in Table 8.3 was collected from over 200 infants in Provi-
dence, Rhode Island, at 1 month of age. In this study a research nurse visited the 
home of each child and took their blood pressure using a special apparatus for 
measuring infant bp. She also noted whether the infant was asleep or awake and 
whether or not the child was agitated when the bp was taken.

	T able 8.3	 Mean systolic blood pressure (SBP) by sleep status of the infant

Sleep status Mean	 SBP	 sd	 n

Quiet sleep	 81.9	 9.8	 64
Awake and quiet	 86.1	 10.3	 175

It was only possible to ascertain each infant once. Thus, the 64 infants in the quiet 
sleep group are different from the 175 infants in the awake and quiet group. How 
can we compare the mean SBP according to sleep status of the infant and provide 
a 95% Cl for the mean difference in SBP between the quiet sleep infants and the 
awake and quiet infants?

	 	 Solution:  We will use the two-sample t test with equal variances given in 
Equation 8.12 with confidence interval in Equation 8.13. To perform these proce-
dures based on summary data, we will use the ttesti command of Stata. The syntax 
of this command is as follows: 

		  ttesti  n1  mean1  sd1  n2  mean2  sd2

In this case, we specify

		  ttesti  64  81.9  9.8  175  86.1  10.3

The results are given in Table 8.4.

Stata ttesti command used to solve the question in Example 8.12.

	T able 8.4	 Two-sample t test with equal variances

	 Obs	 Mean	 Std. Err.	 Std. Dev.	 [95°% Conf. Interval]

X	 64	 81.9	 1.225	 9.8	 79.5	 84.3

y	 175	 86.1	 .779	 10.3	 84.6	 87.6

combined	 239	 85.0	 .667	 10.3	 83.7	 86.3

diff	 -	 -4.2	 1.486		  –7.13	 –1.27

diff = mean(x) - mean(y)		  t = –2.8272

Ho: diff = 0			  degrees of freedom = 237

Ha: diff< 0	 Ha: diff != 0	 Ha: diff > 0

Pr(T < t) = 0.0025	 Pr(T > t) = 0.0051	 Pr(T > t) = 0.9975
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We see that there is a significant difference in mean SBP (p = 0.005) with 95% CI 
between the two means = (–7.1, –1.3). Stata also provides the standard error and 95% 
CI for the means of the individual groups and the combined sample.

In this section, we have introduced the two-sample t test for independent 
samples with equal variances. This test is used to compare the mean of a 
normally distributed random variable (or a random variable with samples 
large enough so that the central-limit theorem can be assumed to hold) 
between two independent samples with equal variances. If we refer to the 
flowchart (Figure 8.13, p. 321), starting from position 1 we answer yes to (1) 
two-sample problem? (2) underlying distribution normal or can central-limit 
theorem be assumed to hold? (3) inferences concerning means? (4) are samples 
independent? and no to (5) are variances of two samples significantly different? 
(discussed in Section 8.6). This leads us to the box labeled “Use two-sample t 
test with equal variances.”

	 8.6	 Te  s t i n g  f o r  t h e  E q u a l i t y  o f 

T w o  V a r i a n c e s

In Section 8.4, when we conducted a two-sample t test for independent samples, 
we assumed the underlying variances of the two samples were the same. We then 
estimated the common variance using a weighted average of the individual sample 
variances. In this section we develop a significance test to validate this assumption. 
In particular, we wish to test the hypothesis H0 1

2
2
2: σ σ=  vs. H1 1

2
2
2: σ σ≠ , where the 

two samples are assumed to be independent random samples from an N( , )µ σ1 1
2  and 

N( , )µ σ2 2
2  distribution, respectively.

	 Example 8.13 	 Cardiovascular Disease, Pediatrics  Consider a problem discussed earlier, namely the 
familial aggregation of cholesterol levels. In particular, suppose cholesterol levels are 
assessed in 100 children, 2 to 14 years of age, of men who have died from heart dis-
ease and it is found that the mean cholesterol level in the group x1( ) is 207.3 mg/dL. 
Suppose the sample standard deviation in this group (s1) is 35.6 mg/dL. Previously,  
the cholesterol levels in this group of children were compared with 175 mg/dL, 
which was assumed to be the underlying mean level in children in this age group 
based on previous large studies.

A better experimental design would be to select a group of control children whose 
fathers are alive and do not have heart disease and who are from the same census tract 
as the case children, and then to compare their cholesterol levels with those of the case 
children. If the case fathers are identified by a search of death records from the census 
tract, then researchers can select control children who live in the same census tract as the 
case families but whose fathers have no history of heart disease. The case and control 
children come from the same census tract but are not individually matched. Thus, they 
are considered as two independent samples rather than as two paired samples. The cho-
lesterol levels in these children can then be measured. Suppose the researchers found 
that among 74 control children, the mean cholesterol level x2( ) is 193.4 mg/dL with  
a sample standard deviation (s2) of 17.3 mg/dL. We would like to compare the means 
of these two groups using the two-sample t test for independent samples given in  
Equation 8.11, but we are hesitant to assume equal variances because the 
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sample variance of the case group is about four times as large as that of the  
control group:

		  35 6 17 3 4 232 2. . .=

What should we do?

What we need is a significance test to determine whether the underlying variances 
are in fact equal; that is, we want to test the hypothesis H0 1

2
2
2: σ σ=  vs. H1 1

2
2
2: σ σ≠ .  

It seems reasonable to base the significance test on the relative magnitudes of the 
sample variances s s1

2
2
2,( ). The best test in this case is based on the ratio of the sample 

variances s s1
2

2
2( ) rather than on the difference between the sample variances s s1

2
2
2−( ).  

Thus, H0 would be rejected if the variance ratio is either too large or too small and 
accepted otherwise. To implement this test, the sampling distribution of s s1

2
2
2  under 

the null hypothesis σ σ1
2

2
2=  must be determined.

The F Distribution
The distribution of the variance ratio S S1

2
2
2( ) was studied by statisticians R. A. Fisher 

and G. Snedecor. It can be shown that the variance ratio follows an F distribution 
under the null hypothesis that σ σ1

2
2
2= . There is no unique F distribution but in-

stead a family of F distributions. This family is indexed by two parameters termed 
the numerator and denominator degrees of freedom, respectively. If the sizes of the first 
and second samples are n1 and n2 respectively, then the variance ratio follows an  
F distribution with n1 − 1 (numerator df) and n2 − 1 (denominator df), which is called 
an Fn n1 21 1− −,  distribution.

The F distribution is generally positively skewed, with the skewness dependent 
on the relative magnitudes of the two degrees of freedom. If the numerator df is 1 or 
2, then the distribution has a mode at 0; otherwise, it has a mode greater than 0. The 
distribution is illustrated in Figure 8.5. Table 8 in the Appendix gives the percentiles 
of the F distribution for selected values of the numerator and denominator df.

	Fi gure 8.5	 Probability density for the F distribution
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	De finition 8.6	 The 100 × pth percentile of an F distribution with d1 and d2 degrees of freedom is

denoted by Fd d p1 2, , . Thus,

		
Pr F F pd d d d p1 2 1 2, , ,≤( ) =

The F table is organized such that the numerator df (d1) is shown in the first row, 
the denominator df (d2) is shown in the first column, and the various percentiles (p) 
are shown in the second column.

	 Example 8.14 	 Find the upper first percentile of an F distribution with 5 and 9 df.

	 	 Solution:  F5,9,.99 must be found. Look in the 5 column, the 9 row, and the subrow 
marked .99 to obtain

		  F5 9 99 6 06, ,. .=

Generally, F distribution tables give only upper percentage points because  
the symmetry properties of the F distribution make it possible to derive the lower 
percentage points of any F distribution from the corresponding upper percentage 
points of an F distribution with the degrees of freedom reversed. Specifically, note 
that under H0, S S2

2
1
2  follows an Fd d2 1,  distribution. Therefore,

		  Pr S S F pd d p2
2

1
2

12 1
≥( ) =−, ,

By taking the inverse of each side and reversing the direction of the inequality, 
we get

		
Pr

S
S F

p
d d p

1
2

2
2

1

1

2 1

≤








 =

−, ,

Under H0, however, S S1
2

2
2  follows an Fd d1 2,  distribution. Therefore,

		
Pr

S
S

F pd d p
1
2

2
2 1 2

≤






=, ,

It follows from the last two inequalities that

		
F

Fd d p
d d p

1 2
2 1

1

1
, ,

, ,
=

−

This principle is summarized as follows.

	 Equation 8.14	 �Computation of the Lower Percentiles of an F Distribution 

		  �The lower pth percentile of an F distribution with d1 and d2 df is the reciprocal of  
the upper pth percentile of an F distribution with d2 and d1 df. In symbols,

			   F Fd d p d d p1 2 2 11 1, , , ,= −

Thus, from Equation 8.14 we see that the lower pth percentile of an F distribu-
tion is the same as the inverse of the upper pth percentile of an F distribution with 
the degrees of freedom reversed.
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Using the Computer to Obtain Percentiles and Areas  
for the F Distribution
For degrees of freedom that do not appear in Table 8 in the Appendix, a computer 
program can be used. For example, in R the qf and pf functions can be used for this 
purpose. The syntax is as follows:

qf(p,dl,d2) = lower pth percentile of an F distribution with d1 and d2 df.

pf(x,d1,d2) = Pr(Fd1, d2 ≤ x).

	 Example 8.15 	 What is the upper 10th percentile of an F distribution with 24 and 39 df ?

	 	 Solution:  We specify qf(0.90, 24, 39) as follows:

> qf(0.90,24,39)

[1] 1.578993

Thus, the upper 10th percentile = 1.579.

	 Example 8.16 	 What is the probability that an F distribution with 24 and 39 df exceeds 2?

	 	 Solution:  We specify 1- pf(2.0, 24, 39) as follows:

> 1- pf(2.0, 24, 39)

[1] 0.02637477

Thus, the probability is 2.6%.

The F Test
We now return to the significance test for the equality of two variances. We 
want to test the hypothesis H0 1

2
2
2: σ σ=  vs. H1 1

2
2
2: σ σ≠ . We stated that the test 

would be based on the variance ratio S S1
2

2
2 , which under H0 follows an F dis-

tribution with n1 − 1 and n2 − 1 df. This is a two-sided test, so we want to reject 
H0 for both small and large values of S S1

2
2
2 . This procedure can be made more 

specific, as follows.

	 Equation 8.15	 ��F Test for the Equality of Two Variances

		  Suppose we want to conduct a test of the hypothesis H0 1
2

2
2: σ σ=  vs. H1 1

2
2
2: σ σ≠   with 

significance level α.

		  Compute the test statistic F s s= 1
2

2
2.

		  If  F Fn n> − − −1 21 1 1 2, , /α   or  F Fn n< − −1 21 1 2, , /α

		  then H0 is rejected.

		  If  F F Fn n n n1 2 1 21 1 2 1 1 1 2− − − − −≤ ≤, , / , , /α α

		�  then H0 is accepted. The acceptance and rejection regions for this test are shown 
in Figure 8.6.

Alternatively, the exact p-value is given by Equation 8.16.
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	 Equation 8.16	 ��Computation of the p-Value for the F Test for the Equality of Two Variances

		  Compute the test statistic F s s= 1
2

2
2.

		

If then

If then

F p Pr F F

F p

n n≥ = × >( )
< =

− −1 2

1 2

1 21 1,

,

,

×× <( )− −Pr F Fn n1 21 1,

This computation is illustrated in Figure 8.7.

	 Example 8.17 	 Cardiovascular Disease, Pediatrics  Test for the equality of the two variances given 
in Example 8.13.

	 	 Solution:  F s s= = =1
2

2
2 2 235 6 17 3 4 23. . .

Because the two samples have 100 and 74 people, respectively, we know from 
Equation 8.15 that under H0, F ~ F99,73. Thus, H0 is rejected if

		  F F F F> <99 73 975 99 73 025, ,. , ,.or

	Fi gure 8.7	 Computation of the p-value for the F test for the equality of two variances
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	Fi gure 8.6	 Acceptance and rejection regions for the F test for the equality of two variances
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Note that neither 99 df nor 73 df appears in Table 8 in the Appendix. One approach 
is to obtain the percentiles using a computer program. In this example, we want to 
find the value c1 = F99,73,.025 and c2 = F99,73,.975. such that

		  Pr F c Pr F c99 73 1 99 73 2025 975, ,. .≤( ) = ≥( ) =and

We can use the qf function of R for this purpose. We have:

	 c1 = qf(0.025, 99, 73),

	 c2 = qf(0.975, 99, 73).

The result is shown as follows:

> qf(0.025, 99, 73)

[1] 0.65476

> qf(0.975, 99, 73}

[1] 1.549079.

Thus, c1 = 0.655, c2 = 1.549. Because F = 4.23 > c2 it follows that p < 0.05. Alternatively, 
we could compute an exact p-value. This is given by:

p = 2 × Pr(F99,73 > 4.23) = 2 × [1 – pf(4.23, 99, 73)]. The result is shown as follows:

> p.value < -2 * (1 – pf(4.23, 99, 73))

> p.value

[1] 8.839514e-10

Thus, the p-value = 8.8 × 10-10 indicates that the variances are significantly different. 
Therefore, the two-sample t test with equal variances given in Section 8.4 cannot be 
used, because this test depends on the assumption that the variances are equal.

A question often asked about the F test is whether it makes a difference which 
sample is selected as the numerator sample and which is selected as the denominator 
sample. The answer is that, for a two-sided test, it does not make a difference because 
of the rules for calculating lower percentiles given in Equation 8.14. A variance ratio > 1 
is usually more convenient, so there is no need to use Equation 8.14. Thus, the larger 
variance is usually put in the numerator and the smaller variance in the denominator.

Using the Computer to Perform the F Test for the  
Equality of Two Variances
The sdtest command of Stata can perform the F test for the equality of two vari-
ances. The syntax for this command is as follows:

sdtest varname, by (groupvar)

where we are comparing the variance of the variable varname between subjects in two 
different groups defined by the variable groupvar. The variable groupvar must have 
only two unique values for this command to work properly. 

	 Example 8.18 	 Hospital Epidemiology  Compare the variance of duration of hospital stay by antibi
otic use (1 = yes/2 = no) in the data set Hospital.dat.

	 	 Solution:  We specify:

	 	 . sdtest dur_stay, by(antibio)

 Data set available
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	 	 Variance ratio test

Group Obs Mean Std. Err. Std. Dev. [95% Conf.Interval]

1 7 11.57143 3.32993 8.810167 3.423383 19.71947

2 18 7.444444 .8715632 3.697729 5.605607 9.283282

combined 25 8.6 1.143095 5.715476 6.240767 10.95923

ratio = sd(1)/sd(2)	 f = 5.6767

Ho: ratio = 1	 degrees of freedom = 6, 17

Ha: ratio < 1	 Ha: ratio != 1	 Ha: ratio > 1

Pr(F < f) 0.9979	 2*Pr(F > f) = 0.0043	 Pr(F > f) = 0.0021

The program evaluates the F statistic = 5.6767 with 6 and 17 df. It computes both 
two one-sided p-values (1st and 3rd p-values in the last row, labeled as Pr(F < f) and  
Pr(F > f), respectively) and a two-sided p-value (listed in the last row as  
2 × Pr(F > f) = 0.0043).

Thus, the variance of duration of stay is significantly different between antibiotic 
users and nonusers .

In this section, we have introduced the F test for the equality of two variances. 
This test is used to compare variance estimates from two normally distributed sam-
ples. If we refer to the flowchart (Figure 8.13, p. 321), then starting from position 1 
we answer yes to (1) two-sample problem? and (2) underlying distribution normal 
or can central-limit theorem be assumed to hold? and no to (3) inferences concern-
ing means? and yes to (4) inferences concerning variances? This leads us to the box 
labeled “Two-sample F test to compare variances.” Be cautious about using this test 
with nonnormally distributed samples.

	 8.7	 T w o - S a m p l e  t  Te  s t  f o r  I n d e p e n d e n t 

S a m p l e s  w i t h  U n e q u a l  V a r i a n c e s

The F test for the equality of two variances from two independent, normally dis-
tributed samples was presented in Equation 8.15. If the two variances are not sig-
nificantly different, then the two-sample t test for independent samples with equal 
variances outlined in Section 8.4 can be used. If the two variances are significantly 
different, then a two-sample t test for independent samples with unequal variances, 
which is presented in this section, should be used.

Specifically, assume there are two normally distributed samples, where the 
first sample is a random sample of size n1 from an N( , )µ σ1 1

2  distribution and the  
second sample is a random sample from an N( , )µ σ2 2

2  distribution, and σ σ1
2

2
2≠ . We 

again wish to test the hypothesis H0: µ1 = µ2 vs. H1: µ1 ≠ µ2. Statisticians refer to this  
problem as the Behrens-Fisher problem.

It still makes sense to base the significance test on the difference between the 
sample means x x1 2− . Under either hypothesis, X1 is normally distributed with mean 
µ1 and variance σ1

2
1n  and X2 is normally distributed with mean µ2 and variance

σ2
2

2n . Hence it follows that

	 Equation 8.17	 X X N
n n1 2 1 2

1
2

1

2
2

2
− − +







∼ µ µ σ σ
,
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Under H0, µ1 − µ2= 0. Thus, from Equation 8.17,

	 Equation 8.18	 X X N
n n1 2

1
2

1

2
2

2
0− +







∼ ,
σ σ

If σ1
2 and σ2

2 were known, then the test statistic

	 Equation 8.19	 z x x
n n

= −( ) +1 2
1
2

1

2
2

2

σ σ

could be used for the significance test, which under H0 would be distributed as an 
N(0,1) distribution. However, σ1

2 and σ2
2 are usually unknown and are estimated by s1

2 
and s2

2, respectively (the sample variances in the two samples). Notice that a pooled 
estimate of the variance was not computed as in Equation 8.10 because the variances 
σ σ1

2
2
2,( ) are assumed to be different. If s1

2 is substituted for σ1
2 and s2

2 for σ2
2 in Equa-

tion 8.19, then the following test statistic is obtained:

	 Equation 8.20	 t x x s n s n= −( ) +1 2 1
2

1 2
2

2

The exact distribution of t under H0 is difficult to derive. However, several approxi-
mate solutions have been proposed that have appropriate type I error. The Satterth-
waite approximation is presented here. Its advantage is its easy implementation 
using the ordinary t tables [1].

	 Equation 8.21	 �Two-Sample t Test for Independent Samples with Unequal Variances 	
(Satterthwaite’s Method)

		  (1)	 Compute the test statistic

			   t
x x

s
n

s
n

= −

+

1 2

1
2

1

2
2

2

		  (2)	 Compute the approximate degrees of freedom d’, where

			   ′ =
+( )

( ) −( ) + ( ) −
d

s n s n

s n n s n n

1
2

1 2
2

2
2

1
2

1
2

1 2
2

2
2

21 11( )

		  (3)	 Round d′ down to the nearest integer d″.

			   If  t > td″, 1−α/2	 or	 t < −td″, 1−α/2

			   then reject H0.

			   If  −td″, 1−α/2 ≤ t ≤ td″, 1−α/2

			   then accept H0.

The acceptance and rejection regions for this test are illustrated in Figure 8.8.
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Similarly, the approximate p-value for the hypothesis test can be computed as 
follows.

	 Equation 8.22	 �Computation of the p-Value for the Two-Sample t Test for Independent Samples 	
with Unequal Variances (Satterthwaite Approximation)

		  Compute the test statistic

			 

t
x x

s
n

s
n

= −

+

1 2

1
2

1

2
2

2

		  If t ≤ 0, then p = 2 × (area to the left of t under a td” distribution)

		  If t > 0, then p = 2 × (area to the right of t under a td” distribution)

		  where d″ is given in Equation 8.21.

		  Computation of the p-value is illustrated in Figure 8.9.

	 Example 8.19 	 Cardiovascular Disease, Pediatrics  Consider the cholesterol data in Example 8.13. 
Test for the equality of the mean cholesterol levels of the children whose fathers 
have died from heart disease vs. the children whose fathers do not have a history of 
heart disease.

	 	 Solution:  We have already tested for equality of the two variances in Example 8.17 
and found them to be significantly different. Thus the two-sample t test for unequal 
variances in Equation 8.21 should be used. The test statistic is

		
t = −

+
= =207 3 193 4

35 6 100 17 3 74

13 9
4 089

3 4
2 2

. .

. .

.
.

. 00

	Fi gure 8.8	 Acceptance and rejection regions for the two-sample t test for independent 	
samples with unequal variances

–td", 1 – α/2 td", 1 – α/2
0

t < – td", 1 – α/2
Rejection region

t > td", 1 – α/2
Rejection region

Acceptance region

Value

td" distribution = approximate distribution of t in Equation 8.21 under H0

0.0

Fr
eq

u
en

cy

0.4

0.3

0.2

0.1

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



	 8.7      Two-Sample t Test for Independent Samples with Unequal Variances              301

The approximate degrees of freedom are now computed:

		

′ =
+( )

( ) −( ) + ( ) −
d

s n s n

s n n s n n

1
2

1 2
2

2
2

1
2

1
2

1 2
2

2
2

21 11

35 6 100 17 3 74

35 6 100 99 17 3

2 2 2

2 2 2

( )

=
+( )

( ) +

. .

. . 774 73

16 718
1 8465

151 42

2

( )
= =.

.
.

Therefore, the approximate degrees of freedom = d″ = 151. If the critical- 
value method is  used, note that t  =  3.40 > t 120,.975 =  1.980 > t 151,.975.  
Alternatively, we can use the qt command of R to evaluate t151,.975 directly as follows:

> qt(0.975, 151)

[1] 1.975799

t 0

p/2

td" distribution
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If t = (x1 – x2)/  s1/n1 + s2/n2 ≤ 0, then p = 2 ×
(area to the left of t under a td" distribution)

0.0

Fr
eq

u
en

cy

0.4

0.3

0.2

0.1

t0

Value

0.0

Fr
eq

u
en

cy

0.4

0.3

0.2

0.1

2 2

If t = (x1 – x2)/  s1/n1 + s2/n2 > 0, then p = 2 ×
(area to the right of t under a td" distribution)

2 2

p/2

	Fi gure 8.9	 Computation of the p-value for the two-sample t test for independent samples 	
with unequal variances
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Thus, since t = 3.40 > 1.976, we can reject H0 using a two-sided test at the 5% level. 
To obtain the exact p-value, we use the pt command of R as follows:

> p.value < -2 * (1 - pt(3.40, 151))

> p.value

[1] 0.0008622208

Thus, the two-sided p-value = 0.0009.

We conclude that mean cholesterol levels in children whose fathers have died from 
heart disease are significantly higher than mean cholesterol levels in children of 
fathers without heart disease. It would be of great interest to identify the cause of this 
difference; that is, whether it is due to genetic factors, environmental factors such as 
diet, or both.

In this chapter, two procedures for comparing two means from independent, 
normally distributed samples have been presented. The first step in this process is 
to test for the equality of the two variances, using the F test in Equation 8.15. If this 
test is not significant, then use the t test with equal variances; otherwise, use the  
t test with unequal variances. This overall strategy is illustrated in Figure 8.10.

Perform F test
for the equality
of two variances
in Equation 8.15

Perform t test
assuming unequal variances

in Equation 8.21

Perform t test
assuming equal variances

in Equation 8.11

Significant Not significant

	Fi gure 8.10	 Strategy for testing for the equality of means in two independent, 	
normally distributed samples

Using the Computer to Perform the Two-Sample t Test with 
Unequal Variances
Since the computation of the degrees of freedom used for the two-sample t test with 
unequal variances in Equation 8.21 is tedious, it is advantageous to use a computer 
program to perform this test. The ttest command of Stata can be used for this pur-
pose. The syntax is as follows:

ttest depvar, by (groupvar) unequal

depvar is the main variable of interest, while groupvar is a variable with two catego-
ries that defines the two groups to be compared.

	 Example 8.20 	 Hospital Epidemiology  Compare the mean duration of hospital stay between anti-
biotic users and nonantibiotic users in HOSPITAL.DAT.

	 	 Solution:  We have already shown that the variance of the duration of hospitalization 
is significantly different between the two groups in Example 8.18. Hence, we use 
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the two-sample t test with unequal variances based on the ttest command of Stata.  
The syntax is as follows:

ttest dur_stay, by(antibio) unequal

The results are as follows:

. ttest dur_stay, by(antibio) unequal

Two-sample t test with unequal variances

Group Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

1  7 11.57143 3.32993 8.810167  3.423383 19.71947

2 18   7.444444  .8715632 3.697729  5.605607  9.283282

combined 25   8.6 1.143095 5.715476  6.240767 10.95923

diff   4.126984 3.442101 -4.05132 12.30529

diff = mean(1) - mean(2)	 t = 1.1990

Ho: diff = 0	 Satterthwaite’s degrees of freedom = 6.8389

Ha: diff < 0	 Ha: diff != 0	 Ha: diff > 0

Pr(T < t) = 0.8648	 Pr(T>t) = 0.2704	 Pr(T > t) = 0.1352

We see that the two-sided p-value given under Pr(|T| > |t|) in the last row is 
0.2704. Hence, the means are not significantly different.

Using similar methods to those developed in Section 8.5, we can show that a 
two-sided 100% × (1 − α) CI for the underlying mean difference µ1 − µ2 in the case of 
unequal variances is given as follows:

	 Equation  8.23 	 Two-Sided 100% × (1 − α) CI for µ µ σ1 2 1
2

2
2− ( )σ ≠

		    x x t s n s n x x td d1 2 1 2 1
2

1 2
2

2 1 2 1− − + − +′′ − ′′ −, / , /,α α 22 1
2

1 2
2

2s n s n+( )
where d″ is given in Equation 8.21.

	 Example 8.21 	 Infectious Disease  Using the data in Example 8.20, compute a 95% CI for the mean 
difference in duration of hospital stay between patients who do and do not receive 
antibiotics.

	 	 Solution:  The 95% CI is given by

		

11 571 7 444 8 810 7 3 698 18

1

6 975
2 2. . . . ,,.−( ) − +

 t

11 571 7 444 8 810 7 3 698 18

4

6 975
2 2. . . .,.−( ) + + 



=

t

.. . . , . . .

.

127 2 447 3 442 4 127 2 447 3 442

4 1

− ( ) + ( )[ ]
= 227 8 423 4 127 8 423 4 30 12 55− +( ) = −( ). , . . . , .
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The results differ slightly from those given by Stata because Stata uses a frac-
tional df (6.8) for the t distribution, while in Equation 8.23, the df is truncated down 
to the nearest integer (6).

In this section, we have introduced the two-sample t test for independent sam-
ples with unequal variances. This test is used to compare the mean level of a nor-
mally distributed random variable (or a random variable with samples large enough 
so the central-limit theorem can be assumed to hold) between two independent 
samples with unequal variances. If we refer to the flowchart (Figure 8.13, p. 321), 
then starting from position 1 we answer yes to the following five questions: (1) two-
sample problem? (2) underlying distribution normal or can central-limit theorem 
be assumed to hold? (3) inference concerning means? (4) are samples independent? 
and (5) are variances of two samples significantly different? This leads us to the box 
labeled “Use two-sample t test with unequal variances.”

R E V I E W  QU  E ST  I ONS    8 B

1	 What is an F distribution used for? How does it differ from a t distribution?

2	 Suppose we wish to compare the mean level of systolic blood pressure (SBP)  
between Caucasian and African American children. The following data were  
obtained from the Bogalusa Heart Study for 10- to 14-year-old girls:

	T able 8.5	 Comparison of mean SBP of Caucasian and African American 10- to 	
14-year-old girls

	 Mean	 sd	 N

Caucasian	 104.4	 9.0	 1554

African American	 104.7	 9.3	 927

	 (a)	 What test can be used to compare the means of the two groups?

	 (b)	 Perform the test in Review Question 8B.2a, and report a p-value (two-tailed). 
[Hint: F926,1553,.975  =  1.121. Also, for d ≥ 200, assume that a td distribution is the 
same as an N(0,1) distribution.]

	 (c)	 What is a 95% CI for the mean difference in SBP between the two ethnic 
groups?

3	 The following data comparing SBP between Caucasian and African American 
young adult women were obtained from the same study:

	T able 8.6	 Comparison of mean SBP of Caucasian and African American 30- to 	
34-year-old women

	 Mean	 sd	 N

Caucasian	 107.7	 9.5	 195

African American	 115.3	 14.9	 96

		  �Answer the same questions as in Review Question 8B.2a, b, and c. (Note:	
F95,194,.975 = 1.402.)

R
 E
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 I 

E 
W
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	 8.8	 C a s e  S t u d y :  E f f e c t s  o f  Le  a d  E x p o s u r e  o n 

Ne  u r o l o g i c  a n d  P s y c h o l o g i c a l  F u n c t i o n 

i n  C h i l d r e n

	 Example 8.22 	 Environmental Health, Pediatrics  In Section 2.9, we described a study performed in El 
Paso, Texas, that examined the association between lead exposure and developmental 
features in children [2]. There are different ways to quantify lead exposure. One 
method used in the study consisted of defining a control group of children whose 
blood-lead levels were < 40 µg/100 mL in both 1972 and 1973 (n = 78) and an exposed 
group of children who had blood-lead levels ≥ 40 µg/100 mL in either 1972 or 1973 (n 
= 46). Two important outcome variables in the study were the number of finger–wrist 
taps per 10 seconds in the dominant hand (a measure of neurologic function) as well 
as the Wechsler full-scale IQ score (a measure of intellectual development). Because 
only children ≥ 5 years of age were given the neurologic tests, we actually have 35 
exposed and 64 control children with finger–wrist tapping scores. The distributions 
of these variables by group were displayed in a box plot in Figures 2.9 and 2.10, 
respectively. The distributions appeared to be reasonably symmetric, particularly in 
the exposed group, although there is a hint that a few outliers may be present. (We 
discuss detection of outliers more formally in Section 8.10.) We also note from these 
figures that the exposed group seems to have lower levels than the control group for 
both these variables. How can we confirm whether this impression is correct?

One approach is to use a two-sample t test to compare the mean level of the 
exposed group with the mean level of the control group on these variables. We used 
the PROC TTEST of SAS procedure for this purpose, as shown in Tables 8.7 and 8.8. 

	T able 8.7	 �Comparison of mean finger-wrist tapping scores for the exposed vs. control group using 
PROC TTEST of SAS 

The SAS System

The TTEST Procedure

Variable:  maxfwt

	 group	 N	 Mean	 Std Dev	 Std Err	 Minimum	 Maximum

	 Control	 64	 54.4375	 12.0566	 1.5071	 13.0000	 84.0000

	 Exposed	 35	 47.4286	 13.1558	 2.2237	 13.0000	 83.0000

	 Diff (1-2)		  7.0089	 12.4529	 2.6180		

	 group	 Method	 Mean	 95% CL Mean		  Std Dev	 95% CL Std Dev

	 Control		  54.4375	 51.4259	 57.4491	 12.0566	 10.2698	14.6020

	 Exposed		  47.4286	 42.9094	 51.9478	 13.1558	 10.6414	17.2368

	 Diff (1-2)	 Pooled	  7.0089	  1.8130	 12.2049	 12.4529	 10.9201	14.4902

	 Diff (1-2)	 Satterthwaite	 7.0089	  1.6440	 12.3739			 

	 Method	 Variances	 DF	 t Value	 Pr > |t|

	 Pooled	 Equal	 97	 2.68	 0.0087

	 Satterthwaite	 Unequal	 65.004	 2.61	 0.0113

Equality of Variances

	 Method	 Num DF	 Den DF	 F Value	 Pr > F

	 Folded F	 34	 63	 1.19	 0.5408
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The program actually performs three different significance tests each time the t test 
procedure is specified. In Table 8.7, we analyze the mean finger–wrist tapping scores. 
Following the flowchart in Figure 8.10, we first perform the F test for equality of two 
variances. In Table 8.7, the F statistic (labeled as F Value) = 1.19 with 34 and 63 df. The 
p-value (labeled Pr > F ) equals 0.5408, which implies we can accept H0 that the vari-
ances are not significantly different. Therefore, following Figure 8.10, we should per-
form the two-sample t test with equal variances (Equation 8.11). The t statistic found 
in the t Value column and the Equal row is 2.68 with 97 df. The two-tailed p-value, 
found in the column headed Pr > |t| and the Equal row is 0.0087, which implies there 
is a significant difference in mean finger–wrist tapping scores between the exposed 
and the control groups, with the exposed group having lower mean scores. If there 
had been a significant difference between the variances from the F test—that is, if  
(Pr > F ) < 0.05—then we would use the two-sample t test with unequal variances. 
The program automatically performs both t tests and lets the user decide which to 
use. If a two-sample t test with unequal variances were used, then referring to the 
Unequal row, the t statistic equals 2.61 (as given in Equation 8.21) with 65 df (d’ in 
Equation 8.21) with a two-sided p-value equal to 0.0113. The program also provides 
the mean, standard deviation (Std Dev), and standard error (Std Err) for each group. 
Referring to Table 8.8, for the analysis of the full-scale IQ scores, we see that the 
p-value for the F test is 0.0982, which is not statistically significant. Therefore, we 
again use the equal variance t test. The t statistic is 1.83 with 122 df, with two-tailed 
p-value equal to 0.0692. Thus, the mean full-scale IQ scores for the two groups do 
not differ significantly.

The SAS code used to generate Tables 8.7 and 8.8 is given in Table 8.9. The class 
statement tells SAS to treat the variable group as a categorical variable.

	T able 8.8	 �Comparison of mean full-scale IQ scores for the exposed vs. control group using PROC TTEST 	
of SAS

The SAS System

The TTEST Procedure

Variable:  iqf

	 group	 N	 Mean	 Std Dev	 Std Err	 Minimum	 Maximum

	 Control	 78	 92.8846	 15.3445	 1.7374	 50.0000	 141.0

	 Exposed	 46	 88.0217	 12.2065	 1.7998	 46.0000	 114.0

	 Diff (1-2)		  4.8629	 14.2676	 2.6524		

	 group	 Method	 Mean	 95% CL Mean		  Std Dev	 95% CL Std Dev

	 Control		  92.8846	 89.4250	 96.3443	 15.3445	 13.2570	18.2184

	 Exposed		  88.0217	 84.3968	 91.6466	 12.2065	 10.1246	15.3744

	 Diff (1-2)	 Pooled	  4.8629	 -0.3878	 10.1135	 14.2676	 12.6800	16.3134

	 Diff (1-2)	 Satterthwaite	 4.8629	 -0.0939	 9.8197			 

	 Method	 Variances	 DF	 t Value	 Pr > |t|

	 Pooled	 Equal	 122	 1.83	 0.0692

	 Satterthwaite	 Unequal	 111.41	 1.94	 0.0544

Equality of Variances

	 Method	 Num DF	 Den DF	 F Value	 Pr > F

	 Folded F	 77	 45	 1.58	 0.0982
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	 8.9	 E s t i m at i o n  o f  S a m p l e  Si  z e  a n d  P o w e r 

f o r  C o m p a r i n g  T w o  Me  a n s

Estimation of Sample Size
Methods of sample-size estimation for the one-sample z test for the mean of a nor-
mal distribution with known variance were presented in Section 7.7. This section 
covers estimates of sample size that are useful in planning studies in which the 
means of two samples are to be compared.

	 Example 8.23 	 Hypertension  Consider the blood-pressure data for OC and non-OC users in 
Example 8.9 (p. 286) as a pilot study conducted to obtain parameter estimates to 
plan for a larger study. Suppose we assume the true blood-pressure distribution of 
35- to 39-year-old OC users is normal with mean µ1 and variance σ1

2. Similarly, for 
non-OC users we assume the distribution is normal with mean µ2 and variance σ2

2. 
We wish to test the hypothesis H0: µ1 = µ2 vs. H1: µ1 ≠ µ2. How can we estimate the 
sample size needed for the larger study?

Suppose we assume σ1
2 and σ2

2 are known and we anticipate equal sample sizes in 
the two groups. To conduct a two-sided test with significance level α and power of 
1 – β, the appropriate sample size for each group is as follows:

	 Equation 8.24	 Sample Size Needed for Comparing the Means of Two Normally Distributed 	
Samples of Equal Size Using a Two-Sided Test with Significance Level α and 
Power 1 - β

		  n
z z

=
+( ) +( )

∆
− −σ σ α β1

2
2
2

1 2 1
2

2
/   = sample size for each group

		  where ∆ = |µ2 – µ1|. The means and variances of the two respective groups are (µ1, σ1
2) 

and (µ2, σ2
2).

In words, n is the appropriate sample size in each group to have a probability of 
1 – β of finding a significant difference based on a two-sided test with significance 
level α, if the absolute value of the true difference in means between the two groups 
is ∆ = |µ2 – µ1|, and a two-sided type I error of a is used.

	 Example 8.24 	 Hypertension  Determine the appropriate sample size for the study proposed  
in Example 8.23 using a two-sided test with a significance level of .05 and a power 
of .80.

	T able 8.9	 SAS code used to generate Tables 8.7 and 8.8

proc ttest;

class group;

var maxfwt;

proc ttest;

class group;

var iqf;
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	 	 Solution:  In the small study, x1= 132.86, s1 = 15.34, x2= 127.44, and s2 = 18.23.
If the sample estimates (x1, s1

2, x2, s2
2) are used as estimates of the population pa-

rameters (µ1, σ1
2, µ2, σ2

2), then ensuring an 80% chance of finding a significant differ-
ence using a two-sided significance test with α = .05 would require a sample size of

		  n = +( ) +( ) −(15 34 18 23 1 96 0 84 132 86 127 442 2 2. . . . . . )) =2 151 5.

or 152 people in each group. Not surprisingly, no significant difference was found in 
Example 8.10 with sample sizes of 8 and 21 in the two groups, respectively.

In many instances an imbalance between the groups can be anticipated and it 
can be predicted in advance that the number of people in one group will be k times 
the number in the other group for some number k ≠ 1. In this case, where n2 = kn1, 
the appropriate sample size in the two groups for achieving a power of 1 – β using a 
two-sided level α significance test is given by the following formulas:

	 Equation 8.25	 Sample Size Needed for Comparing the Means of Two Normally Distributed 	
Samples of Unequal Size Using a Two-Sided Test with Significance Level α and 
Power 1 - β

		  n
k z z

1
1
2

2
2

1 2 1
2

2=
+( ) +( )

∆
− −σ σ α β/

 = sample size of first group

		  n
k z z

2
1
2

2
2

1 2 1
2

2=
+( ) +( )

∆
− −σ σ α β/  = sample size of second group

where ∆ = |µ2 – µ1|; (µ1, σ1
2), (µ2, σ2

2), are the means and variances of the two  
respective groups and k = n2/n1 = the projected ratio of the two sample sizes.

Note that if k = 1, then the sample-size estimates given in Equation 8.25 are the same 
as those in Equation 8.24.

	 Example 8.25 	 Hypertension  Suppose we anticipate twice as many non-OC users as OC users enter-
ing the study proposed in Example 8.23. Project the required sample size if a two-
sided test is used with a 5% significance level and an 80% power is desired.

	 	 Solution:  If Equation 8.25 is used with µ1 = 132.86, σ1 = 15.34, µ2 =127.44, σ2 = 
18.23, k = 2, α = .05, and 1 – β = .8, then in order to achieve an 80% power in the 
study using a two-sided significance test with α = .05, we need to enroll

		
n1

2 2 215 34 18 23 2 1 96 0 84

132 86 127
=

+( ) +( )
−

. . / . .

. .444
107 1 1082( )

= . , or OC users

and n2 = 2(108) = 216 non-OC users

If the variances in the two groups are the same, then for a given α, β, the small-
est total sample size needed is achieved by the equal-sample-size allocation rule in 
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Equation 8.24. Thus in the case of equal variances, the sample sizes in the two 
groups should be as nearly equal as possible.

Finally, to perform a one-sided rather than a two-sided test, we substitute α for 
α/2 in Equations 8.24 and 8.25.

Using the Computer to Estimate Sample Size for Comparing 
Means from Two Independent Samples
The sampsi command of Stata can be used for this purpose. The syntax is as follows:

sampsi m1 m2, sd1(aa) sd2(bb) alpha(0.xx) power(0.yy)

where

m1, m2 are the hypothesized means of groups 1 and 2 under H
1
,

aa, bb are the hypothesized standard deviations within groups 1 

and 2 under either H
0
 or H

1
,

0.xx is the type I error (α),

0.yy is the power (1 - β).

By default the sample size for a two-sided test will be performed. If a one-sided test is 
desired, then add the option one-sided anywhere after the comma. Also, by default 
an equal sample size per group is used. If sample size for group 2 (n2) is k times as 
large as for group 1 (n1), then add ratio(k) anywhere after the comma.

	 Example 8.26 	 Ophthalmology  Suppose a new drug is proposed to lower intra-ocular pressure (IOP) 
among people with glaucoma. It is anticipated that mean IOP will drop by 8 mm 
Hg after 1 month with the new drug. The comparison group will get the standard 
drug, which is anticipated to have a mean drop in IOP of 5 mm Hg after 1 month. It 
is expected that the sd of change  within each group will be 10 mm Hg. How many 
subjects need to be enrolled to achieve 90% power if an equal sample size is planned 
within each group and a two-sided test with α = 0.05 will be used?

	 	 Solution:  We use the sampsi command of Stata with syntax:

	 sampsi -8  -5, sd1(10) sd2(10) alpha(0.05)  power(0.90)

The results are as follows:

Estimated sample size for two-sample comparison of means

Test Ho: m1 = m2, where m1 is the mean in population 1

	 and m2 is the mean in population 2

Assumptions:

	 alpha =	 0.0500 (two-sided)

	 power =	 0.9000

	 m1 =	 -8

	 m2 =	 -5
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	 sd1 = 10

	 sd2 = 10

	 n2/n1 = 1.00

Estimated required sample sizes:

	 n1 = 234

	 n2 = 234

Thus, we need to enroll 234 patients per group to achieve 90% power, or 468  
patients in total.

Estimation of Power
In many situations, a predetermined sample size is available for study and how much 
power the study will have for detecting specific alternatives needs to be determined.

	 Example 8.27 	 Hypertension  Suppose 100 OC users and 100 non-OC users are available for study 
and a true difference in mean SBP of 5 mm Hg is anticipated, with OC users having 
the higher mean SBP. How much power would such a study have assuming that the 
variance estimates in the pilot study in Example 8.9 (p. 286), i.e., σ1 = sd(OC users)  
= 15.34, σ2 = sd (non-OC users) = 18.23 are correct?

Assuming σ1
2 and σ2

2 are known, the power using a two-sided test with signifi-
cance level α is given by Equation 8.26.

	 Equation 8.26	 Power for Comparing the Means of Two Normally Distributed Samples Using a 	
Significance Level α

		  To test the hypothesis H0: µ1 = µ2 vs. H1: µ1 ≠ µ2 for the specific alternative |µ1 - µ2| = ∆, 
with significance level α,

		  	
Power = − + ∆

+









−Φ z

n n
1 2

1
2

1 2
2

2
α

σ σ
/

where (µ1, σ1
2), (µ2, σ2

2) are the means and variances of the two respective groups 
and n1, n2 are the sample sizes of the two groups.

	 Example 8.28 	 Hypertension  Estimate the power available for the study proposed in Example 8.27 
using a two-sided test with significance level = .05.

	 	 Solution:  From Example 8.27, n1 = n2= 100, ∆ = 5, σ1 = 15.34, σ2 = 18.23, and α = .05. 
Therefore, from Equation 8.26,

		

Power = − +
+











=Φ z.
. .

975 2 2

5

15 34 100 18 23 100
ΦΦ

Φ Φ

− +





= − +( ) = (

1 96
5

2 383

1 96 2 099 0 139

.
.

. . . )) = .555

Thus, there is a 55.5% chance of detecting a significant difference using a two-sided 
test with significance level = .05.
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To calculate power for a one-sided rather than a two-sided test, simply substitute 
α for α/2 in Equation 8.26.

Using the Computer to Estimate Power for Comparing Means 
from Two Independent Samples
The sampsi command of Stata can also be used for this purpose. The syntax is as 
follows:

sampsi m1 m2, sd1(aa) sd2(bb) alpha(0.xx) n1(yy) n2(zz)

where

m1, m2 are the hypothetical means of groups 1 and 2 under H1,

aa, bb are the hypothetical standard deviations of groups 1 and 2 under either  

H0 or H1,

0.xx is the type I error,

yy, zz are the sample sizes of groups 1 and 2.

By default, power for a two-sided test will be performed. If power for a one-sided 
test is required, then add the word one-sided anywhere after the comma.

	 Example 8.29 	 Ophthalmology  Suppose the study in Example 8.26 is proposed. The investigators 
can enroll 200 patients per group. How much power will the study have if a two-
sided test is used with a = 0.05?

	 	 Solution:  In this case µ1 = -8, µ2 = -5, σ1 = σ2 = 10, a = 0.05, n1 = n2 = 200. Thus, we 
use the syntax:

		 sampsi -8 -5, sd1(10) sd2(10) alpha(0.05) n1(200) n2(200) 

The results are as follows:

Estimated power for two-sample comparison of means

		 Test Ho: m1 = m2, where m1 is the mean in population 1

		 and m2 is the mean in population 2

Assumptions:

		 alpha = 0.0500  (two-sided)

		 m1 = -8

		 m2 = -5

		 sd1 = 10

		 sd2 = 10

sample size n1 = 200

		 n2 = 200

		 n2/n1 = 1.00
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Estimated power:

		 power = 0.8508

Thus, the study would have 85% power under these assumptions.

	 8.10	 T h e  T r e at m e n t  o f  O u t l ie  r s

We saw that the case study in Section 8.8 suggested there might be some outliers in 
the finger–wrist tapping and IQ scores. Outliers can have an important impact on 
the conclusions of a study. It is important to definitely identify outliers and either 
exclude them outright or at least perform alternative analyses with and without the 
outliers present. Therefore, in this section we study some decision rules for outlier 
detection.

We refer to Figures 8.11 and 8.12, which provide stem-and-leaf and box plots 
from SAS of the finger–wrist tapping scores and the full-scale IQ scores for the 
control group and the exposed group, respectively. According to the box plots in 
Figure 8.11, there are potential outlying finger–wrist tapping scores (denoted by 
zeros in the plot) of 13, 23, 26, and 84 taps per 10 seconds for the control group and 
13, 14, and 83 taps per 10 seconds for the exposed group. According to the box plots 
in Figure 8.12, there are potential outlying full-scale IQ scores of 50, 56, 125, 128, 
and 141 for the control group and 46 for the exposed group. All the potentially out-
lying values are far from the mean in absolute value. Therefore, a useful way to quan-
tify an extreme value is by the number of standard deviations that a value is from 
the mean. This statistic applied to the most extreme value in a sample is called the  
Extreme Studentized Deviate and is defined as follows.
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	Fi gure 8.11	 Stem-and-leaf and box plots of finger–wrist tapping score by group, El Paso Lead Study
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	De finition 8.7	 The Extreme Studentized Deviate (or ESD statistic) = max .,...,i n ix x s= −1

	 Example 8.30 	 Compute the ESD statistic for the finger–wrist tapping scores for the control group.

	 	 Solution:  From Table 8.7 (p. 305), we see that x = 54.4, s = 12.1. From Figure 8.11a we 
note that the distances from the mean for the smallest and largest values are |13 − 54.4|  
= 41.4 and |84 − 54.4| = 29.6, respectively. Therefore, because 41.4 > 29.6, it follows 
that ESD = 41.4/12.1 = 3.44.

How large must the ESD statistic be for us to conclude that the most extreme 
value is an outlier? Remember that in a sample of size n without outliers, we would 

expect the largest value to correspond approximately to the 100
1

% ×
+







n
n

th per-

centile. Thus, for a sample of size 64 from a normal distribution this would corre-
spond to approximately the 100 × 64/65th percentile ≈ 98.5th percentile = 2.17. If 
an outlier is present, then the ESD statistic will be larger than 2.17. The appropriate 
critical values depend on the sampling distribution of the ESD statistic for samples 
of size n from a normal distribution. Critical values from Rosner [3] based on an ap-
proximation provided by Quesenberry and David [4] are presented in Table 9 in the 
Appendix. The critical values depend on the sample size n and the percentile p. The 
pth percentile for the ESD statistic based on a sample of size n is denoted by ESDn,p.

	Fi gure 8.12	 Stem-and-leaf and box plots of full-scale IQ by group, El Paso Lead Study
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	 Example 8.31 	 Find the upper 5th percentile for the ESD statistic based on a sample of size 50.

	 	 Solution:  The appropriate percentile = ESD50,.95 is found by referring to the 50 row 
and the .95 column and is 3.13.

For values of n that are not in Table 9, we can obtain critical values from the 
formula

	 Equation 8.27	
ESD

t n

n n t
n

( 1)

( 2 )
, where p 1 [ / (2 )].

n p2,

n
n p

,1
2,

2
=

−

− +
= − α

−

−α
−

	 Example 8.32 	 Find the upper 95th percentile for the ESD statistic for n = 130.

	 	 Solution:  In this case, since n = 130 is not in Table 9, we use Equation 8.27. We 
have n = 130, α = 0.05, p = 1 - .05/260 = 0.9998. We use the following R program to 
evaluate Equation 8.27.

R program to evaluate ESD130,.95

p <- 1 - .05/(2*130)

> p

[1] 0.9998077

> x<- qt(p,128)

> x

[1] 3.647064

> ESD<- x*129/sqrt(130*(128 + x2))

> ESD

[1] 3.471272

Thus, the 95th percentile = 3.471 for n = 130.

	 Equation 8.28	 ESD Single-Outlier Procedure

		  Suppose we have a sample x x Nn1
2, . . ., ( , )∼ µ σ  but feel that there may be some 

outliers present. To test the hypothesis, H0: that no outliers are present vs. H1: 
that a single outlier is present, with a type I error of α,

		  (1)	� We compute the ESD =  max ,...,i n
ix x
s=
−

1 . The sample value xi, such that  

ESD = 
x x

s
i −

 is referred to as x(n).

		  (2)	 (a) �We refer to Table 9 in the Appendix to obtain the critical value = ESDn,1 − α.

			   (b) If the value of n does not appear in Table 9, then use the formula 

			   =
−

− +
= − α

−

−α
−ESD

t n

n n t
n

( 1)

( 2 )
, where p 1 [ / (2 )]

n p1,

n
n p

,1
2,

2

		  (3)	� If ESD > ESDn,1−α, then we reject H0 and declare that x(n) is an outlier. If ESD ≤ 
ESDn,1−α, then we declare that no outliers are present.
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	 Example 8.33 	 Evaluate whether outliers are present for the finger–wrist tapping scores in the  
control group.

	 	 Solution:  Following Equation 8.28, we compute the ESD test statistic. From 
Example 8.30, we have ESD = 3.44 and n = 64 with 13 being the most extreme 
value. To assess statistical significance with α = .05, we refer to Appendix Table 9. 
From Table 9, ESD70,.95 = 3.26. Because ESD = 3.44 > ESD70,.95 = 3.26 > ESD64,.95, it 
follows that p < .05. Alternatively using R and Equation 8.27, we obtain ESD64.95 = 
3.224. Since ESD = 3.44 > 3.224 at follows that p < 0.05. Therefore, we infer that the  
finger–wrist tapping score of 13 taps per 10 seconds is an outlier.

In some instances, when multiple outliers are present, it is difficult to identify 
specific data points as outliers using the single-outlier detection procedure. This is 
because the standard deviation can get inflated in the presence of multiple outliers, 
reducing the magnitude of the ESD test statistic in Equation 8.28.

	 Example 8.34 	 Evaluate whether any outliers are present for the finger–wrist tapping scores in the 
exposed group.

	 	 Solution:  Referring to Table 8.7 (p. 305), we see that x s= =47 4 13 2. , . , and n = 35 in 
the exposed group. Furthermore, the minimum and maximum values are 13 and 83, 
respectively. Because 83 47 4 35 6 13 47 4 34 4− = > − =. . . . , it follows that the ESD statis-
tic is 35.6/13.2 = 2.70. From Appendix Table 9, we see that ESD ESD35,.95 = > =2 98 2 70. . . 
Therefore, p > .05, and we accept the null hypothesis that no outliers are present.

The solution to Example 8.34 is unsettling because it is inconsistent with  
Figure 8.11b. It appears that the values 13, 14, and 83 are outliers, yet no outliers  
are identified by the single-outlier procedure in Equation 8.28. The problem is that 
the multiple outliers have artificially inflated the standard deviation. This is called  
the masking problem, because multiple outliers have made it difficult to identify the single  
most extreme sample point as an outlier. This is particularly true if the multiple 
outliers are roughly equidistant from the sample mean, as in Figure 8.11b. To over-
come this problem, we must employ a flexible procedure that can accurately identify 
either single or multiple outliers and is less susceptible to the masking problem. For 
this purpose, we first must determine a reasonable upper bound for the number of 
outliers in a data set. In my experience, a reasonable upper bound for the number of 
possible outliers is min([n/10], 5), where [n/10] is the largest integer ≤ n/ 10. If there 
are more than five outliers in a data set, then we most likely have an underlying 
nonnormal distribution, unless the sample size is very large. The following multiple-
outlier procedure [3] achieves this goal.

	 Equation 8.29	 ESD Many-Outlier Procedure

	 	 	 Suppose x x Nn1
2, . . . , ( , )∼ µ σ  for a large majority of the sample points, but we 

suspect that we may have as many as k outliers, where k = min([n/10], 5), where 
[n/10] is the largest integer ≤ n/10. We wish to have a type I error of α to test the 
hypothesis H0: there are no outliers vs. H1: there are between 1 and k outliers, 
and we would like to use a decision rule that can specifically identify the outli-
ers. For this purpose,

1.	 We compute the ESD statistic based on the full sample = max ,....,i n ix x s= −1 . 
We denote this statistic by ESD(n) and the most outlying data point by x(n).
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		  2.	 We remove x(n) from the sample and compute the mean, standard deviation, 
and ESD statistic from the remaining n − 1 data points. We denote the ESD 
statistic from the reduced sample by ESD(n−1).

3.	 We continue to remove the most outlying sample points and recompute 
the ESD statistic until we have computed k ESD statistics denoted by ESD(n), 
ESD(n−1), . . . , ESD(n − k +1) based on the original sample size of n, and successively 
reduced samples of size n  −  1, . . . , n − k + 1. The most outlying values iden-
tified at each of the k steps are denoted by x(n), x(n−1), . . . , x(n  −  k  +  1).

4.	 The critical values corresponding to the ESD statistics are ESDn, ,1−α  
ESD ESDn n k− − − + −1 1 1 1, ,, . . . , .α α

5.	 We then use the following decision rule for outlier detection:

If ESD ESD( )
, ,n k

n k
− +

− + −>1
1 1 α  then we declare the k values x xn n k( ) ( ), . . . , − +1  as 

outliers

else � If ESD(n–k + 2) > ESDn–k + 2,1– α, then we declare the k – 1 values x(n), . . . ,  
x(n–k + 2) as outliers



else  If ESD(n ) > ESDn,1–α, then we declare one outlier, x(n)

else  If ESD(n) ≤ ESDn,1–α, then we declare no outliers present

Thus, we can declare either 0, 1, . . ., or k sample points as outliers.

6.	 We should use Table 9 from the Appendix to implement this procedure 
only if n ≥ 20.

Note that we must compute all k outlier test statistics ESD(n), ESD(n–1), . . . , ESD(n–k +1) 
regardless of whether any specific test statistic (e.g., ESD(n)) is significant. This procedure 
has good power either to declare no outliers or to detect from 1 to k outliers with little 
susceptibility to masking effects unless the true number of outliers is larger than k.

	 Example 8.35 	 Reanalyze the finger–wrist tapping scores for the exposed group in Figure 8.11b  
using the multiple-outlier procedure in Equation 8.29.

	 	 Solution:  We will set the maximum number of outliers to be detected to be [35/10] = 
3. From Example 8.34, we see that ESD(35) = 2.70 and the most outlying value = x(35) = 
83. We remove 83 from the sample and recompute the sample mean (46.4) and stand-
ard deviation (11.8) from the reduced sample of size 34. Because |13 − 46.4| = 33.4 
> |70 − 46.4| = 23.6, 13 is the most extreme value and ESD(34) = 33.4/11.8 = 2.83. We  
then remove 13 from the sample and recompute the sample mean (47.4) and stan-
dard deviation (10.4) from the reduced sample of size 33. Because |14 − 47.4| = 33.4 
> |70 – 47.4| = 22.6, it follows that ESD(33) = 33.4/10.4 = 3.22.

To assess statistical significance, we first compare 3.22 with the critical value 
ESD33,.95. From Table 9 in the Appendix, we see that ESD(33) = 3.22 > ESD35,.95 = 2.98 
> ESD33,.95. Therefore, p < .05, and we declare the three most extreme values (83, 13, 
and 14) as outliers. Note that although significance was achieved by an analysis of 
the third most extreme value (14), once it is identified as an outlier, then the more 
extreme points (13, 83) are also designated as outliers. Also, note that the results are 
consistent with Figure 8.11b and are different from the results of the single-outlier 
procedure, in which no outliers were declared.
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	 Example 8.36 	 Assess whether any outliers are present for the finger–wrist tapping scores for the 
control group.

	 	 Solution:  Because n = 64, min([64/10], 5) = min(6, 5) = 5. Therefore, we set the 
maximum number of outliers to be detected to 5 and organize the appropriate test 
statistics and critical values in a table (Table 8.10).

	T able 8.10	 Test statistics and critical values for Example 8.36

n	  x 	 s	 x(n)	 ESD(n)	 ESD*n,.95	 p-value

64	 54.4	 12.1	 13	 3.44	 3.224	 <.05
63	 55.1	 10.9	 23	 2.94	 3.218	 NS
62	 55.6	 10.2	 26	 2.90	 3.212	 NS
61	 56.1	 9.6	 84	 2.92	 3.206	 NS
60	 55.6	 8.9	 79	 2.62	 3.200	 NS

*Obtained using R based on Equation 8.27

From Table 8.10 we see that 79, 84, 26, and 23 are not identified as outliers, whereas 
13 is identified as an outlier. Thus we declare one outlier present. This decision is 
consistent with the single-outlier test in Example 8.33.

In general, we should use the multiple-outlier test in Equation 8.29 rather than the 
single-outlier test in Equation 8.28 unless we are very confident there is at most one 
outlier.

The issue remains as to what we should do now that we have identified one outlier 
among the controls and three outliers among the exposed. We have chosen to reana-
lyze the data, using a two-sample t test, after deleting the outlying observations.

	 Example 8.37 	 Reanalyze the finger–wrist tapping score data in Table 8.7 (p. 305) after excluding the 
outliers identified in Examples 8.35 and 8.36.

	 	 Solution:  The t test results after excluding the outliers are given in Table 8.11 using 
PROC TTEST of SAS.

We see that a significant difference remains between the mean finger–wrist tap-
ping scores for the exposed and control groups (p = .003). Indeed, the results are 
more significant than previously because the standard deviations are lower after 
exclusion of outliers, particularly for the exposed group.

We can take several approaches to the treatment of outliers in performing data 
analyses. One approach is to use efficient methods of outlier detection and either 
exclude outliers from further data analyses or perform data analyses with and without 
outliers present and compare results. Another possibility is not to exclude the outliers 
but to use a method of analysis that minimizes their effect on the overall results. One 
method for accomplishing this is to convert continuous variables such as finger–wrist 
tapping score to categorical variables (for example, high = above the median vs. low = 
below the median) and analyze the data using categorical-data methods. We discuss 
this approach in Chapter 10. Another possibility is to use nonparametric methods to 
analyze the data. These methods make much weaker assumptions about the underly-
ing distributions than do the normal-theory methods such as the t test. We discuss 
this approach in Chapter 9. Another approach is to use “robust” estimators of impor-
tant population parameters (such as µ). These estimators give less weight to extreme 
values in the sample but do not entirely exclude them. The subject of robust estima-
tion is beyond the scope of this book. Using each of these methods may result in a loss 
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of power relative to using ordinary t tests if no outliers exist but offer the advantage 
of a gain in power if some outliers are present. In general, there is no one correct way 
to analyze data; the conclusions from a study are strengthened if they are consistently 
found by using more than one analytic technique.

Software to implement the ESD Many-Outlier Procedure in Equation 8.29 in SAS 
is available at http://www.biostat.harvard.edu/~carey/outlier.html.

An example of using this software on identifying outliers in finger–wrist tapping 
score among exposed subjects in LEAD.DAT is given in Table 8.12.

	Table 8.11	 �Comparison of mean finger–wrist tapping scores for the exposed vs. control groups after 
excluding outliers, using the SAS PROC TTEST procedure

The SAS System

The TTEST Procedure

Variable: maxfwt

	 group	 N	 Mean	 Std Dev	 Std Err	 Minimum	 Maximum

	 Control	 63	 55.0952	 10.9349	 1.3777	 23.0000	 84.0000

	 Exposed	 32	 48.4375	 8.5833	 1.5173	 34.0000	 70.0000

	 Diff (1-2)		  6.6577	 10.2114	 2.2167		

	 group	 Method	 Mean	 95% CL Mean		  Std Dev	 95% CL Std Dev

	 Control		  55.0952	 52.3413	 57.8491	 10.9349	 9.3033	 13.2658

	 Exposed		  48.4375	 45.3429	 51.5321	  8.5833	 6.8813	 11.4113

	 Diff (1-2)	 Pooled	 6.6577	  2.2559	 11.0596	 10.2114	 8.9312	 11.9233

	 Diff (1-2)	 Satterthwaite	  6.6577	  2.5768	 10.7387			 

	 Method	 Variances	 DF	 t-Value	 Pr > |t|

	 Pooled	 Equal	 93	 3.00	 0.0034

	 Satterthwaite	 Unequal	 77.011	 3.25	 0.0017

Equality of Variances

	 Method	 Num DF	 Den DF	 F Value	 Pr > F

	 Folded F	 62	 31	 1.62	 0.1424

	T able 8.12	 Use of GESD (Generalized Extreme Studentized Deviate) macro to identify outliers 
in the exposed group of LEAD.DAT (n = 35)

data group2;
	 set lead
	 if group=2;
	 %cloutdt (data=group2, varname = maxfwt, idvar = id, method = gesd, k=3);

There were 35 observations read from the data set WORK.GROUP2.
WHERE maxfwt not = .;

Outlier Values estimated by GESD
Obs     id    maxfwt

1     312      83
2     212      13
3     210      14

Note that a maximum of 3 outliers to be detected was specified by the user (k = 3) and 3 outliers (13,14, and 83) 
were detected by the macro, which is consistent with the results in Example 8.35. However, the macro can be used 
with any value for k where k n.
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	 8.11	 D E R I VAT  I ON   OF   E q u at i o n  8 . 1 3  ( p .  2 9 0 )

From Equation 8.7, if σ is known, then X X N n n1 2 1 2
2

1 21 1− − +∼ [ , ( )]µ µ σ  or, equiva-
lently,

		
X X

n n

N1 2 1 2

1 2

1 1
0 1

− − −( )
+

µ µ

σ
∼ ( , )

If σ is unknown, then σ is estimated by s from Equation 8.10 and

		

X X

S
n n

t
1 1 n n

1 2 1 2

1 2

21 2

( )− − µ − µ

+
∼ + −

To construct a two-sided 100% × (1 − α) CI, note that
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This can be written in the form of two inequalities:
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Each inequality is multiplied by S
n n
1 1

1 2
+  and µ1 − µ2 is added to both sides to obtain

		  t S
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++ − −α  is added to both sides of the first inequality and sub-

tracted from both sides of the second inequality to obtain
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If these two inequalities are combined, the required CI is obtained.
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If the sample means x1, x2 are substituted for the random variables X1, X X N n n1 2 1 2
2

1 21 1− − +∼ [ , ( )]µ µ σ and the sam-
ple standard deviation s is substituted for S, then the result in equation 8.13 is obtained.
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	 8.12	 S u m m a r y

In this chapter, we studied methods of hypothesis testing for comparing the means 
and variances of two samples that are assumed to be normally distributed. The 
basic strategy is outlined in the flowchart in Figure 8.13, which is an extract from 
the larger flowchart in the back of this book (pp. 895–900). Referring to 1 in the 
upper left, first note that we are dealing with the case of a two-sample problem 
in which either the underlying distributions are normal or the central-limit 
theorem can be assumed to hold. If we are interested in comparing the means 
of the two samples, then we refer to box 3. If our two samples are paired—that 
is, if each person is used as his or her own control or if the samples consist of 
different people who are matched on a one-to-one basis—then the paired t test 
is appropriate. If the samples are independent, then the F test for the equality of 
two variances is used to decide whether the variances are significantly different. 
If the variances are not significantly different, then the two-sample t test with 
equal variances is used; if the variances are significantly different, then the 
two-sample t test with unequal variances is used. If we are only comparing the 
variances of the two samples, then only the F test for comparing variances is 
used, as indicated in the lower left of Figure 8.13.

The chapter then provided methods for determining the appropriate sam-
ple size and power formulas for planning investigations in which the goal is to 
compare the means from two independent samples and concluded with methods 
for detection of outliers. In Chapter 9, we extend our work on the comparison 
of two samples to the case in which there are two groups to be compared but 
the assumption of normality is questionable. We will introduce nonparametric 
methods to solve this problem to complement the parametric methods discussed 
in Chapters 7 and 8.

P ro  b le  m s

8.1  Find the lower 2.5th percentile of an F distribution with 
14 and 7 df. What symbol is used to denote this?

Nutrition
The mean ±1 sd of ln [calcium intake (mg)] among 25 
females, 12 to 14 years of age, below the poverty level is 
6.56 ± 0.64. Similarly, the mean ± 1 sd of ln [calcium intake 
(mg)] among 40 females, 12 to 14 years of age, above the 
poverty level is 6.80 ± 0.76.

8.2  Test for a significant difference between the variances 
of the two groups.

8.3  What is the appropriate procedure to test for a signifi-
cant difference in means between the two groups?

8.4  Implement the procedure in Problem 8.3 using the 
critical-value method.

8.5  What is the p-value corresponding to your answer to 
Problem 8.4?

8.6  Compute a 95% CI for the difference in means 
between the two groups.

*8.7  Suppose an equal number of 12- to 14-year-old girls 
below and above the poverty level are recruited to study 

differences in calcium intake. How many girls should be 
recruited to have an 80% chance of detecting a significant 
difference using a two-sided test with α = .05?

*8.8  Answer Problem 8.7 if a one-sided rather than a two-
sided test is used.

*8.9  Using a two-sided test with α = .05, answer Problem 
8.7, anticipating that two girls above the poverty level will 
be recruited for every one girl below the poverty level who 
is recruited.

*8.10  Suppose 50 girls above the poverty level and 50 
girls below the poverty level are recruited for the study. 
How much power will the study have of finding a significant 
difference using a two-sided test with α = .05, assuming 
that the population parameters are the same as the sample 
estimates in Problem 8.2?

*8.11  Answer Problem 8.10 assuming a one-sided rather 
than a two-sided test is used.

*8.12  Suppose 50 girls above the poverty level and 25 
girls below the poverty level are recruited for the study. How 
much power will the study have if a two-sided test is used 
with α = .05?

S
u

m
m

a
r

y
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No

No

No

No

Yes

Yes

Yes
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or can central-limit

theorem be assumed
to hold?

Inferences
concerning

means?

3

1

No Use paired
t test

page 282

Are variances
of two samples

significantly different?
Note: Test using

F test

Use two-sample t test
with unequal variances

page 299

Use two-sample
t test with

equal variances
page 288

Inferences
concerning
variances

Two-sample F test to
compare variances
(Caution: This test
is very sensitive to

nonnormality)
page 295

Use two-sample test for
binomial proportions or
2 × 2 contingency-table

methods if no confounding
is present, or Mantel-Haenszel
test if confounding is present

Yes

Go to 2

(Use methods for
comparing more

than two samples)

Are samples
independent?

Go to 3

NoNo

No

No

Yes

Yes

Yes

Underlying
distribution is

binomial?

Use another
underlying
distribution

or use
nonparametric

methods
page 354

Person-time
data?

Use McNemar’s
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pages 397, 399
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exact test
page 391

Are samples
independent?

Are all expected
values ≥ 5 ?

Go to 5

Yes

	Fi gure 8.13 	 Flowchart summarizing two-sample statistical inference—normal-theory methods
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*8.13  Answer Problem 8.12 assuming a one-sided test is 
used with α = .05. 

Refer to the data in Table 2.13.

8.14  Test for a significant difference in the variances of the 
initial white blood cell count between patients who did and 
patients who did not receive a bacterial culture.

8.15  What is the appropriate test procedure to test for sig-
nificant differences in mean white blood cell count between 
people who do and people who do not receive a bacterial 
culture?

8.16  Perform the procedure in Problem 8.15 using the 
critical-value method.

8.17  What is the p-value corresponding to your answer to 
Problem 8.16?

8.18  Compute a 95% CI for the true difference in mean 
white blood cell count between the two groups.

Ophthalmology
The drug diflunisal is used to treat mild to moderate pain 
due to osteoarthritis (OA) and rheumatoid arthritis (RA). The 
ocular effects of diflunisal had not been considered until a 
study was conducted on its effect on intraocular pressure 
in glaucoma patients who were already receiving maximum 
therapy for glaucoma [5].

*8.19  Suppose the change (mean ± sd ) in intraocular pres-
sure after administration of diflunisal (follow-up – baseline) 
among 10 patients whose standard therapy was methazola-
mide and topical glaucoma medications was −1.6 ± 1.5 mm 
Hg. Assess the statistical significance of the results.

*8.20  The change in intraocular pressure after administra-
tion of diflunisal among 30 patients whose standard therapy 
was topical drugs only was −0.7 ± 2.1 mm Hg. Assess the 
statistical significance of these results.

*8.21  Compute 95% CIs for the mean change in pres-
sure in each of the two groups identified in Problems 
8.19 and 8.20.

*8.22  Compare the mean change in intraocular pressure in 
the two groups identified in Problems 8.19 and 8.20 using 
hypothesis-testing methods.

Cardiovascular Disease, Pediatrics
A study in Pittsburgh measured various cardiovascular 
risk factors in children at birth and during their first 5 
years of life [6]. In particular, heart rate was assessed 
at birth, 5 months, 15 months, 24 months, and annually 
thereafter until 5 years of age. Heart rate was related to 
age, gender, race, and socioeconomic status. The data 
in Table 8.13 were presented relating heart rate to race 
among newborns.

8.23  Test for a significant difference in mean heart rate 
between Caucasian and African American newborns.

8.24  Report a p-value for the test performed in Problem 
8.23.

Pulmonary Disease
A 1980 study was conducted whose purpose was to com-
pare the indoor air quality in offices where smoking was per-
mitted with that in offices where smoking was not permitted 
[7]. Measurements were made of carbon monoxide (CO) at 
1:20 p.m. in 40 work areas where smoking was permitted 
and in 40 work areas where smoking was not permitted. 
Where smoking was permitted, the mean CO level was 
11.6 parts per million (ppm) and the standard deviation 
CO was 7.3 ppm. Where smoking was not permitted, the 
mean CO was 6.9 ppm and the standard deviation CO was  
2.7 ppm.

8.25  Test for whether the standard deviation of CO is sig-
nificantly different in the two types of working environments.

8.26  Test for whether or not the mean CO is significantly 
different in the two types of working environments.

8.27  Provide a 95% CI for the difference in mean CO be-
tween the smoking and nonsmoking working environments.

Ophthalmology
A camera has been developed to detect the presence of 
cataract more accurately. Using this camera, the gray level 
of each point (or pixel) in the lens of a human eye can be 
characterized into 256 gradations, where a gray level of 
1 represents black and a gray level of 256 represents 
white. To test the camera, photographs were taken of 6 
randomly selected normal eyes and 6 randomly selected 
cataractous eyes (the two groups consist of different 
people). The median gray level of each eye was computed 
over the 10,000+ pixels in the lens. The data are given in 
Table 8.14.

8.28  What statistical procedure can be used to test 
whether there is a significant difference in the median gray 
levels between cataractous and normal eyes?

8.29  Carry out the test procedure mentioned in Problem 
8.28, and report a p-value.

8.30  Provide a 99% CI for the mean difference in median 
gray levels between cataractous and normal eyes.

Table 8.13 � Relationship of heart rate to race 
among newborns

	 Mean heart rate 
Race	 (beats per minute)	 sd	 n

Caucasian	 125	 11	 218
African American	 133	 12	 156

Source: Reprinted with permission of the American Journal of Epidemiol-
ogy, 119(4), 554–563.
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Table 8.14 � Median gray level for cataractous and 
normal eyes

	 Cataractous	 Normal 
Patient	 median gray	 median gray 
number	 level	 level

1	 161	 158
2	 140	 182
3	 136	 185
4	 171	 145
5	 106	 167
6	 149	 177

x	 143.8	 169.0
s	 22.7	 15.4

Pulmonary Disease
A possible important environmental determinant of lung 
function in children is the amount of cigarette smoking in the 
home. Suppose this question is studied by selecting two 
groups: Group 1 consists of 23 nonsmoking children 5−9 
years of age, both of whose parents smoke, who have a mean 
forced expiratory volume (FEV) of 2.1 L and a standard devia-
tion of 0.7 L; group 2 consists of 20 nonsmoking children of 
comparable age, neither of whose parents smoke, who have 
a mean FEV of 2.3 L and a standard deviation of 0.4 L.
*8.31  What are the appropriate null and alternative hypoth-
eses to compare the means of the two groups?
*8.32  What is the appropriate test procedure for the hy-
potheses in Problem 8.31?
*8.33  Carry out the test in Problem 8.32 using the critical-
value method.
*8.34  Provide a 95% CI for the true mean difference in FEV 
between 5- to 9-year-old children whose parents smoke and 
comparable children whose parents do not smoke.
*8.35  Assuming this is regarded as a pilot study, how many 
children are needed in each group (assuming equal num-
bers in each group) to have a 95% chance of detecting a 
significant difference using a two-sided test with α = .05?
*8.36  Answer the question in Problem 8.35 if the investiga-
tors use a one-sided rather than a two-sided test.
Suppose 40 children, both of whose parents smoke, and 
50 children, neither of whose parents smoke, are recruited 
for the study.
*8.37  How much power would such a study have using a 
two-sided test with significance level = .05, assuming that 
the estimates of the population parameters in the pilot study 
are correct?
*8.38  Answer Problem 8.37 assuming a one-sided rather 
than a two-sided test is used.

Infectious Disease
The degree of clinical agreement among physicians on 
the presence or absence of generalized lymphadenopathy 

was assessed in 32 randomly selected participants from a  
prospective study of male sexual contacts of men with  
acquired immunodeficiency syndrome (AIDS) or an  
AIDS-related condition (ARC) [8]. The total number of palpable 
lymph nodes was assessed by each of three physicians. Results 
from two of the three physicians are presented in Table 8.15.

8.39  What is the appropriate test procedure to determine 
whether there is a systematic difference between the as-
sessments of Doctor A vs. Doctor B?

Table 8.15 � Reproducibility of assessment of number 	
of palpable lymph nodes among sexual 
contacts of AIDS or ARC patients

	 Number of palpable lymph nodes

Patient	 Doctor A	 Doctor B	 Difference

  1	 4	 1	 3
  2	 17	 9	 8
  3	 3	 2	 1
  4	 11	 13	 −2
  5	 12	 9	 3
  6	 5	 2	 3
  7	 5	 6	 −1
  8	 6	 3	 3
  9	 3	 0	 3
10	 5	 0	 5
11	 9	 6	 3
12	 1	 1	 0
13	 5	 4	 1
14	 8	 4	 4
15	 7	 7	 0
16	 8	 6	 2
17	 4	 1	 3
18	 12	 9	 3
19	 10	 7	 3
20	 9	 11	 −2
21	 5	 0	 5
22	 3	 0	 3
23	 12	 12	 0
24	 5	 1	 4
25	 13	 9	 4
26	 12	 6	 6
27	 6	 9	 −3
28	 19	 9	 10
29	 8	 4	 4
30	 15	 9	 6
31	 6	 1	 5
32	 5	 4	 1

Mean	 7.91	 5.16	 2.75
sd	 4.35	 3.93	 2.83
n	 32	 32	 32

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



324              C H A P T E R  8      Hypothesis Testing: Two-Sample Inference

8.40  Should a one-sided or a two-sided test be per-
formed? Why?
8.41  Perform the test in Problem 8.40, and report a p-value.
8.42  Compute a 95% CI for the true mean difference 
between observers. How does it relate to your answer to 
Problem 8.41?
8.43  Suppose the results of Problem 8.41 show no signifi-
cant difference. Does this mean this type of assessment is 
highly reproducible? Why or why not?

Renal Disease
Ten patients with advanced diabetic nephropathy (kidney 
complications of diabetes) were treated with captopril over 
an 8-week period [9]. Urinary protein was measured before 
and after drug therapy, with results listed in Table 8.16 in 
both the raw and ln scale.

Table 8.16  � Changes in urinary protein after 
treatment with captopril

	 Raw scale 	 ln scale 
	 urinary protein 	 urinary protein 
	 (g/24 hr)	 ln (g/24 hr)

Patient	 Before	 After	 Before	 After

  1	 25.6	 10.1	 3.24	 2.31
  2	 17.0	 5.7	 2.83	 1.74
  3	 16.0	 5.6	 2.77	 1.72
  4	 10.4	 3.4	 2.34	 1.22
  5	 8.2	 6.5	 2.10	 1.87
  6	 7.9	 0.7	 2.07	 −0.36
  7	 5.8	 6.1	 1.76	 1.81
  8	 5.4	 4.7	 1.69	 1.55
  9	 5.1	 2.0	 1.63	 0.69
10	 4.7	 2.9	 1.55	 1.06

*8.44  What is the appropriate statistical procedure to test 
whether mean urinary protein has changed over the 8-week 
period?
*8.45  Perform the test in Problem 8.44 using both the raw 
and ln scale, and report a p-value. Are there any advantages 
to using the raw or the ln scale?
*8.46  What is your best estimate of the percent change in 
urinary protein based on the data in Table 8.16?
*8.47  Provide a 95% CI associated with your estimate in 
Problem 8.46.
Refer to Data Set NIFED.DAT at www.cengagebrain.com. 
See p. 144 for a complete description of the data set.
8.48  Assess whether there is any difference between the 
nifedipine and propranolol groups regarding their effects 
on blood pressure and heart rate. Refer to the indices of 
change defined in Problems 6.70−6.74.

Genetics
A study was conducted of genetic and environmental influ-
ences on cholesterol levels. The data set used for the study 
were obtained from a twin registry in Sweden [10]. Spe-
cifically, four populations of adult twins were studied: (1) 
monozygotic (MZ) twins reared apart, (2) MZ twins reared 
together, (3) dizygotic (DZ) twins reared apart, and (4) DZ 
twins reared together. One issue is whether it is neces-
sary to correct for gender before performing more complex 
genetic analyses. The data in Table 8.17 were presented for 
total cholesterol levels for MZ twins reared apart, by gender.

Table 8.17 � Comparison of mean total cholesterol 
for MZ twins reared apart, by gender

	 Men	 Women

Mean	 253.3	 271.0
sd	 44.1	 44.1

n	 44	 48

Note: n = number of people (e.g., for males, 22 pairs of twins = 44 people) 
the cholesterol levels within each sample consist of independent observation.

*8.49  If we assume (a) serum cholesterol is normally dis-
tributed, (b) the cholesterol levels within each sample con-
sist of independent observations, and (c) the standard 
deviations for men and women are the same, then what is 
the name of the statistical procedure that can be used to 
compare the two groups?
*8.50  Suppose we want to use the procedure in Problem 
8.49 using a two-sided test. State the hypotheses being 
tested, and implement the method. Report a p-value.
*8.51  Suppose we want to use the procedure in Problem 
8.49 using a one-sided test in which the alternative hypoth-
esis is that men have higher cholesterol levels than women. 
State the hypotheses being tested and implement the 
method in Problem 8.49. Report a p-value.
*8.52  Are the assumptions in Problem 8.49 likely to hold for 
these samples? Why or why not?

Pulmonary Disease
A study was performed looking at the effect of mean ozone expo-
sure on change in pulmonary function. Fifty hikers were recruited 
into the study; 25 study participants hiked on days with low-
ozone exposure, and 25 hiked on days with high-ozone expo-
sure. The change in pulmonary function after a 4-hour hike was 
recorded for each participant. The results are given in Table 8.18.

Table 8.18 � Comparison of change in FEV on high-
ozone vs. low-ozone days

Ozone level	 Mean change in FEVa	 sd	 n

High	 0.101	 0.253	 25

Low	 0.042	 0.106	 25

aChange in FEV, forced expiratory volume, in 1 second (L) (baseline – follow-up) Data set available

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Problems              325

8.53  What test can be used to determine whether the 
mean change in FEV differs between the high-ozone and 
low-ozone days?

8.54  Implement the test in Problem 8.53, and report a  
p-value (two-tailed).

8.55  Suppose we determine a 95% CI for the true mean 
change in pulmonary function on high-ozone days. Is this CI 
narrower, wider, or the same width as a 90% CI? (Do not 
actually compute the CI.)

Cardiovascular Disease  Lipolysis is a regulator of en-
ergy metabolism. Genes encoding proteins that regulate 
energy metabolism through lipolysis are likely to play an 
important role in determining susceptibility to metabolic 
disorders. A study was performed sequencing 12 lipolyte-
pathway genes in an Amish population (Albert et al. [11]). 
A 19 base pair (bp) deletion was identified in one of the 
genes that was present in approximately 5% of the Amish 
population and 0.2% of the non-Amish population of 
European descent. The deletion was genotyped in 2738 
Amish persons, of whom 140 were heterozygous for the 
deletion (i.e., the ID genotype), 1 was homozygous (i.e., 
the DD genotype), and 2597 persons did not have the 
deletion (i.e., the II genotype). In Table 8.19, we compare 
the mean HDL cholesterol between subjects with the ID 
vs. II genotypes.

Table 8.19 � Mean HDL cholesterol according to 
LIPE deletion genotype

LIPE deletion 
genotype	 Mean+	 sd+	 n

II	 55.2	 15.0	 2597

ID	 49.0	 13.3	 140

+ mg/dl
Hint: Assume that HDL cholesterol is normally distributed.

8.56  What test can be performed to compare the variances 
of the two genotype groups?

8.57  Perform the test in Problem 8.56 and report a two-
tailed p-value.

8.58  Suppose we wish to perform a test to compare the 
means of the two genotype groups. State the hypotheses 
to be tested, the algebraic form of the test statistic used 
to test the hypotheses, and the name of the hypothesis 
test.

8.59  Perform the test in Problem 8.58, and report a two-
tailed p-value.

8.60  What are your conclusions based on the analyses in 
Problems 8.56–8.59?

8.61  Suppose another investigator wants to reproduce 
the results of the Amish study. She can recruit 100 

subjects with the II genotype and 100 subjects with the 
ID genotype. How much power will the study have if  
the underlying mean and sd in each genotype group are 
the same as in Table 8.19 and we use a two-sided test 
with a = 0.05?

Rheumatology
A study was conducted [12] comparing muscle function 
between patients with rheumatoid arthritis (RA) and osteo-
arthritis (OA). A 10-point scale was used to assess balance 
and coordination in which a high score indicates better co-
ordination. The results were as shown in Table 8.20 for 36 
RA patients and 30 OA patients.

Table 8.20 � Comparison of balance scores for 
patients with RA vs. OA

	 Mean  
	 balance  
	 score	 sd	 n

RA	 3.4	 3.0	 36
OA	 2.5	 2.8	 30

*8.62  What test can be used to determine whether the 
mean balance score is the same for RA and OA patients? 
What are some assumptions of this test?

*8.63  Perform the test mentioned in Problem 8.62, and 
report a p-value.

*8.64  What is your best estimate of the proportion of RA and 
OA patients with impaired balance, where impaired balance 
is defined as a balance score ≤2 and normality is assumed?

*8.65  Suppose a larger study is planned. How many par-
ticipants are needed to detect a difference of 1 unit in mean 
balance score with 80% power if the number of participants 
in each group is intended to be the same and a two-sided 
test is used with α = .05?

Cardiology
A clinical trial compared percutaneous transluminal coro-
nary angioplasty (PTCA) with medical therapy in treating 
single-vessel coronary-artery disease [13]. Researchers 
randomly assigned 107 patients to medical therapy and 
105 to PTCA. Patients were given exercise tests at base-
line and after 6 months of follow-up. Exercise tests were 
performed up to maximal effort until clinical signs (such 
as angina) were present. The results shown in Table 8.21 
were obtained for change in total duration of exercise (min)  
(6 months – baseline).

*8.66  What test can be performed to test for change in 
mean total duration of exercise for a specific treatment 
group?
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Table 8.21 � Change in total duration of exercise for 
patients with coronary-artery disease 
randomized to medical therapy vs. 
PTCA

	 Mean change  
	 (min)	 sd 	 n

Medical therapy	 0.5	 2.2	 100
PTCA	 2.1	 3.1	 99

*8.67  Perform the test in Problem 8.66 for the medical 
therapy group, and report a p-value.

*8.68  What test can be performed to compare the mean 
change in duration of exercise between the two treatment 
groups?

*8.69  Perform the test mentioned in Problem 8.68, and 
report a p-value.

Hepatic Disease
An experiment was conducted to examine the influence of 
avian pancreatic polypeptide (aPP), cholecystokinin (CCK), 
vasoactive intestinal peptide (VIP), and secretin on pan-
creatic and biliary secretions in laying hens. In particular, 
researchers were concerned with the extent to which these 
hormones increase or decrease biliary and pancreatic flows 
and their pH values.

White leghorn hens, 14−29 weeks of age, were sur-
gically fitted with cannulas for collecting pancreatic and 
biliary secretions and a jugular cannula for continuous infu-
sion of aPP, CCK, VIP, or secretin. One trial per day was 
conducted on a hen, as long as her implanted cannulas 
remained functional. Thus, there were varying numbers of 
trials per hen.

Each trial began with infusion of physiologic saline for 
20 minutes. At the end of this period, pancreatic and biliary 
secretions were collected and the cannulas were attached to 
new vials. The biliary and pancreatic flow rates (in microliters per 
minute) and pH values (if possible) were measured. Infusion 
of a hormone was then begun and continued for 40 minutes. 
Measurements were then repeated.

Data Set HORMONE.DAT (at www.cengagebrain 
.com) contains data for the four hormones and saline, 
where saline indicates trials in which physiologic saline 
was infused in place of an active hormone during the 
second period. Each trial is one record in the file. There 
are 11 variables associated with each trial, as shown in 
Table 8.22.

8.70  Assess whether there are significant changes in se-
cretion rates or pH levels with any of the hormones or with 
saline.

8.71  Compare the changes in secretion rate or pH levels 
for each active hormone vs. the placebo (saline) group. Use 

Table 8.22  Format of HORMONE.DAT

Variable	 Column	 Description/Code

ID	 A	 ID
Bilsecpr	 B	 Biliary secretion-pre
Bilphpr	 C	 Biliary pH-pre
Pansecpr	 D	 Pancreatic secretion-pre
Panphpr	 E	 Pancreatic pH-pre
Dose	 F	 Dose
Bilsecpt	 G	 Biliary secretion-post
Bilphpt	 H	 Biliary pH-post
Pansecpt	 I	 Pancreatic secretion-post
Panphpt	 J	 Pancreatic pH-post
Hormone	 K	 Hormone 	
		  1=SAL/2=APP/3=CCK/ 
 		  4=SEC/5=VIP

 Data set available

methods of hypothesis testing and/or CIs to express these 
comparisons statistically.

8.72  For each active-hormone group, categorize dosage by 
high dose (above the median) vs. low dose (at or below the 
median) and assess whether there is any dose-response 
relationship (any differences in mean changes in secretion 
rates or pH between the high- and low-dose groups).

Refer to Data Set FEV.DAT, at www.cengagebrain.com.

8.73  Compare the level of mean FEV between males 
and females separately in three distinct age groups (5−9, 
10−14, and 15−19 years).

8.74  Compare the level of mean FEV between smokers 
and nonsmokers separately for 10- to 14-year-old boys, 
10- to 14-year-old girls, 15- to 19-year-old boys, and 15- 
to 19-year-old girls.

Hypertension, Pediatrics
Refer to Data Set INFANTBP.DAT and INFANTBP.DOC, 
both at www.cengagebrain.com.

Consider again the salt-taste indices and sugar-taste 
indices constructed in Problems 6.56−6.57.

8.75  Obtain a frequency distribution, and subdivide infants 
as high or low according to whether they are above or be-
low the median value for the indices. Use hypothesis-testing 
and CI methodology to compare mean blood-pressure lev-
els between children in the high and low groups.

8.76  Answer Problem 8.75 in a different way by subdividing 
the salt- and sugar-taste indices more finely (such as quintiles 
or deciles). Compare mean blood-pressure level for children 
at the extremes (i.e., those at the highest quintile vs. the lowest 
quintile). Do you get the impression that the indices are related 
to blood-pressure level? Why or why not? We discuss this 
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from a different point of view in our work on regression analysis 
in Chapter 11 and the analysis of variance in Chapter 12.

Mental Health
A study was performed looking at the effect of physical 
activity on cognitive function among adults at high risk for 
Alzheimer’s disease (Lautenschlager et al. [14]). There 
were 170 eligible subjects randomly assigned to either an 
exercise intervention (exercise group) or a control interven-
tion (control group). The subjects were followed at 6-month 
intervals up to 18 months of follow-up. The primary as-
sessment scale was the Alzheimer’s Disease Assessment 
Scale-Cognitive Subscale (ADAS-Cog). The results at 18 
months of follow-up among participants with mild cognitive 
impairment are given in Table 8.23.

Table 8.23 � Mean difference from baseline 
(18-month score minus baseline score) 
among participants with mild cognitive 
impairment in the ADAS-Cog score*

	 Exercise group	 Control group	

Mean change	 -0.38	 -0.45	
95% CI	 (-1.39, 0.63)	 (-0.46, 1.36)	

n	 48	 52	

*�A negative change indicates improvement since high values on the test 
indicate worse cognitive function.

8.77  What is the standard deviation of change in the exer-
cise group?

8.78  What is the standard deviation of change in the con-
trol group?

8.79  What test can be performed to compare the mean 
change in the two groups at 18 months?

8.80  Implement the test in Problem 8.79, and report a two-
sided p-value.

Sports Medicine
Tennis elbow is a painful condition that afflicts many tennis 
players at some time. A number of different treatments 
are used for this condition, including rest, heat, and anti-
inflammatory medications. A clinical trial was conducted 
among 87 participants, comparing the effectiveness of 
Motrin (generic name, ibuprofen), a widely used anti-
inflammatory agent, vs. placebo. Participants received 
both drug and placebo, but the order of administration of 
the two was determined by randomization. Specifically, 
approximately half the participants (group A) received an 
initial 3-week course of Motrin, while the other participants 
(group B) received an initial 3-week course of placebo. 
After the 3-week period, participants were given a 2-week 
washout period during which they received no study  Data set available

medication. The purpose of the washout period was to 
eliminate any residual biological effect of the first-course 
medication. After the washout period, a second period of 
active drug administration began, with group A participants 
receiving 3 weeks of placebo, and group B participants 
receiving 3 weeks of Motrin. At the end of each active 
drug period as well as at the end of the washout period, 
participants were asked to rate their degree of pain 
compared with baseline (before the beginning of the first 
active drug period). The goal of the study was to compare 
the degree of pain while on Motrin vs. the degree of pain 
while on a placebo. This type of study is called a cross-over 
design, which we discuss in more detail in Chapter 13.

Degree of pain vs. baseline was measured on a 1−6 
scale, with 1 being “worse than baseline” and 6 being 
“completely improved.” The comparison was made in four 
different ways: (1) during maximum activity, (2) 12 hours 
following maximum activity, (3) during the average day, and 
(4) by overall impression of drug efficacy. The data are given 
in Data Set TENNIS2.DAT with documentation in TENNIS2.
DOC, both at www.cengagebrain.com.

8.81  Compare degree of pain while on Motrin with degree 
of pain on placebo during maximal activity.

8.82  Answer Problem 8.81 for degree of pain 12 hours fol-
lowing maximum activity.

8.83  Answer Problem 8.81 for degree of pain during the 
average day.

8.84  Answer Problem 8.81 for the overall impression of 
drug efficacy.

Environmental Health, Pediatrics
Refer to Figure 8.12 (p. 313) and Table 8.7 (p. 305).

8.85  Assess whether there are any outliers for full-scale IQ 
in the control group.

8.86  Assess whether there are any outliers for full-scale IQ 
in the exposed group.

8.87  Based on your answers to Problems 8.85 and 8.86, 
compare mean full-scale IQ between the exposed and the 
control groups, after the exclusion of outliers.

Pulmonary Disease
8.88  Refer to Data Set FEV.DAT at www.cengagebrain.com. 
Assess whether there are any outliers in FEV for the following 
groups: 5- to 9-year-old boys, 5- to 9-year-old girls, 10- to 
14-year-old boys, 10- to 14-year-old girls, 15- to 19-year-old 
boys, and 15- to 19-year-old girls.

Ophthalmology
A study compared mean electroretinogram (ERG) am-
plitude of patients with different genetic types of retinitis 
pigmentosa (RP), a genetic eye disease that often results in 
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blindness. The results shown in Table 8.24 were obtained  
for ln (ERG amplitude) among patients 18–29 years of age.

Table 8.24 � Comparison of mean ln (ERG amplitude) 
by genetic type among patients with RP

Genetic type	 Mean ± sd	 n

Dominant	 0.85 ± 0.18	 62
Recessive	 0.38 ± 0.21	 35
X-linked	 −0.09 ± 0.21	 28

8.89  What is the standard error of ln(ERG amplitude) 
among patients with dominant RP? How does it differ from 
the standard deviation in the table?

8.90  What test can be used to compare the variance of ln 
(ERG amplitude) between patients with dominant vs. reces-
sive RP?

8.91  Implement the test in Problem 8.90, and report a  
p- value (two-tailed).

8.92  What test can be used to compare the mean ln (ERG 
amplitude) between patients with dominant vs. recessive RP?

8.93  Implement the test in Problem 8.92, and report a two-
tailed p-value.

Hypertension
A study was performed comparing different nonpharmacologic 
treatments for people with high-normal diastolic blood 
pressure (DBP) (80−89 mm Hg). One of the modes of 
treatment studied was stress management. People were 
randomly assigned to a stress management intervention (SMI) 
group or a control group. Participants randomized to SMI 
were given instructions in a group setting concerning different 
techniques for stress management and met periodically over a 
1-month period. Participants randomized to the control group 
were advised to pursue their normal lifestyles and were told 
that their blood pressure would be closely monitored and that 
their physician would be notified of any consistent elevation. 
The results for the SMI group (n = 242) at the end of the study 
(18 months) were as follows:

Mean (change) = −5.53 mm Hg (follow-up – baseline),  
sd (change) = 6.48 mm Hg.

8.94  What test can be used to assess whether mean blood 
pressure has changed significantly in the SMI group?

8.95  Implement the test in Problem 8.94, and report a 
p-value.

The results for the control group (n = 320) at the end of the 
study were as follows:

Mean (change) = −4.77 mm Hg, 

sd (change) = 6.09 mm Hg.

8.96  What test can be used to compare mean blood-
pressure change between the two groups? 

8.97  Implement the test in Problem 8.96, and report a two-
tailed p-value.

8.98  How much power did the study have for detecting a 
significant difference between groups (using a two-sided 
test with a 5% level of significance) if the true effect of the 
SMI intervention is to reduce mean DBP by 2 mm Hg more 
than the control group and the standard deviation of change 
within a group is 6 mm Hg?

Endocrinology
A study was performed to determine the effect of introduc-
ing a low-fat diet on hormone levels of 73 postmenopausal 
women not using exogenous hormones [15]. The data in 
Table 8.25 were presented for plasma estradiol in log10 
(picograms/milliliter).

Table 8.25 � Change in plasma estradiol after 
adopting a low-fat diet

	 Estradiol log10(pg/mL)a

Preintervention	 0.71 (0.26)
Postintervention	 0.63 (0.26)
Difference  
  (postintervention – preintervention)	 −0.08 (0.20)

aValues are mean and sd (in parentheses) for log (base 10) of  
preintervention and postintervention measurements and for their difference.

8.99  What test can be performed to assess the effects of 
adopting a low-fat diet on mean plasma-estradiol levels?

8.100  Implement the test in Problem 8.99, and report a 
p-value.

8.101  Provide a 95% CI for the change in mean log10 
(plasma estradiol).

8.102  Suppose a similar study is planned among women 
who use exogenous hormones. How many participants 
need to be enrolled if the mean change in log10 (plasma es-
tradiol) is −0.08, the standard deviation of change is 0.20, 
and we want to conduct a two-sided test with an α level of 
.05 and a power of .80?

Ophthalmology
A study is being planned to assess whether a topical anti
allergic eye drop is effective in preventing the signs and 
symptoms of allergic conjunctivitis. In a pilot study, at an 
initial visit, participants are given an allergen challenge; that 
is, they are subjected to a substance that provokes allergy 
signs (e.g., cat dander) and their redness score is noted 
10 minutes after the allergen challenge (visit 1 score). At a 
follow-up visit, the same procedure is followed, except that 
participants are given an active eye drop in one eye and the 
placebo in the fellow eye 3 hours before the challenge; a 
visit 2 score is obtained 10 minutes after the challenge. The 
data collected are shown in Table 8.26.
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Table 8.26 � Effect of an eye drop in reducing 
ocular redness among participants 
subjected to an allergen challenge

			   Change score in 
			   active eye – 
	 Active	 Placebo	 change score in 
	 eye	 eye	 placebo eye

	 Mean ± sd	 Mean ± sd	 Mean ± sd

Change in 	 −0.61 ± 0.70	 −0.04 ± 0.68	 −0.57 ± 0.86 
average  
redness scorea  

(visit 2 – visit 1 

score)

aThe redness score ranges from 0 to 4 in increments of 0.5, where 0 is no 
redness at all and 4 is severe redness.

8.103  Suppose we want to estimate the number of par-
ticipants needed in the main study so that there is a 90% 
chance of finding a significant difference between active 
and placebo eyes using a two-sided test with a signifi-
cance level of .05. We expect the active eyes to have a 
mean redness score 0.5 unit less than that of the placebo 
eyes. How many participants are needed in the main 
study?

8.104  Suppose 60 participants are enrolled in the main 
study. How much power would the study have to detect a 
0.5-unit mean difference if a two-sided test is used with a 
significance level of .05?

8.105  In a substudy, participants will be subdivided into 
two equal groups according to the severity of previous 
allergy symptoms (n = 30 each), and the effectiveness 
of the eye drop (vs. placebo) will be compared between 
the two groups. If 60 participants are enrolled in the main 
study (in the two groups combined), then how much 
power will the substudy have if there is a true mean dif-
ference in effectiveness of 0.25 [i.e., (mean change score 
active eye – mean change score placebo eye, subgroup 
1) – (mean change score active eye – mean change 
score placebo eye, subgroup 2) = 0.25] between the two 
groups and a two-sided test is used with a significance 
level of .05?

Cardiovascular Disease
Left ventricular mass (LVM) is an important risk fac-
tor for subsequent cardiovascular disease. A study 
is proposed to assess the relationship between child-
hood blood-pressure levels and LVM in children as de-
termined from echocardiograms. The goal is to stratify 
children into a normal bp group (< 80th percentile for 
their age, gender, and height) and an elevated bp group  
(≥ 90th percentile for their age, gender, and height) and 
compare the change in LVM between the two groups. 

Before this can be done, one needs to demonstrate that 
LVM actually changes in children over a 4-year period.

To help plan the main study, a pilot study is conducted 
where echocardiograms are obtained from 10 random 
children from the Bogalusa Heart Study at baseline 
and after four years of follow-up (Urbina et al., Personal 
Communication). The data are given in Table 8.27.

Table 8.27 � Pilot data on left ventricular mass 
(LVM) in children from the Bogalusa 
Heart Study

ID	 Baseline LVM (g)	 4-year LVM (g)	 Change (g)* 
1	   139	   163	   24 
2	   134	   126	   -8 
3	     86	   142	   56 
4	     98	     96	   -2 
5	     78	   111	   33 
6	     90	   108	   18 
7	   102	   167	   65 
8	     73	     82	     9 
9	     93	     77	 -16 
10	   162	   172	   10 
Mean	 105.5	 124.4	 18.9 
sd	  29.4	  35.2	 26.4

*4-year LVM minus baseline LVM			 

8.106  What test can be used to assess if there is a change 
in mean LVM over four years?

8.107  Implement the test in Problem 8.106, and provide a 
two-tailed p-value.

8.108  Provide a 95% Cl for the change in LVM over 4 
years based on the data in Table 8.27.

8.109  Since this was a pilot study, the main question of 
interest is how many subjects would be needed to detect 
a mean increase of 10 g in LVM over four years using a  
two-sided test with a = 0.05 and power = 80%? Hint: 
Assume that the estimated variance of change in LVM in the 
pilot study is the true variance of change in LVM.

Microbiology
A study sought to demonstrate that soy beans inocu-
lated with nitrogen-fixing bacteria yield more and grow 
adequately without the use of expensive environmentally 
deleterious synthesized fertilizers. The trial was conducted 
under controlled conditions with uniform amounts of soil. 
The initial hypothesis was that inoculated plants would out-
perform their uninoculated counterparts. This assumption 
was based on the fact that plants need nitrogen to manu-
facture vital proteins and amino acids and that nitrogen-
fixing bacteria would make more of this substance available 
to plants, increasing their size and yield. There were 8 in-
oculated plants (I) and 8 uninoculated plants (U). The plant 
yield as measured by pod weight for each plant is given in 
Table 8.28.
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Table 8.28 � Pod weight (g) from inoculated (I) and 
uninoculated (U) plantsa

	 I	 U

	 1.76	 0.49
	 1.45	 0.85
	 1.03	 1.00
	 1.53	 1.54
	 2.34	 1.01
	 1.96	 0.75
	 1.79	 2.11
	 1.21	 0.92

Mean	 1.634	 1.084
sd	 0.420	 0.510
n	 8	 8

aThe data for this problem were supplied by David Rosner.

8.110  Provide a 95% CI for the mean pod weight in each 
group.

8.111  Suppose there is some overlap between the 95% 
CIs in Problem 8.110. Does this necessarily imply there is 
no significant difference between the mean pod weights for 
the two groups? Why or why not?

8.112  What test can be used to compare the mean pod 
weight between the two groups?

8.113  Perform the test in Problem 8.112, and report a  
p-value (two-tailed).

8.114  Provide a 95% CI for the difference in mean pod 
weight between the two groups.

Renal Disease
The goal of the Swiss Analgesic Study was to assess 
the effect of taking phenacetin-containing analgesics on 
kidney function and other health parameters. A group of 
624 women were identified from workplaces near Basel, 
Switzerland, with high intake of phenacetin-containing an-
algesics. This constituted the “study” group. In addition, a 
control group of 626 women were identified, from the same  
workplaces and with normal N-acetyl-P-aminophenyl  
(NAPAP) levels, who were presumed to have low or no 
phenacetin intake. The urine NAPAP level was used as 
a marker of recent phenacetin intake. The study group 
was then subdivided into high-NAPAP and low-NAPAP 
subgroups according to the absolute NAPAP level. How-
ever, both subgroups had higher NAPAP levels than the 
control group. The women were examined at baseline during 
1967 and 1968 and also in 1969, 1970, 1971, 1972, 1975, 
and 1978, during which their kidney function was evaluated 
by several objective laboratory tests. Data Set SWISS.DAT 
at www.cengagebrain.com contains longitudinal data on 

 Data set available

serum-creatinine levels (an important index of kidney function) 
and other indices  of kidney functions. Documentation for this 
data set is given in SWISS.DOC at www.cengagebrain 
.com.

8.115  One hypothesis is that analgesic abusers would have 
different serum-creatinine profiles at baseline. Using the data 
from the baseline visit, can you address this question?

8.116  A major hypothesis of the study is that women with 
high phenacetin intake would show a greater change in 
serum-creatinine level compared with women with low 
phenacetin intake. Can you assess this issue using the 
longitudinal data in the data set? (Hint: A simple approach 
for accomplishing this is to look at the change in serum 
creatinine between the baseline visit and the last follow-up 
visit. More complex approaches using all the available data 
are considered in our discussion of regression analysis in 
Chapter 11.)

Hypertension
A study was recently reported comparing the effects of dif-
ferent dietary patterns on blood pressure within an 8-week 
follow-up period [16]. Subjects were randomized to three 
groups: A, a control diet group, N = 154; B, a fruits-and-
vegetables diet group, N = 154; C, a combination-diet 
group consisting of a diet rich in fruits, vegetables, and low-
fat dairy products and with reduced saturated and total fat, 
N = 151. The results reported for systolic blood pressure 
(SBP) are shown in Table 8.29.

Table 8.29 � Effects of dietary pattern on change 	
in SBP

Mean change in fruits-and-vegetables  
group	 −2.8 mm Hg
Minus mean change in control group  
(97.5% CI)	 (−4.7 to −0.9)

8.117  Suppose we want to compute a two-sided p-value 
for this comparison. Without doing any further calculation, 
which statement(s) must be false?

(1) p = .01 (2) p = .04 (3) p = .07 (4) p = .20

(Note: The actual p-value may differ from all these values.)

8.118  Suppose we assume that the standard deviation of 
change in blood pressure is the same in each group and is 
known without error. Compute the exact p-value from the 
information provided.

8.119  Suppose we want to compute a two-sided 95% 
CI for the true mean change in the fruits-and-vegetables 
group minus the true mean change in the control group, 
which we represent by (c1, c2). Without doing any further 
calculations, which of the following statement(s) must be 
false?

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Problems              331

(1)	 The lower confidence limit (c1) = −5.0.

(2)	 The upper confidence limit (c2) = −1.0.

(3)	 The width of the CI (c2 − c1) = 3.0.

[Note: The actual values of c1, c2, or (c2 − c1) may differ from 
given above.]

8.120  Making the same assumption as in Problem 8.118, 
compute the 95% CI from the information provided.

Diabetes
The Diabetes Prevention Study was a randomized study 
conducted in Finland in which middle-aged participants 
(mean age 55 years) with impaired glucose tolerance (IGT) 
were enrolled [17]. Study participants, who had high-normal 
glucose levels, were randomized to either an intervention 
group or a control group. People in the intervention group 
were encouraged to (a) reduce weight, (b) reduce fat in-
take, (c) increase fiber intake, and (d) increase hours per 
week of exercise. They also underwent intensive individual-
level counseling to reduce risk-factor levels. People in the 
control group received pamphlets with general information 
concerning diet and exercise but did not receive individual 
counseling. Data regarding changes in weight after 1 year 
are shown in Table 8.30.

Table 8.30 � Mean weight change by treatment 
group among people with IGT in the 
Diabetes Prevention Study

	 Intervention group	 Control group
	 (n = 256)	 (n = 250)

	 Mean ± sd	 Mean ± sd

Change in weight (kg)  
over 1 year*	 −4.2 ± 5.1	 −0.8 ± 3.7

*Follow-up weight – baseline weight.

For the purposes of this problem, for any degrees of free-
dom (d) ≥ 200, assume that td ≅ N (0, 1) distribution.

8.121  What test can be used to assess mean changes in 
weight in the intervention group?

8.122  Perform the test in Problem 8.121, and report a two-
tailed p-value.

8.123  What test can be used to compare mean change in 
weight between the intervention and control groups? (Note: 
F255,249,.975= 1.281.)

8.124  Perform the test in Problem 8.123, and report a two-
tailed p-value.

Health Promotion
A study looked at the influence of retirement on the level 
of physical activity among people ages 45−64 in the Ath-
erosclerosis Risk in Communities (ARIC) Study [18]. For 

this purpose a sport score from 1 (low physical activity) 
to 5 (high physical activity) and a leisure score from 1 
(low physical activity) to 5 (high physical activity) were 
constructed. The main outcome measure was the sum of 
the sport and leisure scores [range from 2 (low physical 
activity) to 10 (high physical activity)]. These scores were 
ascertained at baseline (year 0) and at follow-up (year 6). 
A comparison was made between people who were still 
working at year 6 vs. those who were retired at year 6. The 
data in Table 8.31 were presented for African American 
women.

Table 8.31 � Change in combined sport and leisure 
score for African American women in 
the ARIC Study (year 6 score – year 0 
score)

	 Mean change	 95% CI	 n

Retired at year 6	 0.29	 (0.17, 0.42)	 295

Working at year 6	 0.15	 (0.05, 0.25)	 841

[Hint: Assume that for d > 200, a td distribution is the same 
as an N(0,1) distribution.]

8.125  What are the standard deviation and standard error 
of the mean for the change score for retired women?

8.126  Construct a two-sided 90% CI for the mean change 
score for retired women. What does it mean?

8.127  What test can be used to assess whether the un-
derlying mean change score differs for retired women vs. 
working women?

8.128  Implement the test in Problem 8.127, and report a 
two-tailed p-value.

Health Promotion
Cigarette smoking has important health consequences and 
is positively associated with heart and lung diseases. Less 
well known are the consequences of quitting smoking. A 
group of 10 nurses, from the Nurses’ Health Study, ages 
50−54 years, had smoked at least 1 pack per day and quit 
for at least 6 years. The nurses reported their weight be-
fore and 6 years after quitting smoking. A commonly used 
measure of obesity that takes height and weight into ac-
count is BMI = wt/ht2 (in units of kg/m2). The BMI of the 10 
women before and 6 years after quitting smoking are given 
in the last 2 columns of Table 8.32.

8.129  What test can be used to assess whether the mean 
BMI changed significantly among heavy-smoking women 6 
years after quitting smoking?

8.130  Implement the test in Problem 8.129, and report a 
two-tailed p-value.
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One issue is that there has been a secular change in weight 
in society. For this purpose, a control group of 50- to 
54-year-old never-having-smoked women were also identi-
fied and their BMI was reported at baseline (ages 50−54) 
and 6 years later at a follow-up visit. The results are given in 
columns 2 and 3 of Table 8.32.

8.131  What test can be used to assess whether the mean 
change in BMI over 6 years is different between women 
who quit smoking and women who have never smoked?

8.132  Implement the test in Problem 8.131, and report a 
two-tailed p-value.

8.133  Suppose the true mean increase in BMI among 
heavy-smoking women 6 years after quitting is 3.0 kg/m2 

with a standard deviation of 2.5 kg/m2. The comparable true 
mean increase in BMI among never-smoking women over 
6 years is 1.5 kg/m2 with a standard deviation of 2.0 kg/m2. 
How much power does the study in Problem 8.132 have of 
finding a significant difference if a two-sided test is used 
with a 5% significance level?

Hematology
Insulin-like growth factor 1 (IGF-1) is a hormone that plays 
an important role in childhood growth and may be associated 
with several types of cancer. In some studies, it is measured 
in serum, and in other studies it is measured in plasma. Blood 
plasma is prepared by spinning a tube of fresh blood contain-
ing an anti-coagulant in a centrifuge until the blood cells fall 
to the bottom. The blood plasma is then poured or drawn off. 
Blood serum is blood plasma without clotting factors (i.e., 
whole blood minus both the cells and the clotting factors).

In a multi-center study, IGF-1 was measured in some 
centers with serum and in other centers with plasma. The 
following results were obtained:

Table 8.33 � Comparison of IGF-11evels measured 
in serum vs. plasma

IGF-1 (ng/mL)	 n	 mean	 sd

serum	 140	 149.1	 42.3

plasma	 404	 136.6	 49.0

[Hint: In the following questions assume that the underlying 
variance of IGF-1 as measured from serum and plasma is 
the same.]

8.134  Assuming that the distribution of IGF-1 is approxi-
mately normal, what test can be used to compare the mean 
IGF-1 obtained from the two sources?

8.135  Perform the test in Problem 8.134, and report a  
p-value (two-tailed).

Cancer
Age at menarche (onset of menstrual periods) is an im-
portant risk factor for breast cancer and possibly ovarian 
cancer. In general, women who reach menarche at an earlier 
age have a higher incidence of breast cancer. The long-
term trend in developed countries is that age at menarche 
has been declining over the past 50 years. One hypothesis 
is that women with higher childhood SES have an earlier 
age at menarche.

Table 8.32  BMI change in 50- to 54-year-old women over a 6-year period

	 Never-Having-Smoked women	 Heavy-smoking women (≥1 pk/day)

	 BMI at	 BMI at 		  BMI at	 BMI 6 years 
ID	 baseline	 6-year follow-up	 ID	 baseline	 after quitting smoking

1	 26.5	 29.3	 11	 25.6	 31.1
2	 33.8	 32.9	 12	 24.4	 27.6
3	 27.6	 25.5	 13	 31.0	 36.6
4	 24.4	 28.3	 14	 20.4	 20.8
5	 21.6	 23.3	 15	 22.3	 23.2
6	 32.3	 37.1	 16	 22.2	 23.8
7	 31.9	 35.4	 17	 20.8	 26.1
8	 23.0	 24.8	 18	 23.5	 31.0
9	 31.2	 30.4	 19	 26.6	 29.2
10	 36.3	 37.1	 20	 23.0	 24.0

Mean	 28.9	 30.4		  24.0	 27.3
sd	 4.9	 5.1		  3.1	 4.7
n	 10	 10		  10	 10
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Suppose we identify 20 girls with low childhood SES (that is, 
head of household is a blue-collar worker) and find  mean age 
at menarche of 13.4 years with a standard deviation of 1.4 
years. We identify an additional 30 girls with high childhood 
SES (head of household is a white-collar worker or executive) 
and find a mean age at menarche of 12.9 years with a 
standard deviation of 1.5 years. Assume that the underlying 
variance of age at menarche for girls with low childhood SES 
and girls with high childhood SES is the same.

8.136  What test can be used to compare the mean of the 
two groups?

8.137  Perform the test in Problem 8.136, and report a two-
tailed p-value.

8.138  How many participants should be enrolled in each 
group in a future study, if (a) the true mean difference in age 
at menarche between girls with low- and high-childhood-
SES is 0.5 year, (b) standard deviation of age at menarche 
is 1.5 years within each group, (c) an equal number of girls 
are in each group, and (d) we would like to have a 90% 
chance of detecting a significant difference between the 
girls with high- and low-childhood SES?

Diabetes
Type I diabetes is a common disease among children. It 
is widely accepted that maintaining glycemic control by 
regularly taking insulin shots is essential to avoid the long-
term consequences of diabetes, which include neurologic, 
vision, and kidney problems and, eventually, premature heart 
disease or death.

What is less clear is whether maintaining diabetes control 
affects growth and development in childhood. For this pur-
pose, a group of adolescent boys ages 9−15 were exam-
ined periodically (approximately every 3 months, but with 
wide variation). At each exam, the degree of diabetes con-
trol was assessed by measuring glycosylated hemoglobin 
(HgbA1c). The higher the HgbA1c, the poorer the diabetic 
control is (normals typically have HgbA1c <7.0). In addi-
tion, the age, height, and weight of each child were de-
termined at each visit. Exact visit dates are available in the 
data set given in DIABETES.DAT at www.cengagebrain 
.com. Data are available for 94 boys over 910 visits.

The main question of interest here lies in the overall relation-
ship between glycemic control and growth (weight mainly, 
but you might wish to consider other measures of growth as 
well) for the whole population, and not in this relationship for 
any particular boy.

8.139  Do boys with better glycemic control have different 
growth patterns in weight than boys with poorer glycemic 
control?

 Data set available

One approach for looking at this is to calculate the average 
HgbA1c over all visits for each boy and to categorize boys 
as maintaining good control if their mean HgbA1c is below 
the median for the 94 boys and as in poor control otherwise. 
The simplest measure of growth is to calculate change in 
weight per year = (weight at last visit − weight at first visit)/
(age in years at last visit − age in years at first visit). You can 
then use t test methods to compare the mean rate of growth 
between boys who are in good control and boys who are in 
poor control.

8.140  Answer Problem 8.139 for height instead of weight.

8.141  Answer Problem 8.139 for BMI (BMI = wt/ht2 in units 
of kg/m2).

In Chapter 11, we discuss regression methods that allow 
for more sophisticated analyses of these data.

Pediatrics
A study was conducted to assess the association be-
tween climate conditions in infancy and adult blood pres-
sure and anthropometric measures (e.g., height, weight) 
[19]. There were 3964 British women born between 
1919 and 1940 who were divided into quartiles (n = 991 
per quartile) according to mean summer temperature 
(°C) in the first year of life. The data in Table 8.34 were 
presented.

Table 8.34 � Mean adult height by mean summer 
temperature in the first year of life

		  Range of 	 Mean adult		   
		  temperature 	 height 
Group	 Quartile	 (°C)	 (cm)	 95% CI	 n

Q1	 1	 10.8−13.7	 159.1	 (158.8, 159.4)	 991
Q2	 2	 13.8−14.6	 159.0	 (158.7, 159.3)	 991
Q3	 3	 14.7−15.7	 158.4	 (158.1, 158.7)	 991
Q4	 4	 15.8−18.1	 158.1	 (157.8, 158.4)	 991

We will assume that the distribution of adult height within a 
quartile is normally distributed and that the sample sizes are 
large enough that the t distribution can be approximated by 
a normal distribution.

8.142  What is the standard deviation of adult height for the 
women in the first quartile group (group Q1)?

8.143  What test can be performed to compare the mean 
adult height between the first (Q1) and the fourth (Q4) 
quartiles? (Assume that the underlying variances of adult 
height in Q1 and Q4 are the same.)

8.144  Perform the test in problem 8.143, and report a  
p-value (two-tailed). Assume that the underlying variances 
in Q1 and Q4 are the same.
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8.145  Provide a 95% CI for the difference in mean adult 
height between women in the first and fourth quartiles.

Cardiovascular Disease
A study of genetic factors related to coronary heart dis-
ease (CHD) was performed as a substudy within the ARIC 
Study [20]. The data in Table 8.35 were provided by eth-
nic group for high-density lipoprotein (HDL) cholesterol  
(mg/dL).

Table 8.35 � Mean HDL cholesterol (mg/dL) by 
ethnic group

	 Caucasian	 African-American

Mean	 51.1	 55.3
sd	 16.8	 17.2
n	 9389	 3167

8.146  What is the standard error of the mean for each 
group?

8.147  Provide a 95% CI for the difference between the 
means. [Hint: Assume that for d ≥ 200, td ≅ N (0,1) distri-
bution. Also assume that the underlying variances are the 
same in each group.]

8.148  Suppose a new study is conducted in which there 
will be n1 Caucasian subjects and n2 African American 
subjects, where n2 = 2n1. How large should n1 and n2 
be in order for the new study to have 90% power to 
detect a mean difference of 5 mg/dL between the two 
groups, where a two-sided test is conducted with α =  
.05? (Hint: Assume that the standard deviations in the 
above table for each ethnic group are the true standard 
deviations.)

8.149  Suppose that 100 Caucasian and 150 African 
American subjects are actually enrolled in the study. How 
much power would the study have to detect a 5-mg/dL 
mean difference using a two-sided test with α = .05?

Diabetes
The insulin pump is a device that delivers insulin to a dia-
betic patient at regular intervals. It presumably regulates 
insulin better than standard injections. However, data to 
establish this point are few, especially in children.

The following study was set up to assess the effect of use 
of the insulin pump on HgbA1c, which is a long-term marker 
of compliance with insulin protocols. In general, a normal 
range for HgbA1c is <7%.

Data were collected on 256 diabetic patients for 1 year be-
fore and after using the insulin pump. A subset of the data for 
10 diabetic patients is given in Table 8.36.

Table 8.36 � Mean HgbA1c 1 year before and 1 year 
after use of the insulin pump

	 Mean HgbA1c 	 Mean HgbA1c	  
ID	 1 year before (%)	 1 year after (%)	 Before − After (%)

1	 6.7	 7.0	 –0.3
2	 7.4	 7.4	 0
3	 9.2	 8.6	 0.6
4	 9.6	 8.1	 1.5
5	 7.4	 6.8	 0.6
6	 8.1	 7.0	 1.1
7	 10.8	 8.5	 2.3
8	 7.1	 7.7	 –0.6
9	 7.9	 9.7	 –1.8
10	 10.8	 7.7	 3.1

Mean	 8.5	 7.9	 0.65

sd	 1.5	 0.9	 1.44

8.150  What test can be used to compare the mean  
HgbA1c 1 year before vs. mean HgbA1c 1 year after  
use of the insulin pump?

8.151  Perform the test in Problem 8.150, and report a two-
tailed p-value.

8.152  Provide a 95% CI for the mean difference in HgbA1c 
before minus the mean HgbA1c after use of the insulin 
pump.

8.153  Suppose we wanted a 99% CI. Would this  
interval be longer, shorter, or the same size as the 95% 
CI in Problem 8.152? (Do not actually compute the  
interval.)

Health Promotion
An individual has been exercising at a local gym for about 
10 years. He always begins with a 10- to 15-minute session 
on the treadmill at a speed of 3.7 mph. During a 12-day 
period in 2010, he recorded his heart rate before using the 
treadmill and after 5 minutes of use. The data are shown in 
Table 8.37.

8.154  Provide a 95% CI for the mean change in heart rate 
after using the treadmill for 5 minutes.

The subject also recorded his heart rate at baseline and  
5 minutes after starting treadmill exercise (at a speed of  
2.5 mph) in 2000. The data are shown in Table 8.38.

8.155  Implement a test to compare the baseline heart rate 
initially (2000) and after 10 years of exercise (2010), and 
report a two-sided p-value.

8.156  Interpret the results of the test in Problem 8.155.

8.157  Provide a 95% CI for the difference in mean baseline 
heart rate between starting an exercise program (2000) and 
after 10 years of regular exercise (2010).
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Table 8.37 � Change in heart rate following 
treadmill use in 2010

	 Heart rate

Day	 Baseline	 5 min	 Change

  1	 85	 103	 18
  2	 77	 92	 15
  3	 81	 97	 16
  4	 81	 96	 15
  5	 74.5	 93	 18.5
  6	 83.75	 96	 12.25
  7	 76.5	 93	 16.5
  8	 77.75	 94	 16.25
  9	 79.25	 90	 10.75
10	 84.25	 99	 14.75
11	 76.5	 94	 17.5
12	 84.75	 97	 12.25

Mean	 80.1	 95.3	 15.2
sd	 3.7	 3.5	 2.4

Table 8.38  �Change in heart rate following 
treadmill use in 2000

	 Heart rate	 Heart rate

Day	 Baseline	 5 min	 Day	 Baseline	 5 min

1	 84	 87	 6	 86	 92
2	 87	 92	 7	 88	 93
3	 90	 93	 8	 84	 90
4	 94	 98	 9	 86	 92
5	 98	 100	 10	 98	 104

Mean	 89.5	 94.1
sd	    5.4	    5.1

General
Suppose we have two groups with sample sizes of 8 and 15.

8.158  Group 1 has a sample sd of 10.0 (n = 8) while 
group 2 has a sample sd = 8 ( n = 15). Test whether the 
variances in the two groups are significantly different at 
the 5% level.

8.159  Suppose that the mean in group 1 = 15.4 and the 
mean in group 2 = 12.6. Based on your answer to Problem 
8.158 test whether the means in the two groups are signifi-
cantly different, and report a two-sided p-value.

8.160  Suppose this study is a pilot study for a larger study. 
The investigators want to determine the sample size in the 
larger study so that

	 (i)  Power will be 90%

	 (ii)  A two-sided test is used with a = .05

	 (iii)  �The means and standard deviations in each group 
are the same as in Problems 8.158 and 8.159

	 (iv)  �There are twice as many subjects in group 2 than 
in group 1. How many subjects should be enrolled 
in each each group to achieve these objectives?

Neurology
In a 5-year follow-up of bilateral stimulation of the subtha-
lamic nucleus among 49 patients with advanced Parkinson’s 
disease, investigators assessed changes in symptoms as 
measured by the Unified Parkinson’s Disease Rating Scale 
(range = 0 to 108, with higher values denoting more symp-
toms). Assume this measure follows a normal distribution. 
The mean score at baseline was 55.7. The standard devia-
tion of change from baseline to 5 years was 15.3.

8.161  How much power does this study have to detect a 
mean difference of 5 units in the symptom scale if a two-
sided test is used with α = .05?

8.162  What minimum sample size would be needed to 
detect a mean change of 5 units with 80% power if a two-
sided test is used with α = .05?

8.163  The above study had no control group. Assuming 
that the same standard deviation of change would occur 
among controls and the mean change among controls = 0, 
how many participants would be necessary to detect a 
mean difference of 5 units of change between those receiv-
ing stimulation and a control group of equal size with 80% 
power if a two-sided test is used with α = .05?

Ophthalmology
The following data are from a study on Botox injections. 
Patients received a high-dose injection in one eye (experi-
mental treatment = treatment E) and a low-dose injection 
in the other eye (control treatment = treatment C). Patients 
were asked to rate the level of pain in each eye on a 1–10 
scale, with higher scores indicating more pain. The assign-
ment of treatments to eyes was randomized. The subjects 
came back over several visits. Data from the last visit are 
given in Table 8.39.

Suppose we wish to compare the pain score in the E eye 
vs. the pain score in the C eye.

8.164  What test can be used to make this comparison?

8.165  Perform this test, and report a p-value (two-tailed).

Another way to compare the E-treated eyes vs. the  
C-treated eyes is to look at the percentage of subjects  
who have less pain in the E eye vs. the C eye.

8.166  If the E and C treatments are comparable, what test 
can we use to compare the percentage of subjects who 
have less pain with the E eye vs. the C eye?
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Table 8.39  �Effect of Botox injection on eye pain

	 Pain score at the last visit

Subject	 Pain in E eye	 Pain in C eye

1	 1.3	 8.8

2	 7.3	 1.3

3	 0	 0.8

4	 0	 9.5

5	 3	 7.8

6	 0	 9.0

7	 3.5	 5.0

8	 0	 2.3

9	 0	 2.5

10	 2.0	 8.0

11	 0	 4.5

12	 3.0	 4.5

13	 5.0	 9.0

14	 0.3	 7.5

15	 0	 0.5

16	 0.8	 4.3

8.167  Perform the test in Problem 8.166, and report a  
p-value (two-tailed).

Nutrition
The EPIC-Norfolk study, a study of diet and cancer in Great 
Britain, was performed to assess the relationship between 
dietary intake of vitamin C, plasma levels of vitamin C (in 
blood), and other predictors. One hypothesis is that smok-
ers might have different vitamin C intake and vitamin C 
plasma levels than nonsmokers. Dietary intake of vitamin C 
was obtained using 7-day diet records in which a subject 
recorded what he or she ate in real time and a computer 
program was used to estimate nutrient intake based on the 
diet record data. The data in Table 8.40 were obtained for 
current smokers and nonsmokers.

Table 8.40  �Association between current smoking 
and diet record intake of vitamin C in 
the EPIC-Norfolk Studya

	 Mean vitamin C  
Group	 intake (mg/day)	 sd (mg/day)	 N

Nonsmokers	 92.5	 50.4	 306
Smokers	 57.0	 26.3	    17

aDiet record intake includes intake from foods but not from  
vitamin supplements.

8.168  What test can be used to compare the standard 
deviation of diet record vitamin C intake between current 
smokers vs. nonsmokers?

8.169  Perform the test in Problem 8.168, and identify 
whether there is a significant difference between the two 
variances (i.e., is p < .05 or p > .05?).

8.170  What test can be performed to compare the mean 
diet record vitamin C intake between the two groups?

8.171  Perform the test in Problem 8.170, and report a  
p-value (two-tailed).

8.172  Obtain a 95% CI for the mean difference in diet 
record vitamin C intake between the two groups.

Orthopedics
A study was performed among patients with piriformis-
syndrome (PS), a pelvic condition that involves malfunction 
of the piriformis muscle (a deep buttock muscle),which often 
causes lumbar and buttock pain with sciatica (pain radiating 
down the leg). A randomized double-blind clinical trial was 
performed where patients were injected with one of three 
substances:

Group 1: TL group received an injection of a combina-
tion of triamcinolone and lidocaine.

Group 2: Placebo group received a placebo injection.

Group 3: Botox group received a Botox injection.

We will focus on a comparison of group 3 vs. group 2 
for this problem. Patients were asked to come back at 2 
weeks, 1 month, 2 months, etc., up to 17 months. At each 
visit the patients rated their percentage of improvement of 
pain vs. baseline on a visual analog scale with a maximum of 
100% of improvement (indicated by 100). The results at the 
3-month follow-up visit were as follows:

Table 8.41 � Percent improvement in the Botox 
Study at 3 months of follow-up

Group	 Mean	 sd	 N

Placebo (2)	 19.8	 20.9	 11
Botox (3)	 49.7	 38.2	 19

Assume normality of the distribution of percent improved.

8.173  What test can be performed to compare the vari-
ances of the two groups?

8.174  Perform the test in Problem 8.173, and assess 
whether there is a significant difference between the vari-
ances at the 5% level.

8.175  What test can be performed to compare the means 
of the two groups?

8.176  Perform the test in Problem 8.175, and report a two-
sided p-value.
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9
	 9.1	 I n t r o d u c t i o n

So far in this book, we’ve assumed that data come from some 
underlying distribution, such as the normal or binomial distri-
bution, whose general form was assumed known. Methods of 
estimation and hypothesis testing have been based on these 
assumptions. These procedures are usually called parametric 
statistical methods because the parametric form of the distribu-
tion is assumed to be known. If these assumptions about the 
shape of the distribution are not made, and/or if the central-
limit theorem also seems inapplicable because of small sample 
size, then nonparametric statistical methods, which make fewer 
assumptions about the distributional shape, must be used.

Another assumption so far in this text is that it is mean-
ingful to measure the distance between possible data values. 
This assumption is characteristic of cardinal data.

	D efinition 9.1 	 Cardinal data are on a scale where it is meaningful to measure the distance between 
possible data values.

	 Example 9.1 	 Body weight is a cardinal variable because a difference of 6 lb is twice as large as a 
difference of 3 lb.

There are actually two types of cardinal data: interval-scale data and ratio-scale 
data.

	D efinition 9.2 	 For cardinal data, if the zero point is arbitrary, then the data are on an interval scale; if 
the zero point is fixed, then the data are on a ratio scale.

	 Example 9.2 	 Body temperature is on an interval scale because the zero point is arbitrary. For  
example, the zero point has a different meaning for temperatures measured in  
Fahrenheit vs. Celsius.

	 Example 9.3 	 Blood pressure and body weight are on ratio scales because the zero point is well 
defined in both instances.

Nonparametric 
Methods
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It is meaningful to measure ratios between specific data values for data on a ratio 
scale (for example, person A’s weight is 10% higher than person B’s) but not for data 
on an interval scale (for example, the ratio of specific temperatures is different in 
degrees F from what it is in degrees C). It is meaningful to use means and standard 
deviations for cardinal data of either type.

Another type of data that occurs frequently in medical and biological work but 
does not satisfy Definition 9.1 is ordinal data.

	D efinition 9.3 	 Ordinal data can be ordered but do not have specific numeric values. Thus, common 
arithmetic cannot be performed on ordinal data in a meaningful way.

	 Example 9.4 	 Ophthalmology  Visual acuity can be measured on an ordinal scale because we 
know 20–20 vision is better than 20–30, which is better than 20–40, and so on. How-
ever, a numeric value cannot easily be assigned to each level of visual acuity that all 
ophthalmologists would agree on.

	 Example 9.5  	 In some clinical studies the major outcome variable is the change in a patient’s 
condition after treatment. This variable is often measured on the following 5-point 
scale: 1 = much improved, 2 = slightly improved, 3 = stays the same, 4 = slightly 
worse, 5 = much worse. This variable is ordinal because the different outcomes,  
1, 2, 3, 4, and 5, are ordered in the sense that condition 1 is better than condition  
2, which is better than condition 3, and so on. However, we cannot say that the dif-
ference between categories 1 and 2 (2 minus 1) is the same as the difference between 
categories 2 and 3 (3 minus 2), and so on. If these categories were on a cardinal scale, 
then the variable would have this property. 

Because ordinal variables cannot be given a numeric scale that makes sense, 
computing means and standard deviations for such data is not meaningful. There-
fore, methods of estimation and hypothesis testing based on normal distributions, as 
discussed in Chapters 6 through 8, cannot be used. However, we are still interested in 
making comparisons between groups for variables such as visual acuity and outcome 
of treatment, and nonparametric methods can be used for this purpose.

Another type of data scale, which has even less structure than an ordinal scale 
concerning relationships between data values, is a nominal scale.

	D efinition 9.4 	 Data are on a nominal scale if different data values can be classified into categories but 
the categories have no specific ordering.

	E xample 9.6 	 Renal Disease  In classifying cause of death among patients with documented anal-
gesic abuse, the following categories were used: (1) cardiovascular disease, (2) cancer, 
(3) renal or urogenital disease, and (4) all other causes of death. Cause of death is a 
good example of a nominal scale because the values (the categories of death) have 
no specific order with respect to each other.

In this chapter the most commonly used nonparametric statistical tests are devel-
oped, assuming the data are on either a cardinal or an ordinal scale. If they are on 
a cardinal scale, then the methods are most useful if there is reason to question the 
normality of the underlying sampling distribution of the test statistic (for example, 
small sample size). For nominal (or categorical) data, discrete data methods, described 
in Chapter 10, are used.
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	 9.2	 T h e  S i g n  T e s t

As discussed in Section 9.1, for ordinal data we can measure the relative ordering of 
different categories of a variable. In this section, we consider data with even more 
restrictive assumptions; namely, for any two people A, B we can identify whether the 
score for person A is greater than, less than, or equal to the score for person B, but 
not the relative magnitude of the differences.

	 Example 9.7 	 Dermatology  Suppose we want to compare the effectiveness of two ointments (A, 
B) in reducing excessive redness in people who cannot otherwise be exposed to sun-
light. Ointment A is randomly applied to either the left or right arm, and ointment 
B is applied to the corresponding area on the other arm. The person is then exposed 
to 1 hour of sunlight, and the two arms are compared for degrees of redness. Sup-
pose only the following qualitative assessments can be made:

(1)	 Arm A is not as red as arm B.

(2)	 Arm B is not as red as arm A.

(3)	 Both arms are equally red.

Of 45 people tested with the condition, 22 are better off on arm A, 18 are better 
off on arm B, and 5 are equally well off on both arms. How can we decide 
whether this evidence is enough to conclude that ointment A is better than 
ointment B?

Normal-Theory Method
In this section, we consider a large-sample method for addressing the question posed 
in Example 9.7.

Suppose that the degree of redness could be measured on a quantitative scale, 
with a higher number indicating more redness. Let xi = degree of redness on arm A, yi = 
degree of redness on arm B for the ith person. Let’s focus on di = xi – yi = difference in 
redness between the A and B arms for the ith participant and test the hypothesis H0: 
∆ = 0 vs. H1: ∆ ≠ 0, where ∆ = the population median of the di or the 50th percentile 
of the underlying distribution of the di.

(1)	 If ∆ = 0, then the ointments are equally effective.

(2)	 If ∆ < 0, then ointment A is better because arm A is less red than arm B.

(3)	 If ∆ > 0, then ointment B is better because arm A is redder than arm B.

Notice that the actual di cannot be observed; we can only observe whether di > 0, 
di < 0, or di = 0. The people for whom di = 0 will be excluded because we cannot tell 
which ointment is better for them. The test will be based on the number of people 
C for whom di > 0 out of the total of n people with nonzero di. This test makes sense 
because if C is large, then most people prefer treatment B over treatment A, whereas 
if C is small, they prefer treatment A over treatment B. We would expect under H0 

that Pr(nonzero di > 0) = 1
2

. We will assume the normal approximation to the bino-

mial is valid. This assumption will be true if

		     npq ≥ 5    or    n
1
2

1
2

5









 ≥

Or  
n
4

5≥       or    n ≥ 20

where n = the number of nonzero di’ s.
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The following test procedure for a two-sided level α test, called the sign test, can 
then be used:

	E quation 9.1	 The Sign Test

		  To test the hypothesis H0: ∆ = 0 vs. H1: ∆ ≠ 0 with type I error = a, where the 

		  number of nonzero di’s = n ≥ 20 and C = the number of di’s where di > 0, if

			 
C c

n
z n C c

n
z n> = + + < = − −− −2 1 2 1 1 22

1
2

4
2

1
2

4α α/ // /or

		  then H0 is rejected. Otherwise, H0 is accepted.

			   The acceptance and rejection regions for this test are shown in Figure 9.1.

	Fi gure 9.1 	 Acceptance and rejection regions for the sign test
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Similarly, the p-value for the procedure is computed using the following formula.

	E quation 9.2	 Computation of the p-Value for the Sign Test (Normal-Theory Method)

		

p
C

n

n
C

n

p

= × −
− −































>2 1 2
5

4 2
Φ

.
if

== ×
− +















<

= =

2 2
5

4 2

1 0
2
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n
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C

n

p C
n

.

/

.
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		  This computation is illustrated in Figure 9.2.
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	E quation 9.3	 Alternative formulas for the sign test 

		  (a)	 An alternative and equivalent formula for the p-value is given by

			 
p

C D
n

C D p C D= × − − −













 ≠ = =2 1

1
1 0Φ if and if.

		  where C = the number of di > 0 and D = the number of di < 0.

		  (b)	 Another equivalent formula for obtaining the p-value for the sign test is 
based on the chi-square distribution. Specifically, let

			 
X

C D

n
H

1
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2

1
2

0
( )

=
− −

χ

		  The two-sided p-value is given by:

		  p Pr X-value .1
2 2( )= χ >

∼

�Figure 9.2 � Computation of the p-value for the sign test
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This test is called the sign test because it depends only on the sign of the differences 
and not on their actual magnitude.

The sign test is actually a special case of the one-sample binomial test in 
Section 7.9, where the hypothesis H0: p = 1/2 vs. H1: p ≠ 1/2 was tested. In Equation 
9.1 and Equation 9.2 a large-sample test is being used, and we are assuming the nor-
mal approximation to the binomial distribution is valid. Under H0, p = 1/2 and E(C) = 
np = n/2, Var(C) = npq = n/4, and C ~.  N(n/2, n/4). Furthermore, the .5 term in computing 
the critical region and p-value serves as a continuity correction and better approxi-
mates the binomial distribution by the normal distribution.

	 Example 9.8 	 Dermatology  Assess the statistical significance of the skin-ointment data in 
Example 9.7.

	 	 Solution:   In this case there are 40 untied pairs and C = 18 < n/2 = 20. From Equation 
9.1, the critical values are given by

c n z n

z

2 1 2

975

2 1 2 4

40 2 1 2 40 4 20 5 1 96 3

= + +

= + + = +

−α

. . . .. .

. ./

162 26 7

2 1 2 4 19 5 1 96 31 1 2

( ) =

= − − = −−and c n z nα .. .162 13 3( ) =

Because 13.3 ≤ C = 18 ≤ 26.7, H0 is accepted using a two-sided test with α = .05 
and we conclude the ointments do not significantly differ in effectiveness. From 
Equation 9.2, because C = 18 < n/2 = 20, the exact p-value is given by

		
p = × − +











= × −( ) = ×2 Φ Φ18 20
1
2

40 4 2 0 47 2. .33176 635= .

which is not statistically significant. Therefore, we accept H0, the ointments are 
equally effective.

Alternatively, we could compute the test statistic

		
z

C D
n

= − − 1

where C = 18, D = 22, and n = 40, yielding

		
z = − − = =18 22 1

40
3
40

0 47.

and obtain the p-value from

		  p = × − ( )[ ] =2 1 0 47 635Φ . .

Similarly, we could also compute z
9

40
0.2252 2χ = = =  and obtain the p-value from  

P = Pr (χ2
1 > 0.225) = CHIDIST(0.225,1) = 0.635. 

Using the Computer to Perform the Sign Test 	
(Normal Theory Method)
We can use the prop.test command of R to implement the large sample version of 
the sign test. The syntax is similar to that used for the one-sample binomial test with 
p0 = 0.50. Thus, the syntax is:

prop.test(x, n, p = 0.5, alternative = “two.sided”, correct = TRUE)

where x = number of subjects with di > 0, and n = total number of subjects with di ≠ 0.
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	 Example 9.9 	 Dermatology  Assess the significance of the skin ointment data in Example 9.7  
using R.

	 	 Solution:  In this case, n = 40 and x = 18. Hence, we use the syntax:

prop.test(18, 40, p = 0.5, alternative = “two.sided”, correct = TRUE)

The results are as follows:
> prop.test(18, 40, p = 0.5, alternative = "two.sided", correct = 
TRUE)

1-sample proportions test with continuity correction

data:  18 out of 40, null probability 0.5

X-squared = 0.225, df = 1, p-value = 0.6353

alternative hypothesis: true p is not equal to 0.5

95 percent confidence interval:

0.2960304 0.6134103

sample estimates:

p

0.45

The results are the same as in Example 9.8, based on the chi-square version of 
the test.

Exact Method
If n < 20, then exact binomial probabilities rather than the normal approximation 
must be used to compute the p-value. H0 should still be rejected if C is very large or 
very small. The expressions for the p-value based on exact binomial probabilities are 
as follows:

	E quation 9.4	 Computation of the p-Value for the Sign Test (Exact Test)

		  If C > n/2,  p
n
k

n

k C

n

= ×










=

∑2
1
2

		  If C < n/2,  p
n
k

n

k

C

= ×




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



=

∑2
1
20

		  If C = n/2,  p = 1.0

		  This computation is depicted in Figure 9.3.

This test is a special case of the small-sample, one-sample binomial test described in 

Equation 7.29, where the hypothesis H0: p = 1
2 vs. H1: p ≠ 1

2 is tested.

	 Example 9.10 	 Ophthalmology  Suppose we wish to compare two different types of eye drops (A, B)  
that are intended to prevent redness in people with hay fever. Drug A is randomly 
administered to one eye and drug B to the other eye. The redness is noted at 
baseline and after 10 minutes by an observer who is unaware of which drug has 
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been administered to which eye. We find that for 15 people with an equal amount 
of redness in each eye at baseline, after 10 minutes the drug A eye is less red than 
the drug B eye for 2 people (di < 0); the drug B eye is less red than the drug A eye for 
8 people (di > 0); and the eyes are equally red for 5 people (di = 0). Assess the statistical 
significance of the results.

	 	 Solution:  The test is based on the 10 people who had a differential response to the two 
types of eye drops. Because n = 10 < 20, the normal-theory method in Equation 9.2 
cannot be used; the exact method in Equation 9.3 must be used instead. Because 

C = > =8
10
2

5,

		  p
kk

= ×










=

∑2
10 1

2

10

8

10

Refer to the binomial tables (Table 1 in the Appendix) using n = 10, p = .5, and note 
that Pr(X = 8) = .0439, Pr(X = 9) = .0098, Pr(X = 10) = .0010. Thus, p = 2 × Pr(X ≥ 8) = 
2(.0439 + .0098 + .0010) = 2 × .0547 = .109, which is not statistically significant. Thus, 
we accept H0, that the two types of eye drops are equally effective in reducing redness 
in people with hay fever.

	 9.3	 T h e  W i l c o x o n  S i g n e d - R a n k  T e s t

	 Example 9.11 	 Dermatology  Consider the data in Example 9.7 from a different perspective. We 
assumed that the only possible assessment was that the degree of sunburn with oint-
ment A was either better or worse than that with ointment B. Suppose instead the 
degree of burn can be quantified on a 10-point scale, with 10 being the worst burn 
and 1 being no burn at all. We can now compute di = xi − yi, where xi = degree of burn 
for ointment A and yi = degree of burn for ointment B. If di is positive, then oint-
ment B is doing better than ointment A; if di is negative, then ointment A is doing 
better than ointment B. For example, if di = +5, then the degree of redness is 5 units 
greater on the ointment A arm than on the ointment B arm, whereas if di = −3, then 

	Fi gure 9.3	 Computation of the p-value for the sign test (exact test)
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If C � n/2, then p-value = 2 × sum of 
binomial probabilities from C to n for 
a binomial distribution with parameters 
n and 1/2.

If C � n/2, then p-value = 2 × sum of 
binomial probabilities from 0 to C for 
a binomial distribution with parameters 
n and 1/2.
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the degree of redness is 3 units less on the ointment A arm than on the ointment B 
arm. How can this additional information be used to test whether the ointments are 
equally effective?

Suppose the sample data in Table 9.1 are obtained. The fi values represent the fre-
quency or the number of people with difference in redness di between the ointment 
A and ointment B arms.

Notice that there is only a slight excess of people with negative di (that is, who 
are better off with ointment A, 22) than with positive di (that is, who are better off 
with ointment B, 18). However, the extent to which the 22 people are better off 
appears far greater than that of the 18 people because the negative di’s generally 
have a much greater absolute value than the positive di’s. This point is illustrated 
in Figure 9.4.

We wish to test the hypothesis H0: ∆ = 0 vs. H1: ∆ ≠ 0, where ∆ = the median score 
difference between the ointment A and ointment B arms. If ∆ < 0, then ointment A 
is better; if ∆ > 0, then ointment B is better. More generally, we can test the hypoth-
esis H0, that the distribution of di is symmetric about zero, vs. H1, that the distribu-
tion of di is not symmetric about zero.

Let’s assume that the di’s have an underlying continuous distribution. Based on 
Figure 9.4, a seemingly reasonable test of this hypothesis would be to take account of 
both the magnitude and the sign of the differences di. A paired t test might be used 
here, but the problem is that the rating scale is ordinal. The measurement di = −5 
does not mean that the difference in degree of burn is five times as great as di = −1, 
but rather it simply means there is a relative ranking of differences in degree of burn, 
with −8 being most favorable to ointment A, −7 the next most favorable, and so on. 
Thus, a nonparametric test that is analogous to the paired t test is needed here. The 
Wilcoxon signed-rank test is such a test. It is nonparametric, because it is based on 
the ranks of the observations rather than on their actual values, as is the paired t test.

	T able 9.1 	 Difference in degree of redness between ointment A and ointment B arms 	
after 10 minutes of exposure to sunlight 

|di |

	 Number of 	
people with 	

same 	
absolute 	

value
Range of 	

ranks
Average 	

rank

Negative Positive

di fi di fi

10 −10 0 10 0 — —
9 −9 0 9 0 0 — —
8 −8 1 8 0 1 40 40.0
7 −7 3 7 0 3 37–39 38.0
6 −6 2 6 0 2 35–36 35.5
5 −5 2 5 0 2 33–34 33.5
4 −4 1 4 0 1 32 32.0
3 −3 5 3 2 7 25–31 28.0
2 −2 4 2 6 10 15–24 19.5
1 −1   4 1 10 14 1–14 7.5

22 18

0 0 5
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The first step in this test is to compute ranks for each observation, as follows.

	E quation 9.5	 Ranking Procedure for the Wilcoxon Signed-Rank Test

		  (1)	 Arrange the differences di in order of absolute value as in Table 9.1.

		  (2)	 Count the number of differences with the same absolute value.

		  (3)	 Ignore the observations where di = 0, and rank the remaining observations 
from 1 for the observation with the lowest absolute value, up to n for the 
observation with the highest absolute value.

		  (4)	 If there is a group of several observations with the same absolute value, 
then find the lowest rank in the range = 1 + R and the highest rank in the  
range = G + R, where R = the highest rank used prior to considering this group 
and G = the number of differences in the range of ranks for the group. Assign 
the average rank = (lowest rank in the range + highest rank in the range)/2 as 
the rank for each difference in the group.

	 Example 9.12 	 Dermatology  Compute the ranks for the skin-ointment data in Table 9.1.

	 	 Solution:  First collect the differences with the same absolute value. Fourteen people 
have absolute value 1; this group has a rank range from 1 to 14 and an average rank 
of (1 + 14)/2 = 7.5. The group of 10 people with absolute value 2 has a rank range 
from (1 + 14) to (10 + 14) = 15 to 24 and an average rank = (15 + 24)/2 = 19.5, . . . , 
and so on.

	Fi gure 9.4	 Bar graph of the differences in redness between the ointment A and ointment B arms for 
the data in Example 9.11
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The test is based on the sum of the ranks, or rank sum (R1), for the group of 
people with positive di —that is, the rank sum for people for whom ointment A is not 
as good as ointment B. A large rank sum indicates that differences in burn degree in 
favor of treatment B tend to be larger than those for treatment A, whereas a small 
rank sum indicates that differences in burn degree in favor of treatment A tend to 
be larger than those for treatment B. If the null hypothesis is true, then the expected 
value and variance of the rank sum (when there are no ties) are given by

		  E R n n Var R n n n( ) ( ) / , ( ) ( )( ) /1 11 4 1 2 1 24= + = + +

where n is the number of nonzero differences.

If the number of nonzero di’s is ≥ 16, then a normal approximation can be used 
for the sampling distribution of R1. This test procedure, the Wilcoxon signed-rank 
test, is given as follows.

	E quation 9.6	 �Wilcoxon Signed-Rank Test (Normal Approximation Method for Two-Sided Level 	
	 a Test)

		  (1)	 Rank the differences as shown in Equation 9.5.

		  (2)	 Compute the rank sum R1 of the positive differences.

		  (3)	 (a) � If R
n n

1
1

4
≠ +( )

 and there are no ties (no groups of differences with the 

same absolute value), then

				  
T R

n n
n n n= − + −





+ +1
1

4
1
2

1 2 1 24
( )

( )( )

			   (b) � If R
n n

1
1

4
≠ +( ) and there are ties, where ti refers to the number of differ-

ences with the same absolute value in the ith tied group and g is the 
number of tied groups, then

				  
T R

n n
n n n t ti i= − + −





+ + − −1
31

4
1
2

1 2 1 24
( )

( )( ) ( )) 48
1i

g

=
∑

			   (c)  If R
n n

1
1

4
= +( )

, then T = 0.

		  (4)	 If
			     

T z> −1 2α/

			   then reject H0. Otherwise, accept H0.

		  (5)	 The p-value for the test is given by

			     
p T= × −[ ]2 1 Φ( )

		  (6)	 This test should be used only if the number of nonzero differences is ≥ 16 
and if the difference scores have an underlying continuous symmetric 
distribution. The computation of the p-value is illustrated in Figure 9.5.

The rationale for the different test statistic in the absence (3a) or presence (3b) 
of tied values is that the variance of R1 is reduced in the presence of ties (sometimes 
substantially) [1].
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An alternative variance formula for R1 is

		
Var R rj

j

n

( )1
2

1

4=
=
∑

where rj = rank of the absolute value of the jth observation and the sum is over all 
observations, whether positive or negative. This formula is valid both in the pres-
ence or absence of ties but is computationally easier than the variance formula in 3b 
if ties are present.

	Fi gure 9.5	 Computation of the p-value for the Wilcoxon signed-rank test
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p = 2 × [1 – Φ(T)]

The term 1/2 in the computation of T serves as a continuity correction in the same 
manner as for the sign test in Equations 9.1 and 9.2.

	 Example 9.13 	 Dermatology  Perform the Wilcoxon signed-rank test for the data in Example 9.11 
(p. 345).

	 	 Solution:  Because the number of nonzero differences (22 + 18 = 40) ≥ 16, the nor-
mal approximation method in Equation 9.6 can be used. Compute the rank sum 
for the people with positive di —that is, where ointment B performs better than 
ointment A, as follows:

		  R1 10 7 5 6 19 5 2 28 0 75 117 56 248= + + = + + =( . ) ( . ) ( . )

The expected rank sum is given by

		  E R( ) ( ) /1 40 41 4 410= =

The variance of the rank sum corrected for ties is given by

		

Var R( ) ( )( ) / [( ) ( ) (1
3 340 41 81 24 14 14 10 10 7= − − + − + 33 3 3

3 3 3

7 1 1 2 2

2 2 3 3 1 1 4

− + − + −

+ − + − + −

) ( ) ( )

( ) ( ) ( )]/ 88
5535 2730 990 336 0 6 6 24 0 48
5535 4

= − + + + + + + +
= −

( ) /
0092 48 5449 75/ .=

If the alternative variance formula is used, then
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Var R( ) 14(7.5) 10(19.5) (40) 4

21,799 / 4 5449.75
1

2 2 2= + + …+ 
= =

Thus, sd R( ) . .1 5449 75 73 82= = . Therefore, the test statistic T is given by

		
T = − −



 = =| | . . / . .248 410

1
2

73 82 161 5 73 82 2 19

The p-value of the test is given by

		  p = − = × − =2 1 2 19 2 1 9857 029[ ( . )] ( . ) .Φ

We therefore can conclude that there is a significant difference between ointments, 
with ointment A doing better than ointment B because the observed rank sum (248) 
is smaller than the expected rank sum (410). This conclusion differs from the con-
clusion based on the sign test in Example 9.8 (p. 343), where no significant differ-
ence between ointments was found. This result indicates that when the information 
is available, it is worthwhile to consider both magnitude and direction of the differ-
ence between treatments, as the signed-rank test does, rather than just the direction 
of the difference, as the sign test does.

In general, for a two-sided test, if the signed-rank test is based on negative differ-
ences rather than positive differences, the same test statistic and p-value will always 
result. Thus, the rank sum can be arbitrarily computed based on either positive or 
negative differences.

	 Example 9.14 	 Dermatology  Perform the Wilcoxon signed-rank test for the data in Example 9.11 
(p. 345) based on negative—rather than positive—difference scores.

	 	 Solution:  R2 = rank sum for negative differences

		  = 4(7.5) + 4(19.5) + 5(28.0) + 1(32.0) + 2(33.5) + 2(35.5) + 3(38.0) + 1(40.0)

		  = 572

Thus,

R
n n

R
n n

2 1
1

4
5 572 410 5 161 5

1
4

− + − = − − = = − +( )
. | | . .

( ) −− .5

Because Var(R1) = Var(R2), the same test statistic T = 2.19 and p-value = .029 are 
obtained as when positive-difference scores are used.

If the number of pairs with nonzero di ≤ 15, then the normal approximation is 
no longer valid and special small-sample tables giving significance levels for this 
test must be used. Such a table is Table 10 in the Appendix, which gives upper and 
lower critical values for R1 for a two-sided test with α levels of .10, .05, .02, and 
.01, respectively. In general, the results are statistically significant at a particular 
α level only if either R1 ≤ the lower critical value or R1 ≥ the upper critical value 
for that α level.

	 Example 9.15 	 Suppose there are 9 untied nonzero paired differences and a rank sum of 43. Evaluate 
the statistical significance of the results.
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	 	 Solution:  Because R1 = 43 ≥ 42, it follows that p < .02. Because R1 = 43 < 44, it follows 
that p ≥ .01. Thus, .01 ≤ p < .02, and the results are statistically significant.

If you have <16 nonzero paired differences and there are ties among the 
paired differences, then Table 10 in the Appendix is no longer applicable and 
more complicated methods based on permutation tests should be used (see [1] for 
more details).

Using the Computer to Perform the 	
Wilcoxon Signed Rank Test
The R command wilcox.test can perform the Wilcoxon signed rank test both for the 
large sample method and the exact method. For the large sample method, if you 
have one set of difference scores that are contained in a variable x, then the syntax 
is as follows:

wilcox.test(x, y = NULL, alternative = “two.sided”, mu = 0, 
paired = FALSE, exact = NULL, correct = TRUE, conf.int = FALSE)

If you have two sets of paired scores contained in variables x and y, then use the 
syntax:

wilcox.test(x, y, alternative = “two.sided”, mu = 0, paired = 
TRUE, exact = NULL, correct = TRUE, conf.int = FALSE)

	 Example 9.16 	 Dermatology  perform the Wilcoxon signed rank test for the data in Table 9.1 
(p. 346) using a computer program and compare the results with those in Example 
9.13 (p. 349).

	 	 Solution:  We have stored the 40 difference scores in Table 9.1 into the variable d 
and used the wilcox.test program of R to implement the signed rank test. The results 
are as follows:

>wilcox.test(d,y=NULL,alternative="two.sided",mu=0,paired=FALSE, 
exact=NULL,correct=TRUE,conf.int=FALSE)

	 Wilcoxon signed rank test with continuity correction

data: d

V = 248, p-value = 0.02869

alternative hypothesis: true location is not equal to 0

We see that the test statistic V ( which is the same as R1 in Equation 9.6) = 248 
and the two-sided p-value = 0.029. This is the same result that we obtained in 
Example 9.13.

If the exact option is used (i.e., exact = TRUE), then the data cannot have any ties.

An example of the signed-rank test with ordinal data has been presented. This 
test and the other nonparametric tests can be applied to cardinal data as well, 
particularly if the sample size is small and the assumption of normality appears 
grossly violated. However, an assumption of the signed-rank test is that one has a 

See page 348 for  
Equation 9.6
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continuous and symmetric, but not necessarily normal, distribution. If the actual 
distribution turns out to be normal, then the signed-rank test has less power than 
the paired t test, which is the penalty paid.

RE  V I E W  QUE   S T I ON  S  9 A

1	 What are the differences among cardinal data, ordinal data, and nominal data?

2	 What is the difference between a parametric test and a nonparametric test?

3	 What is the difference between the sign test and the signed-rank test?

4	 Suppose researchers study an experimental surgical procedure for patients with 
retinitis pigmentosa (RP) among a group of 10 patients. The investigators find that 
9 of the patients got worse after this procedure and 1 patient got better over the 
short term (3–6 months). Assuming that in the absence of treatment the patients 
would be expected to show no change over this time period, evaluate the results of 
the study.

5	 The actual change scores on the electroretinogram (ERG), a measure of electrical 
activity in the retina, are presented for each patient in Table 9.2.

	T able 9.2 	 ERG change scores following surgery for RP (Berson et al., [2])

	 Patient	 Scorea	 Patient	 Score

	     1	 −0.238	 6	 +0.090
	     2	 −0.085	 7	 −0.736
	     3	 −0.215	 8	 −0.365
	     4	 −0.227	 9	 −0.179

    5	 −0.037	 10	 −0.048

aThe change scores = ln(ERG amplitude) at follow-up − ln(ERG amplitude) at baseline. A negative score indicates 
decline.

	 �Evaluate the significance of the results without assuming the change scores are 
normally distributed. What do the results indicate?

	 9.4	 T h e  W i l c o x o n  R a n k - S u m  T e s t

In the previous section, a nonparametric analog to the paired t test—namely, the 
Wilcoxon signed-rank test—was presented. In this section, a nonparametric analog 
to the t test for two independent samples is described.

	 Example 9.17 	 Ophthalmology  Different genetic types of the disease retinitis pigmentosa (RP) 
are thought to have different rates of progression, with the dominant form of 
the disease progressing the slowest, the recessive form the next slowest, and 
the sex-linked form the fastest. This hypothesis can be tested by comparing the 
visual acuity of people who have different genetic types of RP. Suppose there 
are 25 people ages 10–19 with dominant disease and 30 people with sex-linked 
disease. The best-corrected visual acuities (i.e., with appropriate glasses) in the 
better eye of these people are presented in Table 9.3. How can these data be 
used to test whether the distribution of visual acuity is different in the two 
groups?
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	T able 9.3 	 Comparison of visual acuity in people ages 10–19 with dominant and sex-linked RP

	 Visual 	 	 	 Combined	 Range of	 Average	
	 acuity	 Dominant	 Sex-linked	 sample	 ranks	 rank

	 20–20	 5	 1	 6	 1–6	 3.5
	 20–25	 9	 5	 14	 7–20	 13.5
	 20–30	 6	 4	 10	 21–30	 25.5
	 20–40	 3	 4	 7	 31–37	 34.0
	 20–50	 2	 8	 10	 38–47	 42.5
	 20–60	 0	 5	 5	 48–52	 50.0
	 20–70	 0	 2	 2	 53–54	 53.5
	 20–80	   0	   1	   1	 55	 55.0
	 	 25	 30	 55	 	

We wish to test the hypothesis H0: FD = FSL vs. H1: FD(x) = FSL(x + ∆), where ∆ ≠ 0. FD = 
cumulative distribution function (c.d.f.) of visual acuity for the dominant group, FSL = 
cumulative distribution function of visual acuity for the sex-linked group, and ∆ is 
a location shift of the c.d.f. for the sex-linked group relative to the dominant group. 
If ∆ > 0, then dominant patients tend to have better visual acuity than sex-linked 
patients; if ∆ < 0, then dominant patients tend to have worse visual acuity than sex-
linked patients; if ∆ = 0, then dominant patients have the same acuity distribution 
as sex-linked patients. The two-sample t test for independent samples, discussed 
in Sections 8.4 and 8.7, would ordinarily be used for this type of problem. How-
ever, visual acuity cannot be given a specific numeric value that all ophthalmolo-
gists would agree on. Thus, the t test is inapplicable, and a nonparametric analog 
must be used. The nonparametric analog to the independent-samples t test is the 
Wilcoxon rank-sum test. This test is nonparametric because it is based on the ranks 
of the individual observations rather than on their actual values, which would be 
used in the t test. The ranking procedure for this test is as follows.

	E quation 9.7	 Ranking Procedure for the Wilcoxon Rank-Sum Test

		  (1)	 Combine the data from the two groups, and order the values from lowest to 
highest or, in the case of visual acuity, from best (20–20) to worst (20–80).

		  (2)	 Assign ranks to the individual values, with the best visual acuity (20–20) 
having the lowest rank and the worst visual acuity (20–80) having the 
highest rank, or vice versa.

		  (3)	 If a group of observations has the same value, then compute the range of 
ranks for the group, as was done for the signed-rank test in Equation 9.5, 
and assign the average rank for each observation in the group.

	 Example 9.18 	 Compute the ranks for the visual-acuity data in Table 9.3.

	 	 Solution:  First collect all people with the same visual acuity over the two groups, as 
shown in Table 9.3. There are 6 people with visual acuity 20–20 who have a rank range 
of 1–6 and are assigned an average rank of (1 + 6)/2 = 3.5. There are 14 people for the 
two groups combined with visual acuity 20–25. The rank range for this group is from 
(1 + 6) to (14 + 6) = 7 to 20. Thus, all people in this group are assigned the average rank = 
(7 + 20)/2 = 13.5, and similarly for the other groups.

The test statistic for this test is the sum of the ranks in the first sample (R1). If this 
sum is large, then the dominant group has poorer visual acuity than the sex-linked 

See page 347 for  
Equation 9.5
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group, whereas if it is small, the dominant group has better visual acuity. If the num-
ber of observations in the two groups are n1 and n2, respectively, then the average 
rank in the combined sample is (1 + n1 + n2)/2. Thus, under H0 the expected rank 
sum in the first group ≡ E(R1) = n1 × average rank in the combined sample = n1(n1 +  
n2 + 1)/2. It can be shown that the variance of R1 under H0 if there are no tied values is 
given by Var(R1) = n1n2(n1 + n2 + 1)/12. Furthermore, we will assume that the smaller of 
the two groups is of size at least 10 and that the variable under study has an underly-
ing continuous distribution. Under these assumptions, the sampling distribution of 
the rank sum R1 is approximately normal. Thus, the following test procedure is used.

	E quation 9.8	 Wilcoxon Rank-Sum Test (Normal Approximation Method for Two-Sided Level α Test)

		  (1)	 Rank the observations as shown in Equation 9.7.

		  (2)	 Compute the rank sum R1 in the first sample (the choice of sample is arbitrary).

		  (3)	 (a) � If R1 ≠ n1(n1 + n2 + 1)/2 and there are no ties, then compute
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		  	 (b)  If R1 ≠ n1(n1 + n2 + 1)/2 and there are ties, then compute
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				�    where ti refers to the number of observations with the same value in the 
ith tied group, and g is the number of tied groups.

			   (c)  If R1 = n1(n1 + n2 + 1)/2, then T = 0.

		  (4)	 If
				    T z> −1 2α/

			   then reject H0. Otherwise, accept H0.

		  (5)	 Compute the exact p-value by

				    p T= × −2 1[ ( )]Φ

		  (6)	 This test should be used only if both n1 and n2 are at least 10, and if there is 
an underlying continuous distribution.

			   The computation of the p-value is illustrated in Figure 9.6. 

			   The rationale for the different test statistics in the presence or absence of 
ties is that the variance (i.e., Var(R1)) is reduced in the presence of ties.

			   An alternative variance formula for R1, which is valid either in the presence 
or absence of ties, is given by:
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			   where N = n1 + n2 and ri = rank of the ith observation in the combined 
sample of size of N.
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	 Example 9.19 	 Perform the Wilcoxon rank-sum test for the data in Table 9.3. 

	 	 Solution:  Because the minimum sample size in the two samples is 25 ≥ 10, the normal 
approximation can be used. The rank sum in the dominant group is given by

		  R1 5 3 5 9 13 5 6 25 5 3 34 2 42 5
17

= + + + +
=

( . ) ( . ) ( . ) ( ) ( . )
.55 121 5 153 102 85 479+ + + + =.

Furthermore, E R( )
( )

1
25 56

2
700= =

and Var(R1) corrected for ties is given by
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Thus, the test statistic T is given by

		

| |
T

479 700 .5
3386.74

220.5
58.2

3.79=
− −

= =

which follows an N(0, 1) distribution under H0. The p-value of the test is

		  p = × − <2 1 3 79 001[ ( . )] .Φ

We conclude that the visual acuities of the two groups are significantly different. 
Because the observed rank sum in the dominant group (479) is lower than the 
expected rank sum (700), the dominant group has better visual acuity than the sex-
linked group.

If either sample size is less than 10, the normal approximation is not valid, and a 
small-sample table of exact significance levels must be used. Table 11 in the Appen-
dix gives upper and lower critical values for the rank sum in the first of two samples 
(T ) for a two-sided test with α levels of .10, .05, .02, and .01, respectively, under the 
assumption that there are no ties. In general, the results are statistically significant 
at a particular α level if either T ≤ Tl = the lower critical value or T ≥ Tr = the upper 
critical value for that α level.

	Fi gure 9.6	 Computation of the p-value for the Wilcoxon rank-sum test

N(0, 1) distribution

0 T

Value

Fr
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u
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p = 2 × [1 – Φ(T)]
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	 Example 9.20 	 Suppose there are two samples of size 8 and 15, with no ties, with a rank sum of 73 
in the sample size of 8. Evaluate the statistical significance of the results.

	 	 Solution:  Refer to n1 = 8, n2 = 15, α = .05 and find that Tl = 65, Tr = 127. Because 
T = 73 > 65 and T < 127, the results are not statistically significant using a two-sided 
test at the 5% level.

Appendix Table 11 was constructed under the assumption of no tied values. If 
there are ties, and min (n1, n2) < 10, then an exact-permutation test must be used to 
assess statistical significance (see Lehmann [1] or section 9.6 for more details).

The Wilcoxon rank-sum test is sometimes referred to in the literature as the 
Mann-Whitney U test. The test statistic for the Mann-Whitney U test is based 
on the number of pairs of observations (xi, yj), one from each sample, such that 
xi < yj; in addition, 0.5 is added to the test statistic for each (xi, yj) pair such that 
xi = yj. The Mann-Whitney U test and the Wilcoxon rank-sum test are completely 
equivalent. 

The relationship between them is as follows;

		
U R

m m( 1)
2

,1= −
+

where m is the size of the x sample

It can be shown that E(U) = E(R1) - m(m+1)/2 = mn/2, Var(U) = Var(R1) and the 
p-values from the Wilcoxon rank-sum test and the Mann-Whitney U test are the 
same. Therefore, the choice of which test to use is a matter of convenience (or more 
specifically, the choice of the software being used).

Using the Computer to Perform the Wilcoxon Rank Sum Test
The R command wilcox.test can also perform the Wilcoxon rank-sum test both 
for the large sample method and the exact method. The scores for the two groups 
need to be stored in a single variable (e.g., z). The grouping variable, which identi-
fies the groups for individual observations, is stored in a separate variable (e.g., g) 
and should have two possible values. The syntax is as follows for the large sample 
method:

	 wilcox.test(z ~ g, alternative = “two.sided”, mu = 0, paired = 
FALSE, exact = NULL, correct = TRUE, conf.int = FALSE)

Alternatively, we can store the values for one group in a variable called x and the 
values for the other group in a variable called y and use the syntax:

	 wilcox.test(x,y,alternative = ”two.sided”, mu = 0, paired = 
FALSE, exact = NULL, correct = TRUE, conf.int = FALSE)

	 Example 9.21 	 Ophthalmology  Perform the Wilcoxon rank-sum test for the data in Table 9.3 
(p. 353) using a computer program.

	 	 Solution:  We have entered the data in a spreadsheet with visual acuity stored in 
one variable called VA and genetic type in another variable called g (which is coded 
as DOM for dominant and SL for sex-linked). A listing of the first 10 observations is 
given as follows:

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



	 9.4      The Wilcoxon Rank-Sum Test              357

	 ID	 VA	 g
	 1	 20	 DOM
	 2	 20	 DOM
	 3	 20	 DOM
	 4	 20	 DOM
	 5	 20	 DOM
	 6	 25	 DOM
	 7	 25	 DOM
	 8	 25	 DOM
	 9	 25	 DOM
	 10	 25	 DOM

The results from running the analysis on this file are as follows:

> wilcox.test(VA ~ g, alternative = "two.sided", mu = 0, paired = 
FALSE, exact = NULL, correct = TRUE, conf.int = FALSE)

	 Wilcoxon rank-sum test with continuity correction

data: VA by g

W = 154, p-value = 0.0001513

alternative hypothesis: true location shift is not equal to 0

Alternatively, we created a different spreadsheet with the VA’s for the dominant 
group in a column called dom and for the sex-linked group in a column called sl. 
A listing of the first 10 observations from this spreadsheet are given below.

	dom	 sl
	 20	 20
	 20	 25
	 20	 25
	 20	 25
	 20	 25
	 25	 25
	 25	 30
	 25	 30
	 25	 30

The results from running this analysis are given below.

> wilcox.test(dom, sl, alternative = "two.sided", mu = 0, paired = 
FALSE, exact = NULL, correct = TRUE, conf.int = FALSE)

	 Wilcoxon rank-sum test with continuity correction

data: dom and sl

W = 154, p-value = 0.0001513

alternative hypothesis: true location shift is not equal to 0

Thus, the results from both analyses are the same.
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Note that in both cases, R computes the Mann-Whitney statistic (called W) rather 
than the Wilcoxon rank-sum, statistic, which is obtained from the formula W = R1 − 
25(25 + 1)/2 = 479 − 325 = 154. However, the p-value is the same as in the Wilcoxon 
rank-sum test and as in Example 9.19.

Finally, a necessary condition for the strict validity of the rank-sum test is that 
the underlying distributions being compared must be continuous. However, McNeil 
has investigated the use of this test in comparing discrete distributions and has found 
only small losses in power when applying this test to grouped data from normal 
distributions, compared with the actual ungrouped observations from such distribu-
tions [3]. He concludes that the rank-sum test is approximately valid in this case, 
with the appropriate provision for ties as given in Equation 9.8.

	 9.5	 C a s e  S t u d y :  E f f e c t s  o f  L e a d  E x p o s u r e 

o n  N e u r o l o g i c a l  a n d  Ps  y c h o l o g i c a l 

F u n c t i o n  i n  C h i l d r e n

In previous chapters, we considered the effect of lead exposure on neurologi-
cal and cognitive function in children as described in Data Set LEAD.DAT at 
www.cengagebrain.com. Other effects of lead as described in the literature are 
behavioral in nature. One such variable is hyperactivity. In this study, the children’s 
parents were asked to rate the degree of hyperactivity in their children on a four-
point scale, from normal (0) to very hyperactive (3). The scale is ordinal in nature. 
Thus, to compare the degree of hyperactivity between the exposed and control 
groups, nonparametric methods are appropriate. Because this question was only 
asked for the younger children, data are available for only 49 control children and 
35 exposed children. The raw data are given in Table 9.4. The rows of the table 
correspond to the groups (1 = control, 2 = exposed). The columns of the table corre-
spond to the degree of hyperactivity. Within each group, the percentage of children 
with a specific hyperactivity score (the row percentages) is also given. The exposed 
children seem slightly more hyperactive than the control children.

We have used the Mann-Whitney U test program of MINITAB 17 to compare the 
hyperactivity distribution between the two groups. The results are given in Table 9.5. 
We see that the two-sided p-value (adjusted for ties) as given in the last row of the 
table is .46. Thus, there is no significant difference in the distribution of hyperactiv-
ity level between the two groups.

See page 354 for  
Equation 9.8

	 Table 9.4 	 Hyperactivity data for case study based on Lead data

Tabulated statistics: Group, Hyperact

ROWS: group     COLUMNS: HYPERACT

          0         1        2       3       ALL

1        24        20        3       2        49

      48.98     40.82     6.12    4.08    100.00

2        15        14        5       1        35

       42.86     40.00     14.29    2.86    100.00

 Data set available
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RE  V I E W  QUE   S T I ON  S  9 B

1	 What is the difference between the Wilcoxon signed-rank test and the Wilcoxon 
rank-sum test?

2	 A pilot study is planned to test the efficacy of vitamin E supplementation as a 
possible preventive agent for Alzheimer’s disease. Twenty subjects age 65+ are 
randomized to either a supplement of vitamin E of 400 IU/day (group 1, n = 10), or 
placebo (group 2, n = 10). It is important to compare the total vitamin E intake (from 
food and supplements) of the two groups at baseline. The baseline intake of each 
group in IU/day is as follows:

	 Group 1 (n = 10): 7.5, 12.6, 3.8, 20.2, 6.8, 403.3, 2.9, 7.2, 10.5, 205.4

	 Group 2 (n = 10): 8.2, 13.3, 102.0, 12.7, 6.3, 4.8, 19.5, 8.3, 407.1, 10.2

	 (a)	 What test can be used to compare the baseline vitamin E intake between the 
two groups if we do not wish to assume normality?

	 (b)	 Implement the test in Review Question 9B.2a, and report a two-tailed p-value.

	 9.6	 P e r m u tat i o n  T e s t s

The exact version of the Wilcoxon rank-sum test can be viewed as a special type of 
permutation test.

	 Example 9.22 	 For simplicity, suppose we have two groups each of size 3 with scores as shown in 
Table 9.6.

	 Table 9.6 	 Scores and ranks for two-group comparison using the Wilcoxon rank-sum test (m = n = 3).

ID	 Group	 Score	 Rank

1	 1	 10	 3
2	 1	 20	 5
3	 1	 36	 6
4	 2	 5	 1
5	 2	 9	 2
6	 2	 11	 4

	 Table 9.5 	 Results of Mann-Whitney U test based on Lead data using MINITAB 17

Result for: hyperact.MTW

Mann-Whitney Test and CI: hyper_1, hyper_2

             N      Median

hyper_1     49      1.0000

hyper_2     35      1.0000

Point estimate for η1-η2 is 0.0000
95.1 Percent CI for η1–η2 is	(–0.0000, 0.0001)
	W = 2008.5

	Test of η1 = η2  vs  η1 ≠ η2 is significant at 0.5049
	The test is significant at 0.4649 (adjusted for ties)
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Based on Table 9.6, the rank sum for group 1 (i.e., R1) = 3 + 5 + 6 = 14. How can we 
assess the significance of the observed rank sum without assuming normality of the 
rank sum sampling distribution? The approach we will take is to use a permutation test.

	E quation 9.9	 Permutation Tests

		  1.	 Suppose we have two independent samples, X and Y of size m and n, respec-
tively. We wish to test the hypothesis

		  	 H0 : FX = FY vs. H1 : FY(x) = FX(x - δ ), for some δ  ≠ 0.

		  	 where FX and FY are cdf’s for X and Y, respectively.

		  2.	 We use the Wilcoxon rank-sum test and compute the rank sum R1 in the X 
sample, where ranks are determined based on the combined sample of size 
N = m + n, and we denote this rank sum by R1,obs.

		  3.	 To assess significance, we scramble the group labels at random and consider all 
possible ways to assign m subjects out of N to be the hypothetical X sample. 

		  	 There are K N
m

=






 such ways.

		  	 The hypothetical X samples are referred to as the elements of the permutation set.

 		  4.	 We now compute the rank-sum of the X sample for each element of the permu-
tation set. The distribution of the rank-sum R1 over the permutation set is 
referred to as the permutation distribution and is denoted by R1,perm.

		  	 Note that under H0, X and Y have the same distribution and thus, the rank 
sums corresponding to each element of the permutation distribution are 
identically distributed.

		  5.	 The two-sided permutation test p-value is obtained from:

		  	 p – valueperm = 2 × min[Pr(R1,perm ≤ R1,obs), Pr(R1,perm ≥ R1,obs), 0.5].

This is the approach used to compute exact p-values for the Wilcoxon Rank Sum 
Test, which can be used either in the presence or absence of ties. However, Table 11 
in the Appendix evaluates only critical values for the permutation distribution for 
selected m and n in the absence of ties. 

Furthermore, if m and n are sufficiently large, the distribution of R1,perm can be 
approximated by a normal distribution, which forms the basis for the large sample 
version of the Wilcoxon rank-sum test given in Equation 9.8. Note that even if we 
assume normality of the permutation distribution, we are still not assuming normal-
ity for the underlying distribution of X and Y. They are two unrelated concepts.

	 Example 9.23 	 Assess the significance of the rank sum in Example 9.22 using a permutation test  
approach.

	 	 Solution:  To assess significance, we reassign group labels and consider the rank sum 
for all possible permutations of group labels among the 6 subjects, where there are 
3 subjects in group 1 and 3 subjects in group 2.

There are 6
3

20






=  ways of assigning group labels to the 6 subjects.

Thus, the permutation set has 20 elements in this case.
We compute the rank sum corresponding to each element as shown in Table 9.7.

See page 354 for  
Equation 9.8
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	 Table 9.7 	 Rank Sum for each element of the Permutation Distribution

	Element	 Value	 Rank	 Value	 Rank	 Value	 Rank	 Rank Sum

	 1	 10	 3	 20	 5	 36	 6	 14
	 2	 10	 3	 20	 5	 5	 1	 9
	 3	 10	 3	 20	 5	 9	 2	 10
	 4	 10	 3	 20	 5	 11	 4	 12
	 5	 10	 3	 36	 6	 5	 1	 10
	 6	 10	 3	 36	 6	 9	 2	 11
	 7	 10	 3	 36	 6	 11	 4	 13
	 8	 20	 5	 36	 6	 5	 1	 12
	 9	 20	 5	 36	 6	 9	 2	 13
	 10	 20	 5	 36	 6	 11	 4	 15
	 11	 10	 3	 5	 1	 9	 2	 6
	 12	 10	 3	 5	 1	 11	 4	 8
	 13	 10	 3	 9	 2	 11	 4	 9
	 14	 20	 5	 5	 1	 9	 2	 8
	 15	 20	 5	 5	 1	 11	 4	 10
	 16	 20	 5	 9	 2	 11	 4	 11
	 17	 36	 6	 5	 1	 9	 2	 9
	 18	 36	 6	 5	 1	 11	 4	 11
	 19	 36	 6	 9	 2	 11	 4	 12
	 20	 5	 1	 9	 2	 11	 4	 7

We then obtain a frequency distribution of the rank sum over the elements of the 
permutation distribution as shown in Table 9.8.

	 Table 9.8 	 Permutation Distribution of the Rank Sum for the data in Example 9.22

Rank Sum	 Frequency	 Rank Sum	 Frequency

  6	 1	 11	   3
  7	 1	 12	   3
  8	 2	 13	   2
  9	 3	 14	   1
10	 3	 15	   1
	 	 Total	 20

We now obtain the permutation test p-value given by: 

		  p-value = 2 × min[Pr(R1,perm ≤ R1,obs), Pr(R1,perm ≥ R1,obs), 0.5].

In this case,

		  p-value = 2 × min[Pr(R1,perm ≤ 14), Pr(R1,perm ≥ 14), 0.5]

			   = 2 × min(19/20, 2/20, 0.5)

			   = 2 × 2/20 = 4/20 = 0.20.

If m and n are both large (i.e., ≥ 10), then the permutation distribution can be well 
approximated by a normal distribution. In this case, we obtain the large sample 
rank-sum test given in Equation 9.8.

See page 354 for  
Equation 9.8
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Using the Computer to Perform a Permutation Test
In Example 9.22, m = 3 and n = 3 and the number of elements of the permutation 
distribution is 

		
K 6

3
20=







=

However, as m and n increase, K can get quite large. For example, if m = n = 10,  
then 

		  K 20
10

184, 756,=






=  and it is advantageous to use a computer program.

Sometimes K is sufficiently large that it is only feasible to draw a sample from the 
permutation distribution rather than obtain the entire distribution. The sample 
command of R can be used for this purpose. The syntax of this command is as 
follows:

	 sample(x, k, replace = FALSE).

This command will select a random sample of size k without replacement from a 
vector of observations x.

	 Example 9.24 	 Aging  Suppose we consider the pilot study proposed in Review Question 9B.2 
(p. 359) where we compare the total vitamin E intake from two treatment groups at 
baseline. Obtain a permutation test p-value based on the Wilcoxon rank-sum test.

	 	 Solution:  We use the sample command of R for this purpose as follows:

1.	 We let x = vector of baseline vitamin E intake for the supplement group and 
y = vector of baseline vitamin E intake for the placebo group with x and y shown 
below.

	 > x

	 [1]  7.5  12.6  3.8  20.2  6.8 403.3  2.9  7.2  10.5  205.4

	 > y

	 [1]  8.2  13.3  102.0  12.7  6.3  4.8  19.5  8.3  407.1  10.2

2.	 We then combine x and y into a vector z of size 20 as follows:
	 > z<- c(x,y)

	 > z

	 [1] 7.5 12.6 3.8 20.2 6.8 403.3 2.9 7.2 10.5 205.4 8.2 13.3

	 [13]  102.0  12.7  6.3  4.8  19.5  8.3  407.1  10.2

3.	 We then obtain the ranks of the elements of z and store them in a vector r as 
follows:

	 > r<- rank(z)

	 > r

	 [1]  7 12 2 16 5 19 1 6 11 18 8 14 17 13 4 3 15 9 20 10
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4.	 We now compute the sum of the first 10 elements of r = observed rank sum and 
denoted by r1(= 97).

	 > r1<- sum(r[1:10])

	 > r1

	 [1] 97

5.	 We now draw 1000 samples of size 10 without replacement from r (denoted by 
s) using the sample command of R. We then calculate the rank-sum for each 
sample (s) and store the 1000 rank-sums into a vector a as follows:

	 > a<- numeric(1000)

	 > for(i in 1:1000){

	 + s<- sample(r,10,replace = FALSE)

	 + a[i]<- sum(s)}

6.	 We now form the subvector a1 consisting of the elements of a that have a 
rank-sum < = observed rank-sum (97).

	 > a1<- a[a<= r1]

	 For example, the first 20 elements of a1 are listed below.
	 > a1[1:20]

	 [1] 94 89 79 96 95 91 96 92 97 90 89 92 92 87 87 67 79 91 81 93

7.	 Similarly, we form the subvector a2 of a consisting of the elements of a (i.e., the 
subset of the 1000 samples) that have a rank-sum > = 97.

	 > a2<- a[a>= r1]

	 A listing of the first 20 elements of a2 are given below.
	 > a2[1:20]

	 [1] �98 109 114 113 103 99 105 101 121 105 121 111 121 105 135 
115 105 111 100

	 [20] 109

8.	 We now calculate b1 = the number of samples in a1, which corresponds to

			   Pr(R1,perm ≤ R1,obs) × 1000 

		  and b2 = the number of samples in a2, which corresponds to

			   Pr(R1,perm ≥ R1,obs) × 1000 as follows:

	 > b1<- length(a1)

	 > b2<- length(a2)

	 > b1

	 [1] 286

	 > b2

	 [1] 737

In this case, b1 = 286 and b2 = 737. 
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9.	 Finally, we compute the two-sided permutation test p-value as given in Equation 9.9 
as follows:

	 > p.value<- 2 * min(b1,b2,500)/1000

	 > p.value

	 [1] 0.572

Thus, the two-sided permutation test p-value = 0.572, which indicates that 
there is no significant difference between baseline vitamin E intake for the two 
groups.

10.	 Finally, for comparison we also ran the large sample Wilcoxon test based on 
Equation 9.8 using the wilcox.test command of R as follows:

	 > wilcox.test(x,y)

		  Wilcoxon rank sum test

	 data: x and y

	 W = 42, p-value = 0.5787

	 alternative hypothesis: true location shift is not equal to 0

Thus, the large sample two-sided p-value = 0.579. This shows excellent agreement 
between the permutation test and large sample p-values and justifies the criterion 
that for min(m, n) > = 10 we can use the large sample test. 

In this section, we have discussed using permutation test methods to provide 
an exact test for the Wilcoxon rank-sum test. However, a permutation test approach 
can also be used in the context of other nonparametric tests (e.g., the Wilcoxon 
signed rank-test) (see [1] for more details), or even for parametric tests such as the 
two-sample t test, when samples sizes are small and assumptions of normality based 
on the central limit theorem may not be applicable.

	 9.7	 S u m m a r y

This chapter presented some of the most widely used nonparametric statistical tests 
corresponding to the parametric procedures in Chapter 8. The main advantage 
of nonparametric methods is that the assumption of normality made in previous 
chapters can be relaxed when such assumptions are unreasonable. One drawback of 
nonparametric procedures is that some power is lost relative to using a parametric 
procedure (such as a t test) if the data truly follow a normal distribution or if the 
central-limit theorem is applicable. Also, the data typically must be expressed in 
terms of ranks, a scale some researchers find difficult to understand compared with 
maintaining the raw data in the original scale.

The specific procedures covered for the comparison of two samples include 
the sign test, the Wilcoxon signed-rank test, and the Wilcoxon rank-sum test. 
Both the sign test and the signed-rank test are nonparametric analogs to the 
paired t test. For the sign test it is only necessary to determine whether one 
member of a matched pair has a higher or lower score than the other member of 
the pair. For the signed-rank test the magnitude of the absolute value of the dif-
ference score (which is then ranked), as well as its sign, is used in performing the 

See page 360 for  
Equation 9.9

See page 354 for  
Equation 9.8
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Dentistry
In a study, 28 adults with mild periodontal disease are 
assessed before and 6 months after implementation of a 
dental-education program intended to promote better oral 
hygiene. After 6 months, periodontal status improved in 
15 patients, declined in 8, and remained the same in 5.

*9.1  Assess the impact of the program statistically (use a 
two-sided test).

Suppose patients are graded on the degree of change in 
periodontal status on a 7-point scale, with +3 indicating the 
greatest improvement, 0 indicating no change, and −3 indi-
cating the greatest decline. The data are given in Table 9.9.

9.2  What nonparametric test can be used to determine 
whether a significant change in periodontal status has 
occurred over time?

9.3  Implement the procedure in Problem 9.2, and report a 
p-value.

Table 9.9  � Degree of change in periodontal status

Change score	 Number of patients

	 +3	 4
	 +2	 5
	 +1	 6
	 0	 5
	 −1	 4
	 −2	 2
	 −3	 2

9.4  Suppose there are two samples of size 6 and 7, with a 
rank sum of 58 in the sample of size 6. Using the Wilcoxon 
rank-sum test, evaluate the significance of the results, assum-
ing there are no ties.

9.5  Answer Problem 9.4 for two samples of size 7 and 10, 
with a rank sum of 47 in the sample of size 7. Assume there 
are no ties.

9.6  Answer Problem 9.4 for two samples of size 12 and 15, 
with a rank sum of 220 in the sample of size 12. Assume 
there are no ties.

Health Services Administration
Suppose we want to compare the length of hospital stay for 
patients with the same diagnosis at two different hospitals. 
The results are shown in Table 9.10.

Table 9.10  � Comparison of length of stay in 	
2 hospitals

First 	
hospital	 21, 10, 32, 60, 8, 44, 29, 5, 13, 26, 33
Second 	
hospital	 86, 27, 10, 68, 87, 76, 125, 60, 35, 73, 96, 44, 238

*9.7  Why might a t test not be very useful in this case?

*9.8  Carry out a nonparametric procedure for testing the 
hypothesis that lengths of stay are comparable in the two 
hospitals.

Infectious Disease
The distribution of white-blood-cell count is typically positively 
skewed, and assumptions of normality are usually not valid.

9.9  To compare the distribution of white-blood-cell counts 
of patients on the medical and surgical services in Table 
2.13 (p. 36), or in HOSPITAL.DAT, when normality is not 
assumed, what test can be used?

9.10  Perform the test in Problem 9.9, and report a p-value.

Sports Medicine
Refer to Data Set TENNIS2.DAT at www.cengagebrain.com.

9.11  What nonparametric test can be used to compare 
degree of pain during maximal activity in the first period be-
tween people randomized to Motrin and a placebo?

9.12  Perform the test in Problem 9.11, and report a p-value.

P r o b l e m s

significance test. The Wilcoxon rank-sum test (also known as the Mann-Whitney 
U test) is an analog to the two-sample t test for independent samples, in which 
the actual values are replaced by rank scores. Nonparametric procedures appro-
priate for regression, analysis of variance, and survival analysis are introduced in 
Chapters 11, 12, and 14.

The tests covered in this chapter are among the most basic of nonparametric 
tests. Hollander and Wolfe [4] and Lehmann [1] provide a more comprehensive 
treatment of nonparametric statistical methods.

 Data set available
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Otolaryngology, Pediatrics
A common symptom of otitis media in young children is the 
prolonged presence of fluid in the middle ear, known as 
middle-ear effusion. The presence of fluid may result in tem-
porary hearing loss and interfere with normal learning skills 
in the first 2 years of life. One hypothesis is that babies who 
are breastfed for at least 1 month build up some immunity 
against the effects of the infection and have less prolonged 
effusion than do bottle-fed babies. A small study of 24 pairs 
of babies is set up, in which the babies are matched on a 
one-to-one basis according to age, sex, socioeconomic 
status, and type of medications taken. One member of the 
matched pair is a breastfed baby, and the other member is 
a bottle-fed baby. The outcome variable is the duration of 
middle-ear effusion after the first episode of otitis media. 
The results are given in Table 9.11.

Table 9.11  � Duration of middle-ear effusion in 
breastfed and bottle-fed babies

	 Duration of 	 Duration of	
	 effusion in 	 effusion in	
	 breastfed 	 bottle-fed	
Pair number	 baby (days)	 baby (days)

  1	 20	 18
  2	 11	 35
  3	 3	 7
  4	 24	 182
  5	 7	 6
  6	 28	 33
  7	 58	 223
  8	 7	 7
  9	 39	 57
10	 17	 76
11	 17	 186
12	 12	 29
13	 52	 39
14	 14	 15
15	 12	 21
16	 30	 28
17	 7	 8
18	 15	 27
19	 65	 77
20	 10	 12
21	 7	 8
22	 19	 16
23	 34	 28
24	 25	 20

*9.13  What hypotheses are being tested here?

*9.14  Why might a nonparametric test be useful in testing 
the hypotheses?

*9.15  Which nonparametric test should be used here?

*9.16  Test the hypothesis that the duration of effusion is 
different among breastfed babies than among bottle-fed 
babies using a nonparametric test.

Hypertension
Polyunsaturated fatty acids in the diet favorably affect 
several risk factors for cardiovascular disease. The 
principal dietary polyunsaturated fat is linoleic acid. To 
test the effects of dietary supplementation with linoleic 
acid on blood pressure, 17 adults consumed 23 g/day 
of safflower oil, high in linoleic acid, for 4 weeks. Systolic 
blood pressure (SBP) measurements were taken at base-
line (before ingestion of oil) and 1 month later, with the 
mean values over several readings at each visit given in 	
Table 9.12.

Table 9.12  � Effect of linoleic acid on SBP

	 	 	 Baseline − 	
Subject	 Baseline SBP	 1-month SBP	 1-month SBP

  1	 119.67	 117.33	 2.34
  2	 100.00	 98.78	 1.22
  3	 123.56	 123.83	 –0.27
  4	 109.89	 107.67	 2.22
  5	 96.22	 95.67	 0.55
  6	 133.33	 128.89	 4.44
  7	 115.78	 113.22	 2.56
  8	 126.39	 121.56	 4.83
  9	 122.78	 126.33	 –3.55
10	 117.44	 110.39	 7.05
11	 111.33	 107.00	 4.33
12	 117.33	 108.44	 8.89
13	 120.67	 117.00	 3.67
14	 131.67	 126.89	 4.78
15	 92.39	 93.06	 –0.67
16	 134.44	 126.67	 7.77
17	 108.67	 108.67	 0.00

9.17  What parametric test could be used to test for the 	
effect of linoleic acid on SBP?

9.18  Perform the test in Problem 9.17, and report a 
p-value.

9.19  What nonparametric test could be used to test for the 
effect of linoleic acid on SBP?

9.20  Perform the test in Problem 9.19, and report a 
p-value.

9.21  Compare your results in Problems 9.18 and 9.20, 
and discuss which method you feel is more appropriate 
here.
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Hypertension
An instrument that is used in some blood-pressure stud-
ies is the random-zero device, in which the zero point 
of the machine is randomly set with each use and the 
observer is not aware of the actual level of blood pressure 
at the time of measurement. This instrument is intended 
to reduce observer bias. Before using such a machine, it 
is important to check that readings are, on average, com-
parable to those of a standard cuff. For this purpose, two 
measurements were made on 20 children with both the 
standard cuff and the random-zero machine. The mean 
systolic blood pressure (SBP) for the two readings for each 
machine are given in Table 9.13. Suppose observers are 
reluctant to assume that the distribution of blood pressure 
is normal.

*9.22  Which nonparametric test should be used to test the 
hypothesis that the mean SBPs for the two machines are 
comparable?

*9.23  Conduct the test recommended in Problem 9.22.

 Data set available

Table 9.13  � Comparison of mean SBP with the 
standard cuff vs. the random-zero 
machine (mm Hg)

	 Mean SBP	 Mean SBP 	
Person	 (standard cuff)	 (random-zero)

1	 79	 84
2	 112	 99
3	 103	 92
4	 104	 103
5	 94	 94
6	 106	 106
7	 103	 97
8	 97	 108
9	 88	 77
10	 113	 94
11	 98	 97
12	 103	 103
13	 105	 107
14	 117	 120
15	 94	 94
16	 88	 87
17	 101	 97
18	 98	 93
19	 91	 87
20	 105	 104

Another aspect of the same study is to compare the vari-
ability of blood pressure with each method. This comparison 
is achieved by computing x x1 2−  for each participant and 
method (i.e., absolute difference between first and second 
readings) and comparing absolute differences between 
machines for individual participants. The data are given in 
Table 9.14. The observers are reluctant to assume that the 
distributions are normal.

*9.24  Which nonparametric test should be used to test 
the hypothesis that variability of the two machines is 
comparable?

*9.25  Conduct the test recommended in Problem 9.24.

Table 9.14 � Comparison of variability of SBP with 
the standard cuff and the random-zero 
machine (mm Hg)

	 Absolute difference, 	 Absolute difference, 	
Person	 standard cuff (as )	 random-zero (ar )

  1	 2	 12
  2	 4	 6
  3	 6	 0
  4	 4	 2
  5	 8	 4
  6	 4	 4
  7	 2	 6
  8	 2	 8
  9	 4	 2
10	 2	 4
11	 0	 6
12	 2	 6
13	 6	 6
14	 2	 4
15	 8	 8
16	 0	 2
17	 6	 6
18	 4	 6
19	 2	 14
20	 2	 4

Health Promotion
Refer to Data Set SMOKE.DAT at www.cengagebrain.com.

9.26  Use nonparametric methods to test whether there is 
a difference between the number of days abstinent from 
smoking for males vs. females.

9.27  Divide the data set into age groups (above/below the 
median), and use nonparametric methods to test whether 
the number of days abstinent from smoking is related to age.
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9.28  Use the same approach as in Problem 9.27 to test 
whether the amount previously smoked is related to the 
number of days abstinent from smoking.

9.29  Use the same approach as in Problem 9.27 to test 
whether the adjusted carbon monoxide (CO) level is related 
to the number of days abstinent from smoking.

9.30  Why are nonparametric methods well suited to a 
study of risk factors for smoking cessation?

Renal Disease
Refer to the urinary-protein data in Table 8.16 (p. 324).

9.31  Use nonparametric methods to assess whether 
treatment with captopril is effective in reducing urinary 
protein.

Hepatic Disease
Refer to Data Set HORMONE.DAT at www.cengagebrain	
.com.

9.32  Use nonparametric methods to answer Problem 8.70 
(p. 326).

9.33  Use nonparametric methods to answer Problem 8.71 
(p. 326).

9.34  Use nonparametric methods to answer Problem 8.72 
(p. 326).

9.35  Compare your results in Problems 9.32−9.34 with 
the corresponding results using parametric methods in 
Problems 8.70−8.72 (p. 326).

Ophthalmology
Refer to the data set in Tables 7.9 and 7.10 (p. 274).

9.36  Answer the question in Problem 7.77 (p. 274) using 
nonparametric methods.

9.37  Implement the test suggested in Problem 9.36, and 
report a two-sided p-value.

9.38  Compare the results in Problem 9.37 with those 
obtained in Problem 7.78 (p. 274).

Endocrinology
Refer to Data Set BONEDEN.DAT at www.cengagebrain	
.com.

9.39  Answer the question in Problem 7.79 (p. 274) using 
nonparametric methods, and compare your results with 
those obtained using parametric methods.

9.40  Answer the question in Problem 7.80 (p. 274) using 
nonparametric methods, and compare your results with 
those obtained using parametric methods.

Infectious Disease
9.41  Reanalyze the data in Table 8.15 (p. 323) using non-
parametric methods, and compare your results with those 
obtained in Problem 8.41 (p. 324).

Microbiology
Refer to the data in Table 8.28 (p. 330).

9.42  What nonparametric test can be used to compare the 
distribution of pod weight for inoculated vs. noninoculated 
plants?

9.43  Use the computer to perform a permutation test 
approach to implement the test mentioned in Problem 9.42 
and report a two-tailed p-value.

9.44  Compare your results with those obtained in Problem 
8.113 (p. 330).

Diabetes
Growth during adolescence among girls with diabetes has 
been shown to relate to consistency in taking insulin injec-
tions. A similar hypothesis was tested in adolescent boys 
ages 13–17. Boys were seen at repeated visits approxi-
mately 90 days apart. Their weight and HgbA1c, a marker 
that reflects consistency in taking insulin injections over the 
past 30 days, were measured at each visit. People with dia-
betes have a higher-than-normal HgbA1c; the goal of insulin 
treatment is to lower the HgbA1c level as much as possible. 
To look at the relationship between change in weight and 
change in HgbA1c, each of 23 boys was ascertained dur-
ing one 90-day interval when HgbA1c change was minimal 
(i.e., change of <1%) (control period) and during another 
90-day interval when HgbA1c increased by ≥1% (lack-of-
consistency period); this is a fairly large increase, indicat-
ing lack of consistency in taking insulin injections. These 
data represent a subset of the data in DIABETES.DAT at 
www.cengagebrain.com. Weight change was compared 
between these intervals using the following measure:

∆ = �(weight change, control period) – (weight change, 	
lack-of-consistency period)

A frequency distribution of the data sorted in increasing 
order of ∆ is shown in Table 9.15.

Suppose we assume normality of the change scores in 
Table 9.15.

9.45  What parametric test can be used to compare weight 
change during the control period vs. weight change during 
the lack-of-consistency period?

9.46  Implement the test in Problem 9.45, and report a two- 
tailed p-value.

 Data set available
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Table 9.15  � (Weight change, control period) – 
(weight change, lack-of-consistency 
period) among 23 adolescent 	
diabetic boys

i	 ∆i	 i	 ∆i	 i	 ∆i.

1	 –12.6	 9	 +2.2	 17	 +11.5
2	 –10.3	 10	 +3.5	 18	 +12.2
3	 –5.9	 11	 +4.8	 19	 +13.9
4	 –5.4	 12	 +5.4	 20	 +14.2
5	 –4.5	 13	 +5.8	 21	 +18.0
6	 –2.7	 14	 +6.0	 22	 +18.6
7	 –1.8	 15	 +6.7	 23	 +21.7
8	 +0.3	 16	 +9.6
	 	 	 	 Mean	 4.83
	 	 	 	 sd	 9.33
	 	 	 	 n	 23

9.47  Answer the question in Problem 9.45 if we are not 
willing to make the assumption of normality.

9.48  Implement the test in Problem 9.47, and report a two-
tailed p-value.

Cancer
Serum estradiol is an important risk factor for breast 
cancer in postmenopausal women. To better understand 
the etiology of breast cancer, serum-estradiol samples 
were collected from 25 premenopausal women (at about 
the same time period of the menstrual cycle) of whom 
10 were Caucasian and 15 were African American. Data 
were collected on both serum estradiol as well as body 
mass index (BMI) = weight (kg)/height2 (m2), which is an 
important measure of overall obesity. The data are shown 
in Table 9.16.

The distribution of serum estradiol is usually highly skewed 
(especially for premenopausal women), and we are reluc-
tant to assume normality.

9.49  What test can we use to compare the distribution 
of serum estradiol for Caucasian vs. African American 
women?

9.50  Implement the test in Problem 9.49, and report a two-
tailed p-value based on large sample methods.

9.51  Answer the question in Problem 9.50 using permuta-
tion test methods.

9.52  Compare your results in Problems 9.50 and 9.51.

Another important variable in the epidemiology of breast 
cancer is BMI, which has been found to be related to both 
serum estradiol and ethnicity in previous studies.

Table 9.16  � Relationship of serum estradiol, BMI, 	
and ethnicity in 25 premenopausal 
women

	 Serum estradiol 	
 ID	 (pg/mL)	 Estradiol rank	 BMI	 Ethnic group*

  1	 94	 25	 18.9	 0
  2	 54	 20	 19.7	 1
  3	 31	 9.5	 20.7	 0
  4	 21	 5	 23.4	 1
  5	 46	 18	 23.3	 1
  6	 56	 21	 25.1	 0
  7	 18	 3	 35.6	 1
  8	 19	 4	 26.2	 1
  9	 12	 1	 22.3	 1
10	 14	 2	 20.4	 0
11	 25	 7	 21.7	 0
12	 35	 12	 20.0	 1
13	 22	 6	 21.0	 1
14	 71	 23	 21.8	 0
15	 43	 16	 32.7	 1
16	 35	 12	 23.6	 1
17	 42	 15	 24.7	 1
18	 50	 19	 23.2	 1
19	 44	 17	 33.9	 1
20	 41	 14	 20.6	 0
21	 28	 8	 24.7	 0
22	 65	 22	 26.3	 0
23	 31	 9.5	 20.1	 0
24	 35	 12	 22.5	 1
25	 91	 24	 29.1	 1

*1 = African-American, 0 = Caucasian.

9.53  Suppose we want to compare mean BMI between 
Caucasian and African American premenopausal women 
based on the data in the table and are willing to assume the 
distribution of BMI is approximately normal. What test can 
we use to make this comparison?

(Note that for Caucasian women, mean BMI = 22.0, 	
sd = 2.47, n = 10; for African American women, mean 	
BMI = 25.4, sd = 5.01, n = 15.)

9.54  Implement the test in Problem 9.53, and report a two- 
tailed p-value.

Ophthalmology
Refer to Data Set TEAR.DAT at www.cengagebrain.com. We 
want to compare tear break-up time (TBUT) immediately after 

 Data set available
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eye-drop instillation vs. TBUT before instillation. For this pur-
pose, we will compute the average TBUT over both eyes and 
over two replicates for each eye (that is, the summary score is 
an average of four values). Also, we will only use data with a 
blink period of 6 seconds.

9.55  What test can we use to perform the analysis 
if we don’t want to assume that TBUT is normally 	
distributed?

9.56  Implement the test in Problem 9.55, and report a 	
p-value (two-tailed).

9.57  Answer the question in Problem 9.56 comparing 
TBUT time 5 minutes after drop instillation vs. TBUT before 
instillation.

9.58  Answer the question in Problem 9.56 comparing 
TBUT 10 minutes after drop instillation vs. TBUT before 
instillation.

9.59  Answer the question in Problem 9.56 comparing 
TBUT 15 minutes after drop instillation vs. TBUT before 
instillation.

9.60  Based on your results from Problems 9.55−9.59, do 
you think the response to the placebo eye drop is short- 
lasting or long-lasting?

Endocrinology
A study to assess the effect of a low-fat diet on estrogen 
metabolism recruited 6 healthy women ages 21–32 [5]. 
The women were within 5% of their ideal body weight, 
were not participating in athletics, and were eating a typical 
American diet. For the first 4 weeks the women were fed a 
high-fat diet (40% of total calories from fat). They were then 
switched to a low-fat diet (25% of calories from fat) for 2 
months. During the follicular phase of their menstrual cycle 
(days 5–7), each woman was given a sugar cube with [3H]
E2 (estradiol). This was done once during the high-fat period 
and again after the woman had been eating the low-fat diet 
for 2 months. The percentage of orally administered [3H]E2 
excreted in urine as 16α-hydroxylated glucoronides is given 
in Table 9.17.

9.61  What parametric test can be used to compare the 
16α-OHE1 percentages on a high-fat diet vs. a low-fat 
diet?

9.62  Perform the test in Problem 9.61, and report a p-value 
(two-tailed).
9.63  What nonparametric test can be used to compare 
the 16α-OHE1 percentages on a high-fat diet vs. a low-fat 
diet?

9.64  Perform the test in Problem 9.63, and report a p-value 
(two-tailed).

Table 9.17   �Percentage of orally administered [3H]E2 

excreted in urine as glucoronides of 
16α-OHE1

Subject	 High-fat diet	 Low-fat diet

   1	 2.55	 1.27
   2	 2.92	 1.60
   3	 1.71	 0.53
   4	 4.00	 1.02
   5	 0.77	 0.74
   6	 1.03	 0.67

Cardiovascular Disease
Left ventricular mass (LVM) is an important risk factor for 
subsequent cardiovascular disease. A study is proposed to 
assess the relationship between childhood blood-pressure 
levels and LVM in children as determined from echocar-
diograms. The goal is to stratify children into a normal bp 
group (< 80th percentile for their age, gender, and height) 
and an elevated bp group (≥ 90th percentile for their age, 
gender, and height) and compare change in LVM between 
the two groups. Before this can be done, one needs to 
demonstrate that LVM actually changes in children over a 
4-year period.

To help plan the main study, a pilot study is conducted 
where echocardiograms are obtained from 10 random chil-
dren from the Bogalusa Heart Study at baseline and after 
4 years of follow-up. The data are given in Table 9.18 (Note: 
These are the same data as in Table 8.27, p. 329).

Table 9.18  � Pilot data on left ventricular mass 
(LVM) in children from the Bogalusa 
Heart Study

ID	 Baseline	 4-year	 Change (g)* 	
	 LVM (g)	 LVM (g)

  1	 139	 163	 24
  2	 134	 126	 -8
  3	   86	 142	 56
  4	   98	   96	 -2
  5	   78	 111	 33
  6	   90	 108	 18
  7	 102	 167	 65
  8	   73	   82	 9
  9	   93	   77	 -16
10	 162	 172	 10

*4-year LVM minus baseline LVM
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9.65  Suppose the investigators are reluctant to assume 
that the change in LVM over four years is normally distrib-
uted. What test can be used to assess if there is a change 
in mean LVM over four years?

9.66  What are the hypotheses being tested with this test?

9.67  What is the test statistic for this test as applied to the 
data in Table 9.18?

Hint:  Assume that the large sample method of significance 
testing is valid for these data, despite the n = 10.

9.68  What is the critical region at the 5% level? (i.e., for 
what values of the test statistic will we reject H0 at the 5% 
level?)

9.69  What is the two-sided p-value for this test?

9.70  Now perform the test using the exact method and 
obtain a 2-sided p-value.

9.71  Compare your results in Problems 9.69 and 9.70.

9.72  Compare your results to those obtained using t test 
methods in Problem 8.107 (p. 329).

Hypertension
Plasma aldosterone has been related to blood-pressure 
levels in adults in some studies. In addition, there may be 
ethnic differences. There are less data available for chil-
dren. In Figure 5.22 (p. 145) we present the distribution 
of plasma aldosterone for 53 Caucasian children and 46 
African American children [6]. The distributions are very 

skewed, and a nonparametric analysis is appropriate here. 
We have grouped the data for purposes of illustration as 
shown in Table 9.19.

Table 9.19  � Plasma aldosterone levels in 53 
Caucasian and 46 African American 
children (grouped data)

Aldosterone group (pmol/l)	 Caucasian	 African American

0–199	 12	 28
200–399	 17	 10
400–599	 15	 5
≥= 600	 9	 3

9.73  What nonparametric test can be used to compare 
plasma aldosterone group between Caucasian and African 
American children?

9.74  Perform the large sample version of the test men-
tioned in Problem 9.73, and report a two-sided p-value.

9.75  Perform a permutation test version for the test men-
tioned in Problem 9.73, and report a two-sided p-value.

9.76  How do the results in Problems 9.74 and 9.75 
compare?

9.77  What is your overall conclusion from your analysis of 
the data?
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Probability

	 10.1	 I n t r o d u c t i o n

In Chapters 7 and 8, the methods of hypothesis testing for 
continuous data were presented. For each test, the data 
consisted of one or two samples, which were assumed to 
come from an underlying normal distribution(s); appropri-
ate procedures were developed based on this assumption. 
In Chapter 9, the assumption of normality was relaxed and a 
class of nonparametric methods was introduced. Using these 
methods, we assumed that the variable under study can be 
ordered without assuming any underlying distribution.
 If the variable under study is not continuous but is instead 
classified into categories, which may or may not be ordered, 
then different methods of inference should be used. Consider 
the problems in Examples 10.1 through 10.3.

Hypothesis Testing:  
Categorical Data

	 Example 10.1 	 Cancer  Suppose we are interested in the association between oral contraceptive 
(OC) use and the 5-year incidence of ovarian cancer from January 1, 2013, to Janu-
ary 1, 2018. Women who are disease-free on January 1, 2013, are classified into two 
OC-use categories as of that date: ever users and never users. We are interested in 
whether the 5-year incidence of ovarian cancer is different between ever users and 
never users. Hence, this is a two-sample problem comparing two binomial propor-
tions, and the t-test methodology in Chapter 8 cannot be used because the outcome 
variable, the development of ovarian cancer, is a discrete variable with two catego-
ries (yes/no) rather than a continuous variable.

	 Example 10.2 	 Cancer  Suppose the OC users in Example 10.1 are subdivided into “heavy” users, 
who have used the pill for 5 years or longer, and “light” users, who have used the 
pill for less than 5 years. We may be interested in comparing 5-year ovarian-cancer 
incidence rates among heavy users, light users, and nonusers. In this example, three 
binomial proportions are being compared, and we need to consider methods com-
paring more than two binomial proportions.

10
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	 Example 10.3 	 Infectious Disease  The fitting of a probability model based on the Poisson distri-
bution to the random variable defined by the annual number of deaths from polio 
in the United States during the period 1968−1977 has been discussed, as shown in 
Table 4.10 (p. 102). We want to develop a general procedure for testing the goodness 
of fit of this and other probability models on actual sample data.

In this chapter, methods of hypothesis testing for comparing two or more bino-
mial proportions are developed. Methods for testing the goodness of fit of a previously 
specified probability model to actual data are also considered. We will also consider 
relationships between categorical and nonparametric approaches to data analysis.

	 10.2	 T w o - S a m p l e  Tes   t  f o r  B i n o m i a l  P r o p o r t i o n s

	 Example 10.4 	 Cancer  A hypothesis has been proposed that breast cancer in women is caused in 
part by events that occur between the age at menarche (the age when menstrua-
tion begins) and the age at first childbirth. The hypothesis is that the risk of breast 
cancer increases as the length of this time interval increases. If this theory is correct, 
then an important risk factor for breast cancer is age at first birth. This theory would 
explain in part why the incidence of breast cancer seems higher for women in the 
upper socioeconomic groups, because they tend to have their children relatively late 
in reproductive life.

An international study was set up to test this hypothesis [1]. Breast-cancer cases 
were identified among women in selected hospitals in the United States, Greece, 
Yugoslavia, Brazil, Taiwan, and Japan. Controls were chosen from women of com-
parable age who were in the hospital at the same time as the cases but who did not 
have breast cancer. All women were asked about their age at first birth.

The set of women with at least one birth was arbitrarily divided into two catego-
ries: (1) women whose age at first birth was ≤29 years and (2) women whose age at first 
birth was ≥30 years. The following results were found among women with at least one 
birth: 683 of 3220 (21.2%) women with breast cancer (case women) and 1498 of 10,245 
(14.6%) women without breast cancer (control women) had an age at first birth ≥30. 
How can we assess whether this difference is significant or simply due to chance?

Let p1 = the probability that age at first birth is ≥30 in case women with at least 
one birth and p2 = the probability that age at first birth is ≥30 in control women with 
at least one birth. The question is whether the underlying probability of having an 
age at first birth of ≥30 is different in the two groups. This problem is equivalent to 
testing the hypothesis H0: p1 = p2 = p vs. H1: p1 ≠ p2 for some constant p.

Two approaches for testing the hypothesis are presented. The first approach 
uses normal-theory methods similar to those developed in Chapter 8 and discussed 
below. The second approach uses contingency-table methods, which are discussed 
on page 377. These two approaches are equivalent in that they always yield the same 
p-values, so which one is used is a matter of convenience.

Normal-Theory Method
It is reasonable to base the significance test on the difference between the sample 
proportions ˆ ˆp p1 2−( ). If this difference is very different from 0 (either positive 
or negative), then H0 is rejected; otherwise, H0 is accepted. The samples will be 
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assumed large enough so that the normal approximation to the binomial distribution 
is valid. Then, under H0, p̂1 is normally distributed with mean p and variance pq/
n1, and p̂2 is normally distributed with mean p and variance pq/n2. Therefore, from 
Equation 5.10, because the samples are independent, ˆ ˆp p1 2−  is normally distributed 
with mean 0 and variance

		
pq
n

pq
n

pq
n n1 2 1 2

1 1+ = +




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If we divide ˆ ˆp p1 2−  by its standard error,
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then under H0,
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The problem is that p and q are unknown, and thus the denominator of z cannot be 
computed unless some estimate for p is found. The best estimator for p is based on 
a weighted average of the sample proportions ˆ , ˆp p1 2. This weighted average, referred 
to as p̂, is given by
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where x1 = the observed number of events in the first sample and x2 = the observed 
number of events in the second sample. This estimate makes intuitive sense because 
each of the sample proportions is weighted by the number of people in the sample. 
Thus, we substitute the estimate p̂ in Equation 10.2 for p in Equation 10.1. Finally, 
to better accommodate the normal approximation to the binomial, a continuity cor-
rection is introduced in the numerator of Equation 10.1. If ˆ ˆp p1 2≥ , then we subtract
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 and reject H0 only for large positive values 

of z. This suggests the following test procedure.

	 Equation 10.3 	 Two-Sample Test for Binomial Proportions (Normal-Theory Test) 

		  To test the hypothesis H0: p1 = p2 vs. H1: p1 ≠ p2, where the proportions are ob-
tained from two independent samples, use the following procedure:

(1)	 Compute the test statistic
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		�  and x1, x2 are the number of events in the first and second samples, 
respectively.

(2)	 For a two-sided level α test,

		  if  z > z1−α/2

		  then reject H0;

		  if  z ≤ z1−α/2

		  then accept H0.

(3)	 The approximate p-value for this test is given by

		        p = min {2 [1 − Φ(z)], 1}

(4)	 Use this test only when the normal approximation to the binomial dis-
tribution is valid for each of the two samples—that is, when n pq1 5ˆˆ ≥  and 
n pq2 5ˆˆ ≥ .

The acceptance and rejection regions for this test are shown in Figure 10.1. Com-
putation of the exact p-value is illustrated in Figure 10.2.

	 Example 10.5 	 Cancer  Assess the statistical significance of the results from the international study 
in Example 10.4.

	 	 Solution:  The sample proportion of case women whose age at first birth was ≥30 is 
683/3220 = .212 = p̂1, and the sample proportion of control women whose age at first 
birth was ≥30 is 1498/10,245 = .146 = p̂2. To compute the test statistic z in Equation 10.3, 
the estimated common proportion p̂ must be obtained, which is given by

		  p̂ = (683 + 1498)/(3220 + 10,245) = 2181/13,465 = .162

		  q̂ = 1 − .162 = .838

0 z1 – α/2

z ≤ z1 – α/2
Acceptance region

Value

N(0, 1) distribution

Fr
eq

u
en

cy

z > z1 – α/2
Rejection region

	 Figure 10.1 	 Acceptance and rejection regions for the two-sample test 	
for binomial proportions (normal-theory test)
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Note that

		    n pq1 ˆˆ = 3220(.162) (.838) = 437 ≥ 5

and  n pq2 ˆˆ = 10,245(.162) (.838) = 1391 ≥ 5

Thus, the test in Equation 10.3 can be used.

The test statistic is given by
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The p-value = 2 × [l − Φ (8.8)] < .001, and the results are highly significant. There-
fore, we can conclude that women with breast cancer are significantly more likely 
to have had their first child after age 30 than are comparable women without 
breast cancer.

	 Example 10.6 	 Cardiovascular Disease  A study looked at the effects of OC use on heart disease in 
women 40 to 44 years of age. The researchers found that among 5000 current OC 
users at baseline, 13 women developed a myocardial infarction (MI) over a 3-year pe-
riod, whereas among 10,000 never-OC users, 7 developed an MI over a 3-year period. 
Assess the statistical significance of the results.

	 	 Solution:  Note that n1 = 5000, p̂1 = 13/5000 = .0026, n2 = 10,000, p̂2 = 7/10,000 = 
.0007. We want to test the hypothesis H0: p1 = p2 vs. H1: p1 ≠ p2. The best estimate of 
the common proportion p is given by
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.p = + = =13 7
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Because n pq1 ˆˆ = 5000(.00133)(.99867) = 6.7, n pq2 ˆˆ = 10,000(.00133)(.99867) = 13.3, the 
normal-theory test in Equation 10.3 can be used. The test statistic is given by

	 Figure 10.2 	 Computation of the two-sided p-value for the two-sample test 	
for binomial proportions (when z ≥ 0) (normal-theory test)
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The p-value is given by 2 × [1 − Φ(2.77)] = .006. Thus, there is a highly significant 
difference between MI incidence rates for current OC users vs. never-OC users. In 
other words, OC use is significantly associated with higher MI incidence over a 
3-year period.

Contingency-Table Method
The same test posed in this section on page 373 is now approached from a different 
perspective.

	 Example 10.7 	 Cancer  Suppose all women with at least one birth in the international study in 
Example 10.4 (p. 373) are classified as either cases or controls and with age at first 
birth as either ≤ 29 or ≥ 30. The four possible combinations are shown in Table 10.1.

	 Table 10.1 	 Data for the international study in Example 10.4 comparing age at first 	
birth in breast-cancer cases with comparable controls

	 Age at first birth	

Status	 ≥30	 ≤29	 Total

Case	 683	 2537	 3220

Control	 1498	 8747	 10,245

Total	 2181	 11,284	 13,465

Source: Based on WHO Bulletin, 43, 209−221, 1970.

Case−control status is displayed along the rows of the table, and age at first birth 
groups are presented in the columns of the table. Hence, each woman falls into one 
of the four boxes, or cells, of the table. In particular, there are 683 women with breast 
cancer whose age at first birth is ≥30, 2537 women with breast cancer whose age at 
first birth is ≤29, 1498 control women whose age at first birth is ≥30, and 8747 con-
trol women whose age at first birth is ≤29. Furthermore, the number of women in 
each row and column can be totaled and displayed in the margins of the table. Thus, 
there are 3220 case women (683 + 2537), 10,245 control women (1498 + 8747), 2181 
women with age at first birth ≥30 (683 + 1498), and 11,284 women with age at first 
birth ≤29 (2537 + 8747). These sums are referred to as row margins and column mar-
gins, respectively. Finally, the total number of units = 13,465 is given in the lower 
right-hand corner of the table; this total can be obtained either by summing the four  
cells (683 + 2537 + 1498 + 8747) or by summing the row margins (3220 + 10,245) or the 
column margins (2181 + 11,284). This sum is sometimes referred to as the grand total.

Table 10.1 is called a 2 × 2 contingency table because it has two categories for 
case−control status and two categories for age-at-first-birth status.

	 Definition 10.1 	 A 2 × 2 contingency table is a table composed of two rows cross-classified by two 
columns. It is an appropriate way to display data that can be classified by two 
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different variables, each of which has only two possible outcomes. One variable is 
arbitrarily assigned to the rows and the other to the columns. Each of the four cells 
represents the number of units (women, in the previous example), with a specific 
value for each of the two variables. The cells are sometimes referred to by number, 
with the (1, 1) cell being the cell in the first row and first column, the (1, 2) cell be-
ing the cell in the first row and second column, the (2, 1) cell being the cell in the 
second row and first column, and the (2, 2) cell being the cell in the second row and 
second column. The observed number of units in the four cells are likewise referred 
to as O11, O12, O21, and O22, respectively. 

	 	 Furthermore, it is customary to total

(1)	 The number of units in each row and display them in the right margins, which 
are called row marginal totals or row margins.

(2)	 The number of units in each column and display them in the bottom margins, 
which are called column marginal totals or column margins.

(3)	 The total number of units in the four cells, which is displayed in the lower right- 
hand corner of the table and is called the grand total.

	 Example 10.8 	 Cardiovascular Disease  Display the MI data in Example 10.6 in the form of a 2 × 2 
contingency table.

	 	 Solution:  Let the rows of the table represent the OC-use group, with the first row 
representing current OC users and the second row representing never-OC users. Let 
the columns of the table represent MI, with the first column representing Yes and 
the second column representing No. We studied 5000 current OC users, of whom 13 
developed MI and 4987 did not. We studied 10,000 never-OC users, of whom 7 devel-
oped MI and 9993 did not. Thus, the contingency table should look like Table 10.2.

	 Table 10.2 	 2 × 2 contingency table for the OC−MI data in Example 10.6

	 MI incidence over 3 years	

OC-use group	 Yes	 No	 Total

Current OC users	 13	 4987	 5000

Never-OC users	 7	 9993	 10,000

Total	 20	 14,980	 15,000

Two different sampling designs lend themselves to a contingency-table 
framework. The breast-cancer data in Example 10.4 have two independent sam-
ples (i.e., case women and control women), and we want to compare the propor-
tion of women in each group who have a first birth at a late age. Similarly, in 
the OC−MI data in Example 10.6 there are two independent samples of women 
with different contraceptive-use patterns, and we want to compare the propor-
tion of women in each group who develop an MI. In both instances, we want to 
test whether the proportions are the same in the two independent samples. This 
test is called a test for homogeneity of binomial proportions. In this situation, 
one set of margins is fixed (e.g., the rows) and the number of successes in each 
row is a random variable. For example, in Example 10.4 (p. 373) the total num-
ber of breast-cancer cases and controls is fixed, and the number of women with 
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age at first birth ≥30 is a binomial random variable conditional on the fixed-row 
margins (i.e., 3220 cases and 10,245 controls).

Another possible design from which contingency tables arise is in testing for 
the independence of two characteristics in the same sample when neither char-
acteristic is particularly appropriate as a denominator. In this setting, both sets 
of margins are assumed to be fixed. The number of units in one particular cell of 
the table [e.g., the (1, 1) cell] is a random variable, and all other cells can be de-
termined from the fixed margins and the (1, 1) cell. An example of this design is 
given in Example 10.9.

	 Example 10.9 	 Nutrition  The food-frequency questionnaire is widely used to measure dietary intake. 
A person specifies the number of servings consumed per day of each of many dif-
ferent food items. The total nutrient composition is then calculated from the spe-
cific dietary components of each food item. One way to judge how well a question-
naire measures dietary intake is by its reproducibility. To assess reproducibility, the 
questionnaire is administered at two different times to 50 people and the reported 
nutrient intakes from the two questionnaires are compared. Suppose dietary 
cholesterol is quantified on each questionnaire as high if it exceeds 300 mg/day  
and as normal otherwise. The contingency table in Table 10.3 is a natural way to 
compare the results of the two surveys. Notice that this example has no natural 
denominator. We simply want to test whether there is some association between 
the two reported measures of dietary cholesterol for the same person. More spe-
cifically, we want to assess how unlikely it is that 15 women will report high di-
etary cholesterol intake on both questionnaires, given that 20 of 50 women report 
high intake on the first questionnaire and 24 of 50 women report high intake on 
the second questionnaire. This test is called a test of independence or a test of 
association between the two characteristics.

	 Table 10.3 	 A comparison of dietary cholesterol assessed by a food-frequency questionnaire 	
at two different times

	 Second food-frequency 	
	 questionnaire	

First food-frequency questionnaire	 High	 Normal	 Total

High	 15	 5	 20

Normal	 9	 21	 30

Total	 24	 26	 50

Fortunately, the same test procedure is used whether a test of homogeneity or a 
test of independence is performed, so we will no longer distinguish between these 
two designs in this section.

Significance Testing Using the Contingency-Table Approach
Table 10.1 is an observed contingency table or an observed table. To determine 
statistical significance, we need to develop an expected table, which is the contin-
gency table that would be expected if there were no relationship between breast 
cancer and age at first birth—that is, if H0: p1 = p2 = p were true. In this example p1 
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and p2 are the probabilities (among women with at least one birth) of a breast-cancer 
case and a control, respectively, having a first birth at an age ≥30. For this purpose, a 
general observed table, if there were x1 exposed out of n1 women with breast cancer 
and x2 exposed out of n2 control women, is given in Table 10.4.

If H0 were true, then the best estimate of the common proportion p is p̂, which 
is given in Equation 10.2 (p. 374) as

		     n p n p n n1 1 2 2 1 2ˆ ˆ /+( ) +( )
or as  (x1 + x2) / (n1 + n2)

where x1 and x2 are the number of exposed women in groups 1 and 2, respectively. 
Furthermore, under H0 the expected number of units in the (1, 1) cell equals the 
expected number of women with age at first birth ≥30 among women with breast 
cancer, which is given by

		  n p n x x n n1 1 1 2 1 2ˆ = +( ) +( )
However, in Table 10.4 this number is simply the product of the first row margin (n1) 
multiplied by the first column margin (x1 + x2), divided by the grand total (n1 + n2). 
Similarly, the expected number of units in the (2, 1) cell equals the expected number 
of control women with age at first birth ≥30:

		  n p n x x n n2 2 1 2 1 2ˆ = +( ) +( )
which is equal to the product of the second row margin multiplied by the first column 
margin, divided by the grand total. In general, the following rule can be applied.

	 Equation 10.4 	 �Computation of Expected Values for 2 × 2 Contingency Tables

	 	 �The expected number of units in the (i, j ) cell, which is usually denoted by Eij, is 
the product of the ith row margin multiplied by the jth column margin, divided 
by the grand total.

	 Example 10.10 	 Cancer  Compute the expected table for the breast-cancer data in Example 10.4.

	 	 Solution:  Table 10.1 (p. 377) gives the observed table for these data. The row totals 
are 3220 and 10,245; the column totals are 2181 and 11,284; and the grand total is 
13,465. Thus,

		  E11 = expected number of units in the (1, 1) cell

		      = 3220(2181)/13,465 = 521.6

	 Table 10.4 	 General contingency table for the international-study data in Example 10.4 (p. 373) if 
(1) of n1 women in the case group, x1 are exposed and (2) of n2 women in the control 
group, x2 are exposed (that is, having an age at first birth ≥ 30)

	 Age at first birth

Case–control status 	 ≥30	 ≤29	 Total

Case	 x1	 n1 − x1	 n1

Control	 x2	 n2 − x2	 n2

Total	 x1 + x2	 n1 + n2 − (x1 + x2)	 n1 + n2
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		  E12 = expected number of units in the (1, 2) cell

		      = 3220(11,284)/13,465 = 2698.4

		  E21 = expected number of units in the (2, 1) cell

		      = 10,245(2181)/13,465 = 1659.4

		  E22 = expected number of units in the (2, 2) cell

		      = 10,245(11,284)/13,465 = 8585.6

These expected values are shown in Table 10.5.

	 Table 10.5 	 Expected table for the breast-cancer data in Example 10.4 (p. 373)

	 Age at first birth

Case−control status	 ≥30	 ≤29	 Total

Case	 521.6	 2698.4	 3220

Control	 1659.4	 8585.6	 10,245

Total	 2181	 11,284	 13,465

	 Example 10.11 	 Cardiovascular Disease  Compute the expected table for the OC−MI data in  
Example 10.6 (p. 376).

	 	 Solution:  From Table 10.2 (p. 378), which gives the observed table for these data,
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These expected values are displayed in Table 10.6.

	 Table 10.6 	 Expected table for the OC−MI data in Example 10.6

	 MI incidence over 3 years

OC-use group	 Yes	 No	 Total

Current OC users	 6.7	 4993.3	 5000

Never-OC users	 13.3	 9986.7	 10,000

Total	 20	 14,980	 15,000

We can show from Equation 10.4 that the total of the expected number of units 
in any row or column should be the same as the corresponding observed row or 
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column total. This relationship provides a useful check that the expected values are 
computed correctly.

	 Example 10.12 	 Check that the expected values in Table 10.5 are computed correctly.

	 	 Solution:  The following information is given:

(1)	 The total of the expected values in the first row = E11 + E12 = 521.6 + 2698.4 = 
3220 = first row total in the observed table.

(2)	 The total of the expected values in the second row = E21 + E22 = 1659.4 + 8585.6 = 
10,245 = second row total in the observed table.

(3)	 The total of the expected values in the first column = E11 + E21 = 521.6 + 1659.4 = 
2181 = first column total in the observed table.

(4)	 The total of the expected values in the second column = E12 + E22 = 2698.4 + 
8585.6 = 11,284 = second column total in the observed table.

We now want to compare the observed table in Table 10.1 (p. 377) with the 
expected table in Table 10.5. If the corresponding cells in these two tables are close, 
then H0 will be accepted; if they differ enough, then H0 will be rejected. How should 
we decide how different the cells should be for us to reject H0? It can be shown that 
the best way of comparing the cells in the two tables is to use the statistic (O − E)2/E, 
where O and E are the observed and expected number of units, respectively, in a 
particular cell. In particular, under H0 it can be shown that the sum of (O − E)2/E 
over the four cells in the table approximately follows a chi-square distribution with 
1 degree of freedom (df). This is usually referred to as the Pearson chi-square statistic. 
H0 is rejected only if this sum is large and is accepted otherwise because small values 
of this sum correspond to good agreement between the two tables, whereas large 
values correspond to poor agreement. This test procedure will be used only when 
the normal approximation to the binomial distribution is valid. In this setting the 
normal approximation can be shown to be approximately true if no expected value in 
the table is less than 5 (sometimes known as “the rule of five”).

Furthermore, under certain circumstances a version of this test statistic with a 
continuity correction yields more accurate p-values than does the uncorrected version 
when approximated by a chi-square distribution. For the continuity-corrected ver-

sion, the statistic O E E− −





1
2

2

 rather than (O − E)2/E is computed for each cell 

and the preceding expression is summed over the four cells. This test procedure is 
called the Yates-corrected chi-square and is summarized as follows.

	 Equation 10.5 	 Yates-Corrected Chi-Square Test for a 2 × 2 Contingency Table 

		�  Suppose we wish to test the hypothesis H p p H p p0 1 2 1 1 2: := ≠vs.  using a 
contingency-table approach, where Oij represents the observed number of units 
in the (i, j) cell and Eij represents the expected number of units in the (i, j) cell.

(1)	 Compute the test statistic
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		  which under H0 approximately follows a χ1
2 distribution.
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(2)	 For a level α test, reject H0 if X
2

1 1
2> −χ α,  and accept H0 if X

2
1 1
2≤ −χ α, .

(3)	 The approximate p-value is given by the area to the right of X2 under a χ1
2 

distribution.

(4)	 Use this test only if none of the four expected values is less than 5.

The acceptance and rejection regions for this test are shown in Figure 10.3. 
Computation of the p-value is illustrated in Figure 10.4.

The Yates-corrected chi-square test is a two-sided test even though the critical re-
gion, based on the chi-square distribution, is one-sided. The rationale is that large 
values of O Eij ij−  and, correspondingly, of the test statistic X2 will be obtained 
under H1 regardless of whether p1 < p2 or p1 > p2. Small values of X2 are evidence in 
favor of H0.

	 Figure 10.3 	 Acceptance and rejection regions for the Yates-corrected chi-square test 	
for a 2 × 2 contingency table
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	 Figure 10.4 	 Computation of the p-value for the Yates-corrected chi-square test 	
for a 2 × 2 contingency table
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	 Example 10.13 	 Cancer  Assess the breast-cancer data in Example 10.4 (p. 373) for statistical signifi-
cance, using a contingency-table approach.

	 	 Solution:  First compute the observed and expected tables as given in Tables 10.1 
(p. 377) and 10.5 (p. 381), respectively. Check that all expected values in Table 10.5 
are at least 5, which is clearly the case. Thus, following Equation 10.5,
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Because   χ1 999
2 210 83 77 89,. . .= < = X , we have  p < 1−.999 = .001

and the results are extremely significant. Thus, breast cancer incidence is signifi-
cantly associated with having a first child after age 30.

	 Example 10.14 	 Cardiovascular Disease  Assess the OC−MI data in Example 10.6 (p. 376) for statisti-
cal significance, using a contingency-table approach.

	 	 Solution:  First compute the observed and expected tables as given in Tables 10.2 
(p. 378) and 10.6 (p. 381), respectively. Note that the minimum expected value in 
Table 10.6 is 6.7, which is ≥5. Thus, the test procedure in Equation 10.5 can be used:
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Because χ χ1 99
2

1 995
26 63 7 88,. ,.. , . ,= = and 6.63 < 7.67 < 7.88 it follows that 1 − .995 < p < 

1 − .99, or .005 < p < .01, and the results are highly significant. The exact p-value 
obtained from either Excel = chidist (7.67, 1) or R = 1 − pchi (7.67, 1) = .006. Thus 
there is a significant difference between MI incidence rates for current OC users and 
never-OC users among 40- to 44-year-old women, with current OC users having 
higher rates.

The test procedures in Equation 10.3 and Equation 10.5 are equivalent in the 
sense that they always give the same p-values and always result in the same decisions 
about accepting or rejecting H0. Which test procedure is used is a matter of conveni-
ence. Most researchers find the contingency-table approach more understandable, 
and results are more frequently reported in this format in the scientific literature.

See page 374 for  
Equation 10.3
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At this time statisticians disagree widely about whether a continuity correction 
is needed for the contingency-table test in Equation 10.5. For example, the default 
option using Stata is the uncorrected chi-square, while the default option using 
R is the continuity-corrected chi-square. SAS provides the results of both tests. 
Generally, p-values obtained using the continuity correction are slightly larger. 
Thus, results obtained are slightly less significant than comparable results obtained 
without using a continuity correction. However, the difference in results obtained 
using these two methods should be small for tables based on large sample sizes. The 
Yates-corrected test statistic is slightly more widely used in the applied literature 
and therefore is used in this section. Another possible approach for performing 
hypothesis tests based on 2 × 2 contingency tables is to use Fisher’s exact test. This 
procedure is discussed in Section 10.3.

Using the Computer to Perform the Chi-Square 	
Test for 2 × 2 Tables
We use the chisq.test command of R to perform the test.

A.	 Raw data
	 We use the syntax

	 chisq.test(x, y)

where x and y are vectors pertaining to 2 variables in a data set. Each variable should 
have two possible values, and the vectors should be of the same length.

B.	 Summary data
	 1. � Suppose we have a general contingency table with cell counts of a, b, c, and 

d as shown in Table 10.7.

	 Table 10.7 	 General contingency table 

	 a	 b	 a + b

	 c	 d	 c + d

	 a + c	 b + d	 n = a + b + c + d

	 2. � We first use the matrix command of R to form the contingency table 
matrix and assign it the name table as follows:

	 table<- matrix(c(a,c,b,d), nrow = 2)

Note that the cell counts have to be entered column-wise, so the cell counts a and 
c are placed in the first column of the matrix and, then the cell counts b and d are 
placed in the second column of the matrix.

	 3.  We then specify

	 chisq.test(table)

to obtain the Yates-corrected chi-square statistic.

	 Example 10.15 	 Cancer  Assess the association between age at first birth and breast cancer incidence 
based on the data in Table 10.1 (p. 377) using a computer program.

	 	 Solution:  We use the chisq.test program of R to perform the test. We first form the 
matrix of counts and assign it the name table as follows:

See page 382 for  
Equation 10.5
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> table<- matrix(c(683,1498,2537,8747),nrow = 2)

We display the table as follows:

> table

     [,1] [,2]

[1,]  683 2537

[2,] 1498 8747

which matches Table 10.1. We now perform the test as follows:

> chisq.test(table)

Pearson’s chi-squared test with Yates’ continuity correction

data:  table

X-squared = 77.8851, df = 1, p-value < 2.2e-16

The results agree with those in Example 10.13.

	 Example 10.16 	 Pulmonary Disease  Suppose we consider the data set FEV.txt at www.cengagebrain 
.com, which provides pulmonary function data and smoking history for 654 chil-
dren ages 3–19. Assess whether there is an association between smoking and gender.

	 	 Solution:  In this case, x = Sex(1 = male/0 = female) and y = Smoke(1 = yes/0 = no) 
and we use the chisq.test command of R based on raw data as follows:

> chisq.test(Sex,Smoke)

Pearson’s Chi-squared test with Yates’ continuity correction

data:  Sex and Smoke

X-squared = 3.2504, df = 1, p-value = 0.0714

We see that there is a nonsignificant association between smoking and gender (chi-
square = 3.25, p = 0.07). To better understand this association, we first use the table 
command of R as follows:

> table(Smoke, Sex)

 	     Sex

Smoke   0    1

  0      279 310

  1      39  26

We now obtain estimates of the proportion of smokers for boys(Sex = 1) and 
girls(Sex = 0), respectively, using the tapply command of R as follows:

> tapply(Smoke, Sex, mean)

     0          1 

0.12264151 0.07738095

We see that the proportion of smokers is 7.7% among boys and 12.3% among girls 
but is not statistically significant (p = 0.07). We will have to adjust these results for 
age before reaching meaningful conclusions, which we will address in Chapter 13 
where we study logistic regression.

 Data set available
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In this section, we have discussed the two-sample test for binomial proportions. 
This is the analog to the two-sample t test for comparing means from two independ-
ent samples introduced in Chapter 8, except that here we are comparing proportions 
instead of means.

We refer to the flowchart (Figure 10.16, p. 438). For all the methods in Chapter 10, 
we answer yes to (1) only one variable of interest? no to (2) one-sample problem? yes to 
(3) two-sample problem? no to (4) underlying distribution normal or can central-limit 
theorem be assumed to hold? and yes to (5) underlying distribution binomial?

We now refer to the flowchart at the end of this chapter (p. 438). We answer 
yes to (1) are samples independent? (2) are all expected values ≥5? and (3) 2 × 2 
contingency table? This leads us to the box labeled “Use the two-sample test for 
binomial proportions or 2 × 2 contingency-table methods if no confounding is 
present, or Mantel-Haenszel test if confounding is present.” In brief, a confounder 
is another variable that is potentially related to both the row and column classifica-
tion variables, and it must be controlled for. We discuss methods for controlling for 
confounding in Chapter 13. In this chapter, we assume no confounding is present. 
Thus, we use either the two-sample test for binomial proportions (Equation 10.3) or 
the equivalent chi-square test for 2 × 2 contingency tables (Equation 10.5).

R E V I E W  QU  E S T I ON  S  1 0 A

1	 What is a contingency table?

2	 Suppose we have 50 ovarian-cancer cases and 100 controls, all of whom are age 
50−54. Ten of the ovarian-cancer cases and 12 of the controls reached menarche 
(age when periods begin) at <11 years.

	 (a)	 What test can be used to assess whether there is a significant association 
between early age at menarche and ovarian cancer?

	 (b)	 Perform the test in Review Question 10A.2a, and report a two-tailed p-value.

	 10.3	 Fis   h e r ’ s  E x a c t  Tes   t

In Section 10.2, we discussed methods for comparing two binomial proportions us-
ing either normal-theory or contingency-table methods. Both methods yield identi-
cal p-values. However, they require that the normal approximation to the binomial 
distribution be valid, which is not always the case, especially for small samples.

	 Example 10.17  	 Cardiovascular Disease, Nutrition  Suppose we want to investigate the relationship 
between high salt intake and death from cardiovascular disease (CVD). Groups 
of high- and low-salt users could be identified and followed over a long time to 
compare the relative frequency of death from CVD in the two groups. In contrast, 
a much less expensive study would involve looking at death records, separating 
CVD deaths from non-CVD deaths, asking a close relative (such as a spouse) about 
the dietary habits of the deceased, and then comparing salt intake between people 
who died of CVD vs. people who died of other causes.

The latter type of study, a retrospective study, may be impossible to perform for 
a number of reasons. But if it is possible, it is almost always less expensive than the 
former type, a prospective study.

See page 374 for  
Equation 10.3

See page 382 for  
Equation 10.5
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	 Example 10.18  	 Cardiovascular Disease, Nutrition  Suppose a retrospective study is done among men 
ages 50−54 in a specific county who died over a 1-month period. The investigators 
try to include approximately an equal number of men who died from CVD (the 
cases) and men who died from other causes (the controls). Of 35 people who died 
from CVD, 5 were on a high-salt diet before they died, whereas of 25 people who 
died from other causes, 2 were on such a diet. These data, presented in Table 10.8, 
are in the form of a 2 × 2 contingency table, so the methods of Section 10.2 may be 
applicable.

	 Table 10.8 	 Data concerning the possible association between cause 	
of death and high salt intake

	 	 Type of diet

Cause of death	 High salt	 Low salt	 Total

Non-CVD	 2	 23	 25

CVD	 5	 30	 35

Total	 7	 53	 60

However, the expected values of this table are too small for such methods to be 
valid. Indeed,

		

E

E
11

12

7 25 60 2 92

7 35 60 4 08

= ( ) =
= ( ) =

.

.

Thus, two of the four cells have expected values less than 5. How should the possible 
association between cause of death and type of diet be assessed?

In this case, Fisher’s exact test can be used. This procedure gives exact levels of 
significance for any 2 × 2 table but is only necessary for tables with small expected 
values, tables in which the standard chi-square test as given in Equation 10.5 is not 
applicable. For tables in which use of the chi-square test is appropriate, the two 
tests give very similar results. Suppose the probability that a man was on a high-salt 
diet given that his cause of death was noncardiovascular (non-CVD) = p1 and the 
probability that a man was on a high-salt diet given that his cause of death was car-
diovascular (CVD) = p2. We wish to test the hypothesis H0: p1 = p2 = p vs. H1: p1 ≠ p2. 
Table 10.9 gives the general layout of the data.

See page 382 for  
Equation 10.5

	 Table 10.9  	 General layout of data for Fisher’s exact test example

	 	 Type of diet	

Cause of death	 High salt	 Low salt	 Total

Non-CVD	 a	 b	 a + b

CVD	 c	 d	 c + d

Total	 a + c	 b + d	 n

For mathematical convenience, we assume the margins of this table are fixed; 
that is, the numbers of non-CVD deaths and CVD deaths are fixed at a + b and c + d, 
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respectively, and the numbers of people on high- and low-salt diets are fixed at a + c 
and b + d, respectively. Indeed, it is difficult to compute exact probabilities unless 
one assumes fixed margins. The exact probability of observing the table with cells a, 
b, c, d is as follows.

	 Equation 10.6 	 Exact Probability of Observing a Table with Cells a, b, c, d

		    
Pr a b c d

a b c d a c b d
n a b c

, , ,
! ! ! !

! ! !
( ) =

+( ) +( ) +( ) +( )
!! !d

The formula in Equation 10.6 is easy to remember because the numerator is 
the product of the factorials of each of the row and column margins, and the de-
nominator is the product of the factorial of the grand total and the factorials of the 
individual cells.

	 Example 10.19  	 Suppose we have the 2 × 2 table shown in Table 10.10. Compute the exact probabil-
ity of obtaining this table assuming the margins are fixed.

	 	 Solution: 

	 	 Pr 2 5 3 1
7 4 5 6

11 2 5 3 1
5040 24 120

, , ,
! ! ! !
! ! ! ! !

( ) = = ( )(( )( )
( )( )( ) =

720
39 916 800 2 120 6

1 0450944 101

, ,
. × 00

105 7480192 10
182

.
.

×
=

	 Table 10.10  	 Hypothetical 2 × 2 contingency table in Example 10.19

	 2	 5	 7

	 3	 1	 4

	 5	 6	 11

The Hypergeometric Distribution
Suppose we consider all possible tables with fixed row margins denoted by N1 and N2 
and fixed column margins denoted by M1 and M2. We assume the rows and columns 
have been rearranged so that M1 ≤ M2 and N1 ≤ N2. We refer to each table by its (1, 1) 
cell because all other cells are then determined from the fixed row and column 
margins. Let the random variable X denote the cell count in the (1, 1) cell. The prob-
ability distribution of X is given by

	 Equation 10.7 	 Pr X a
N N M M

N a N a M a M N
=( ) =

−( ) −( ) −
1 2 1 2

1 1 2 1

! ! ! !
! ! ! ! ++( ) = ( )

a
a M N

!
, , ,min ,0 1 1K

and N = N1 + N2 = M1 + M2. This probability distribution is called the hypergeo-
metric distribution.

It will be useful for our subsequent work on combining evidence from more than 
one 2 × 2 table in Chapter 13 to refer to the expected value and variance of the 
hypergeometric distribution. These are as follows.
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	 Equation 10.8 	 Expected Value and Variance of the Hypergeometric Distribution 

		�  Suppose we consider all possible tables with fixed row margins N1, N2 and fixed 
column margins M1, M2, where N1 ≤ N2, M1 ≤ M2, and N = N1 + N2 = M1 + M2. Let 
the random variable X denote the cell count in the (1, 1) cell. The expected 
value and variance of X are

		  

E X
M N

N

Var X
M M N N
N N

( ) =

( ) =
−( )

1 1

1 2 1 2
2 1

Thus, the exact probability of obtaining a table with cells a, b, c, d in Equa-
tion 10.6 is a special case of the hypergeometric distribution, where N1 = a + b,  
N2 = c + d, M1 = a + c, M2 = b + d, and N = a + b + c + d. We can evaluate this proba-
bility using the HYPGEOMDIST function of Excel. Thus, to evaluate Pr(a, b, c, d), 
we specify HYPGEOMDIST (a, a + b, a + c, N). In words, the hypergeometric dis-
tribution evaluates the probability of obtaining a successes out of a sample of a 
+ b observations, given that the total population (in this case, the two samples 
combined), is of size N, of which a + c observations are successes. Thus, to evalu-
ate the exact probability in Table 10.10, we specify HYPGEOMDIST (2, 7, 5, 11) = 
.182, which is the probability of obtaining two successes in a sample of 7 obser-
vations given that the total population consists of 11 observations, of which 5 
are successes. The hypergeometric distribution differs from the binomial distribu-
tion, because in the latter case, we simply evaluate the probability of obtaining a 
successes out of a + b observations, assuming that each outcome is independent. 
For the hypergeometric distribution, the outcomes are not independent because 
once a success occurs it is less likely that another observation will be a success, as 
the total number of successes is fixed (at a + c). If N is large, the two distributions 
are very similar because there is only a slight deviation from independence for 
the hypergeometric.

The basic strategy in testing the hypothesis H p p H p p0 1 2 1 1 2: := ≠vs.  will be to 
enumerate all possible tables with the same margins as the observed table and to 
compute the exact probability for each such table based on the hypergeometric dis-
tribution. A method for accomplishing this is as follows.

	 Equation 10.9 	 Enumeration of All Possible Tables with the Same Margins as the Observed Table

(1)	 Rearrange the rows and columns of the observed table so the smaller row 
total is in the first row and the smaller column total is in the first column.

Suppose that after the rearrangement, the cells in the observed table are a, b, c, d, 
as shown in Table 10.9.

(2)	 Start with the table with 0 in the (1, 1) cell. The other cells in this table are 
then determined from the row and column margins. Indeed, to maintain 
the same row and column margins as the observed table, the (1, 2) element 
must be a + b, the (2, 1) cell must be a + c, and the (2, 2) element must be  
(c + d) − (a + c) = d − a.

(3)	 Construct the next table by increasing the (1, 1) cell by 1 (i.e., from 0 to 1), 
decreasing the (1, 2) and (2, 1) cells by 1, and increasing the (2, 2) cell by 1.
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(4)	 Continue increasing and decreasing the cells by 1, as in step 3, until one of 
the cells is 0, at which point all possible tables with the given row and col-
umn margins have been enumerated. Each table in the sequence of tables 
is referred to by its (1, 1) element. Thus, the first table is the “0” table, the 
next table is the “1” table, and so on.

	 Example 10.20 	 Cardiovascular Disease, Nutrition  Enumerate all possible tables with the same row 
and column margins as the observed data in Table 10.8 (p. 388).

	 	 Solution:  The observed table has a = 2, b = 23, c = 5, d = 30. The rows or columns do not 
need to be rearranged because the first row total is smaller than the second row total, 
and the first column total is smaller than the second column total. Start with the “0” 
table, which has 0 in the (1, 1) cell, 25 in the (1, 2) cell, 7 in the (2, 1) cell, and 30 − 2, 
or 28, in the (2, 2) cell. The “1” table then has 1 in the (1, 1) cell, 25 − 1 = 24 in the (1, 2)  
cell, 7 − 1 = 6 in the (2, 1) cell, and 28 + 1 = 29 in the (2, 2) cell. Continue in this 
fashion until the “7” table is reached, which has 0 in the (2, 1) cell, at which point 
all possible tables with the given row and column margins have been enumerated 
as shown in Table 10.11. The set of hypergeometric probabilities in Table 10.11 can 
be evaluated using either Equation 10.6 or a computer program. The collection of 
tables and their associated probabilities based on the hypergeometric distribution in 
Equation 10.6 are given in Table 10.11.

	 Table 10.11 	 Enumeration of all possible tables with fixed margins and their associated 
probabilities, based on the hypergeometric distribution for Example 10.19

	 0	 25	 1	 24	 2	 23	 3	 22

	 7	 28	 6	 29	 5	 30	 4	 31

	 .017	 .105	 .252	 .312

	 4	 21	 5	 20	 6	 19	 7	 18

	 3	 32	 2	 33	 1	 34	 0	 35

	 .214	 .082	 .016	 .001

The question now is: What should be done with these probabilities to evaluate 
the significance of the results? The answer depends on whether a one-sided or a two-
sided alternative is being used. In general, the following method can be used.

	 Equation 10.10 	 Fisher’s Exact Test: General Procedure and Computation of p-Value 

		�  To test the hypothesis H p p H p p0 1 2 1 1 2: := ≠vs. , where the expected value of 
at least one cell is <5 when the data are analyzed in the form of a 2 × 2 contin-
gency table, use the following procedure:

(1)	 Enumerate all possible tables with the same row and column margins as the 
observed table, as shown in Equation 10.9.

(2)	 Compute the exact probability of each table enumerated in step 1, using 
either the computer or the formula in Equation 10.6.
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(3)	 Suppose the observed table is the a table and the last table enumerated is 
the k table.

(a)	 To test the hypothesis H p p H p p0 1 2 1 1 2: := ≠vs. , the p-value = 
2 0 1 1× + + + + + +min ( ) ( ) . . . ( ), ( ) ( ) . .Pr Pr Pr Pr Pra a a .. ( ), .+[ ]Pr k 5 .

(b)	 To test the hypothesis H p p H p p0 1 2 1 1 2: := <vs. , the p-value = Pr(0) + 
Pr(1) + . . . + Pr(a).

(c)	 To test the hypothesis H p p H p p0 1 2 1 1 2: := >vs. , the p-value = Pr(a) + 
Pr(a + 1) + . . . + Pr(k).

For each of these three alternative hypotheses, the p-value can be interpreted 
as the probability of obtaining a table as extreme as or more extreme than the 
observed table.

	 Example 10.21 	 Cardiovascular Disease, Nutrition  Evaluate the statistical significance of the data 
in Example 10.18 (p. 388) using a two-sided alternative.

	 	 Solution:  We want to test the hypothesis H p p H p p0 1 2 1 1 2: := ≠vs. . Our table is the 
“2” table whose probability is .252 in Table 10.11. Thus, to compute the p-value, 
the smaller of the tail probabilities corresponding to the “2” table is computed and 
doubled. This strategy corresponds to the procedures for the various normal-theory 
tests studied in Chapters 7 and 8. First compute the left-hand tail area,

		  Pr Pr Pr( ) ( ) ( ) . . . .0 1 2 017 105 252 375+ + = + + =

and the right-hand tail area,

		  Pr Pr Pr( ) ( ) . . . ( ) . . . . .2 3 7 252 312 214 082+ + + = + + + + 0016 001 878+ =. .

Then,  p = × = =2 375 878 5 2 375 749min(. ,. ,. ) (. ) .
If a one-sided alternative of the form H p p H p p0 1 2 1 1 2: := <vs.  is used, then the 

p-value equals

	 Pr Pr Pr( ) ( ) ( ) . . . .0 1 2 017 105 252 375+ + = + + =

Thus, the two proportions in this example are not significantly different with 
either a one-sided or two-sided test, and we cannot say, on the basis of this limited 
amount of data, that there is a significant association between salt intake and cause 
of death.

In most instances, computer programs are used to implement Fisher’s exact test 
using statistical packages such as SAS or R. There are other possible approaches to 
significance testing in the two-sided case. For example, the approach used by SAS is 
to compute

		
p i

i i a

-value (two-tailed) =
≤{ }

∑ Pr
Pr Pr

( )
: ( ) ( )

In other words, the two-tailed p-value using SAS is the sum of the probabilities of all 
tables whose probabilities are ≤ the probability of the observed table. Using this ap-
proach, the two-tailed p-value would be

		

p-value (two-tailed) = + + +Pr Pr Pr Pr( ) ( ) ( ) (0 1 2 4)) ( ) ( ) ( )+ + +Pr Pr Pr5 6 7

= + + + + + +. . . . . . .017 105 252 214 082 016 001 == .688
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The rationale for the textbook version of the two-sided p-value for Fisher’s exact 
test is that in the author’s experience, it corresponds very closely to the two-sided 
p-value for the Yates’ corrected chi-square test for 2 × 2 tables when the smallest 
expected value is close to 5. This may not happen with the SAS or R formulation 
for the two-sided p-value for Fisher’s exact test, creating a discontinuity of the 
two procedures when the smallest expected value is say 4.9 or 5.1, which seems 
unreasonable.

Using the Computer to Perform Fisher’s Exact Test 	
for 2 × 2 Tables
We use the fisher.test command of R for this purpose.

To test the hypothesis
H0: p1 = p2 vs. H1: p1 ≠ p2,

1.  First, we test the hypothesis
H0: p1 = p2 vs. H1: p1 < p2

and obtain the p-value labeled p.value.lower.

2.  Second, we test the hypothesis
H0: p1 = p2 vs. H1: p1 > p2

and obtain the p-value labeled p.value.upper.

3.  Third, we compute the two-sided p-value given by:
p.value.two.sided = 2* min(p.value.lower, p.value.upper, 0.5)

A.  Raw data
We use the syntax:
1.  p.value.lower<- fisher.test(x,y,alternative = “l”)
2.  p.value.upper<- fisher.test(x,y,alternative = “g”)
The two-sided p-value is given by:
3.  p.value.two.sided <- 2 * min(p.value.lower, p.value.upper, 0.5)
where we are assessing the association between the variables x and y.

�Note: You will have to extract the p-values in steps 1 and 2 and insert them 
in step 3.

B.  Summary data
1. � Suppose we have a general contingency table with cell counts a, b, c and d as 

shown in Table 10.9 (p. 388).
2. � We use the matrix command to form the 2 × 2 table and assign it the name 

table as follows:

�table<- matrix(c(a,c,b,d), nrow = 2) 

remembering to enter the cell counts column-wise. We then specify
3.  p.value.lower<- fisher.test(table, alternative = “l”)
4.  p.value.upper<- fisher.test(table, alternative = “g”)
5.  p.value.two.sided<- 2 * min(p.value.lower, p.value.upper, 0.5)

�Note: You will have to extract the p-values in steps 3 and 4 and insert them 
in step 5.
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	 Example 10.22 	 Cardiovascular Disease, Nutrition  Evaluate the statistical significance of the data in 
Example 10.18 (p. 388) for a two-sided alternative using a computer program.

	 	 Solution:  We use the fisher.test command of R for this purpose. 
First, we form the 2 × 2 table of counts entering the data column-wise.

> table<- matrix(c(2,5,23,30),nrow = 2)

> table

  [,1] [,2]

[1,]  2  23

[2,]  5  30

We then compute the two one-sided p-values labeled as p.value.lower and p.value.
upper, respectively.

These correspond to p-values for the hypotheses:

H0: p1 = p2 vs. H1: p1 < p2 and H0: p1 = p2 vs. H1: p1 > p2, respectively.

> p.value.lower<- fisher.test(table,alternative = “l”)

> p.value.upper<- fisher.test(table,alternative = “g”)

> p.value.lower

Fisher’s Exact Test for Count Data

data: table

p-value = 0.3747

> p.value.upper

Fisher’s Exact Test for Count Data

data: table

p-value = 0.8775

We then compute the two-sided p-value denoted by p.value.two.sided as follows:

> p.value.two.sided<- 2 * min(0.3747, 0.8775, 0.5)

> p.value.two.sided

[1] 0.7494

The p-value agrees with the results in Example 10.21.

In this section, we learned about Fisher’s exact test, which is used for comparing 
binomial proportions from two independent samples in 2 × 2 tables with small ex-
pected counts (<5). This is the two-sample analog to the exact one-sample binomial 
test given in Equation 7.29. If we refer to the flowchart at the end of this chapter 
(Figure 10.16, p. 438), we answer yes to (1) are samples independent? and no to (2) 
are all expected values ≥5? This leads us to the box labeled “Use Fisher’s exact test.”

R E V I E W  QU  E S T I ON  S  1 0 B

1	 What is the difference between the chi-square test for 2 × 2 tables and Fisher’s 
exact test? Under what circumstances do we use each test?

2	 Suppose we have a 2 × 2 table with cell counts a, b, c, and d as in Table 10.9 (p. 388). For 
each of the following tables, identify which test in Review Question 10B.1 we should use:

See page 253 for  
Equation 7.29
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	 (a)	 a = 5, b = 10, c = 11, d = 7

	 (b)	 a = 2, b = 3, c = 7, d = 10

	 (c)	 a = 1, b = 99, c = 10, d = 90

3	 Suppose that 2 of 4000 men and 3 of 3500 women (all ages 40−44) develop lung 
cancer over the next year. All these people have smoked 1 pack of cigarettes per 
day from age 18 to their current age. Perform a significance test to compare the 
incidence of lung cancer between 40- to 44-year-old men and women. Report a 
two-tailed p-value.

	 10.4	 T w o - S a m p l e  Tes   t  f o r  B i n o m i a l  P r o p o r t i o n s 

f o r  M at c h e d - P a i r  D ata  ( M c Ne  m a r ’ s  Tes   t )

	 Example 10.23 	 Cancer  Suppose we want to compare two different chemotherapy regimens for 
breast cancer after mastectomy. The two treatment groups should be as comparable 
as possible on other prognostic factors. To accomplish this goal, a matched study is 
set up such that a random member of each matched pair gets treatment A (chemo-
therapy) perioperatively (within 1 week after mastectomy) and for an additional 6 
months, whereas the other member gets treatment B (chemotherapy only periopera-
tively). The patients are assigned to pairs matched on age (within 5 years) and clini-
cal condition. The patients are followed for 5 years, with survival as the outcome 
variable. The data are displayed in a 2 × 2 table, as in Table 10.12. Notice the small 
difference in 5-year survival between the two treatment groups: treatment A group = 
526/621 = .847 vs. treatment B group = 515/621 = .829. Indeed, the Yates-corrected 
chi-square statistic as given in Equation 10.5 is 0.59 with 1 df, which is not signifi-
cant. However, use of this test is valid only if the two samples are independent. From the 
manner in which the samples were selected it is obvious they are not independent 
because the two members of each matched pair are similar in age and clinical con-
dition. Thus, the Yates-corrected chi-square test cannot be used in this situation be-
cause the p-value will not be correct. How then can the two treatments be compared 
using a hypothesis test?

	 Table 10.12 	 A 2 × 2 contingency table comparing treatments A and B 	
for breast cancer based on 1242 patients

	 Outcome

	 Survive for	 Die within	 	
Treatment	 5 years	 5 years	 Total

A	 526	 95	 621

B	 515	 106	 621

Total	 1041	 201	 1242

Suppose a different kind of 2 × 2 table is constructed to display these data. In 
Table 10.12 the person was the unit of analysis, and the sample size was 1242 peo-
ple. In Table 10.13 the matched pair is the unit of analysis and pairs are classified 
according to whether the members of that pair survived for 5 years. Notice that 
Table 10.13 has 621 units rather than the 1242 units in Table 10.12. Furthermore, 
there are 90 pairs in which both patients died within 5 years, 510 pairs in which 

See page 382 for  
Equation 10.5
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both patients survived for 5 years, 16 pairs in which the treatment A patient 
survived and the treatment B patient died, and 5 pairs in which the treatment B 
patient survived and the treatment A patient died. The dependence of the two 
samples can be illustrated by noting that the probability that the treatment B 
member of the pair survived given that the treatment A member of the pair sur-
vived = 510/526 = .970, while the probability that the treatment B member of the 
pair survived given that the treatment A member of the pair died = 5/95 = .053. 
If the samples were independent, then these two probabilities should be about 
the same. Thus, we conclude that the samples are highly dependent and the chi-
square test cannot be used.

	 Table 10.13 	 A 2 × 2 contingency table with the matched pair as the 	
sampling unit based on 621 matched pairs

	 Outcome of	
	 treatment B patient

Outcome of	 Survive for 	 Die within	 Total	
treatment A patient	 5 years	 5 years

Survive for 5 years	 510	 16	 526

Die within 5 years	 5	 90	 95

Total	 515	 106	 621

In Table 10.13, for 600 pairs (90 + 510), the outcomes of the two treatments are 
the same, whereas for 21 pairs (16 + 5), the outcomes of the two treatments are dif-
ferent. The following special names are given to each of these types of pairs:

	 Definition 10.2 	 A concordant pair is a matched pair in which the outcome is the same for each 
member of the pair.

	 Definition 10.3 	 A discordant pair is a matched pair in which the outcomes differ for the members 
of the pair.

	 Example 10.24 	 There are 600 concordant pairs and 21 discordant pairs for the data in Table 10.13.

The concordant pairs provide no information about differences between treatments 
and are not used in the assessment. Instead, we focus on the discordant pairs, which 
can be divided into two types.

	 Definition 10.4 	 A type A discordant pair is a discordant pair in which the treatment A member  
of the pair has the event and the treatment B member does not. Similarly, a type B 
discordant pair is a discordant pair in which the treatment B member of the pair 
has the event and the treatment A member does not.

	 Example 10.25 	 If we define having an event as dying within 5 years, there are 5 type A discordant 
pairs and 16 type B discordant pairs for the data in Table 10.13.
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Let p = the probability that a discordant pair is of type A. If the treatments are 
equally effective, then about an equal number of type A and type B discordant pairs 
would be expected, and p should = 12. If treatment A is more effective than treatment B,  
then fewer type A than type B discordant pairs would be expected, and p should be < 12 .  
Finally, if treatment B is more effective than treatment A, then more type A than 
type B discordant pairs would be expected, and p should be > 12.

Thus, we wish to test the hypothesis H p H p0
1
2 1

1
2: := ≠vs. .

Normal-Theory Test
Suppose that of nD discordant pairs, nA are type A. Then given that the observed 
number of discordant pairs = nD, under H E n n Var n nA D A D0 2 4, ( ) ( )= =and , from 
the mean and variance of a binomial distribution, respectively. Let’s assume that 
the normal approximation to the binomial distribution holds, but we will use 
a continuity correction for a better approximation. This approximation will be 
valid if npq = nD/4 ≥ 5 or nD ≥ 20. The following test procedure, called McNemar’s 
test, can then be used.

	 Equation 10.11 	 McNemar’s Test for Correlated Proportions—Normal-Theory Test

(1)	 Form a 2 × 2 table of matched pairs, where the outcomes for the treatment 
A members of the matched pairs are listed along the rows and the outcomes 
for the treatment B members are listed along the columns.

(2)	 Count the total number of discordant pairs (nD) and the number of type A 
discordant pairs (nA).

(3)	 Compute the test statistic

			   X n
n n

A
D D2

2

2
1
2 4

= − −











		  An equivalent version of the test statistic is also given by

			   X n n n nA B A B
2 2

1= − −( ) +( )

		  where nB = number of type B discordant pairs.

(4)	 For a two-sided level α test,

		  if  X2
1 1
2> −χ α,  then reject H0;

		  if  X2
1 1
2≤ −χ α,  then accept H0.

(5)	 The exact p-value is given by p-value = Pr χ1
2 2≥( )X .

(6)	 Use this test only if nD ≥ 20.

The acceptance and rejection regions for this test are shown in Figure 10.5. Com-
putation of the p-value for McNemar’s test is depicted in Figure 10.6.

This is a two-sided test despite the one-sided nature of the critical region in 

Figure 10.5. The rationale for this is that if either < > −p p n n
1
2

or
1
2

, then 2A D  

will be large and, correspondingly, X2 will be large. Thus, for alternatives on either side 

of the null hypothesis p =





1
2

, H0 is rejected if X2 is large and accepted if X2 is small.
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	 Example 10.26 	 Cancer  Assess the statistical significance of the data in Table 10.13.

	 	 Solution:  Note that nD = 21. Because nD
1
2

1
2

5 25 5









 = ≥. , the normal approxima-

tion to the binomial distribution is valid and the test in Equation 10.11 can be used. 

We have

		
X2

2 2

25 10 5
1
2

21 4

5 5
1
2

5 25
5=

− −





=
−





=
. .

. 55 25
25

5 25
4 76

. .
.= =

Equivalently, we could also compute the test statistic from

		  X2
2 25 16 1

5 16
10
21

4 76=
− −( )

+
= = .

	 Figure 10.5 	 Acceptance and rejection regions for McNemar’s test—normal-theory method
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	 Figure 10.6 	 Computation of the p-value for McNemar’s test—normal-theory method
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From Table 6 in the Appendix, note that

		  χ1 95
2 3 84,. .=

		  χ1 975
2 5 02,. .=

Thus, because 3.84 < 4.76 < 5.02, it follows that .025 < p < .05, and the results 
are statistically significant. The exact p-value using Excel is p-value = CHIDIST  
(4.76, 1) = .029.

We conclude that if the treatments give different results from each other for the 
members of a matched pair, then the treatment A member of the pair is significantly 
more likely to survive for 5 years than the treatment B member. Thus, all other 
things being equal (such as toxicity, cost, etc.), treatment A would be the treatment 
of choice.

Exact Test
If nD/4 < 5—that is, if nD < 20—then the normal approximation to the bino-
mial distribution cannot be used, and a test based on exact binomial prob-
abilities is required. The details of the test procedure are similar to the small 
sample one-sample binomial test in Equation 7.29 and are summarized as  
follows.

	 Equation 10.12 	 McNemar’s Test for Correlated Proportions—Exact Test

		  (1)	 Follow the procedure in step 1 in Equation 10.11.

		  (2)	 Follow the procedure in step 2 in Equation 10.11.

		  (3)	 The exact p-value is given by

(a)	 p
n
k

n nD
A D

n

k

n DA

= ×










=

∑2
1
2

2
0

if <

(b)	 p
n
k

n nD
A D

n

k n

n D

A

D

= ×










 >

=
∑2

1
2

2if

(c)	 p n nA D= =1 2if

		  (4)	 This test is valid for any number of discordant pairs (nD) but is particularly 
useful for nD < 20, when the normal-theory test in Equation 10.11 cannot be 
used.

The computation of the p-value for this test is shown in Figure 10.7.

	 Example 10.27 	 Hypertension  A recent phenomenon in the recording of blood pressure is the 
development of the automated blood-pressure machine, where for a small fee a 
person can sit in a booth and have his or her blood pressure measured by a com-
puter device. A study is conducted to compare the computer device with standard 
methods of blood pressure measurement. Twenty patients are recruited, and their 
hypertensive status is assessed by both the computer device and a trained observer. 
Hypertensive status is defined as either hypertensive (+) if systolic blood pressure is 

See page 253 for  
Equation 7.29
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≥160 mm Hg or higher or if diastolic blood pressure is ≥95 mm Hg or higher; the 
patient is considered normotensive (−) otherwise. The data are given in Table 10.14. 
Assess the statistical significance of these findings.

	 	 Solution:  An ordinary Yates-corrected chi-square test cannot be used for these data 
because each person is being used as his or her own control and there are not 
two independent samples. Instead, a 2 × 2 table of matched pairs is formed, as in 
Table 10.15. Note that 3 people are measured as hypertensive by both the com-
puter device and the trained observer, 9 people are normotensive by both meth-
ods, 7 people are hypertensive by the computer device and normotensive by the  
trained observer, and 1 person is normotensive by the computer device and hyperten-
sive by the trained observer. Therefore, there are 12 (9 + 3) concordant pairs and 8 (7 + 1)  
discordant pairs (nD). Because nD < 20, the exact method must be used. We see 
that nA = 7, nD = 8. Therefore, because nA > nD/2 = 4, it follows from Equation 10.12 
that

		
p

kk

= ×










=

∑2
8 1

2

8

7

8

	 Figure 10.7 	 Computation of the p-value for McNemar’s test—exact method
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This expression can be evaluated using Table 1 in the Appendix by referring to n = 8,  
p = .5 and noting that Pr X p≥ =( )7 5. = .0313 + .0039 = .0352. Thus, the two-tailed 
p-value = 2 × .0352 = .070.

In summary, the results are not statistically significant, and we cannot conclude 
that there is a significant difference between the two methods, although a trend can 
be detected toward the computer device identifying more hypertensives than the 
trained observer.

Note that for a two-sided one-sample binomial test, the hypothesis H p p H p p0 0 1 0: := ≠vs. 
H p p H p p0 0 1 0: := ≠vs. is tested. In the special case where p0 = 1/2, the same test procedure as for 

McNemar’s test is also followed.
Finally, if we interchange the designation of which of two outcomes is an event, 

then the p-values will be the same in Equations 10.11 and 10.12. For example, if 
we define an event as surviving for 5+ years, rather than dying within 5 years in 
Table 10.13 (p. 396), then nA = 16, nB = 5 [rather than nA = 5, nB = 16 in Example 10.25 
(p. 396)]. However, the test statistic X2 and the p-value are the same because n nA B−  
remains the same in Equation 10.11. Similarly, the p-value remains the same in 
Equation 10.12 because of the symmetry of the binomial distribution when p = 1/2  
(under H0).

	 Table 10.14 	 Hypertensive status of 20 patients as judged by a computer device and a trained 
observer

Hypertensive status Hypertensive status

Person
Computer 	

device
Trained 	
observer Person

Computer 	
device

Trained 	
observer

  1 − − 11 + −
  2 − − 12 + −
  3 + − 13 − −
  4 + + 14 + −
  5 − − 15 − +
  6 + − 16 + −
  7 − − 17 + −
  8 + + 18 − −
  9 + + 19 − −
10 − − 20 − −

	 Table 10.15 	 Comparison of hypertensive status as judged 	
by a computer device and a trained observer

	 Trained 	
	 observer

Computer 	

device	 +	 −

+	 3	 7

−	 1	 9
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Using the Computer to Perform McNemar’s Test for 	
Correlated Proportions
We use the mcnemar.test command of R to perform the large sample version of 
McNemar’s test. 

A.  Raw data
We use the syntax

mcnemar.test(x, y)

�where x and y are variables (vectors) consisting of outcomes for matched pairs. 
Thus, xi and yi correspond to the values of the variable of interest for the case 
and control from the ith matched pair.
�Note:  The distribution of x and y should be binary (i.e., there should be only two 
possible outcomes).

B.  Summary data
1. � Suppose we have a 2 × 2 contingency table with cell counts a, b, c and d for 

the cross-classification of exposure status for cases and controls in specific 
matched pairs.

2. � We use the matrix command to form the 2 × 2 table and assign it to the name 
table as follows:

table<- matrix(c(a,c,b,d), nrow = 2)

3.  We specify 
mcnemar.test(table)

The results from both (A) and (B) will be the test statistic and p-value for the 
large sample McNemar’s test with continuity correction as given in Equation 10.11.

	 Example 10.28 	 Cancer  Consider the cancer chemotherapy matched pair data given in Table 10.13 
(p. 396). Perform McNemar’s test on this table using a computer program.

	 	 Solution:  We use the mcnemar.test command of R based on the data in Table 10.13.

1. � We first form the 2 × 2 table of counts (called table) for the matched pair data as 
follows:

> table<- matrix(c(510,5,16,90), nrow = 2)

> table

        [,1]  [,2]

[1,]  510   16

[2,]   5    90

2.  To perform the test, we use the syntax

> mcnemar.test(table)

  McNemar’s Chi-squared test with continuity correction

data:  table

  McNemar’s chi-squared = 4.7619, df = 1, p-value = 0.0291

The test statistic and p-value are the same as that obtained in Example 10.26 (p. 398).

See page 397 for  
Equation 10.11
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In this section, we have studied McNemar’s test for correlated proportions, 
which is used to compare two binomial proportions from matched samples. We 
studied both a large-sample test when the normal approximation to the binomial 
distribution is valid (i.e., when the number of discordant pairs, nD, is ≥20) and a 
small-sample test when nD < 20. Referring to the flowchart at the end of this chapter 
(Figure 10.16, p. 438), we answer no to (1) are samples independent? which leads us 
to the box labeled “Use McNemar’s test.”

R E V I E W  QU  E S T I ON  S  1 0 C

1	 (a)  What is the difference between McNemar’s test and the chi-square test for 2 × 2	
tables?

	 (b)  When do we use each test?

2	 What is a discordant pair? A concordant pair? Which type of pair is used in 
McNemar’s test?

3	 A twin design is used to study age-related macular degeneration (AMD), a common 
eye disease of the elderly that results in substantial losses in vision. Suppose we 
contact 66 twinships in which one twin has AMD and the other twin does not. The 
twins are given a dietary questionnaire to report their usual diet. We find that in 10 
twinships the AMD twin takes multivitamin supplements and the normal twin does 
not. In 8 twinships the normal twin takes multivitamin supplements and the AMD 
twin does not. In 3 twinships both twins take multivitamin supplements, and in 45 
twinships neither twin takes multivitamin supplements.

	 (a) � What test can be used to assess whether there is an association between AMD 
and taking multivitamin supplements?

	 (b) � Are AMD and taking multivitamin supplements significantly associated based on 
these data?

	 10.5	 E s t i m at i o n  o f  S a m p l e  S i z e  a n d  P o w e r  f o r 

C o m p a r i n g  T w o  B i n o m i a l  P r o p o r t i o n s

In Section 8.9, methods for estimating the sample size needed to compare means from 
two normally distributed populations were presented. In this section, similar methods 
for estimating the sample size required to compare two proportions are developed.

Independent Samples
	 Example 10.29 	 Cancer, Nutrition  Suppose we know from Connecticut tumor-registry data that the 

incidence rate of breast cancer over a 1-year period for initially disease-free women 
ages 45−49 is 150 cases per 100,000 [2]. We wish to study whether ingesting large 
doses of vitamin E in capsule form will prevent breast cancer. The study is set up with 
(1) a control group of 45- to 49-year-old women who are mailed placebo pills and are 
expected to have the same disease rate as indicated in the Connecticut tumor-registry 
data and (2) a study group of similar-age women who are mailed vitamin E pills and 
are expected to have a 20% reduction in risk. How large a sample is needed if a two-
sided test with a significance level of .05 is used and a power of 80% is desired?

We wish to test the hypothesis H p p H p p0 1 2 1 1 2: := ≠vs. . Suppose we want to 
conduct a test with significance level α and power 1 − β and we anticipate there will 
be k times as many people in group 2 as in group 1; that is, n2 = kn1. The sample size 
required in each of the two groups to achieve these objectives is as follows.

R
 E
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 I 

E 
W

  

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



404              C H A P T E R  10      Hypothesis Testing: Categorical Data

	 Equation 10.13 	 �Sample Size Needed to Compare Two Binomial Proportions Using a Two-Sided 
Test with Significance Level α and Power 1 − β, Where One Sample (n2) Is k Times 
as Large as the Other Sample (n1) (Independent-Sample Case) 

	 	 	 To test the hypothesis H p p H p p0 1 2 1 1 2: := ≠vs.  for the specific alternative 
p p1 2− = ∆, with a significance level α and power 1 − β, the following sample size 
is required
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	 Example 10.30 	 Cancer, Nutrition  Estimate the sample size required for the study proposed in 
Example 10.29 if an equal sample size is anticipated in each group.

	 	 Solution: 
	 	 p1 = 150 per 100,000 or 150/105 = .00150

		  q1 = 1 − .00150 = .99850

If we want to detect a 20% reduction in risk, then p2 = 0.8p1 or
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Thus, referring to Equation 10.13,
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−
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n
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.05193(1.96) .05193(0.84)

.00030
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1

2

2

2

2

2

2 2

or about 235,000 women in each group.
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To perform a one-tailed rather than a two-tailed test, simply substitute α for α/2 in 
the sample-size formula in Equation 10.13.

Clearly, from the results in Example 10.30, we could not conduct such a large 
study over a 1-year period. The sample size needed would be reduced considerably if 
the period of study was lengthened beyond 1 year because the expected number of 
events would increase in a multiyear study.

In many instances, the sample size available for investigation is fixed by practical con-
straints, and what is desired is an estimate of statistical power with the anticipated avail-
able sample size. In other instances, after a study is completed, we want to calculate the 
power using the sample sizes that were actually used in the study. For these purposes the 
following estimate of power is provided to test the hypothesis H p p H p p0 1 2 1 1 2: := ≠vs. , 
with significance level α and sample sizes of n1 and n2 in the two groups.

	 Equation 10.14 	 �Power Achieved in Comparing Two Binomial Proportions Using a Two-Sided Test 
with Significance Level α and Samples of Size n1 and n2 (Independent-Sample 
Case) 

	 	 	 To test the hypothesis H p p H p p0 1 2 1 1 2: := ≠vs.  for the specific alternative p p1 2− = ∆
p p1 2− = ∆, compute

		  Power =
+

−
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		  p1, p2 = projected true probabilities of success in groups 1 and 2, respectively
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∆

	 Example 10.31 	 Otolaryngology  Suppose a study comparing a medical and a surgical treatment for 
children who have an excessive number of episodes of otitis media (OTM) during 
the first three years of life is planned. Success is defined as ≤1 episode of OTM in the 
first 12 months after treatment. Success rates of 50% and 70% are assumed in the 
medical and surgical groups, respectively, and the recruitment of 100 patients for 
each group is realistically anticipated. How much power does such a study have of 
detecting a significant difference if a two-sided test with an α level of .05 is used?

	 	 Solution:  Note that p1 = .5, p2 = .7, q1 = .5, q2 = .3, n1 = n2 = 100, Δ = .2, p = (.5 + .7)/2 = 
.6, q = .4, α = .05, z1−α/2 = z.975 = 1.96. Thus, from Equation 10.14 the power can be 
computed as follows:
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Thus, there is an 83% chance of finding a significant difference using the anticipated 
sample sizes.

See page 396 for  
Equation 10.13
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If a one-sided test is used, then Equation 10.14 can be used after replacing z1 2−α   
by z1−α.

Using the Computer to Estimate Sample Size and Power for 
Comparing Two Binomial Proportions
We use the sampsi command of Stata for this purpose. The syntax is as follows:

1.  Sample Size Estimation
We specify:

      sampsi p1 p2, power(0.xx) ratio(yy) nocontinuity

where
�p1, p2 are the hypothesized probabilities of success for groups 1 and 2 under H1, 
0.xx is the desired power, and yy = ratio = n2/n1. If this option is omitted, then 
the ratio is assumed to be 1 (i.e., equal sample size for each group).

2.  Power Estimation
We specify:

      sampsi p1 p2, n1(xx) n2(yy) nocontinuity

where
�p1, p2 are the hypothesized probabilities of success for groups 1 and 2 under H1, 
xx,yy are the sample sizes for groups 1 and 2.

	 Example 10.32 	 Cancer, Nutrition  Estimate the sample size needed in each group to achieve 
80% power for the study proposed in Example 10.29 (p. 403) using a computer 
program.

	 	 Solution:  We use the sampsi command of Stata. The syntax is as follows:

  sampsi 0.00150 0.00120, power(0.80) nocontinuity

The results are as follows:

Estimated sample size for two-sample comparison of proportions

 � Test Ho: p1 = p2, where p1 is the proportion in population 1 
and p2 is the proportion in population 2

Assumptions:
         alpha = 0.0500  (two-sided)

         power = 0.8000

            p1 = 0.0015

            p2 = 0.0012

         n2/n1 = 1.00

Estimated required sample sizes:
            n1 = 235148

            n2 = 235148

Thus, we require 235,148 subjects in each group, which agrees with the solution to 
Example 10.30.
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	 Example 10.33 	 Otolaryngology  Estimate the power for the study proposed in Example 10.31 using 
a computer program.

	 	 Solution:  We use the syntax:

  sampsi 0.5 0.7, n1(100) n2(100) nocontinuity

The results are as follows:

Estimated power for two-sample comparison of proportions

 � Test Ho: p1 = p2, where p1 is the proportion in population 1 
and p2 is the proportion in population 2

Assumptions:
         alpha = 0.0500  (two-sided)

            p1 = 0.5000

            p2 = 0.7000

sample size n1 = 100

            n2 = 100

         n2/n1 = 1.00

Estimated power:
         power = 0.8281

Thus, the study would have 83% power, which agrees with the solution to Example 10.31.

Paired Samples
In Section 10.4, McNemar’s test for comparing binomial proportions in paired 
samples was introduced. As noted there, this test is a special case of the one-sample 
binomial test. Therefore, to estimate sample size and power, the more general for-
mulas for the one-sample binomial test given in Section 7.9 can be used. Specifi-
cally, referring to Equation 7.33 to test the hypothesis H p p H p p0 0 1 0: := ≠vs.  using  
a two-sided test with significance level α and power 1 − β for the specific alternative 
p = p1, a sample size of

		  n
p q z z p q p q

p p
=

+ 
−

− −0 0 1 2 1 1 1 0 0
2

1 0
2

α β ( )

( )

is needed. To use this formula in the case of McNemar’s test, set p0 = q0 = 1/2, p1 = pA 
= the proportion of discordant pairs that are of type A, and n = nD = the number of 
discordant pairs. On substitution,

		  n
z z p q

pD
A A

A
=

+( )
−

− −1 2 1
2

2

2

4 5
α β

( . )

However, the number of discordant pairs (nD) = the total number of pairs (n) × 
the probability that a matched pair is discordant. If the latter probability is de-
noted by pD, then nD = npD, or n = nD  /pD. Thus, the following sample-size formula 
can be used.

See page 257 for  
Equation 7.33
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	 Equation 10.15 	 �Sample Size Needed to Compare Two Binomial Proportions Using a Two-Sided 
Test with Significance Level α and Power 1 − β (Paired-Sample Case) 

	 	 	� If McNemar’s test for correlated proportions is used to test the hypothesis 

H p H p0 1
1
2

1
2

: := ≠vs. , for the specific alternative p = pA, where p = the probabil-

ity that a discordant pair is of type A, with a significance level of α and power 

1 − β, then use

			   matcn
z z p q

p p
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2
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.
hhed pairs

or 2n
z z p q

p

A A

A

=
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−( )
− −1 2 1

2
2

2 5

α β

. 22 pD

individuals

	 where  pD = projected proportion of discordant pairs among all pairs
    pA = �projected proportion of discordant pairs of type A among dis-

cordant pairs

	 Example 10.34 	 Cancer  Suppose we want to compare two different regimens of chemotherapy 
(A, B) for treatment of breast cancer where the outcome measure is recurrence 
of breast cancer or death over a 5-year period. A matched-pair design is used, in 
which patients are matched on age and clinical stage of disease, with one patient 
in a matched pair assigned to treatment A and the other to treatment B. Based on 
previous work, it is estimated that patients in a matched pair will respond similarly 
to the treatments in 85% of matched pairs (i.e., both will either die or have a recur-
rence within 5 years or both will be alive and not have a recurrence over 5 years). 
Furthermore, for matched pairs in which there is a difference in response, it is esti-
mated that in two-thirds of the pairs the treatment A patient will either die or have 
a recurrence within 5 years, and the treatment B patient will not; in one-third of 
the  pairs the treatment B patient will die or have a recurrence within 5 years, and 
the treatment A patient will not. How many participants (or matched pairs) need to 
be enrolled in the study to have a 90% chance of finding a significant difference 
using a two-sided test with type I error = .05?

	 	 Solution:  We have α = .05, β = .10, pD = 1 − .85 = .15, p q
2
3

,
1
3A A= = . Therefore, 

from Equation 10.15,

		

pairsn
z z
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Therefore, 1204 women in 602 matched pairs must be enrolled. This will yield 
approximately .15 × 602 = 90 discordant pairs.
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In some instances, sample size is fixed and we want to determine what power a 
study has (or had) to detect specific alternatives. For a two-sided one-sample bino-
mial test with significance level α, to test the hypothesis H p p H p p0 0 1 0: := ≠vs.  for 
the specific alternative p = p1, the power is given by (see Equation 7.32)
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2 52p q
z p n

A A
A Dα .

On substituting nD = npD =, the following power formula is obtained.

	 Equation 10.16 	 �Power Achieved in Comparing Two Binomial Proportions Using a Two-Sided Test 
with Significance Level α (Paired-Sample Case) 

If McNemar’s test for correlated proportions is used to test the hypothesis 
H p H p0 11 2 1 2: := ≠vs. , for the specific alternative p = pA, where p = the prob-
ability that a discordant pair is of type A,

		  Power = + −( )



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



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Φ 1
2

2 52p q
z p np

A A
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where

			   n = number of matched pairs

			   pD = projected proportion of discordant pairs among all pairs

		     pA = �projected proportion of discordant pairs of type A among discordant pairs

	 Example 10.35 	 Cancer  Consider the study in Example 10.34. If 400 matched pairs are enrolled, 
how much power would such a study have?

	 	 Solution:  We have α = = = =. , . , , .05 15
2
3

400p p nD A  Therefore, from Equa-
tion 10.16,

		
Power =

( )( )
+ − ( )






Φ 1

2 2 3 1 3
2 2 3 5 400 15025z. . .









= − + ( )Φ 1 0607 1 96 2 1 6 7 7460. . .(( ) { }
= ( )[ ] =Φ Φ1 0607 0 6220 0 660. . .(( ) = .745

Therefore, the study would have 74.5% power, or a 74.5% chance of detecting a sta-
tistically significant difference.

To compute sample size and power for a one-sided alternative, substitute α for α/2 in 
the formulas in Equations 10.15 and 10.16.

Note that a crucial element in calculating sample size and power for matched-
pair studies based on binomial proportions using Equations 10.15 and 10.16 is 

See page 256 for  
Equation 7.32
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knowledge of the probability of discordance between outcome for members of a 
matched pair (pD). This probability depends on the strictness of the matching criteria 
and on how strongly related the matching criteria are to the outcome variable.

Also, the methods in the paired sample case are for matched studies with 1:1 
matching (i.e., in Example 10.33 (p. 407), each treatment A patient was matched to 
a single treatment B patient). Dupont [3] discusses more advanced methods of power 
calculation for matched studies with m:1 matching (i.e., m controls per case). 

To use the computer to estimate sample size and power for paired designs, refer 
to Section 7.9 where these issues are discussed more generally for the one-sample 
binomial test.

Sample Size and Power in a Clinical Trial Setting
In Examples 10.30 (p. 404) and 10.31 (p. 405), we have estimated sample size and 
power in proposed clinical trials assuming that compliance with (ability to follow) 
treatment regimens is perfect. To be more realistic, we should examine how these 
estimates will change if compliance is not perfect.

Suppose we are planning a clinical trial comparing an active treatment vs. pla-
cebo. There are potentially two types of noncompliance to consider.

	 Definition 10.5 	 The dropout rate is defined as the proportion of participants in the active-
treatment group who fail to actually receive the active treatment.

	 Definition 10.6 	 The drop-in rate is defined as the proportion of participants in the placebo group 
who actually receive the active treatment outside the study protocol.

	 Example 10.36 	 Cardiovascular Disease  The Physicians’ Health Study was a randomized clinical 
trial, one goal of which was to assess the effect of aspirin in preventing myocardial 
infarction (MI). Participants were 22,000 male physicians ages 40−84 and free of car-
diovascular disease in 1982. The physicians were randomized to either active aspirin 
(one white pill containing 325 mg of aspirin taken every other day) or aspirin pla-
cebo (one white placebo pill taken every other day). As the study progressed, it was 
estimated from self-report that 10% of the participants in the aspirin group were not 
complying (that is, were not taking their study [aspirin] capsules). Thus, the dropout 
rate was 10%. Also, it was estimated from self-report that 5% of the participants in 
the placebo group were taking aspirin regularly on their own outside the study pro-
tocol. Thus, the drop-in rate was 5%. The issue is: How does this lack of compliance 
affect the sample size and power estimates for the study?

	 Equation 10.17 	 �Sample-Size Estimation to Compare Two Binomial Proportions in a Clinical Trial 
Setting (Independent-Sample Case) 

	 	 	 Suppose we want to test the hypothesis H p p H p p0 1 2 1 1 2: := ≠vs.  for the spe-
cific alternative p p1 2− = ∆ with a significance level α and a power 1 − β in a 
randomized clinical trial in which group 1 receives active treatment, group 2 
receives placebo, and an equal number of subjects are allocated to each group. 
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We assume that p1, p2 are the rates of disease in treatment groups 1 and 2 under 
the assumption of perfect compliance. We also assume that

	 	 λ1 = �dropout rate = proportion of participants in the active-treatment group 
who fail to comply

	 	 λ2 = �drop-in rate = proportion of participants in the placebo group who receive 
the active treatment outside the study protocol

(1)	 The appropriate sample size in each group is
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2
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		  The derivation of this formula is given in Section 10.9 (p. 436).

(2)	 If noncompliance rates are low (λ1, λ2 each ≤ .10), then an approximate 
sample-size estimate is given by
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		�  where nperfect compliance is the sample size in each group under the assump-
tion of perfect compliance, as computed in Equation 10.13 with p p1 1

∗ = ,
p p k n n2 2 2 1 1∗ = = =, .and

		  The derivative of this formula is given in Section 10.9 (p. 436).

	 Example 10.37 	 Cardiovascular Disease  Refer to Example 10.36. Suppose we assume that the incidence 
of MI is .005 per year among participants who actually take placebo and that aspirin 
prevents 20% of MIs (i.e., relative risk = p1/p2 = 0.8). We also assume that the duration of 
the study is 5 years and that the dropout rate in the aspirin group = 10% and the drop-
in rate in the placebo group = 5%. How many participants need to be enrolled in each 
group to achieve 80% power using a two-sided test with significance level = .05?

	 	 Solution:  This is a 5-year study, so the 5-year incidence of MI among participants 
who actually take placebo ≈ 5(.005) = .025 = p2. Because the relative risk = 0.8, we 
have p1/p2 = 0.8 or p1 = .020 = 5-year incidence of MI among participants who actual-
ly take aspirin. To estimate the observed incidence rates in the study, we must factor 
in the expected rates of noncompliance. Based on Equation 10.17, the compliance-
adjusted rates p1

∗ and p2
∗ are given by

		

p p p1 1 1 1 21

1 025 0

∗ = −( ) +
+ =

λ λ
=.9(.020) . (. ) . 2205

See page 404 for  
Equation 10.13
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Finally, z z z z1 80 1 2 9750 84 1 96− −= = = =β α. .. , . . Therefore, from Equation 10.17, the 
required sample size in each group is
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The total sample size needed = 38,392.
If we don’t factor compliance into our sample-size estimates, then based on 

Equation 10.13, we would need
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or a total sample size = 2(13,794) = 27,588.
The approximate sample-size formula in step 2 of Equation 10.17 would yield
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−1 1. 00 05

13 794
85

19 093

2

2

−( )

= =

.

,
.

,

or a total sample size of 2(19,093) = 38,186 participants.
Thus, the effect of noncompliance is to narrow the observed difference in risk 

between the aspirin and placebo groups and as a result to increase the required sam-
ple size by approximately 100% × (1/.852 − 1) = 38% or more exactly 100% × (38,392 
− 27,588)/27,588 = 39%.

The Physicians’ Health Study actually enrolled 22,000 participants, thus imply-
ing that the power of the study with 5 years of follow-up would be somewhat lower 
than 80%. In addition, the physicians were much healthier than expected and the 
risk of MI in the placebo group was much lower than expected. However, aspirin 
proved much more effective than anticipated, preventing 40% of MIs (relative risk = 
0.6) rather than the 20% anticipated. This led to a highly significant treatment bene-
fit for aspirin after 5 years of follow-up and an eventual change in the FDA-approved 
indications for aspirin to include labeling as an agent to prevent cardiovascular dis-
ease for men over age 50. 

See page 404 for  
Equation 10.13

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



	 10.6      R × C Contingency Tables              413

The power formula for the comparison of binomial proportions in Equation 
10.14 also assumes perfect compliance. To correct these estimates for noncompli-
ance in a clinical trial setting, replace p p p1 2, , ,∆ −, and q− in Equation 10.14 with 
p p p q1 2

* * * * *, , , ,∆ − −  as given in Equation 10.17. The resulting power is a compliance-
adjusted power estimate.

R E V I E W  QU  E S T I ON  S  1 0 D

1	 Suppose we are planning a randomized trial of dietary interventions affecting weight 
gain in women. We want to compare women randomized to a high-fiber diet vs. 
women randomized to a low-fiber diet, with the outcome being 10+ lb weight gain 
after 5 years. We anticipate that after 5 years 20% of the women in the low-fiber 
group and 10% of the women in the high-fiber group will have gained 10+ lb.

	 (a)	 How many women need to be randomized in each group to achieve 80% 
power if a two-sided test will be used with a 5% significance level?

	 (b)	 Suppose we recruit 250 women in each group. How much power will the study 
have?

2	 Consider the study in Review Question 10D.1. Suppose 20% of the women rand-
omized to the high-fiber diet don’t follow the dietary instructions (and instead eat a 
standard Western diet, which we will assume is a low-fiber diet).

	 (a)	 How many women would be needed for the study under the conditions in Re-
view Question 10D.1a?

	 (b)	 How much power will the study have if 250 women are recruited for each group?

3	 Suppose we plan a comparative study of two eye drops (A, B) to reduce intraocular 
pressure (IOP) among patients with glaucoma. A contralateral design is used, in 
which drop A is assigned to a random eye and drop B is assigned to the fellow eye. 
The patients take the eye drops for 1 month, after which their IOP is measured again. 
The outcome is a decrease in IOP of 5+ mm Hg in an eye. We expect the following: 
(i) that both eyes will be failures (i.e., not show a decrease of 5+ mm Hg) in 50% of 
patients; (ii) that both eyes will be successes (i.e., will show a decrease of 5+ mm Hg) 
in 30% of patients; (iii) that in 15% of patients the drop A eye will show in a decrease 
in IOP of 5+ mm Hg but the drop B eye will not; and (iv) that in 5% of patients the 
drop B eye will show a decrease in IOP of 5+ mm Hg but the drop A eye will not.

	 (a)	 What method of analysis can be used to compare the efficacy of drop A vs. drop B?

	 (b)	 How many patients do we need to randomize to achieve 80% power if we have 
a two-sided test with α = .05, assuming that all patients take their drops?

	 10.6	 R  ×  C  C o n t i n g e n c y  Ta b l es

Tests for Association for R × C Contingency Tables
In the previous sections of this chapter, methods of analyzing data that can be 
organized in the form of a 2 × 2 contingency table—that is, where each variable 
under study has only two categories—were studied. Frequently, one or both variables 
under study have more than two categories.

	 Definition 10.7  	 An R × C contingency table is a table with R rows and C columns. It displays the 
relationship between two variables, where the variable in the rows has R categories 
and the variable in the columns has C categories.

See page 405 for  
Equation 10.14

R
 E

 V
 I 

E 
W
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	 Example 10.38 	 Cancer  Suppose we want to study further the relationship between age at first birth 
and development of breast cancer, as in Example 10.4 (p. 373). In particular, we would 
like to know whether the effect of age at first birth follows a consistent trend, that is,  
(1) more protection for women whose age at first birth is <20 than for women whose 
age at first birth is 25−29 and (2) higher risk for women whose age at first birth is 
≥35 than for women whose age at first birth is 30−34. The data are presented in 
Table  10.16, where case−control status is indicated along the rows and age at first birth 
categories are indicated along the columns. The data are arranged in the form of a  
2 × 5 contingency table because case−control status has two categories and age at 
first birth has five categories. We want to test for a relationship between age at first 
birth and case−control status. How should this be done?

	 Table 10.16  	 Data from the international study in Example 10.4 investigating the possible 
association between age at first birth and case−control status

	 	 	 Age at first birth

Case−control 	
status	 <20	 20−24 	 25−29	 30−34	 ≥35	 Total

  Case	 320	 1206	 1011	 463	 220	 3220

  Control	 1422	 4432	 2893	 1092	 406	 10,245

Total 	 1742	 5638	 3904	 1555	 626	 13,465

  % cases	 .184	 .214	 .259	 .298	 .351	 .239

Source: Based on WHO Bulletin, 43, 209−221, 1970.

Generalizing our experience from the 2 × 2 situation, the expected table for an  
R × C table under Ho can be formed in the same way as for a 2 × 2 table.

	 Equation 10.18 	 	 Computation of the Expected Table for an R × C Contingency Table 

	 	 	 The expected number of units in the (i, j) cell = Eij = the product of the number 
of units in the ith row multiplied by the number of units in the jth column, 
divided by the total number of units in the table.

	 Example 10.39  	 Cancer  Compute the expected table for the data in Table 10.16.

	 	 Solution: 

	 	 Expected value
of the (1,1) cell

first row= ttotal first column total
grand total

× =
3220 17422

13 465
416 6

( ) =
,

.

Expected value
of the (1,2) cell

first row total second column total
g

= ×
rrand total

Expect

= ( ) =
3220 5638

13 465
1348 3

,
.

...

eed value
of the (2,5) cell

second row tota= ll fifth column total
grand total

× = (10 245 626, )) =
13 465

476 3
,

.

All 10 expected values are given in Table 10.17.

The sum of the expected values across any row or column must equal the cor-
responding row or column total, as was the case for 2 × 2 tables. This fact provides a 
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good check that the expected values are computed correctly. The expected values in 
Table 10.17 fulfill this criterion except for roundoff error.

We again want to compare the observed table with the expected table. The more 
similar these tables are, the more willing we will be to accept the null hypothesis 
that there is no association between the two variables. The more different the tables 
are, the more willing we will be to reject H0. Again the criterion (O − E)2/E is used 
to compare the observed and expected counts for a particular cell. Furthermore,  
(O − E)2/E is summed over all the cells in the table to get an overall measure of agree-
ment for the observed and expected tables. Under H0, for an R × C contingency table, 
the sum of (O − E)2/E over the RC cells in the table will approximately follow a chi-
square distribution with (R − 1) × (C − 1) df. H0 will be rejected for large values of this 
sum and will be accepted for small values.

Generally speaking, the continuity correction is not used for contingency tables 
larger than 2 × 2 because statisticians have found empirically that the correction 
does not help in the approximation of the test statistic by the chi-square distribu-
tion. As for 2 × 2 tables, this test should not be used if the expected values of the 
cells are too small. Cochran [4] has studied the validity of the approximation in this 
case and recommends its use if

(1)	 No more than 1/5 of the cells have expected values < 5. 

and

(2)	 No cell has an expected value < 1.

The test procedure can be summarized as follows.

	 Equation 10.19 	 Chi-Square Test for an R × C Contingency Table 

	 	 	 To test for the relationship between two discrete variables, where one variable 
has R categories and the other has C categories, use the following procedure:

(1)	 Arrange the data in the form of an R × C contingency table, where Oij  
represents the observed number of units in the (i, j) cell.

(2)	 Compute the expected table as shown in Equation 10.18, where Eij  
represents the expected number of units in the (i, j) cell.

(3)	 Compute the test statistic 

		        X O E E O E E O ERC RC
2

11 11
2

11 12 12
2

12
2= −( ) + −( ) + + −( )L EERC

		�  which under H0 approximately follows a chi-square distribution with  
(R − 1) × (C − 1) df.

	 Table 10.17 	 Expected table for the international study data in Table 10.18

	 	 	 Age at first birth

Case−control 	
status	 <20	 20−24	 25−29	 30−34	 ≥35	 Total

Case	 416.6	 1348.3	 933.6	 371.9	 149.7	 3220

Control	 1325.4	 4289.7	 2970.4	 1183.1	 476.3	 10,245

Total	 1742	 5638	 3904	 1555	 626	 13,465
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(4)	 For a level α test,

		  if  X R C
2

1 1 1
2> −( )× −( ) −χ α, , then reject H0. 

		  If  X R C
2

1 1 1
2≤ −( )× −( ) −χ α, , then accept H0.

(5)	 The approximate p-value is given by the area to the right of X2 under a 
χ R C−( )× −( )1 1

2  distribution.

(6)	 Use this test only if both of the following two conditions are satisfied:

(a)	 No more than 1/5 of the cells have expected values < 5.

(b)	 No cell has an expected value < 1.

The acceptance and rejection regions for this test are shown in Figure 10.8. 
Computation of the p-value for this test is illustrated in Figure 10.9.

	 Example 10.40  	 Cancer  Assess the statistical significance of the data in Example 10.38.

	 	 Solution:  From Table 10.17 we see that all expected values are ≥5, so the test proce-
dure in Equation 10.19 can be used. From Tables 10.16 and 10.17,

		
( ) ( ) ( )

=
−

+
−

+ +
−

=X
320 416.6

416.6
1206 1348.3

1348.3
406 476.3

476.3
130.32

2 2 2

	 Figure 10.8  	 Acceptance and rejection regions for the chi-square test for an R × C contingency table

	 Figure 10.9 	 Computation of the p-value for the chi-square test for an R × C contingency table
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Under H0, X
2 follows a chi-square distribution with (2 − 1) × (5 − 1), or 4, df. Because 

		  χ4 999
2 218 47 130 3,. . .= =< X

it follows that  p < 1 − .999 = .001

Therefore, the results are very highly significant, and we can conclude there is 
a significant relationship between age at first birth and prevalence of breast cancer.

Using the Computer to Perform the Chi-Square 	
Test for r × c Tables
We can use the chisq.test command of R for this purpose.

A.  Raw data
We use the syntax:

  chisq.test(x, y)

where x and y are vectors pertaining to the two variables in a data set. The x variable 
should have r distinct values; the y variable should have c distinct values.

B.  Summary Data
1. � Suppose we have a general contingency table with cell count Oij in the (i,j) cell; 

i = 1,…, r; j = 1,…,c.
2.  We use the matrix command to form the table as follows:

   � table<- matrix(c(O
11
,O

21
,...,O

r1
,O

12
,O

22
,...,O

r2
,...,O

1c
,...,O

rc
), 

nrow = r)

3.  We then specify:

    chisq.test(table)

	 Example 10.41 	 Cancer  Assess the statistical significance of the data in Table 10.16 (p. 414) using 
the computer.

	 	 Solution:  We use the chisq.test command of R for this purpose. In this case, there 
are 2 rows and 5 columns. We first form the matrix as follows:

> table<- matrix 
(c(320,1422,1206,4432,1011,2893,463,1092,220,406),nrow = 2)

> table

     [,1] [,2] [,3] [,4] [,5]

[1,]  320 1206 1011  463  220

[2,] 1422 4432 2893 1092  406

Second, we analyze the data using the chisq.test command as follows:

> chisq.test(table)

      Pearson’s Chi-squared test

data:  table

X-squared = 130.338, df = 4, p-value < 2.2e-16

The results are the same as in Example 10.40.
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Chi-Square Test for Trend in Binomial Proportions
Refer again to the international study data in Table 10.16 (p. 414). In Example 10.40 
the test procedure in Equation 10.19 (p. 415) was used to analyze the data. For the 
special case of a 2 × k table, this test procedure enables us to test the hypothesis H0: 
p1= p2 = . . . = pk vs. H1: at least two of the pi’s are unequal, where pi = probability of suc-
cess for the ith group = probability that an observation from the ith column falls in 
the first row. When this test procedure was employed in Example 10.40, a chi-square 
statistic of 130.3 with 4 df was found, which was highly significant (p < .001). As a 
result, H0 was rejected and we concluded the prevalence of breast-cancer cases in at 
least 2 of the 5 age-at-first-birth groups were different. However, although this result 
shows some relationship between breast cancer and age at first birth, it does not tell 
us specifically about the nature of the relationship. In particular, from Table 10.16 
we notice an increasing trend in the proportion of women with breast cancer in each 
succeeding column. We would like to employ a specific test to detect such trends. 
For this purpose a score variable Si is introduced to correspond to the ith group. The 
score variable can represent some particular numeric attribute of the group. In other 
instances, for simplicity, 1 is assigned to the first group, 2 to the second group, . . ., k 
to the kth (last) group.

	 Example 10.42  	 Cancer  Construct a score variable for the international-study data in Table 10.16.

	 	 Solution:  It is natural to use the average age at first birth within a group as the score 
variable for that group. This rule presents no problem for the second, third, and 
fourth groups, in which the average age is estimated as 22.5 [(20 + 25)/2], 27.5, and 
32.5 years, respectively. However, a similar calculation cannot be performed for the 
first and fifth groups because they are defined as <20 and ≥35, respectively. By sym-
metry, a score of 17.5 years could be assigned to the first group and 37.5 years to the 
fifth group. However, because the scores are equally spaced, our purposes are equally 
well served by assigning scores of 1, 2, 3, 4, and 5 to the five groups. For simplicity, 
this scoring method will be adopted.

We want to relate the proportion of breast-cancer cases in a group to the score 
variable for that group. In other words, we wish to test whether the proportion of 
breast-cancer cases increases or decreases as age at first birth increases. For this pur-
pose the following test procedure is introduced.

	 Equation 10.20 	 Chi-Square Test for Trend in Binomial Proportions (Two-Sided Test) 

	 	 	 Suppose there are k groups and we want to test whether there is an increasing 
(or decreasing) trend in the proportion of “successes” pi (the proportion of units 
in the first row of the ith group) as i increases.

(1)	 Set up the data in the form of a 2 × k contingency table, where success or 
failure is listed along the rows and the k groups are listed along the columns.

(2)	 Denote the number of successes in the ith group by xi, the total number of 
units in the ith group by ni, and the proportion of successes in the ith group 
by ˆ /p x ni i i= . Denote the total number of successes over all groups by x, the 
total number of units over all groups by n, the overall proportion of suc-
cesses by p x n= / , and the overall proportion of failures by q p= −1 .
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(3)	 Construct a score variable Si to correspond to the ith group. This variable 
will usually either be 1, 2, . . . , k for the k groups or be defined to corre-
spond to some other numeric attribute of the group.

(4)	 More specifically, we wish to test the hypothesis H0: There is no trend 
among the pi’s vs. H1: The pi are an increasing or decreasing function of  
the Si, expressed in the form pi = α + βSi for some constants α, β. To relate pi 
and Si, compute the test statistic X A B1

2 2= / , where

		    

A n p p S S

x S xS

i i i
i

k

i i
i

k

= −( ) −( )

=






− =

=

=

∑

∑

ˆ
1

1
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2

		  which under H0 approximately follows a chi-square distribution with 1 df.

(5)	 For a two-sided level α test,

		  if  X1
2

1 1
2> −χ α, ,then reject H0. 

		  If  X1
2

1 1
2≤ −χ α, , then accept H0.

(6)	 The approximate p-value is given by the area to the right of X1
2 under a χ1

2 
distribution.

(7)	 The direction of the trend in proportions is indicated by the sign of A. If  
A > 0, then the proportions increase with increasing score; if A < 0, then the 
proportions decrease with increasing score.

(8)	 Use this test only if np q−− ≥ 5 0. .

The acceptance and rejection regions for this test are shown in Figure 10.10. 
Computation of the p-value is illustrated in Figure 10.11.

B = pq
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0
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Fr
eq
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2

2

2

2
1

1
2X2 > χ1, 1 – α
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X2 ≤ χ1, 1 – α
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X1 = A2/B, where A = Σ
k

i = 1

Σ
k

i = 1

xiSi – x S

niSi – Σ
k

i = 1
niSi /n2

	 Figure 10.10  	 Acceptance and rejection regions for the chi-square test for trend in 	
binomial proportions
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The test statistic in Equation 10.20 is reasonable, because if p̂i (or p̂ pi − −) in-
creases as Si increases, then A > 0, whereas if p̂i decreases as Si increases, then A < 0.  
In either case A2 and the test statistic X1

2 will be large. However, if p̂i shows no  
particular trend regarding Si, then A will be close to 0 and the test statistic X1

2 will 
be small. This test can be used even if some of the groups have small sample size 
because the test is based on the overall trend in the proportions. This property is 
in contrast to the overall chi-square test in Equation 10.19 (p. 415), which tests for 
heterogeneity among proportions and requires that the expected number of units in 
individual cells not be too small.

	 Example 10.43 	 Cancer  Using the international study data in Table 10.16 (p. 414), assess whether 
there is an increasing trend in the proportion of breast-cancer cases as age at first 
birth increases.

	 	 Solution:  Note that Si = 1, 2, 3, 4, 5 in the five groups, respectively. Furthermore, 
from Table 10.16, xi = 320, 1206, 1011, 463, 220, and ni = 1742, 5638, 3904, 1555, 
626 in the five respective groups, whereas x = 3220, n = 13,465, p− = x/n = .239, q− = 
1 − p− = .761. From Equation 10.20 it follows that

		

A = ( ) + ( ) + + ( )
− ( ) ( ) +

320 1 1206 2 220 5

3220 1742 1 5

...

6638 2 626 5 13 465

8717 3220 34 08

( ) + + ( )[ ]
= − ( )

... ,

, 00 13 465 8717 8149 84 567 16

239 761

( ) = − =

= ( )(
, . .

. .B )) ( ) + ( ) + + ( ){
− ( ) +

1742 1 5638 2 626 5

1742 1 56

2 2 2...

338 2 626 5 13 465

239 761 99

2( )( ) + + ( )[ ] }
= ( )

... ,

. . ,9960 34 080 13 465

239 761 99 960 86 25

2−( )
= ( ) −
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. . , , 66 70 2493 33. .( ) =
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	 Figure 10.11 	 Computation of the p-value for the chi-square test for trend in 	
binomial proportions
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Because χ1 999
2

1
210 83 129 01,. . .= < = X , H0 can be rejected with p < .001 and we can 

conclude there is a significant trend in the proportion of breast-cancer cases among 
age-at-first-birth groups. Because A > 0, it follows that as age at first birth increases, 
the proportion of breast-cancer cases rises.

With a 2 × k table, the chi-square test for trend in Equation 10.20 (p. 418) is often 
more relevant to the hypotheses of interest than the chi-square test for heterogeneity 
in Equation 10.19 (p. 415). This is because the former procedure tests for specific trends 
in the proportions, whereas the latter tests for any differences in the proportions, 
where the proportions may follow any pattern. Other, more advanced methods for as-
sessing R × C contingency tables are given in Maxwell’s Analyzing Qualitative Data [5].

Using the Computer to Perform the Chi-Square Test for Trend
We can use the prop.trend.test command of R for this purpose. The syntax is as follows:

  prop.trend.test(x, n, score)

where x is a vector with the number of successes in each group,
n is a vector with the sample size in each group,
score is a vector with the score for each group.
If there are k groups, then x, n, and score should be of length k.

	 Example 10.44 	 Cancer  Use the computer to perform the chi-square test for trend based on the data 
in Table 10.16.

	 	 Solution:  Referring to Table 10.16, we have that

> x<- c(320, 1206, 1011, 463, 220)

> x

[1]  320 1206 1011  463  220

> n<- c(1742, 5638, 3904, 1555, 626)

> n

[1] 1742 5638 3904 1555  626

> score<- c(1:5)

> score

[1] 1 2 3 4 5

> prop.trend.test(x,n,score)

Chi-squared Test for Trend in Proportions

data:  x out of n,

 using scores: 1 2 3 4 5

X-squared = 129.012, df = 1, p-value < 2.2e-16

The results are the same as those obtained in Example 10.43.

In this section, we have discussed tests for association between two categorical vari-
ables with R and C categories, respectively, where either R > 2 and/or C > 2. If both R 
and C are > 2, then the chi-square test for R × C contingency tables is used. Referring to 
the flowchart at the end of this chapter (Figure 10.16, p. 438), we answer no to (1) 2 × 2 
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contingency table? and (2) 2 × k contingency table? which leads to (3) R × C contin-
gency table with R > 2 and C > 2 and then to the box labeled “Use chi-square test for  
R × C tables.” If either R or C = 2, then assume we have rearranged the row and column 
variables so the row variable has two categories. Let’s designate the number of column 
categories by k (rather than C). If we are interested in assessing trend over the k binomial 
proportions formed by the proportions of units in the first row of each of the k columns, 
then we use the chi-square test for trend in binomial proportions. Referring to the flow-
chart in Figure 10.16 at the end of this chapter (p. 438), we answer no to (1) 2 × 2 con-
tingency table? yes to (2) 2 × k contingency table? and yes to (3) interested in trend over 
k binomial proportions? This leads us to the box labeled “Use chi-square test for trend 
if no confounding is present, or the Mantel Extension test if confounding is present.”

Relationship Between the Wilcoxon Rank-Sum Test 	
and the Chi-Square Test for Trend
The Wilcoxon rank-sum test given in Equation 9.8 is actually a special case of the 
chi-square test for trend.

	 Equation 10.21 	 Relationship Between the Wilcoxon Rank-Sum Test and the Chi-Square Test for Trend

	 	 	 Suppose we have a 2 × k table as shown in Table 10.18.
The ith exposure category is assumed to have an associated score Si, i = 1, ..., k. 
Let pi = probability of disease in the ith exposure group. If pi = α + βSi, and we 
wish to test the hypothesis H0: β = 0 vs. H1: β ≠ 0, then

(1)	 We can use the chi-square test for trend, where we can write the test 
statistic in the form

		  X
O E

V
2

2

1
20 5

=
− −( ).

∼ χ  under H0

		  where

O = observed total score among subjects with disease =
=
∑ x Si i
i

k

1

E = expected total score among subjects with disease under H0 = 
x
n
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i

k

=
∑

1
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
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See page 354 for  
Equation 9.8

	 Table 10.18 	 A hypothetical 2 × k table relating a dichotomous disease-variable D to a categorical 
exposure-variable E with k ordered categories

	 	 	 	 E	 	

	 	 1	 2	 	 k	

	 +	 x1	 x2	 …	 xk	 x
D	 	 	 	 	 	
	 −	 n1 − x1	 n2 − x2	 …	 nk − xk	 n − x

	 	 n1	 n2	 	 nk	 n
	 Score	 S1	 S2	 …	 Sk	
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	 and we reject H0 if X
2

1 1
2> −χ α,

	 and accept H0 otherwise.

(2)	 We can use the Wilcoxon rank-sum test as given in Equation 9.8, where we 
have the test statistic
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1
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n n

	 and reject H0 if T > z1−α/2

	 and accept H0 if T ≤ z1−α/2

	 where z1−α/2 = upper α/2 percentile of an N(0, 1) distribution.

(3)	 If the scores Si are set equal to the midrank for the ith group as defined in 
Equation 9.7, where the midrank for the ith exposure category = number of 

observations in the first i − 1 groups + 
1

2
+



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ni

			   = +
+( )

=

−

∑n
n

j
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j

i 1
21

1
  if i > 1

			   = +1
2

1n
         if i = 1

then the test procedures in steps (1) and (2) yield the same p-values and are 
equivalent. In particular,

		  O = R1 = Rank sum in the first row, E
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=
+( )1
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	 Example 10.45 	 Ophthalmology  Test the hypothesis that the average visual acuity is different for 
dominant and sex-linked people in Table 9.3 (on page 353) or, equivalently, that the 
proportion of dominant subjects changes in a consistent manner as visual acuity 
declines, using the chi-square test for trend.

	 	 Solution:  We have the following 2 × 8 table:

	 Visual acuity

	 20−20	 20−25	 20−30	 20−40	 20−50	 20−60	 20−70	 20−80	

Dominant	 5	 9	 6	 3	 2	 0	 0	 0	 25

Sex-linked	 1	 5	 4	 4	 8	 5	 2	 1	 30

	 6	 14	 10	 7	 10	 5	 2	 1	 55

Score	 3.5	 13.5	 25.5	 34.0	 42.5	 50.0	 53.5	 55.0	

See page 354 for  
Equation 9.8

See page 353 for  
Equation 9.7
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If the scores are set equal to the average ranks given in Table 9.3 (p. 353), then we have
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25
55

6 3.5 14 13.5 10 25.5 7 34.0 10 42.5 5 50.0

2 53.5 1 55.0

25
55

1540 700

25 30
55 54

6 3.5 14 13.5 10 25.5 7 34.0 10 42.5 5 50.0

2 53.5 1 55.0
1540
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25 30
55 54

56,531.5 43,120

25 30
55 54

13,411.5 3386.74

479 700 0.5

3386.74
14.36 under

2 2 2 2 2 2

2 2
2

2
2

1
2

0

The p-value = Pr χ1
2 14 36 001>( ) <. . . Also, referring to Example 9.19 (on page 355), 

we see that O = R1 = 479, E = E(R1) = 700, V = V(R1) corrected for ties = 3386.74 and

	 X2 = 14.36 = T2 = 3.792

Thus, the two test procedures are equivalent. However, if we had chosen differ-
ent scores (e.g., 1, . . . , 8) for the 8 visual-acuity groups, then the test procedures 
would not be the same. The choice of scores is somewhat arbitrary. If each column 
corresponds to a specific quantitative exposure category, then it is reasonable to 
use the average exposure within the category as the score. If the exposure level is 
not easily quantified, then either midranks or consecutive integers are reasonable 
choices for scores. If the number of subjects in each exposure category is the same, 
then these two methods of scoring will yield identical test statistics and p-values 
using the chi-square test for trend.

The estimate of variance (V) given in Equation 10.21 is derived from the hyper-
geometric distribution and differs slightly from the variance estimate for the chi-
square test for trend in Equation 10.20 given by

		  V
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
 

which is based on the binomial distribution. The hypergeometric distribution is 
more appropriate, although the difference is usually slight, particularly for large n. 
Also, a continuity correction of 0.5 is used in the numerator of X2 in Equation 10.21, 
but not in A in the numerator of X1

2 in Equation 10.20. This difference is also usually 
slight.

See page 418 for  
Equation 10.20
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R E V I E W  QU  E S T I ON  S  1 0 E

1	 (a) � What is the difference between the chi-square test for trend and the chi-square 
test for heterogeneity?

 	 (b)	 When do we use each test?

2	 Suppose we are given the following 2 × 5 table with two disease categories and 
five exposure categories, as in Table 10.19.

	 Table 10.19 	 Hypothetical table illustrating the association between exposure and disease

Disease category	 Exposure category

+	 1	 2	 3	 4	 5

−	 2	 3	 4	 6	 3

	 6	 5	 5	 4	 2

	 (a)	 If exposure is treated as a nominal categorical variable, is it valid to use the 	
chi-square test for heterogeneity on these data? Why or why not?

	 (b)	 If exposure is treated as an ordinal categorical variable, is it valid to use the 	
chi-square test for trend on these data? Why or why not?

3	 We are interested in studying the relationship between the prevalence of hyperten-
sion in adolescents and ethnic group, where hypertension is defined as being above 
the 90th percentile for a child’s age, sex, and height, based on national norms.

	 (a)	 Suppose that 8 of 100 Caucasian adolescent girls, 12 out of 95 African- 
American adolescent girls, and 10 of 90 Hispanic adolescent girls are above 
the 90th percentile for blood pressure. What test can be used to assess 
whether there is an association between adolescent hypertension and ethnic 
group?

	 (b)	 Implement the test in Review Question 10E.3a, and report a two-tailed p-value.

4	 We are also interested in the relationship between adolescent hypertension and 
obesity. For this purpose, we choose 30 normal-weight adolescent boys (i.e., body-
mass index [BMI] = kg/m2 < 25), 30 overweight adolescent boys (25 ≤ BMI < 30), 
and 35 obese adolescent boys (BMI ≥ 30). We find that 2 of the normal-weight 
boys, 5 of the overweight boys, and 10 of the obese boys are hypertensive.

	 (a)	 What test can be used to assess whether there is an association between 
adolescent hypertension and BMI?

	 (b)	 Implement the test in Review Question 10E.4a, and report a two-tailed p-value.

	 10.7	 C h i - S q u a r e  G o o d n ess   - o f - Fi  t  Tes   t

In our previous work on estimation and hypothesis testing, we usually assumed 
the data came from a specific underlying probability model and then proceeded 
either to estimate the parameters of the model or test hypotheses concerning dif-
ferent possible values of the parameters. This section presents a general method 
of testing for the goodness-of-fit of a probability model. Consider the problem in 
Example 10.46.

R
 E

 V
 I 

E 
W
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	 Example 10.46 	 Hypertension  Diastolic blood-pressure measurements were collected at home in 
a community-wide screening program of 14,736 adults ages 30−69 in East Boston, 
Massachusetts, as part of a nationwide study to detect and treat hypertensive people 
[6]. The people in the study were each screened in the home, with two measure-
ments taken during one visit. A frequency distribution of the mean diastolic blood 
pressure is given in Table 10.20 in 10-mm Hg intervals.

We would like to assume these measurements came from an underlying normal 
distribution because standard methods of statistical inference could then be applied 
on these data as presented in this text. How can the validity of this assumption be 
tested?

	 Table 10.20 	 Frequency distribution of mean diastolic blood pressure for adults 30–69 years old in 
a community-wide screening program in East Boston, Massachusetts

	 Observed	 Expected	 	 Observed	 Expected	
Group (mm Hg)	 frequency	 frequency	 Group	 frequency	 frequency

<50	 57	 69.0	 ≥80, <90	 4604	 4538.6
≥50, <60	 330	 502.5	 ≥90, <100	 2119	 2545.9
≥60, <70	 2132	 2018.4	 ≥100, <110	 659	 740.4
≥70, <80	 4584	 4200.9	 ≥110	      251	      120.2
	 	 	 Total	 14,736	 14,736

This assumption can be tested by first computing what the expected frequencies 
would be in each group if the data did come from an underlying normal distribution 
and by then comparing these expected frequencies with the corresponding observed 
frequencies.

	 Example 10.47  	 Hypertension  Compute the expected frequencies for the data in Table 10.20, 
assuming an underlying normal distribution.

	 	 Solution:  Assume the mean and standard deviation of this hypothetical normal distri-
bution are given by the sample mean and standard deviation, respectively ( x− = 80.68, 
s = 12.00). The expected frequency within a group interval from a to b would then 
be given by
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1
2

1
2

		  Thus, the expected frequency within the (≥50, < 60) group would be
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. The 

expected frequencies for all the groups are given in Table 10.20.
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We use the same measure of agreement between the observed and expected 
frequencies in a group that we used in our work on contingency tables, namely,  
(O − E)2/E. Furthermore, the agreement between observed and expected frequencies 
can be summarized over the whole table by summing (O − E)2/E over all the groups. 
If we have the correct underlying model, then this sum will approximately follow a 
chi-square distribution with g − 1 − k df, where g = the number of groups and k = the 
number of parameters estimated from the data used to compute the expected fre-
quencies. Again, this approximation will be valid only if the expected values in the 
groups are not too small. In particular, the requirement is that no expected value can 
be <1 and not more than 1/5 of the expected values can be <5. If there are too many 
groups with small expected frequencies, then some groups should be combined with 
other adjacent groups so the preceding rule is not violated. The test procedure can 
be summarized as follows.

	 Equation 10.22 	 Chi-Square Goodness-of-Fit Test 

	 	 	 To test for the goodness of fit of a probability model, use the following procedure:

(1)	 Divide the raw data into groups. The considerations for grouping data are 
similar to those in Section 2.7, on page 24. In particular, the groups must 
not be too small, so step 7 is not violated.

(2)	 Estimate the k parameters of the probability model from the data using the 
methods described in Chapter 6.

(3)	 Use the estimates in step 2 to compute the probability p̂ of obtaining a 
value within a particular group and the corresponding expected frequency 
within that group (np̂), where n is the total number of data points.

(4)	 If Oi and Ei are, respectively, the observed and expected number of units 
within the ith group, then compute

		
X O E E O E E O E Eg g g

2
1 1

2
1 2 2

2
2

2
= −( ) + −( ) + + −( )L

		  where g = the number of groups.

(5)	 For a test with significance level α, if

		  X g k
2

1 1
2> − − −χ α,

		  then reject H0  ; if
		

X g k
2

1 1
2≤ − − −χ α,

		  then accept H0.

(6)	 The approximate p-value for this test is given by

			   Pr Xg kχ − − >( )1
2 2

(7)	 Use this test only if

(a)	 No more than 1/5 of the expected values are <5.

(b)	 No expected value is <1.

The acceptance and rejection regions for this test are shown in Figure 10.12. 
Computation of the p-value for this test is illustrated in Figure 10.13.
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(8)	 Note: If the parameters of the probability model were specified a priori, 
without using the present sample data, then k = 0 and X g

2
1

2~ χ − . We call 
such a model an externally specified model, as opposed to the internally speci-
fied model described in the preceding steps 1 through 7.

	 Example 10.48 	 Hypertension  Test for goodness of fit of the normal-probability model using the 
data in Table 10.20.

	 	 Solution:  Two parameters have been estimated from the data (µ,σ2), and there are 
8 groups. Therefore, k = 2, g = 8. Under H0, X

2 follows a chi-square distribution with 
8 − 2 − 1 = 5 df.

		

X O E E O E E

H57 69.0 69.0 251 120.2 120.2 326.2 under

2
1 1

2
1 8 8

2
8

2 2
5
2

0

( )( )
( ) ( )

= − +…+ −

= − +…+ − = ∼ χ

Because X20.52 326.25,.999
2 2χ = < = , the p-value < 1 − .999 = .001 and the results are 

highly significant.

0

Value

Fr
eq

u
en

cy

χg – k – 1 distribution2

2X2 ≤ χg – k –1, 1 – α
Acceptance region 2X2 � χg – k –1, 1 – α

Rejection region

X2 = (O1 – E1)2/E1 + · · · + (Og – Eg)
2/Eg

2χg – k –1, 1 – α

0

Value

Fr
eq

u
en

cy

χg – k – 1 distribution2

p

X2

X2 = (O1 – E1)2/E1 + · · · + (Og – Eg)
2/Eg

	 Figure 10.12 	 Acceptance and rejection regions for the chi-square goodness-of-fit test

	 Figure 10.13  	 Computation of the p-value for the chi-square goodness-of-fit test
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Thus, the normal model does not provide an adequate fit to the data. The nor-
mal model appears to fit fairly well in the middle of the distribution (between 60 
and 110 mm Hg) but fails badly in the tails, predicting too many blood pressures 
below 60 mm Hg and too few over 110 mm Hg.

The test procedure in Equation 10.22 can be used to assess the goodness of fit of 
any probability model, not just the normal model. The expected frequencies would 
be computed from the probability distribution of the proposed model, and then 
the same goodness-of-fit test statistic as given in Equation 10.22 would be used. 
Also, the test procedure can be used to test for the goodness of fit of both a model 
in which the parameters are estimated from the data set used for testing the model 
as described in steps 1 through 7 and a model in which the parameters are specified 
a priori as in step 8.

Using the Computer to Perform the Chi-Square 	
Goodness-of-Fit Test
The R program chisq.test can be used to perform the chi-square goodness-of-fit test 
but only in the case of an externally derived model. The syntax is as follows:

chisq.test(x, p)

where x is a vector of observed counts and p is a vector of probabilities derived from 
the model.

Both x and p must be of the same length, and the sum of the p’s must equal 1.

However, in the case where the parameters of the model are estimated from the 
same data set used to test goodness of fit, one must write a custom program in R to 
perform the goodness-of-fit test.

	 Example 10.49 	 Hypertension  Test for the goodness-of-fit of the normal probability model for the 
data in Table 10.20 (p. 426) using R.

	 	 Solution: 
1.  First, we enter the vector of observed counts into a vector obs.

> obs<- c(57, 330, 2132, 4584, 4604, 2119, 659, 251)

> obs

[1] 57 330 2132 4584 4604 2119 659 251

> mu<- 80.68

> sd<- 12.00

> n<- 14736

2. � Second, we derive the vector of expected probabilities as determined from a nor-
mal distribution with mean = 80.68 and sd = 12.00. These probabilities are stored 
in the vector prob (see below).

> cut2<- seq(59.5, 109.5, 10)

> cut1<- seq(49.5, 99.5, 10)

> cut1

[1] 49.5 59.5 69.5 79.5 89.5 99.5

> cut2

See page 427 for  
Equation 10.22
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[1] 59.5 69.5 79.5 89.5 99.5 109.5

> prob1<- pnorm((cut1-mu)/sd)

> prob1

[1] �0.004683875 0.038781883 0.175754409 0.460833805 0.768830253 
0.941598320

> prob2<- pnorm((cut2-mu)/sd)

> prob2

[1] �0.03878188 0.17575441 0.46083381 0.76883025 0.94159832 
0.99183971

> prob3<- prob2 - prob1

> prob3

[1] 0.03409801 0.13697253 0.28507940 0.30799645 0.17276807 
0.05024139

> prob.50<- prob1[1]

> prob.50

[1] 0.004683875

> prob.110<- 1 - prob2[6]

> prob.110

[1] 0.008160286

> prob<- c(prob.50, prob3, prob.110)

> prob

[1] �0.004683875 0.034098007 0.136972526 0.285079396 0.307996448 
0.172768067

[7] 0.050241394 0.008160286

3. � Third, we derive the vector of expected counts by multiplying the sample size by 
the elements of prob and store it in a vector called exp.

> exp<- n*prob
> exp

[1] �69.02159 502.46824 2018.42715 4200.92998 4538.63565 
2545.91023 740.35718

[8] 120.24998

4.  We now compute the chi-square goodness-of-fit statistic as given by chi.sq.

> X2<- (obs-exp)^2/exp

> X2

[1] �2.0938171 59.1983548 6.3905170 34.9309893 0.9413617 
71.5863206

[7] 8.9402673 142.1669120

> chi.sq<- sum(X2)

> chi.sq

[1] 326.2485
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5. � Finally, we determine the p-value , by comparing chi.sq to a chi-square distribu-
tion with 5 df as follows:

> p.value<- 1 - pchisq(chi.sq,5)

> p.value

[1] 0

The results are the same as in Example 10.48, on page 428.

R E V I E W  QU  E S T I ON  S  1 0 F

1	 What is the difference between the chi-square goodness-of-fit test and the chi-
square test for 2 × 2 tables? When do we use each test?

2	 The data in Table 4.13, on page 105, refers to the monthly number of cases of 
Guillain-Barré syndrome in Finland from April 1984 to October 1985.

	 (a)	 Use the chi-square goodness-of-fit test to assess the adequacy of the Poisson 
model to these data. (Note: Exclude the month March 1985 from this analysis 
because this month appears to be an outlier.)

	 (b)	 What are your overall conclusions?

	 10.8	 T h e  K a p p a  S tat is  t i c

Most of our previous work has been concerned with tests of association between two 
categorical variables (usually a disease and an exposure variable). In some instances, 
some association is expected between the variables and the issue is quantifying 
the degree of association. This is particularly true in reliability studies, where the 
researcher wants to quantify the reproducibility of the same variable (e.g., dietary 
intake of a particular food) measured more than once.

	 Example 10.50 	 Nutrition  A diet questionnaire was mailed to 537 female American nurses on two 
separate occasions several months apart. The questions asked included the quantities 
eaten of more than 100 separate food items. The data from the two surveys for the 
amount of beef consumption are presented in Table 10.21. Notice that the responses 
on the two surveys are the same only for 136 + 240 = 376 out of 537 (70.0%) women. 
How can reproducibility of response for the beef-consumption data be quantified?

A chi-square test for association between the survey 1 and survey 2 responses 
could be performed. However, this test would not give a quantitative measure of 
reproducibility between the responses at the two surveys. Instead, we focus on the 
percentage of women with concordant responses in the two surveys. We noted in 
Example 10.50 that 70% of the women gave concordant responses. We want to 
compare the observed concordance rate (po) with the expected concordance rate 
(pe) assuming the responses of the women in the two surveys were statistically in-
dependent. The motivation behind this definition is that the questionnaire would 
be virtually worthless if the frequency of consumption reported at one survey had  
no relationship to the frequency of consumption reported at a second survey.  
Suppose there are c response categories and the probability of response in the ith cat-
egory is ai for the first survey and bi for the second survey. These probabilities can be 
estimated from the row and column margins of the contingency table (Table 10.21). 
The expected concordance rate (pe) if the survey responses are independent is Σa bi i.
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	 Table 10.21 	 Amount of beef consumption reported by 537 female American nurses 	
at two different surveys

	 Survey 2

Survey 1	 ≤1 serving/week 	 >1 serving/week	 Total

  ≤ 1 serving/week	 136	 92	 228

  >1 serving/week	 69	 240	 309

Total	 205	 332	 537

	 Example 10.51 	 Nutrition  Compute the expected concordance rate using the beef-consumption 
data in Table 10.21.

	 	 Solution:  From Table 10.21

		

a

a

b

b

1

2

1

228
537

425

309
537

575

205
537

382

= =

= =

= =

.

.

.

22
332
537

618= = .

Thus, pe = (.425 × .382) + (.575 × .618) = .518

Therefore, 51.8% concordance would be expected if the participants were respond-
ing independently regarding beef consumption at the two surveys.

We could use po − pe as the measure of reproducibility. However, it is intui-
tively preferable to use a measure that equals +1.0 in the case of perfect agreement 
and 0.0 if the responses on the two surveys are completely independent. Indeed,  
the maximum possible value for po − pe is 1 − pe, which is achieved with po = 1. 
Therefore, the Kappa statistic, defined as (po − pe)/(1 − pe), is used as the measure of 
reproducibility:

	 Equation 10.23 	 The Kappa Statistic

(1)	 If a categorical variable is reported at two surveys by each of n subjects, then 
the Kappa statistic (κ) is used to measure reproducibility between surveys, 
where

		  κ = −
−

p p
p

o e

e1

		  and  po = observed probability of concordance between the two surveys 

			      pe �= expected probability of concordance between the two surveys  

= ∑ a bi i

where ai, bi are the marginal probabilities for the ith category in the c × c 
contingency table relating response at the two surveys.
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(2)	 Furthermore,

		
se

n p
p p a b a b

e
e e i i i i

i

c

κ( ) =
−( )

× + − +( ) 
=
∑1

1 2
2

1













To test the one-sided hypothesis H0: κ = 0 vs. H1: κ > 0, use the test statistic

		
z

se
= ( )

κ
κ

which follows an N(0, 1) distribution under H0.

(3)	 Reject H0 at level α if z > z1−α and accept H0 otherwise.

(4)	 The exact p-value is given by p = 1 − Φ(z).

The acceptance and rejection regions for this test are depicted in Figure 10.14. 
Computation of the p-value is shown in Figure 10.15.

Note that we are customarily interested in one-tailed tests in Equation 10.23 because 
negative values for Kappa usually have no biological significance.

0 z1 – α

z > z1 – α
Rejection region

z ≤ z1 – α
Acceptance region

0

Value

N(0, 1) distribution

Fr
eq

u
en

cy z = κ/se(κ)

	 Figure 10.14 	 Acceptance and rejection regions for the significance test for Kappa

0 z
0

Value

N(0, 1) distribution
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u
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cy z = κ/se(κ)

p

	 Figure 10.15 	 Computation of the p-value for the significance test for Kappa

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



434              C H A P T E R  10      Hypothesis Testing: Categorical Data

	 Example 10.52 	 Nutrition  Compute the Kappa statistic, and assess its statistical significance using 
the beef-consumption data in Table 10.21.

	 	 Solution:  From Examples 10.50 (on page 431) and 10.51 (on page 432),

		

p

p
o

e

=
=

.

.

700

518

Therefore, the Kappa statistic is given by

		
κ = −

−
= =. .

.
.
.

.
700 518
1 518

182
482

378

Furthermore, from Equation 10.23 (on page 432) and the results of Example 10.51 
(on page 432), the standard error of κ is given by

		
se a b a bi i i i( )

.
. .κ −

−( )
× + − +( )1

537 1 518
518 5182

2
 { }∑

where

		

a b a b .425 .382 .425 .382 .575 .618 .575 .618

.555
i i i i∑ ( ) ( ) ( )+  = × × + + × × +

=

Thus,

		
se( )

1
537 .232

.518 .268 .555
1

124.8
.231 .043( )κ =

×
× + − = × =

The test statistic is given by

		
z N H= =.

.
. ( , )

378
043

8 8 0 1 0∼ under

The p-value is p = 1 − Φ(8.8) < .001

Thus, the Kappa statistic indicates highly significant reproducibility between the 
first and second surveys for beef consumption.

Although the Kappa statistic was significant in Example 10.52, it still shows that 
reproducibility was far from perfect. Indeed, Landis and Koch [7] provide the following 
guidelines for the evaluation of Kappa.

	 Equation 10.24 	 Guidelines for Evaluating Kappa

	    κ > 75 denotes excellent reproducibility.

	    .4 ≤ κ ≤ .75 denotes good reproducibility.

	    0 ≤ κ < .4 denotes marginal reproducibility.

In general, reproducibility is not good for many items in dietary surveys, indicat-
ing the need for multiple dietary assessments to reduce variability. Furthermore, in 
the definition of Kappa, a distinction is made between agreement, when the same 
category is obtained at survey 1 and 2, and disagreement, otherwise. Weighted Kappa 
is an extension of Kappa that allows one to make a distinction between the level of 
disagreement, which may be important if the rating scale has more than 2 categories 
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(i.e., c > 2). See Fleiss [8] for further information about the Kappa statistic, including 
assessments of reproducibility for more than two surveys and use of weighted Kappa.

Kappa is usually used as a measure of reproducibility between repeated assessments 
of the same variable. If we are interested in the concordance between responses on 
two different variables, where one variable can be considered to be a gold standard, 
then sensitivity and specificity, which are measures of validity of a screening test (see  
Chapter 3), are more appropriate indices than Kappa, which is a measure of reliability.

Using the Computer to Estimate Kappa
We can use the kap command of stata to estimate Kappa, provide its standard error, 
and perform a test of significance. The syntax is as follows:

  kap vara varb

where vara and varb are variables corresponding to ratings at survey_1 and survey_2 
for the same subjects.

	 Example 10.53 	 Nutrition  Estimate the Kappa coefficient for the beef consumption data in 
Table 10.21 (p. 432) using the computer.

	 	 Solution:  We use the kap command of Stata for this purpose.

1.  We create a spreadsheet based on the data in Table 10.21 as follows:

Survey_1	 Survey_2	 freq

0	 0	 136
0	 1	 92
1	 0	 69
1	 1	 240

where 0 = <= 1 serving/week and 1 = > 1 serving/week.

A listing of the data is given as follows:

.insheet using beef.kappa.csv, names comma clear

(3 vars, 8 obs)

. list

     +------------------------+

     | surv_1   surv_2   freq |

     |------------------------|

  1. |      0        0    136 |

  2. |      0        1     92 |

  3. |      1        0     69 |

  4. |      1        1    240 |

  5. |      .        .      . |

     |------------------------|

  6. |      .        .      . |

  7. |      .        .      . |

  8. |      .        .      . |

     +------------------------+
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2. � We then use the expand command of Stata to expand the data set according to 
the freq column.

. expand freq

(4 missing counts ignored; observations not deleted)

(533 observations created)

Thus, 135 additional rows with responses for Survey_1 = 0 and Survey_2 = 0, 91 ad-
ditional rows with Survey_1 = 0 and Survey_2 = 1 ,…, etc.  are created. The expanded 
data set now has 537 observations (i.e., the original 4 observations + 533 additional 
observations).

3.  We now use the kap command as follows:

.kap surv_1 surv_2

              Expected

Agreement   Agreement     Kappa   Std. Err.       Z       Prob>Z

----------------------------------------------------------------

 70.02%      51.78%      0.3782    0.0430        8.80     0.0000

The results agree with the solution to Example 10.52.

	 10.9	 d e r iv  at i o n  o f  se  l e c t e d  f o r m u l a s

Derivation of Equation 10.17 (p. 410)
Let λ1 = dropout rate, λ2 = drop-in rate, p1 = incidence of MI over a 5-year period 
among physicians who actually take aspirin, and p2 = incidence of MI over a 5-year 
period among physicians who don’t take aspirin under the assumption of perfect 
compliance. Finally, let p p1 2

∗ ∗,  = observed rate of MI over a 5-year period in the aspi-
rin and placebo groups, respectively (i.e., assuming that compliance is not perfect). 
We can estimate p p1 2

∗ ∗,  using the total-probability rule. Specifically,

	 Equation 10.25 	 p1
∗ = Pr(MI|assigned to aspirin group)

= Pr(MI|aspirin-group complier) × Pr(compliance in the aspirin group) 

+ �Pr(MI|aspirin-group noncomplier) × Pr(noncompliance in the aspirin 
group)

		  = − +p p1 1 2 11( )λ λ

Here we have assumed that the observed incidence rate for a noncompliant partici-
pant in the aspirin group = p2.

	 Equation 10.26 	 Similarly, p2
∗ = Pr(MI|assigned to placebo group)

		  = �Pr(MI|placebo-group complier) × Pr(compliance in the placebo 
group)
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		  + �Pr(MI|placebo-group noncomplier) × Pr(noncompliance in the 
placebo group)

		  = p p2 2 1 21( )− +λ λ

Here we have assumed that noncompliance in the placebo group means that the 
participant takes aspirin on his own and that such a participant has incidence rate =  
p1 = rate for aspirin-group compliers. Placebo-group participants who don’t take their 
study capsules and refrain from taking aspirin outside the study are considered com-
pliers from the viewpoint of the preceding discussion; that is, their incidence rate is 
the same as that for placebo-group compliers = p2.

If we subtract p2
∗ from p1

∗, we obtain

	 Equation 10.27 	 p p p p p p1 2 1 1 2 2 1 2 1 2 11 1 1∗ ∗− = − −( ) − − −( ) = −( ) −λ λ λ λ λ −−( )
=

λ2

compliance-adjusted rate ddifference

In the presence of noncompliance, sample size and power estimates should be 
based on the compliance-adjusted rates p p1 2

∗ ∗( ),  rather than on the perfect compli-
ance rates (p1, p2). 

	 10.10	 S u m m a r y

This chapter discussed the most widely used techniques for analyzing qualitative (or 
categorical) data. First, the problem of how to compare binomial proportions from 
two independent samples was studied. For the large-sample case, this problem was 
solved in two different (but equivalent) ways: using either the two-sample test for 
binomial proportions or the chi-square test for 2 × 2 contingency tables. The former 
method is similar to the t test methodology introduced in Chapter 8, whereas the 
contingency-table approach can be easily generalized to more complex problems 
involving qualitative data. For the small-sample case, Fisher’s exact test is used to 
compare binomial proportions in two independent samples. To compare binomial 
proportions in paired samples, such as when a person is used as his or her own con-
trol, McNemar’s test for correlated proportions should be used.

The 2 × 2 contingency-table problem was extended to the investigation of the rela-
tionship between two qualitative variables, in which one or both variables have more 
than two possible categories of response. A chi-square test for R × C contingency tables 
was developed, which is a direct generalization of the 2 × 2 contingency-table test. In 
addition, if one of the variables is a disease variable with a binary outcome and the 
other variable is an exposure variable with k ordered categories, then the chi-square 
test for trend was introduced to assess whether the disease rate follows a consistent 
increasing or decreasing trend as the level of exposure increases. Also, we studied how 
to assess the goodness-of-fit of probability models proposed in earlier chapters using 
the chi-square goodness-of-fit test. Furthermore, the Kappa statistic was introduced as 
an index of reproducibility for categorical data.

Finally, formulas to compute sample size and power for comparing two bino-
mial proportions were provided in the independent-sample and paired-sample case. 
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Special considerations in computing sample size and power were discussed in a 
clinical trial setting. The methods in this chapter are illustrated in the flowchart in 
Figure 10.16.

In Chapters 8, 9, and 10, we considered the comparison between two groups for 
variables measured on a continuous, ordinal, and categorical scale, respectively. In 
Chapter 11, we discuss methods for studying the relationship between a continuous 
response variable and one or more predictor variables, which can be either continu-
ous or categorical.
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	 Figure 10.16 	 Flowchart for appropriate methods of statistical inference for categorical data
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P r o b l e m s

Cardiovascular Disease
Consider the Physicians’ Health Study data presented in 
Example 10.37 (p. 411).

10.1  How many participants need to be enrolled in each 
group to have a 90% chance of detecting a significant dif-
ference using a two-sided test with α = .05 if compliance is 
perfect?

10.2  Answer Problem 10.1 if compliance is as given in 
Example 10.37.

10.3  Answer Problem 10.1 if a one-sided test with power = 
.8 is used and compliance is perfect.

10.4  Suppose 11,000 men are actually enrolled in each 
treatment group. What would be the power of such a study 
if a two-sided test with α = .05 were used and compliance 
is perfect?

10.5  Answer Problem 10.4 if compliance is as given in 
Example 10.37.

Refer to Table 2.13 (p. 36).

10.6  What significance test can be used to assess whether 
there is a relationship between receiving an antibiotic and 
receiving a bacterial culture while in the hospital?

10.7  Perform the test in Problem 10.6, and report a p-value.

Gastroenterology
Two drugs (A, B) are compared for the medical treatment 
of duodenal ulcer. For this purpose, patients are carefully 
matched with regard to age, gender, and clinical condition. 
The treatment results based on 200 matched pairs show 
that for 89 matched pairs both treatments are effective; 
for 90 matched pairs both treatments are ineffective; for 
5 matched pairs drug A is effective, whereas drug B is 
ineffective; and for 16 matched pairs drug B is effective, 
whereas drug A is ineffective.

*10.8  What test procedure can be used to assess the 
results?

*10.9  Perform the test in Problem 10.8, and report a p-value.

In the same study, if the focus is on the 100 matched pairs con-
sisting of male patients, then the following results are obtained: 
for 52 matched pairs both drugs are effective; for 35 matched 
pairs both drugs are ineffective; for 4 matched pairs drug A 
is effective, whereas drug B is ineffective; and for 9 matched 
pairs drug B is effective, whereas drug A is ineffective.

*10.10  How many concordant pairs are there among the 
male matched pairs?

*10.11  How many discordant pairs are there among the 
male matched pairs?

*10.12  Perform a significance test to assess any differ-
ences in effectiveness between the drugs among males. 
Report a p-value.

Sexually Transmitted Disease
Suppose researchers do an epidemiologic investigation of 
people entering a sexually transmitted disease clinic. They 
find that 160 of 200 patients who are diagnosed as having 
gonorrhea and 50 of 105 patients who are diagnosed as 
having nongonococcal urethritis have had previous epi-
sodes of urethritis.

*10.13  Are the present diagnosis and prior episodes of 
urethritis associated?

Cancer
10.14  A 1980 study investigated the relationship between 
the use of OCs and the development of endometrial cancer 
[9]. The researchers found that of 117 endometrial-cancer 
patients, 6 had used the OC Oracon at some time in their 
lives, whereas 8 of the 395 controls had used this agent. 
Test for an association between the use of Oracon and the 
incidence of endometrial cancer, using a two-tailed test.

Ophthalmology
Retinitis pigmentosa is a disease that manifests itself via 
different genetic modes of inheritance. Cases have been 
documented with a dominant, recessive, and sex-linked 
mode of inheritance. It has been conjectured that mode of 
inheritance is related to the ethnic origin of the individual. 
Cases of the disease have been surveyed in an English 
and a Swiss population with the following results: Of 125 
English cases, 46 had sex-linked disease, 25 had reces-
sive disease, and 54 had dominant disease. Of 110 Swiss 
cases, 1 had sex-linked disease, 99 had recessive disease, 
and 10 had dominant disease.

*10.15  Do these data show a significant association be-
tween ethnic origin and genetic type?

Pulmonary Disease
One important aspect of medical diagnosis is its reproduc-
ibility. Suppose that two different doctors examine 100 
patients for dyspnea in a respiratory-disease clinic and that 
doctor A diagnosed 15 patients as having dyspnea, doctor 
B diagnosed 10 patients as having dyspnea, and both doc-
tor A and doctor B diagnosed 7 patients as having dyspnea.

10.16  Compute the Kappa statistic and its standard error 
regarding reproducibility of the diagnosis of dyspnea in this 
clinic.

Cardiology, Radiology
The conventions of cardiac echocardiography are derived 
from comprehensive studies performed by technicians and 
cardiologists. Traditionally, patients are positioned supine 
(i.e., lying on their back), although there is no evidence to 
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support this practice. Clinicians in the emergency depart-
ment (ED) are sometimes faced with acutely ill patients who 
cannot tolerate the supine position. For this reason, a study 
is planned to compare ultrasound studies performed while a 
patient is supine vs. while a patient is upright. 

  Patients ≥18 years of age who present to the ED with 
chest pain or shortness of breath and consent to the study 
will be enrolled. Each patient will receive two ultrasound 
studies, one in the supine position and one in the upright po-
sition. The order of administration of the two studies will be at 
random. Readers will review the images in a blinded manner 
and assess a number of clinical characteristics. An important 
endpoint is pericardial effusion (or fluid around the heart). 

Suppose 50 patients are enrolled in the pilot phase of the 
study.

(i)	 �For 30 patients it is determined from both images that 
there is no fluid around the heart.

(ii)	 �For 10 patients it is determined from both images that 
there is fluid around the heart.

(iii)	 �For 8 patients it is determined from the supine image, 
but not the upright image, that there is fluid around the 
heart.

(iv)	 �For 2 patients it is determined from the upright image, 
but not the supine image, that there is fluid around the 
heart.

10.17  If we focus on patients where there are different re-
sults for the supine and upright images [i.e., groups (iii) and 
(iv) above], what test can be performed to assess whether 
there is a significant difference in determinations for supine 
vs. upright images?

10.18  Perform the test in Problem 10.17 and report a 	
p-value (two-tailed). Interpret the results in words.

Otolaryngology
Many children have tympanostomy tubes surgically inserted 
in their ears to reduce hearing loss associated with persistent 
otitis media and prevent recurrences of episodes of otitis 
media after tubes are inserted. However, acute otorrhea (a 
discharge from the external ear indicating inflammation of the 

external or middle ear), where middle ear fluid drains through 
the tube, is a common side effect with tympanostomy tubes.

A clinical trial was conducted (Van Dongen et al. [10]) 
among children 1–10 years of age with prior symptoms 
of otorrhea comparing efficacy of (i) antibiotic eardrops, 
(ii) oral antibiotics, and (iii) observation without treatment, 
referred to below as observation. Children were seen at 
home by study physicians at 2 weeks and 6 months after 
randomization. The primary outcome was the presence of 
otorrhea at 2 weeks observed by study physicians. The 
results are given in Table 10.22.

Table 10.22  � Number of children with otorrhea at 
2 weeks of follow-up

	 	 Number of children	
	 	 with otorrhea at 	
Group	 Number of children	 2 weeks

Antibiotic ear drops	 76	   4
Oral antibiotics	 77	 34
Observation	 75	 41

10.19  Provide a point estimate and a 95% confidence 
interval for the prevalence of otorrhea at 2 weeks in the 
observation group.

10.20  Provide a point estimate and a 95% CI for the preva-
lence of otorrhea in the ear drop group.

10.21  What test can be used to compare the prevalence of 
otorrhea for the ear drop group vs. the observation group? 
State the hypotheses to be tested.

10.22  Perform the test in Problem 10.21 and report a 	
p-value (two-tailed). Interpret your results in words.

Cancer
The following data are provided from the SEER Can-
cer Registries of the National Cancer Institute based 	
on 17 cancer registries in the United States. Data are 	
available for stage of disease at diagnosis for women with 
breast cancer by age and race as shown in Table 10.23 [11].

	 Table 10.23 	 Stage of breast cancer at diagnosis by age and race, SEER Cancer data, 1999−2005

	 Caucasian 	 African	
	 females	 American females

	 <50	 50+	 <50	 50+
Stage	 (n = 53,060)	 (n = 174,080)	 (n = 8063)	 (n = 16,300)

Localized	 54*	 64	 46	 53
Regional	 41	 29	 46	 35
Distant	 3	 5	 7	 9
Unstaged	 2	 2	 2	 3

*percent.
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10.23  Test whether the distribution of stage of disease 
is significantly different between Caucasian and African 
American women with breast cancer who are younger than 
50 years of age. Please provide a p-value (two-tailed). 	
Ignore the unstaged cases in your analysis.

The 5-year survival rates by stage of disease, age at diagno-
sis, and race are provided in Table 10.24.

10.24  Test whether the 5-year survival rate for breast can-
cer is significantly different between African American and 
Caucasian women who are younger than 50 years of age 
and have localized disease. Provide a p-value (two-tailed).

Sexually Transmitted Disease
Suppose a study examines the relative efficacy of penicil-
lin and spectinomycin in treating gonorrhea. Three treat-
ments are considered: (1) penicillin, (2) spectinomycin, low 
dose, and (3) spectinomycin, high dose. Three possible 
responses are recorded: (1) positive smear, (2) negative 
smear, positive culture, (3) negative smear, negative culture. 
The data in Table 10.25 are obtained.

Table 10.25  � Efficacy of different treatments for 
gonorrhea

	 Response

	 	 − Smear 	 − Smear	
Treatment	 + Smear	 + Culture	 − Culture	 Total

Penicillin	 40	 30	 130	 200
Spectinomycin 	
  (low dose)	 10	 20	 70	 100
Spectinomycin 	
  (high dose)	 15	 40	 45	 100
Total	 65	 90	 245	 400

10.25  Is there any relationship between the type of treatment 
and the response? What form does the relationship take?

10.26  Suppose either a positive smear or a positive culture 
is regarded as a positive response and distinguished from 

the negative smear, negative culture response. Is there an as-
sociation between the type of treatment and this measure of 
response?

Diabetes
Improving control of blood-glucose levels is an important 
motivation for the use of insulin pumps by diabetic patients. 
However, certain side effects have been reported with 
pump therapy. Table 10.26 provides data on the occur-
rence of diabetic ketoacidosis (DKA) in patients before and 
after start of pump therapy [12].

Table 10.26   �Occurrence of DKA in patients before 
and after start of insulin-pump therapy

	 Before pump therapy

After pump therapy	 No DKA	 DKA

No DKA	 128	 7
DKA	 19	 7

Source: Based on JAMA, 252(23), 3265−3269, 1984.

*10.27  What is the appropriate procedure to test whether the 
rate of DKA is different before and after start of pump therapy?

*10.28  Perform the significance test in Problem 10.27, and 
report a p-value.

Renal Disease
A study group of 576 working women 30−49 years of age 
who took phenacetin-containing analgesics and a control 
group of 533 comparably aged women without such intake 
were identified in 1968 and followed for mortality and morbid-
ity outcomes. One hypothesis to be tested was that phenace-
tin intake may influence renal (kidney) function and hence have 
an effect on specific indices of renal morbidity and mortality. 
The mortality status of these women was determined from 
1968 to 1987. The researchers found that 16 of the women in 
the study group and 1 of the women in the control group died, 
where at least one cause of death was considered renal [13].

	 Table 10.24 	 Five-year survival rates for breast cancer by stage at diagnosis, age at diagnosis, and 
race, SEER Cancer data, 1999−2005

	 Caucasian females	 African American females

	 <50	 50+	 <50	 50+

Stage	 (n = 53,060)	 (n = 174,080)	 (n = 8063)	 (n = 16,300)

Localized	 96.5*	 99.6	 91.6	 94.9
Regional	 84.6	 85.0	 71.3	 72.6
Distant	 33.2	 22.5	 15.0	 16.4
Unstaged	 76.7	 53.5	 49.7	 42.2

*percent.
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10.29  Test for differences in renal mortality between the two 
groups in either direction, and report a two-tailed p-value.

The cohort was also followed for total mortality. The re-
searchers found that 74 women in the study group died, 
compared with 27 in the control group.

10.30  What statistical test should be used to compare the 
total mortality experience of the study group with that of the 
control group?

10.31  Implement the test in Problem 10.30, and report a 
p-value.

Mental Health
A study was performed in Lebanon looking at the effect 
of widowhood on mortality [14]. Each of 151 widowers 
and 544 widows were matched to a person married at the 
time of widowhood and of the same age (± 2 years) and 
gender. The people in the matched pairs were followed 
until one member of the matched pair died. The results 
in Table 10.27 were obtained for those matched pairs in 
which at least one member had died by 1980.

*10.32  Suppose all the matched pairs in Table 10.27 are con-
sidered. What method of analysis can be used to test whether 
there is an association between widowhood and mortality?

Table 10.27   Effect of widowhood on mortality

	 Males	 Females

Age (years)	 n1
a	 n2

b	 n1	 n2

36−45	 4	 8	 3	 2
46−55	 20	 17	 17	 10
56−65	 42	 26	 16	 15
66−75	 21	 10	 18	 11
Unknown	   0	   2	   3	   2
Total	 87	 63	 57	 40

an1 = number of pairs in which the widowed subject is deceased and the 
married subject is alive.
bn2 = number of pairs in which the widowed subject is alive and the married 
subject is deceased.

Source: Based on the American Journal of Epidemiology, 125(1), 
127−132, 1987.

*10.33  Implement the test in Problem 10.32, and report a 
p-value.

*10.34  Answer the same question as Problem 10.32 con-
sidering 36- to 45-year-old males only.

*10.35  Implement the test in Problem 10.34, and report a 
p-value.

*10.36  Based on all matched pairs, how much power did 
the study just mentioned have vs. the alternative hypothesis 

that a widower is twice as likely to die before a married 
person of the same age and gender, assuming that all age 
groups are considered?

Hepatic Disease
Refer to Data Set HORMONE.DAT, at www.cengagebrain	
.com. (See p. 326 for a description of this Data Set.)

10.37  What test procedure can be used to compare the 
percentage of hens whose pancreatic secretions increased 
(post-pre) among the five treatment regimens?

10.38  Implement the test procedure in Problem 10.37, and 
report a p-value.

10.39  Answer Problem 10.38 for biliary secretions.

10.40  For all hormone groups except saline, different doses 
of hormones were administered to different groups of hens. 
Is there a dose-response relationship between the propor-
tion of hens with increasing pancreatic secretions and the 
hormone dose? This should be assessed separately for 
each specific active hormone.

10.41  Answer Problem 10.40 for biliary secretions.

Cardiovascular Disease
A secondary prevention trial of lipid lowering is planned in 
patients with previous myocardial infarction (MI). Patients 
are to be randomized to either a treatment group receiving 
diet therapy and cholesterol-lowering drugs or a control 
group receiving diet therapy and placebo pills. The study 
endpoint is to be a combined endpoint consisting of either 
definite fatal coronary heart disease (CHD) or nonfatal MI 
(i.e., a new nonfatal MI distinct from previous events). Sup-
pose it is projected that the incidence of combined events 
among controls is 7% per year.

*10.42  What proportion of controls will have events over 5 
years? Hint: Assume no deaths due to non-CHD causes.

Suppose the treatment benefit is projected to be a reduc-
tion in the 5-year event rate by 30%.

*10.43  What is the expected event rate in the treated 
group?

*10.44  If the rates in Problems 10.42 and 10.43 are the 
true rates, how many participants will be needed in each 
group if a one-sided test with α = .05 is to be used and an 
80% chance of finding a significant difference is desired?

Investigators expect that not all participants will comply. In 
particular, they project that 5% of the treatment group will 
not comply with drug therapy and that 10% of the control 
group will start taking cholesterol-lowering drugs outside 
the study.

*10.45  What will be the expected rates in Problems 10.42 
and 10.43 if this level of lack of compliance is realized?

*10.46  What will be the revised sample size estimate 
in Problem 10.44 if the lack of compliance is taken into 
account? Data set available
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Pediatrics, Endocrinology
A study was performed among 40 boys in a school in 
Edinburgh to look at the presence of spermatozoa in urine 
samples according to age [15]. The boys entered the study 

at 8−11 years of age and left the study at 12−18 years of 
age. A 24-hour urine sample was supplied every 3 months 
by each boy. Table 10.28 gives the presence or absence of 
sperm cells in the urine samples for each boy together with 

	 Age at

Boy	 Entrance	 First positive	 Exit	 Observations

1	 10.3	 13.4	 16.7	 − − − − − − − − − − + + − − − − + + + − −
2	 10.0	 12.1	 17.0	 − − − − − − − − + − − + + − + − − + − + − − − − − + +
3	 9.8	 12.1	 16.4	 − − − − − − − − + − + + − + + + + + + − − + + − +
4	 10.6	 13.5	 17.7	 − − − − − − − − − − − + + − − − + − − − −
5	 9.3	 12.5	 16.3	 − − − − − − − − − − − − + + − − − − + − − − − − − − −
6	 9.2	 13.9	 16.2	 − − − − − − − − − − − − − − − − − + − − − − − − −
7	 9.6	 15.1	 16.7	 − − − − − − − − − − − − − − − − − − − + − − − +
8	 9.2	 —	 12.2	 − − − − − − − − − − − −
9	 9.7	 —	 12.1	 − − − − − − − − −
10	 9.6	 12.7	 16.4	 − − − − − − − − − − − − + − + + + + + − − + + − +
11	 9.6	 12.5	 16.7	 − − − − − − − − − − + − − + − + − − + + +
12	 9.3	 15.7	 16.0	 − − − − − −− − − − − − − − − − − − − − − − − + +
14	 9.6	 —	 12.0	 − − − − − − − − −
16	 9.4	 12.6	 13.1	 − − − − − − − − − − + + + +
17	 10.5	 12.6	 17.5	 − − − − − − − + − + + + + + + + + − − + − − + +
18	 10.5	 13.5	 14.1	 − − − − − − − − − − + − −
19	 9.9	 14.3	 16.8	 − − − − − − − − − − − − − − − + − − − − − + − +
20	 9.3	 15.3	 16.2	 − − − − − − − − − − − − − − − − − − − − − + + +
21	 10.4	 13.5	 17.3	 − − − − − − − − + + − + − + + − + − + + +
22	 9.8	 12.9	 16.7	 − − − − − − − − − − − + + + + − + + + + − + + − + − −
23	 10.8	 14.2	 17.3	 − − − − − − − − − − − − + − − + + + − +
24	 10.9	 13.3	 17.8	 − − − − − − − − + + + + − + + + + + − + + − −
25	 10.6	 —	 13.8	 − − − − − − − − − − −
26	 10.6	 14.3	 16.3	 − − − − − − − − − − − − − + − − − + − − −
27	 10.5	 12.9	 17.4	 − − − − − − − − + − + + + + − − − + + − − + + + +
28	 11.0	 —	 12.4	 − − − − − −
29	 8.7	 —	 12.3	 − − − − − − − − − − − − − −
30	 10.9	 —	 14.5	 − − − − − − − − − − − − −
31	 11.0	 14.6	 17.5	 − − − − − − − − − − − − + + + + + + + + + + − +
32	 10.8	 14.1	 17.6	 − − − − − − − − − − − + + − − + − − − − − −
33	 11.3	 14.4	 18.2	 − − − − − − − − − − − + + − + + − − + − − − − −
34	 11.4	 13.8	 18.3	 − − − − − − − + − − − + − − − + + + − − + − +
35	 11.3	 13.7	 17.8	 − − − − − − − + + + − + − − − + + + − + +
36	 11.2	 13.5	 15.7	 − − − − − − − − − + − − − − − − − −
37	 11.3	 14.5	 16.3	 − − − − − − − − − − − + − + + − − −
38	 11.2	 14.3	 17.2	 − − − − − − − − − − − + − − + − + + + + + + −
39	 11.6	 13.9	 14.7	 − − − − − + − − −
40	 11.8	 14.1	 17.9	 − − − − + − + − + − + + + + − − − −
41	 11.4	 13.3	 18.2	 − − − − + + + − + − − − − − + + + + + − −
42	 11.5	 14.0	 17.9	 − − − − − − − + + − − − − − − − + + − + −

	Table 10.28 	 �Presence (+) or absence (−) of spermatazoa in consecutive urine samples for all boys; age at 
first collected urine sample, at first positive, and at last sample
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the ages at entrance and exit of the study and the age at the 
first sperm-positive urine sample.

For all parts of this question, exclude boys who exited 
this study without 1 sperm-positive urine sample (i.e., boys 
8, 9, 14, 25, 28, 29, 30).

10.47  Provide a stem-and-leaf plot of the age at first 
sperm-positive urine specimen.

*10.48  If we assume that all boys have no sperm cells at 
age 11 (11.0 years) and all have sperm cells at age 18, 
then estimate the probability of first developing sperm cells 
at ages 12 (i.e., between 12.0 and 12.9 years), 13, 14, 15, 
16, and 17.

*10.49  Suppose mean age at spermatogenesis = 13.67 
years, with standard deviation = 0.89 years and we as-
sume that the age at spermatogenesis follows a normal 
distribution. The pediatrician would like to know what is 
the earliest age (in months) before which 95% of boys ex-
perience spermatogenesis because he or she would like 
to refer boys who haven’t experienced spermatogenesis 
by this age to a specialist for further follow-up. Can you 
estimate this age from the information provided in this part 
of the problem?

*10.50  Suppose we are uncertain whether a normal dis-
tribution provides a good fit to the distribution of age at 
spermatogenesis. Answer this question using the results 
from Problems 10.47−10.49. (Assume that the large-sample 
method discussed in this chapter is applicable to these data.)

Health Services Administration
In the Harvard Medical Practice Study [16], a sample of 
31,429 medical records of hospital patients were reviewed 
to assess the frequency of medical malpractice. Two types 
of malpractice were identified:

(1)	 �An adverse event was defined as an injury caused by 
medical management (rather than by the underlying 
disease).

(2)	 �Negligence was defined as care that fell below the 
standard expected of physicians in the community.

An approximate 1% sample of records was reviewed on two 
different occasions by different review teams. The data in 
Table 10.29 were obtained.

10.51  Are frequencies of reporting of adverse events or 
negligence comparable in review process A (the original 
review) and review process B (the re-review)?

10.52  Can you assess the reproducibility of adverse events 
and negligence designations? Which seems to be more 
reproducible?

Orthopedics
A study was performed among subjects with persistent 
sciatica (El Barzouhi et al. [17]). Sciatica is pain that radi-
ates down the leg and is often caused by a herniated disk in 
the lumbar region of the lower back. A randomized trial was 
conducted comparing  an early surgery strategy vs. conser-
vative care for an additional 6 months followed by surgery 
for patients who did not improve. Of the 267 patients eli-
gible for the study, 131 were randomly assigned to undergo 
early surgery and 136 to prolonged conservative care. Of 
the 131 patients in the surgery group, 15 recovered before 
surgery could be performed. Of the 136 patients in the 
conservative care group, 54 actually underwent surgery in 
the first year. Thus, a total of (131 − 15) + 54 = 170 patients 
actually received surgery and 15 + (136 −  54) = 97 patients 
received no surgery. The primary results were presented 
based on treatment actually received. 

An MRI was performed at 1 year of follow-up to determine 
whether disk herniation was present and, if so, the extent 
of herniation compared to baseline. Definite disk herniation 
was present for 15 patients who received surgery and for 
25 patients who received no surgery.

10.53  What test can be performed to compare the preva-
lence of disk herniation between the patients who received 
surgery vs. the patients who did not receive surgery?

10.54  Perform the test in Problem 10.53, and report a two-
sided p-value.

10.55  Interpret the results in Problem 10.54 in words.

The investigators also assessed clinical outcomes for the 
patients at 1 year. They defined a favorable outcome as a 
complete or nearly complete disappearance of symptoms 
on a patient-reported Likert scale for global perceived 
recovery. One of the paradoxes of sciatica is that some-
times patients perceive less pain even if MRI findings have 

Table 10.29   Reproducibility of types of malpractice

	 (a) Adverse events	 (b) Negligence	

	 Review process B

	 +	 −

+	 35	 13

−	 21	 249

	 Review process B

	 +	 −

+	 4	 9

−	 12	 293

Review	
process	
A

Review	
process	
A
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not changed. A comparison was made between the patient-
reported favorable outcome and change in the MRI assess-
ment of extent of nerve root compression (1 yr. vs. baseline). 
The results were as follows:

Among 224 patients with a favorable outcome, nerve root 
compression had disappeared completely at 1 year for 
169 patients, was present at 1 year but reduced from 
baseline for 39 patients, and was unchanged or increased 
from baseline for 16 patients. Among 43 patients with an 
unfavorable outcome, nerve root compression had disap-
peared completely at 1 year for 29 patients, was present 
at 1 year but reduced from baseline for 6 patients, and was 
unchanged or increased from baseline for 8 patients.

10.56  What test can be performed to assess the associa-
tion between change in nerve root compression and clinical 
outcome?

10.57  Perform the test in Problem 10.56, and report a two-
sided p-value.

10.58  Interpret the results in Problem 10.57 in words.

Sports Medicine
Data from a study concerning tennis elbow (a painful condi-
tion experienced by many tennis players) are given in TEN-
NIS1.DAT, and the format is given in TENNIS1.DOC (both 
at www.cengagebrain.com).

Members of several tennis clubs in the greater Boston area 
were surveyed. Each participant was asked whether he or 
she had ever had tennis elbow and, if so, how many epi-
sodes. An attempt was made to enroll roughly an equal 
number of participants with at least one episode of tennis 
elbow (the cases) and participants with no episodes of tennis 
elbow (the controls). The interviewer asked the participants 
about other possibly related factors, including demographic 
factors (e.g., age, gender) and characteristics of their tennis 
racquet (e.g., string type of racquet used, material(s) of rac-
quet). This type of study is a case−control study and also can 
be considered as an observational study. It is distinctly 
different from a clinical trial, in which treatments are assigned 
at random. Because of randomization, participants receiving 
different treatments in a clinical trial will, on average, tend to 
be comparable. In an observational study, we are interested 
in relating risk factors to disease outcomes. However, it is dif-
ficult to make causal inferences (e.g., “wood racquets cause 
tennis elbow”) because participants are not assigned to a 
type of racquet at random. Indeed, if we find differences in 
the frequency of tennis elbow by type of racquet, there may 
be some other variable(s) that are related to both tennis el-
bow and to the type of racquet that are more direct “causes” 
of tennis elbow. Nevertheless, observational studies are use-
ful in obtaining important clues as to disease etiology. One 
interesting aspect of observational studies is that there are 

often no prior leads as to which risk factors are even associ-
ated with disease. Therefore, investigators tend to ask many 
questions about possible risk factors without having a firm 
idea as to which risk factors are really important.

10.59  In this problem, act like a detective and look at 
each risk factor in the data set separately and relate this 
risk factor to tennis elbow. How you define tennis elbow is 
somewhat arbitrary. You may want to compare participants 
with 1+ episodes of tennis elbow vs. participants with no 
episodes. Or you may want to focus specifically on par-
ticipants with multiple episodes of tennis elbow, or perhaps 
create a graded scale according to the number of episodes 
of tennis elbow (e.g., 0 episodes, 1 episode, 2+ episodes), 
etc. In this exercise, consider each risk factor separately. In 
Chapter 13, we will discuss logistic regression methods, 
where we will be able to study the effects of more than one 
risk factor simultaneously on disease.

Otolaryngology
Consider Data Set EAR.DAT, at www.cengagebrain.com. 
(See p. 69.)

10.60  For children with one affected ear at baseline, com-
pare the efficacy of the two study medications.

10.61  In children with two affected ears at baseline, com-
pare the efficacy of the two study medications, treating the 
response at 14 days as a graded scale (two cleared ears, 
one cleared ear, no cleared ears).

10.62  For children with two affected ears, test the hypoth-
esis that responses to the study medications for the first 
and second ears are independent.

Hospital Epidemiology
Death of a patient in the hospital is a high-priority medical 
outcome. Some hospital deaths may be due to inadequate 
care and are potentially preventable. An adverse event dur-
ing a hospital stay is defined as a problem of any nature 
and seriousness experienced by a patient during his or her 
stay in the hospital that is potentially attributable to clinical 
or administrative management rather than the underlying 
disease. A study in a hospital in Granada, Spain, assessed 
whether there was a relationship between adverse events 
and deaths during hospital stay [18]. In this study, 524 
cases (i.e., people who died in the hospital) were identi-
fied between January 1, 1990, and January 1, 1991. For 
each case, a control patient was matched on admission 
diagnosis and admission date. A retrospective chart review 
determined occurrence of adverse events among all cases 
and controls. There were 299 adverse events occurring 
among the cases and 225 among the controls. Among the 
299 cases in which an adverse event occurred, 126 of their 
corresponding matched controls also had an adverse event.

10.63  What method of analysis can be used to compare the 
proportion of adverse events between cases and controls? Data set available
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10.64  Implement the method suggested in Problem 10.63, 
and report a two-tailed p-value.

Cancer
A topic of current interest is whether abortion is a risk factor 
for breast cancer. One issue is whether women who have 
had abortions are comparable to women who have not had 
abortions in terms of other breast-cancer risk factors. One 
of the best-known breast-cancer risk factors is parity (i.e., 
number of children), with parous women with many children 
having about a 30% lower risk of breast cancer than nullipa-
rous women (i.e., women with no children). Hence, it is im-
portant to assess whether the parity distributions of women 
with and without previous abortions are comparable. The 
data in Table 10.30 were obtained from the Nurses’ Health 
Study on this issue.

Table 10.30  � Parity distribution of women with 
abortions and women without abortions

	 Induced abortion

	 Yes 	 No	
Parity	 (n = 16,353)	  (n = 77,220)

0	 34%	 29%
1	 23%	 18%
2	 30%	 34%
3	 10%	 15%

4+	 3%	 4%

10.65  What test can be performed to compare the parity 
distribution of women with and without induced abortions?

10.66  Implement the test in Problem 10.65, and report a 
two-tailed p-value.

Suppose that with each additional child, breast-cancer risk 
is reduced by 10% (i.e., women with 1 child have a risk of 
breast cancer that is 90% of that of a nulliparous woman 
of the same age; women with 2 children have a risk that is 
.92 or 81% of that of a nulliparous woman, etc.). (For the 
purposes of this problem, consider women with 4+ births as 
having exactly 4 births.)

10.67  Suppose there is no causal effect of induced abor-
tion on breast cancer. Based on the parity distribution in 
the two groups, would women with induced abortion be 
expected to have the same, higher, or lower risk of breast 
cancer? If higher or lower, by how much? (Assume that the 
age distributions are the same between women who have or 
have not had previous abortions.)

Ophthalmology
A 5-year study among 601 participants with retinitis pigmen-
tosa assessed the effects of high-dose vitamin A (15,000 
IU per day) and vitamin E (400 IU per day) on the course 	

of their disease. One issue is to what extent supplemen-
tation with vitamin A affected their serum-retinol levels. 
The serum-retinol data in Table 10.31 were obtained over 	
3 years of follow-up among 73 males taking 15,000 IU/day 
of vitamin A (vitamin A group) and among 57 males taking 
75 IU/day of vitamin A (the trace group; this is a negligible 
amount compared with usual dietary intake of 3000 IU/day).

Table 10.31  � Effect of vitamin A supplementation 
on serum-retinol levels

	 Year 0	 Year 3

Retinol (mmol/L)	 N	 Mean ± sd	 Mean ± sd

Vitamin A group 	 73	 1.89 ± 0.36 	 2.06 ± 0.53 

Trace group	 57	 1.83 ± 0.31	 1.78 ± 0.30

10.68  What test can be used to assess whether mean 
serum retinol has increased over 3 years among subjects in 
the vitamin A group?

10.69  Can the test be implemented based on the data just 
presented? Why or why not? If yes, implement the test and 
report a two-tailed p-value.

10.70  One assumption of the test in Problem 10.68 is that 
the distribution of serum retinol is approximately normal. 
To verify this assumption, the investigators obtained a fre-
quency distribution of serum retinol at year 0 among males 
in the vitamin A group, with data as shown in Table 10.32.

Table 10.32  � Distribution of serum retinol in a 	
retinitis-pigmentosa population

Serum-retinol group (µmol/L)	 n

	 ≤1.40	 6
	1.41−1.75	 22
	1.76−2.10	 22
	2.11−2.45	 20
	 ≥2.46	    3

	 	 73

Perform a statistical test to check on the normality assump-
tion. Given your results, do you feel the assumption of nor-
mality is warranted? Why or why not?

Ophthalmology
One interesting aspect of the study described in Prob-
lem 10.68 is to assess changes in other parameters as a 
result of supplementation with vitamin A. One quantity of in-
terest is the level of serum triglycerides. Researchers found 
that among 133 participants in the vitamin A group (males 
and females combined) who were in the normal range at 
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baseline (<2.13 µmol/L), 15 were above the upper limit of 
normal at each of their last 2 consecutive study visits. Simi-
larly, among 138 participants in the trace group who were in 
the normal range at baseline (<2.13 µmol/L), 2 were above 
the upper limit of normal at each of their last two consecu-
tive study visits [19].

10.71  What proportion of people in each group developed 
abnormal triglyceride levels over the course of the study? 
Are these proportions measures of prevalence, incidence, 
or neither?

10.72  What test can be performed to compare the per-
centage of participants who developed abnormal triglyc-
eride levels between the vitamin A group and the trace 
group?

10.73  Implement the test in Problem 10.72, and report a 
two-tailed p-value.

Zoology
A study was performed to look at the preference of different 
species of birds for different types of sunflower seeds. Two 
bird feeders were set up with different types of sunflower 
seeds, one with a black oil seed and one with a striped 
seed. The bird feeders were observed for a 1-hour period 
for each of 12 days over a 1-month period. The number of 
birds of different species who ate seeds from a specific 
bird feeder was counted for each bird feeder for each of a 
number of species of birds. (The data for this problem were 
supplied by David Rosner.)

On the first day of testing, 1 titmouse ate the black 
oil seeds and 4 titmice ate the striped seeds. Of the gold-
finches, 19 ate the black oil seeds and 5 ate the striped 
seeds.

10.74  What test can be performed to assess whether the 
feeding preferences of titmice and goldfinches are compa-
rable on the first day of testing?

10.75  Implement the test in Problem 10.74, and report a 
p-value.

One assumption in the entire experiment is that the feed-
ing preferences of the same species of bird remain the 
same over time. To test this assumption, the data for 
goldfinches were separated by the 6 different days on 
which they were observed (they were not observed at all 
for the other 6 days). For 2 of the 6 days small numbers 
of goldfinches were observed (2 on one day and 1 on an-
other day). Thus, data from these two days were also not 
included. The results for the remaining 4 days are shown 
in Table 10.33.

10.76  What test can be used to assess whether the feed-
ing preference of goldfinches are the same on different 
days?

10.77  Implement the test in Problem 10.76, and report a 
p-value.

Cancer
The Physicians’ Health Study was a randomized double-
blind placebo-controlled trial of beta-carotene (50 mg 
every other day). In 1982, the study enrolled 22,071 male 
physicians ages 40−84. The participants were followed until 
December 31, 1995, for the development of new cancers 
(malignant neoplasms). The results reported [20] are shown 
in Table 10.34.

Table 10.34  � Comparison of cancer incidence 
rates between the beta-carotene and 
placebo groups

	 Beta-carotene 	 Placebo	
	 (n = 11,036)	  (n = 11,035)

Malignant neoplasms	 1273	 1293

10.78  What test can be used to compare cancer incidence 
rates between the two treatment groups?

10.79  Implement the test in Problem 10.78, and report a 
two-tailed p-value.

10.80  The expectation before the study started was that 
beta-carotene might prevent 10% of incident cancers 
relative to placebo. How much power did the study have 
to detect an effect of this magnitude if a two-sided test is 
used with α = .05 and we assume that the true incidence 
rate in the placebo group is the same as the observed in-
cidence rate and that compliance with study medications 
is perfect?

Demography
A common assumption is that the gender distributions 
of successive offspring are independent. To test this as-
sumption, birth records were collected from the first 5 
births in 51,868 families. For families with exactly 5 chil-
dren, Table 10.35 shows a frequency distribution of the 
number of male offspring (from Data Set SEXRAT.DAT; 
see p. 110).

Table 10.33  � Feeding preferences of goldfinches 
on different days

	 Day

Type of seed	 1	 2	 3	 4	 Total

Black oil	 19	 14	 9	 45	 87
Striped	 5	 10	 6	 39	 60

 Data set available
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Table 10.35  � Frequency distribution of number of 
male offspring in families of size 5

	Number of male offspring	 n

	 0	 518
	 1	 2245
	 2	 4621
	 3	 4753
	 4	 2476
	 5	     549
	 Total	 15,162

Suppose the investigators doubt the probability of a male 
birth is exactly 50% but are willing to assume the gender 
distributions of successive offspring are independent.

10.81  What is the best estimate of the probability of a male 
offspring based on the observed data?

10.82  What is the probability of 0, 1, 2, 3, 4, and 5 male 
offspring out of 5 births based on the estimate in Problem 
10.81?

10.83  Test the hypothesis that the gender distributions of 
successive offspring are independent based on the model 
in Problem 10.82. What are your conclusions concerning 
the hypothesis?

Pediatrics, Urology
Nighttime bladder control is an important developmental 
milestone, with failure dependent on age. Continence is 
usually achieved between 4 and 6 years of age, but an im-
portant minority of children experience delays in success. A 
longitudinal study was conducted in Britain in which night-
time bedwetting was assessed at ages 4, 6, 8, 9, 11, and 
15 years among 3272 children in the Medical Research 
Council’s 1946 National Survey of Health [21].

The following data were presented. There were 1362 boys 
and 1313 girls who reported no bedwetting at any of the 
six ages just listed. Consider this as the control group. 
There were 6 boys and 2 girls who reported no bedwetting 
at ages 4, 6, and 8 but reported some bedwetting at both 
ages 9 and 11. Consider this as the case group. Ignore 
children with any other pattern of bedwetting over the six 
ages.

10.84  What test can be used to assess whether the per-
centage of cases among boys is significantly different from 
the percentage of cases among girls?

10.85  Implement the test in Problem 10.84, and report a 
two-tailed p-value.

Renal Disease
A study was performed among patients with progressive 
chronic kidney disease to assess the optimal time for the 

initiation of dialysis (Cooper et al. [22]). Patients were ran-
domized to either 

i.	 �an early start group, where dialysis was initiated when 
their estimated glomerular filtration rate (GFR) was be-
tween 10.0 and 15.0 mL per minute per 1.73 m2 of body 
surface area or

ii.	 �a late start group, where dialysis was initiated when 
their GFR was 5.0 to 7.0 mL per minute per 1.73 m2 of 
body surface area. 

The primary outcome was total mortality. 

There were 404 patients assigned to the early start group, 
of whom 152 died. There were 424 patients assigned to 
the late start group, of whom 155 died over the same time 
period. Patients were enrolled from July 2000 to November 
2008 and were followed for 3 years. 

10.86  What test can be used to compare the mortality 
rates in the two groups?

10.87  Implement the test in Problem 10.86, and report a 
two-sided p-value. 

In planning the study it was anticipated that 400 subjects 
would be enrolled per group and that the 3-year mortality 
risk would be 36% in the late start group and 26% in the 
early start group. 

10.88  How much power would the study have if it had 
occurred under the planned mortality rates and sample 
size? 

One issue is that not all the late start patients actually 
started dialysis when their GFR was between 5.0 and 7.0. 
Indeed, 75% of the late start patients initiated dialysis at a 
GFR > 7.0 due to symptoms. 

10.89  If we assume that these 75% of patients had a 
mortality rate that was the average of the early start and 
late start groups (i.e., 31%), then how much power did 
the study actually have under the same assumptions as in 
Problem 10.88?

Otolaryngology
Acute OTM early in infancy may be an important predictor 
of subsequent morbidity, including psychological and edu-
cational difficulties. A study was performed among high-risk 
infants who had already experienced either a single episode 
of acute OTM prior to the age of 6 months or two or more 
episodes before 12 months of life [23].

Children were randomized to one of three treatment groups, 
(a) amoxicillin (AMX), (b) sulfisoxazole (SUL), or (c) placebo 
(PLA), and their parents were told to administer the drug 
daily for a 6-month period (even in the absence of symp-
toms). If children had an acute OTM episode during the 
study period, they received the best antibiotic care, regard-
less of their study-drug group. The results were as shown 
in Table 10.36.
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10.90  What test can be used to compare the percentage 
of children who were acute OTM-free between the AMX 
group and the PLA group?

10.91  Perform the test in Problem 10.90, and report a two-
tailed p-value.

The children were followed for an additional 6 months after 
the study-drug period (first 6 months) was over. The results 
reported concerning acute OTM experience over the entire 
12-month period are shown in Table 10.37.

Table 10.37  � Experience with acute OTM in 
12 months after entry into the study

Drug group	 % Acute OTM-free	 n

AMX	 38	 40
SUL	 28	 36
PLA	 22	 41

10.92  Perform a test to compare the percentage acute 
OTM-free in the AMX group vs. the PLA group over the 
second 6 months of the study among children who were 
acute OTM-free after the first 6 months. Report a two-tailed 
p-value.

Infectious Disease
Smallpox vaccine is highly effective in immunizing against 
smallpox when given as late as 2 to 3 days after exposure. 
Smallpox vaccine is in short supply and is currently available 
in different dosages. A randomized double-blind study was 
performed to compare the efficacy of undiluted vaccine vs. 
different doses of diluted vaccine [24].

One definition of clinical success was the formation of a 
vesicle at the inoculation site 7 to 9 days after vaccination. 
The results from the trial are shown in Table 10.38.

Table 10.38  � Clinical success rate of various types 
of smallpox vaccine

Type of vaccine	 Success/total

Undiluted vaccine dose = 107.8 pfu/mL	 19/20
1:10 diluted vaccine dose = 106.5 pfu/mL	 14/20
1:100 diluted vaccine dose = 105.0 pfu/mL	 3/20

10.93  Perform a test to compare the success rate of undi-
luted vaccine vs. 1:100 diluted vaccine. Report a two-tailed 
p-value.

10.94  Perform a test to assess whether the success rate 
is a function of the log10(dilution ratio). Report a two-tailed 
p-value. [Note: For the 1:10 group, log10(dilution ratio) = 
log10(1/10) = −1, . . . , etc.]

A more quantitative measure of efficacy was the cytotoxic 
T-cell response. The results are shown in Table 10.39.

Table 10.39  � Cytotoxic T-cell response (lytic units 
per 106 cells) to various doses of 
smallpox vaccinea

	 T-cell response

Type of vaccine	 0	 1−99	 100 +

Undiluted	 1	 8	 10
1:10 dilution	 4	 9	 4
1:100 dilution	 15	 3	 1

aSome assays were missing, so not all sample sizes add up to 20.

10.95  What test can be used to compare the cytotoxic 	
T-cell response of the undiluted group vs. the 1:100 diluted 
group?

10.96  Perform the test mentioned in Problem 10.95, and 
report a two-tailed p-value. What is your conclusion re-
garding the effectiveness of the undiluted in contrast to the 
1:100 diluted vaccine?

Health Promotion
It is fairly well known that perception of weight by adoles-
cents does not always agree with actual weight. What is 
less clear is whether perception of weight differs by gender. 
For this purpose, a study was performed among students 
in a local high school, where students provided their actual 
height and weight by self-report. The following data were 
obtained from 286 students (143 boys and 143 girls). 
(The data for this problem were provided by Laura Rosner.) 
The students were classified as underweight if their body-
mass index (BMI) (kg/m2) was less than 18.0 kg/m2, as 
normal if their BMI was ≥ 18.0 and < 25.0, and overweight if 
their BMI was ≥ 25.0.

Based on these criteria, 17 of the girls were underweight, 
113 were of normal weight, and 13 were overweight. For 
the boys, 7 were underweight, 115 were of normal weight, 
and 21 were overweight.

10.97  What test procedure can be used to assess whether 
the weight status of boys significantly differs from girls?

10.98  Perform the test procedure in Problem 10.97, and 
provide a two-tailed p-value.

Table 10.36  � Experience with acute OTM in 
6 months after entry into the study

Drug group	 % Acute OTM-free	 n

AMX	 70	 40
SUL	 47	 36
PLA	 32	 41
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One issue in comparing BMI between groups is the under-
lying distribution of BMI. The mean BMI of the 143 boys 
was 21.8 with sd = 3.4. The distribution of BMI was as 
shown in Table 10.40.

Table 10.40  � Distribution of BMI among 143 high 
school boys

BMI	 Frequency

≤19.9	 41
20−22.9	 65
23−25.9	 20
26−28.9	 9
29+	 8
Total	 143

10.99  What test procedure can be used to assess whether 
the distribution of BMI among the boys is normal?

10.100  Perform the test procedure in Problem 10.99. 
Provide a p-value. (Assume that BMI is measured ex-
actly with no measurement error; thus, the range 20−22.9 	
includes all values ≥20 and <23, etc.)

Cancer, Genetics
A case−control study was performed of renal-cell carci-
noma (RCC) (kidney cancer) [25]. The purpose of the study 
was to look at environmental risk factors for RCC and to 
assess whether genetic factors modify the role of environ-
mental risk factors. There were a total of 113 cases and 
256 controls studied.

The participants were subdivided into “slow acetylators” 
and “rapid acetylators” according to the NAT2 genotype. 
The hypothesis was that slow acetylators might metabolize 
potentially toxic substances more slowly than rapid acetyla-
tors and show different relationships with environmental 
risk factors such as smoking. Table 10.41 presents data 
for slow acetylators according to the number of cigarettes 
smoked per day.

10.101  Test for the association between the number of 
cigarettes smoked per day and RCC among slow acetyla-
tors. (Report a two-tailed p-value.)

Table 10.41  � Relationship between number 	
of cigarettes smoked per day and 
RCC among slow acetylators

No. of cigarettes smoked per daya	 Cases	 Controls

0	 19	 69
1−20	 19	 27
>20	 31	 27

a1 pack contains 20 cigarettes.

Similar data were presented for rapid acetylators, as shown 
in Table 10.42.

Table 10.42  � Relationship between number of 
cigarettes smoked per day and RCC 
among rapid acetylators

No. of cigarettes smoked per daya	 Cases	 Controls

0	 18	 70
1−20	 11	 37
>20	 15	 26

a1 pack contains 20 cigarettes.

10.102  Answer the question in Problem 10.101 for rapid 
acetylators. Report a two-tailed p-value.

10.103  Do you think that genetic factors influence the rela-
tionship between smoking and RCC based on the preced-
ing data? Why or why not?

Cancer
The effect of using postmenopausal hormones (PMH) on 
health outcomes is controversial. Most previous data col-
lected have been from observational studies, and users of 
PMH may selectively differ from nonusers in ways that are 
difficult to quantify (e.g., more health conscious, more physi-
cian visits in which disease outcomes can be identified). 
A clinical trial was planned to randomize postmenopausal 
women to either PMH use or no PMH use and follow them 
for disease outcomes over a 10-year period. One outcome 
of special interest was breast cancer.

Suppose the incidence rate of breast cancer among post-
menopausal 50-year-old women who do not use PMH is 
200 per 105 women per year. Suppose also it is hypoth-
esized that PMH increases the incidence of breast cancer 
by 20%.

10.104  How many women need to be studied in each 
group (equal sample size per group) to have an 80% prob-
ability of detecting a significant difference if a two-sided test 
is used with a type I error of 5%?

10.105  Suppose that 20,000 women are recruited in each 
group in the actual study. How much power would the study 
have under the same assumptions just given?

10.106  One problem with the design is that about 20% 
of the women who are randomized to PMH will not comply 
(i.e., will go off PMH during the trial). In addition, 10% of the 
participants in the control group will go on PMH on their 
own during the study. How much power will the study have 
under these revised assumptions under the simplifying as-
sumption that this lack of compliance occurs at the begin-
ning of the study and 20,000 women are recruited for each 
treatment group?
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Mental Health
Researchers collected the following data concerning 
comparability of diagnoses of schizophrenia obtained from 
primary-care physician report as compared with proxy 
report (from spouses). Data were collected concerning 
953 people (referred to as index subjects). The research-
ers found that schizophrenia was identified as present on 
115 physician reports and 124 proxy reports. Both physi-
cian and proxy informants identified 34 people as positive, 
and they are included among the 115 and 124 individuals 
described.

10.107  If the physician report is considered the gold stand-
ard, what is the sensitivity and specificity of proxy reports of 
schizophrenia?

Suppose neither the physician report nor the proxy report is 
considered the gold standard.

10.108  Compare the percentage of subjects identified as 
schizophrenic by physician report with those so identified 
by proxy report. Perform a hypothesis test, and report a two-
tailed p-value.

10.109  Suppose there is no difference in the percent-
age of subjects identified as schizophrenic by physician 
and by proxy informants. Does this mean the two sources 
of information are the same for each individual? Why or 
why not?

10.110  In a reproducibility study, researchers contacted 
the 953 spouses a second time 1 year later and asked 
them again whether the index subject was schizophrenic. 
There were 112 positive reports of schizophrenia obtained, 
of which 89 were positive on both first and second report. 
Compute an index of reproducibility for proxy report of 
schizophrenia based on these data, and provide an interpre-
tation of what it means.

Cancer
There were early reports that people with extensive sun 
exposure had a reduced risk of colorectal cancer incidence. 
Garland and Garland [26] hypothesized that vitamin D sta-
tus accounted for this inverse association. To further study 
this hypothesis, a case-control study was performed relat-
ing blood levels of vitamin D to the occurrence of colorectal 
adenoma, a precursor to colorectal cancer (Fedirko et al. 
[27]). Data from two case-control studies were combined, 
one from Minnesota (the CPRU Study) and the other from 
the Carolinas (the MAP Study). All patients underwent elec-
tive colonoscopy, during which the presence of adenoma 
was determined. In addition, patients provided a blood 
sample and their 25 (OH) vitamin D3 levels were deter-
mined. Henceforth, we will refer to 25(OH) vitamin D3 levels 
as just vitamin D3. Since vitamin D3 varies by season of the 

year, all subjects were grouped into study-specific quartiles 
of blood vitamin D3 by month of blood draw. The following 
data were obtained:  

Table 10.43  � Association between blood levels 
of vitamin D and colorectal cancer

Quartiles of vitamin D3	 Cases	 Controls	 Total

      1	 154	 170	 324
      2	 159	 204	 363
      3	 167	 184	 351
      4	 136	 212	 348

    Total	 616	 770	 1386

10.111  What test can be performed to assess whether 
cases tend to have lower levels of vitamin D3 than controls?

10.112  Implement the test in Problem 10.111, and report a 
two-sided p-value. 

10.113  Interpret the results (i.e., do cases have higher, 
lower, or the same vitamin D3 levels as controls?).

Health Promotion
Refer to Data Set ESTRADL.DAT at www.cengagebrain	
.com. Suppose we classify women as overweight if their 
body-mass index (BMI) exceeds 25 kg/m2.

10.114  Compare the percentage of Caucasian and 	
African American women who are overweight. Report a 
two-tailed p-value. 

A more exact classification of BMI is as follows: <25 is nor-
mal; ≥25, <30 is overweight; ≥30 is obese.

10.115  Compare the distribution of BMI between 
Caucasian and African American women using this finer 
classification. Report a two-tailed p-value.

Simulation
Suppose we are planning a clinical trial and expect a 20% 
success rate in the active group and a 10% success rate 
in the placebo group. We expect to enroll 100 participants 
in each group and are interested in the power of the study.

10.116  Perform a simulation study, and generate 100 par-
ticipants from a binomial distribution with p = .2 and 100 
participants from a binomial distribution with p = .1. Test 
to determine whether the observed sample proportion of 
successes are significantly different, using a two-sided test 
with α = .05.

10.117  Repeat the Problem 10.116 simulation 1000 times, 
and compute the proportion of simulations in which a sig-
nificant difference is found (i.e., an estimate of the power of 
the study). Data set available
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10.118  What should the theoretical power be for the exer-
cise in Problem 10.117? How do the estimated power and 
theoretical power compare?

Infectious Disease
Aminoglycosides are powerful broad-spectrum antibiot-
ics used for gram-negative infections often in seriously ill 
patients. For example, the drugs are often prescribed for 
drug-resistant tuberculosis as recommended by the World 
Health Organization. However, these drugs have serious 
side effects, including irreversible hearing loss referred to as 
ototoxicity. The most commonly prescribed aminoglycoside 
is gentamicin.

A clinical trial was set up in China to assess whether the 
addition of aspirin to a standard regimen of gentamicin 
would have an effect on the incidence of ototoxicity [28]. 
There were 195 patients enrolled in a prospective, rand-
omized, double-blind clinical trial. Of these, 106 patients 
were randomized to a twice daily regimen of 80−160 mg of 
gentamicin plus placebo and 89 patients were randomized 
to receive the same regimen of gentamicin + 3 g of aspirin 
(ASA) daily.

10.119  (i)  What is a prospective study? What are its 
advantages?

 (ii) � What is a randomized study? What are its advantages?

(iii) � What is a double-blind study? Are there advantages vs. 
other approaches?

After 2 weeks of treatment, 14 of the placebo patients and 
3 of the ASA patients developed clinically significant hear-
ing loss. 

10.120  Implement a test to assess whether the incidence 
of hearing loss is different between the groups. State clearly 
which test you are using, and report a two-sided p-value.

10.121  Interpret the results of your test in Problem 10.120.

Suppose another research group wishes to replicate the 
findings of this study. The investigators conservatively es-
timate that the incidence of hearing loss will be 10% in a 
gentamicin + placebo group and 5% in a gentamicin + ASA 
group and plan to enroll an equal number of subjects in 
each group.

10.122  How many subjects need to be enrolled in total in 
the study if (1) the investigators want to have a 90% chance 
of detecting a significant difference using a two-sided test 
with α = .05 and (2) it is anticipated that 5% of the enrolled 
subjects will not complete the study?

Obstetrics
The standard screening test for Down’s syndrome is based 
on a combination of maternal age and the level of serum 
alpha-fetoprotein. Using this test 80% of Down’s syndrome 
cases can be identified, while 5% of normals are detected 
as positive.

10.123  What is the sensitivity and specificity of the test?

Suppose that 1 out of 500 infants are born with Down’s 
syndrome.

10.124  What precentage of infants who test positive using 
the test will actually have Down’s syndrome?

A new test is proposed that may be better or worse than 
the standard test. To assess their relative efficacy, a pilot 
study is conducted where both tests are used on the same 
subjects and compared with the true diagnosis. Let + 	
= correct assessment, − = incorrect assessment. The 	
results are given in Table 10.44.

Table 10.44  � Comparison of two screening 	
tests for Down’s syndrome

Standard test	 New test	 N

	 +	 +	 82
	 +	 −	 5
	 −	 +	 10
	 −	 −	     3
	 	 	 100

Thus, for 82 infants, both tests make the correct classifica-
tion, for 3 infants both tests make the wrong classification, for 
5 infants the standard test makes the correct diagnosis while 
the new test does not, and for 10 infants the new test makes 
the correct diagnosis while the standard test does not.

10.125  Perform a hypothesis test to compare the accuracy 
of the two tests, and report a two-sided p-value.

10.126  Suppose the investigators plan a larger study com-
paring the two tests. How many infants need to be tested 
to have an 80% probability of finding a significant difference 
using a two-sided test with α = 0.05 if the proportion of test 
results in the four groups in Table 10.44 are considered to 
be the true proportions?

Ophthalmology
Dry eye is the most prevalent form of ocular discomfort and 
irritation, with approximately 20 million people in the United 
States having mild to moderate dry eye. A small clinical trial 
was performed to compare the effectiveness of an active 
drug vs. placebo for relieving symptoms of dry eye. Spe-
cifically, patients were randomized to either active drug or 
placebo for 2 weeks. They then came for a clinic visit where 
they were exposed to a chamber with a controlled adverse 
environment (CAE) for 90 minutes (with low humidity in-
tended to exacerbate symptoms of dry eye). The patients 
were then asked to report their degree of discomfort while 
in the CAE using the following scale: (0 = none, 1 = inter-
mittent awareness, 2 = constant awareness, 3 = intermittent 
discomfort, 4 = constant discomfort). The results by treat-
ment group are shown in Table 10.45.
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Table 10.45  � Comparison of active drug vs. 
placebo for the prevention of dry eye 
symptoms 

	 Ocular discomfort

	 2	 3	 4	 Total

Active drug	 6	 17	 37	 60
Placebo	 2	 13	 44	 59

10.127  What is the difference between a nominal and 
ordinal categorical variable? What type of variable is ocular 
discomfort?

10.128  Treating ocular discomfort as a nominal scale, as-
sess whether significant differences in ocular discomfort 
exist between active drug and placebo patients. Report a 	
p-value (two-tailed). (Hint: Assume that large sample meth-
ods are appropriate for the data.) Interpret the results.

10.129  Treating ocular discomfort as an ordinal scale, as-
sess whether significant differences in ocular discomfort 
exist between active and placebo patients. Report a p-value 
(two-tailed). (Hint: Assume that large sample methods are 
appropriate for these data.) Interpret the results.

Hypertension
A study was performed relating neonatal blood-pressure 
level to neonatal taste responsiveness (Zinner et al. [29]). 
To assess salt taste responsiveness, infants 2 to 4 days 
old were offered 3 solutions via nipple cannulas containing 
(i) water, (ii) water + 0.1 molar salt, and (iii) water + 0.3 molar	
salt. Infant blood pressure was measured separately with a 
Physiometrics machine at 2–4 days of age. A comparison 
was made between the mean number of sucks per burst of 
sucking (MSB) on (water + 0.3 molar salt) minus the MSB 
on water alone = Δ MSB. If Δ MSB ≤ − 10, it was consid-
ered an aversive response; if Δ MSB > 0, it was considered 
a preferential response; otherwise, it was considered a 
neutral response. For the purposes of this question, the 
neutral response infants were eliminated and we compare 
the distribution of diastolic blood pressure between the 
aversive and preferential response infants. The results are 
given in Table 10.46.

We wish to test whether there is an association between 
salt taste response and DBP quintile. 

10.130  State the null and alternative hypotheses to be 
tested to answer this question in statistical terms.

10.131  What is the expected number of infants in DBP 
quintile 2 with a preferential salt taste response under the 
null hypothesis?

10.132  What test procedure can be used to test the hy-
potheses in Problem 10.130?

10.133  Use a computer program to implement this test 
procedure and report a two-tailed p-value.

10.134  What are your overall conclusions based on your 
results?

Cardiology
Antithrombotic drugs are used after coronary stenting to 
prevent stent thrombosis. A study was performed to com-
pare the efficacy and safety of three antithrombotic drug 
regimens after coronary stenting: aspirin alone, aspirin + 
warfarin, and aspirin + ticlopidine [30]. Patients were ran-
domly assigned to one of the three regimens. The primary 
endpoint was any of the following outcomes: (a) death, (b) 
revascularization of the target lesion, or (c) angiographic 
evidence of thrombosis or MI within 30 days.

10.135  What is the principal benefit(s) of assigning 	
patients randomly to the treatment regimens?

The results for the primary endpoint are given in Table 10.47.

Table 10.47  � Comparison of vascular outcomes by 
treatment group in a clinical trial of 
three antithrombotic agents

Group number	 Group name	 Number of events	 Total

1	 Aspirin alone	 20	 557
2	 Aspirin + warfarin	 15	 550
3	 Aspirin + ticlopidine	 3	 546

10.136  What test can be used to compare event rates 
among the three groups?

	 Table 10.46 	 Association between diastolic blood pressure (DBP) quintile and salt taste response

Diastolic bp	 Diastolic bp Level	 Salt Taste	 Salt Taste	 Percent	
Quintile	 (mm Hg)	 Response Aversive	 Response Preferential	 Preferential

1	 ≤ 36	 16	 10	 38%
2	 36.1–39.9	   8	 12	 60%
3	 40.0–42.0	 12	 11	 48%
4	 42.1–49.9	   5	 19	 79%
5	 ≥ 50	   7	 15	 68%

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



454              C H A P T E R  10      Hypothesis Testing: Categorical Data

10.137  State the hypotheses to be tested under the null 
and alternative hypotheses.

10.138  Implement the test in Problem 10.136, and report a 
p-value (two-tailed).

Ophthalmology
A case−control study was performed among 145 subjects 
with macular degeneration and 34 controls, all of whom 
were 70- to 79-year-old women. A genetic risk score was 
developed to help differentiate the cases from the controls. 
The risk score was categorized into six groups (1, 2, 3, 4, 
5, 6), with 6 being the highest risk and 1 being the lowest 
risk.The data in Table 10.48 were obtained relating the risk 
score to case/control status.

Table 10.48  � Association between a genetic risk 
score and macular degeneration

Risk score	 Cases	 Controls

1	 3	 11
2	 7	 3
3	 6	 6
4	 10	 8
5	 11	 2
6	 108	 4
Total	 145	 34

10.139  What test can be performed to study the asso-
ciation between case/control status and risk score? Spe-
cifically, we are interested in testing whether cases tend to 
have consistently higher risk scores or consistently lower 
risk scores than controls.

10.140  Perform the test in Problem 10.139, and report a 
p-value (two-tailed).

Another use for the risk score is to compute a prevalence 
estimate of AMD for women with different risk scores. In the 
general population, the prevalence of AMD among 70- to 
79-year-old women is .025.

10.141  What is the estimated prevalence of AMD among 
women with a risk score in group 1? In group 6? Hint: Use 
Bayes’ Theorem.

10.142  What is the relative risk for AMD among women in 
group 6 compared with women in group 1? What does the 
relative risk mean in words?

Pulmonary Disease
Asthma is an important health problem for inner-city 
children, frequently resulting in hospital admission if symp-
toms become exacerbated. It is well known that compli-
ance of children with asthma medication is often poor. 
Also, many household allergens (e.g., roaches) worsen 

asthma symptoms. A study is proposed in which children 
will be randomized to either an active intervention where 
a community health worker comes to the home and edu-
cates the children and parents as to approaches to reduce 
the risk of asthma symptoms or a control intervention 
where households will receive the same information in 
print but no home visits will be performed. It is expected 
that 30% of the children in the active group vs. 10% of the 
children in the control group will have an improvement in 
asthma symptoms.

10.143  How many subjects should be recruited in each 
group (same number per group) to have a 90% chance of 
detecting a significant difference using a two-sided test 
with α = .05?

10.144  Suppose that 50 households are randomized per 
group. How much power would the study have under the 
above assumptions?

The results of the study were as follows: 14 of the 50 active 
intervention children had an improvement in symptoms com-
pared with 6 of the 50 control intervention children.

10.145  What test can be used to compare the results in 
the active and control groups?

10.146  Perform the test in Problem 10.145, and report a 
p-value (two-tailed).

Ophthalmology
The Sorbinil Retinopathy Trial was conducted among 497 
type I (insulin-dependent) diabetic patients who had little 
or no evidence of retinopathy at baseline [31]. Retinopa-
thies are abnormalities of the retina that sometimes occur 
among diabetic patients and can result in substantial losses 
of vision in advanced stages. Patients were randomized to 
either Sorbinil, an aldose-reductase inhibitor, or placebo 
and were seen at 1 year and then every 9 months up to 48 
months after randomization. In addition, all subjects had a 
final visit at the end of the trial (max = 56 months). Sixteen 
of the patients provided no follow-up. The primary endpoint 
of the trial was based on change in retinopathy severity level 
from baseline to maximum follow-up (i.e., severity level at 
maximum follow-up − severity level at baseline). An ordinal 
grading scale was used to evaluate change: 2+ levels bet-
ter, 1 level better, no change, 1 level worse, …, 5+ levels 
worse. The outcome data by treatment group are given in 
Table 10.49.

The primary outcome for the study was worsening by 2 or 
more levels.

10.147  What test can be used to compare the two treat-
ment groups on the primary endpoint?

10.148  Implement the test in Problem 10.147, and provide 
a p-value (two-tailed).

A more efficient method of analysis would leave the change 
in retinopathy level in its raw form without grouping the data 
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but would take into account the ordinal nature of the change 
scores.

10.149  What test can be used to compare the two groups 
if this more efficient method is used?

10.150  Implement the test in Problem 10.149, and provide 
a p-value (two-tailed).

10.151  Reanalyze the data in Table 10.49 using the 
Wilcoxon rank sum test. 

10.152  Compare your results in Problems 10.149 
and 10.151. Which do you think is a better method of 
analysis? 

	Table 10.49   Outcome data for the Sorbinil Retinopathy Trial (n = 481) change in retinopathy level

	 Better	 Worse

Group	 2+ Levels	 1 Level	 No change	 1 Level	 2 Levels	 3 Levels	 4 Levels	 5+ Levels	 Total

Placebo	 5	 17	 84	 59	 37	 18	 9	 14	 243
Sorbinil	 4	 21	 97	 50	 22	 16	 14	 14	 238
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	 11.1	 I n t r o d u c t i o n

In Chapter 8, statistical methods for comparing the means of a 
normally distributed outcome variable between two populations 
were presented based on t tests. Suppose we call the outcome 
variable y and the group classification (or class) variable x. For t 
test applications, x takes on two values. Another way of looking 
at the methods in Chapter 8 is as techniques for assessing the 
possible association between a normally distributed variable y 
and a categorical variable x. We will see that these techniques 
are special cases of linear-regression methods. In linear regres-
sion, we will study how to relate a normally distributed outcome 
variable y to one or more predictor variables x1, . . . , xk where 
the x’s may be either continuous or categorical variables.

	 Example 11.1 	 Obstetrics  Obstetricians sometimes order tests to measure estriol levels from  
24-hour urine specimens taken from pregnant women who are near term because 
level of estriol has been found to be related to infant birthweight. The test can  
provide indirect evidence of an abnormally small fetus. The relationship between 
estriol level and birthweight can be quantified by fitting a regression line that relates 
the two variables.

In Chapter 10, we also studied the Kappa statistic, which is a measure of associa-
tion between two categorical variables. This index is useful when we are interested 
in how strong the association is between two categorical variables rather than in 
predicting one variable as a function of the other variable. To quantify the associa-
tion between two continuous variables, we can use the correlation coefficient. In 
this chapter we consider hypothesis-testing methods for correlation coefficients and 
extend the concept of a correlation coefficient to describe association among several 
continuous variables.

	 Example 11.2 	 Hypertension  Much discussion has taken place in the literature concerning the 
familial aggregation of blood pressure. In general, children whose parents have high 
blood pressure tend to have higher blood pressure than their peers. One way of ex-
pressing this relationship is by computing a correlation coefficient relating the blood 
pressure of parents and children over a large collection of families.

In this chapter, we discuss methods of regression and correlation analysis in 
which the relationship between two different variables in the same sample are studied. 

11Regression and 
Correlation Methods
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The extension of these methods to the case of multiple-regression analysis, where the 
relationship between more than two variables at a time is considered, is also discussed.

	 11.2	 G e n e r a l  C o n c e p t s

	 Example 11.3 	 Obstetrics  Greene and Touchstone conducted a study to relate birthweight and  
estriol level in pregnant women [1]. Figure 11.1 is a plot of the data from the study; 
the actual data points are listed in Table 11.1. As can be seen from the figure, there 
appears to be a relationship between estriol level and birthweight, although this re-
lationship is not consistent and considerable scatter exists throughout the plot. How 
can this relationship be quantified?

If x = estriol level and y = birthweight, then we can postulate a linear relationship 
between y and x that is of the following form:

	 Equation 11.1 	 E y x x( ) = +α β

where E y x( ) = expected or average birthweight (y) among women with a given es-
triol level (x).

That is, for a given estriol-level x, the average birthweight E y x x( ) = +α β .

	 Definition 11.1 	 The line y = α + βx is the regression line, where α is the intercept and β is the slope 
of the line.

The relationship y = α + βx is not expected to hold exactly for every woman. 
For example, not all women with a given estriol level have babies with identical 
birthweights. Thus, an error term e, which represents the variance of birthweight 
among all babies of women with a given estriol level x, is introduced into the model. 

	 Figure 11.1 	 Data from the Greene-Touchstone study relating birthweight and estriol level 	
in pregnant women near term
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Source: Based on the American Journal of Obstetrics and Gynecology, 85(1), 1−9, 1963.
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Let’s assume e follows a normal distribution, with mean 0 and variance σ2. The full 
linear-regression model then takes the following form:

	 Equation 11.2 	 y x e= + +α β

where e is normally distributed with mean 0 and variance σ2.

	 Definition 11.2 	 For any linear-regression equation of the form y x e y= + +α β ,  is called the depen-
dent variable and x is called the independent variable because we are trying to 
predict y as a function of x.

	 Example 11.4 	 Obstetrics  Birthweight is the dependent variable and estriol is the independent 
variable for the problem posed in Example 11.3 because estriol levels are being used 
to try to predict birthweight.

One interpretation of the regression line is that for a woman with estriol level x, 
the corresponding birthweight will be normally distributed with mean α + βx and 
variance σ2. If σ2 were 0, then every point would fall exactly on the regression line, 
whereas the larger σ2 is, the more scatter occurs about the regression line. This rela-
tionship is illustrated in Figure 11.2.

How can β be interpreted? If β is greater than 0, then as x increases, the expected 
value of y x= +α β  will increase.

	 Example 11.5 	 Obstetrics  This situation appears to be the case in Figure 11.3a for birthweight (y) and 
estriol (x) because as estriol increases, the average birthweight correspondingly increases.

If β is less than 0, then as x increases, the expected value of y will decrease.

	 Table 11.1 	 Sample data from the Greene-Touchstone study relating birthweight 	
and estriol level in pregnant women near term

	 Estriol	 Birthweight		  Estriol	 Birthweight 
	 (mg/24 hr)	 (g/100)		  (mg/24 hr)	 (g/100) 
   i	 xi	 yi	 i	 xi	 yi

	 1	 7	 25	 17	 17	 32
	 2	 9	 25	 18	 25	 32
	 3	 9	 25	 19	 27	 34
	 4	 12	 27	 20	 15	 34
	 5	 14	 27	 21	 15	 34
	 6	 16	 27	 22	 15	 35
	 7	 16	 24	 23	 16	 35
	 8	 14	 30	 24	 19	 34
	 9	 16	 30	 25	 18	 35
	10	 16	 31	 26	 17	 36
	11	 17	 30	 27	 18	 37
	12	 19	 31	 28	 20	 38
	13	 21	 30	 29	 22	 40
	14	 24	 28	 30	 25	 39
	15	 15	 32	 31	 24	 43
	16	 16	 32

Source: Based on the American Journal of Obstetrics and Gynecology, 85(1), 1–9, 1963.
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	 Example 11.6 	 Pediatrics  This situation might occur in a plot of pulse rate (y) vs. age (x), as illus-
trated in Figure 11.3b, because infants are born with rapid pulse rates that gradually 
slow with age.

If β is equal to 0, then there is no linear relationship between x and y.

y

x

y

x

σ 2 > 0 (imperfect fit)

σ 2 = 0 (perfect fit)

	 Figure 11.2 	 The effect of σ2 on the goodness of fit of a regression line
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	 Figure 11.3 	 Interpretation of the regression line for different values of β

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



	 11.3      Fitting Regression Lines—The Method of Least Squares              461

	 Example 11.7 	 This situation might occur in a plot of birthweight vs. birthday, as shown in  
Figure 11.3c, because there is no relationship between birthweight and birthday.

	 11.3	 Fi  t t i n g  Reg   r e s s i o n  Li  n e s — T h e  Me  t h o d 

o f  Le  a s t  S q u a r e s

The question remains as to how to fit a regression line (or, equivalently, to obtain 
estimates of α and β, denoted by a and b, respectively) when data appear in the form 
of Figure 11.1 (on p. 458). We could eyeball the data and draw a line that is not too 
distant from any of the points, but in practice this approach is difficult and can 
be quite imprecise, with either a large number of points or a lot of scatter. A better 
method is to set up a specific criterion that defines the closeness of a line to a set 
of points and to find the line closest to the sample data according to this criterion.

Consider the data in Figure 11.4 and the estimated regression line y = a + bx. The 
distance di of a typical sample point (xi, yi) from the line could be measured along 
a direction parallel to the y-axis. If we let ( , ˆ ) ( , )x y x a bxi i i i= +  be the point on the  
estimated regression line at xi, then this distance is given by d y y y a bxi i i i i= − = − −ˆ .  
A good-fitting line would make these distances as small as possible. Because the di 
cannot all be 0, the criterion S1 = sum of the absolute deviations of the sample points 

from the line = dii

n

=∑ 1
 can be used and the line that minimizes S1 can be found. In-

stead, for both theoretical reasons and ease of derivation, the following least-squares 

criterion is commonly used:

		  S = sum of the squared distances of the points from the line

		     
= = − −( )

= =
∑ ∑d y a bxi
i

n

i i
i

n
2

1

2

1

	 Figure 11.4 	 Possible criteria for judging the fit of a regression line
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	 Definition 11.3 	 The least-squares line, or estimated regression line, is the line y = a + bx that mini-
mizes the sum of squared distances of the sample points from the line given by

		
S di

i

n

=
=
∑ 2

1

This method of estimating the parameters of a regression line is known as the 
method of least squares.
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The following notation is needed to define the slope and intercept of a 
regression line.

	 Definition 11.4 	 The raw sum of squares for x is defined by

		  xi
i

n
2

1=
∑

The corrected sum of squares for x is denoted by Lxx and defined by

		  x x x x ni
i

n

i
i

n

i
i

n

−( ) = −





= = =
∑ ∑ ∑2

1

2

1 1

2

It represents the sum of squares of the deviations of the xi from the mean. Similarly, 
the raw sum of squares for y is defined by

		  yi
i

n
2

1=
∑

The corrected sum of squares for y is denoted by Lyy and defined by

	 y y y y ni
i

n

i
i

n

i
i

n

−( ) = −





= = =
∑ ∑ ∑2

1

2

1 1

2

Notice that Lxx and Lyy are simply the numerators of the expressions for the  
sample variances of x (i.e., sx

2) and y (i.e., sy
2), respectively, because

		
s x x n s y yx i

i

n

y i
i

n
2 2

1

2 2

1

1= −( ) −( ) = −( )
= =
∑ ∑and nn −( )1

	 Definition 11.5 	 The raw sum of cross products is defined by

		
x yi i

i

n

=
∑

1

The corrected sum of cross products is defined by

		
x x y yi

i

n

i−( ) −( )
=
∑

1

which is denoted by Lxy.
It can be shown that a short form for the corrected sum of cross products is 

given by

	
x y x y ni i

i

n

i
i

n

i
i

n

= = =
∑ ∑ ∑−












1 1 1

What does the corrected sum of cross products mean? Suppose β > 0. From 
Figure 11.3a, we see that if β > 0, then as x increases, y will tend to increase as well. 
Another way of expressing this relationship is that if x xi −( ) is greater than 0 (which 
will be true for large values of xi), then yi will tend to be large or y yi −  will be greater 
than 0 and x x y yi i−( ) −( ) will be the product of two positive numbers and thus 
will be positive. Similarly, if x xi −  is < 0, then y yi −  will also tend to be < 0 and 
x x y yi i−( ) −( ) will be the product of two negative numbers and thus will be positive. 

Thus, if β > 0, the sum of cross products will tend to be positive. Suppose that β < 0. 
From Figure 11.3b, when x is small, y will tend to be large and when x is large, y will 
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tend to be small. In both cases, x x y yi i−( ) −( ) will often be the product of 1 positive 
and 1 negative number and will be negative. Thus, if β < 0, the sum of cross products 
will tend to be negative. Finally, if β = 0, then x and y bear no linear relation to each 
other and the sum of cross products will be close to 0.

It can be shown that the estimate b of the underlying slope β, which minimizes 
S, is given by b = Lxy /Lxx. Thus, we refer to b as the least-squares slope. Because Lxx is 
always positive (except in the degenerate case when all x’s in the sample are the same), 
the sign of b is the same as the sign of the sum of cross products Lxy. This makes good 
intuitive sense based on the preceding discussion. Furthermore, for a given estimate  
of the slope b, it can be shown that the value of the intercept for the line that satis
fies the least-squares criterion (i.e., that minimizes S) is given by a y bx= − . We  
summarize these results as follows.

	 Equation 11.3 	 �Estimation of the Least-Squares Line   
The coefficients of the least-squares line y = a + bx are given by

		
b L L a y bx y b xxy xx i

i

n

i
i

n

= = − = −


= =
∑ ∑and

1 1



n

		�  Sometimes, the line y = a + bx is called the estimated or fitted regression line or, 
more briefly, the regression line.

	 Example 11.8 	 Obstetrics  Derive the estimated regression line for the data in Table 11.1.

	 	 Solution:  First,

		
x x y x yi

i
i

i
i

i
i

i
i

= = = =
∑ ∑ ∑ ∑

1

31
2

1

31

1

31

1

31

must be obtained so as to compute the corrected sum of squares (Lxx) and cross prod-
ucts (Lxy). These quantities are given as follows:

		
x x y xi

i
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i
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i
i

i= = = =
∑ ∑ ∑= = =
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31
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1
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331
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Then, compute Lxy and Lxx:

		

L x y x yxy i
i

i i
i

i
i

= −










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31

= − ( )( ) =

= −
=
∑

,

L x xxx i
i

i
ii=
∑





= − =

1

31 2
231 9876 534 31 677 42.

Finally, compute the slope of the regression line:

		  b L Lxy xx= = =412 677 42 0 608. .

The intercept of the regression line can also be computed. Note from Equation 11.3 that

		
a y xi

i
i

i

= −






= −

= =
∑ ∑

1

31

1

31

0 608 31 992 0 608 5. . 334 31 21 52( )[ ] = .

Thus, the regression line is given by y = 21.52 + 0.608x. This regression line is shown 
in Figure 11.1 (on p. 458).

How can the regression line be used? One use is to predict values of y for given 
values of x.
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	 Definition 11.6 	 The predicted, or average, value of y for a given value of x, as estimated from the 
fitted regression line, is denoted by ŷ a bx= + . Thus the point x a bx, +( ) is always on 
the regression line.

	 Example 11.9 	 Obstetrics  What is the estimated average birthweight if a pregnant woman has an 
estriol level of 15 mg/24 hr?

	 	 Solution:  If the estriol level were 15 mg/24 hr, then the best prediction of the aver-
age value of y would be

		  ˆ . . .y = + ( ) =21 52 0 608 15 30 65

Because y is in the units of birthweight (g)/100, the estimated average birthweight = 
30.65 × 100 = 3065 g.

One possible use of estriol levels is to identify women who are carrying a low-
birthweight fetus. If such women can be identified prior to delivery, then drugs 
might be used to prolong the pregnancy until the fetus grows larger because low-
birthweight infants are at greater risk than normal infants for mortality in the first 
year of life and for poor growth and development in childhood.

	 Example 11.10 	 Obstetrics  Low birthweight is defined here as ≤2500 g. For what estriol level would 
the predicted birthweight be 2500 g?

	 	 Solution:  Note that the predicted value of y (birthweight/100) is

		  ˆ . .y x= +21 52 0 608

If ŷ = =2500 100 25, then x can be obtained from the equation

		  25 21 52 0 608 25 21 52 0 608 3= + = − =. . ( . ) . .x xor 448 0 608 5 72. .=

Thus, if a woman has an estriol level of 5.72 mg/24 hr, then the predicted birth-
weight is 2500 g. Furthermore, the predicted infant birthweight for all women with 
estriol levels of ≤5 mg/24 hr is <2500 g (assuming estriol can only be measured in 
increments of 1 mg/24 hr). This level could serve as a critical value for identifying 
high-risk women and trying to prolong their pregnancies.

How can the slope of the regression line be interpreted? The slope of the regres-
sion line tells us the amount y increases per unit increase in x.

	 Example 11.11 	 Obstetrics  Interpret the slope of the regression line for the birthweight−estriol data 
in Example 11.1.

	 	 Solution:  The slope of 0.608 tells us that the predicted y increases by about 0.61 units 
per 1 mg/24 hr. Thus, the predicted birthweight increases by 61 g for every 1 mg/24 
hr increase in estriol.

In this section, we learned how to fit regression lines using the method of least 
squares based on the linear-regression model in Equation 11.2. Note that the method of 
least squares is appropriate whenever the average residual for each given value of x is 0—
that is, when E e X x( )= = 0 in Equation 11.2. Normality of the residuals is not strictly 
required. However, the normality assumption in Equation 11.2 is necessary to perform 
hypothesis tests concerning regression parameters, as discussed in the next section.

See page 459 for  
Equation 11.2
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On the flowchart at the end of this chapter (Figure 11.33, p. 538), we answer yes 
to (1) interested in relationships between two variables? (2) both variables continu-
ous? and (3) interested in predicting one variable from another? This leads us to the 
box labeled “Simple linear regression.”

	 11.4	 I n f e r e n c e s  A b o u t  P a r a m e t e r s 

f r o m  Reg   r e s s i o n  Li  n e s

In Section 11.3, the fitting of regression lines using the method of least squares 
was discussed. Because this method can be used with any set of points, criteria for 
distinguishing regression lines that fit the data well from those that do not must be 
established. Consider the regression line in Figure 11.5.

y

x0

(xi, yi)

(xi, yi)

Regression line
y = a + bx

(residual
component)

yi – yi

(x, y) yi – y
(regression component)

yi – y

Representative sample point

x

y

	 Figure 11.5 	 Goodness of fit of a regression line

A hypothetical regression line and a representative sample point have been drawn. 
First, notice that the point ( , )x y  falls on the regression line. This feature is common to 
all estimated regression lines because a regression line can be represented as

		  y a bx y bx bx y b x x= + = − + = + −( )
or, equivalently,

	 Equation 11.4 	 y y b x x− = −( )

If x is substituted for x and y for y in Equation 11.4, then 0 is obtained on both sides 
of the equation, which shows that the point (x y, ) must always fall on the estimated 
regression line. If a typical sample point (xi,yi) is selected and a line is drawn through 
this point parallel to the y-axis, then the representation in Figure 11.5 is obtained.

	 Definition 11.7 	 For any sample point (xi,yi), the residual, or residual component, of that point 
about the regression line is defined by y yi i− ˆ .

	 Definition 11.8 	 For any sample point (xi,yi), the regression component of that point about the  
regression line is defined by (ŷ yi − ).

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



466              C H A P T E R  11      Regression and Correlation Methods

In Figure 11.5 the deviation y yi −  can be separated into residual (y yi i− ˆ ) and 
regression (ŷ yi − ) components. Note that if the point (xi,yi) fell exactly on the 
regression line, then y yi i= ˆ  and the residual component y yi i− ˆ  would be 0 and 
y y y yi i− = −ˆ . Generally speaking, a good-fitting regression line will have regression 
components large in absolute value relative to the residual components, whereas the 
opposite is true for poor-fitting regression lines. Some typical situations are shown 
in Figure 11.6.

The best-fitting regression line is depicted in Figure 11.6a, with large regression com-
ponents and small residual components. The worst-fitting regression line is depicted in 
Figure 11.6d, which has small regression components and large residual components. 
Intermediate situations for goodness of fit are shown in Figures 11.6b and 11.6c.

How can the plots in Figure 11.6 be quantified? One strategy is to square the 
deviations about the mean y yi − , sum them up over all points, and decompose this 
sum of squares into regression and residual components.

	 Definition 11.9 	 The total sum of squares, or Total SS, is the sum of squares of the deviations of the 
individual sample points from the sample mean:

	
y yi

i

n

−( )
=
∑ 2

1

	 Definition 11.10 	 The regression sum of squares, or Reg SS, is the sum of squares of the regression 
components:

	
ŷ yi

i

n

−( )
=
∑ 2

1
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(c) Small regression, small residual
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(d) Small regression, large residual
     components

	 Figure 11.6 	 Regression lines with varying goodness-of-fit relationships
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	 Definition 11.11  	 The residual sum of squares, or Res SS, is the sum of squares of the residual  
components:

	
y yi i

i

n

−( )
=
∑ ˆ 2

1

It can be shown that the following relationship is true.

	 Equation 11.5 	 �Decomposition of the Total Sum of Squares into Regression and Residual 	
Components

		
y y y y y yi

i

n

i i i
i

n

i

n

−( ) = −( ) + −( )
= ==
∑ ∑∑2

1

2 2

11

ˆ ˆ

		  or	 Total SS = Reg SS + Res SS

F Test for Simple Linear Regression
The criterion for goodness of fit used in this book is the ratio of the regression sum 
of squares to the residual sum of squares. A large ratio indicates a good fit, whereas 
a small ratio indicates a poor fit. In hypothesis-testing terms we want to test the 
hypothesis H0: β = 0 vs. H1: β ≠ 0, where β is the underlying slope of the regression 
line in Equation 11.2.

The following terms are introduced for ease of notation in describing the 
hypothesis test.

	 Definition 11.12  	 The regression mean square, or Reg MS, is the Reg SS divided by the number of pre-
dictor variables (k) in the model (not including the constant). Thus, Reg MS = Reg SS/k. 
 For simple linear regression, which we have been discussing, k = 1 and thus Reg MS 
= Reg SS. For multiple regression in Section 11.9, k is >1. We will refer to k as the 
degrees of freedom for the regression sum of squares, or Reg df.

	 Definition 11.13  	 The residual mean square, or Res MS, is the ratio of the Res SS divided by (n − k − 1), 
or Res MS = Res SS/(n − k − 1). For simple linear regression, k = 1 and Res MS = Res SS/
(n − 2). We refer to n − k − 1 as the degrees of freedom for the residual sum of squares, 
or Res df. Res MS is also sometimes denoted by sy x⋅

2  in the literature. The Res MS is an 
estimate of sy x⋅

2  the variation of y for a given value of x.

Under H0, F = Reg MS/Res MS follows an F distribution with 1 and n − 2 df,  
respectively. H0 should be rejected for large values of F. Thus, for a level α test, H0 
will be rejected if F > Fl,n−2,1−α and accepted otherwise.

The expressions for the regression and residual sums of squares in Equation 11.5 
simplify for computational purposes as follows.

	 Equation 11.6 	 Short Computational Form for Regression and Residual SS

		

Regression SS

Residual SS

= = =bL b L L Lxy xx xy xx
2 2

== − = −TotalSS RegressionSS L L Lyy xy xx
2

See page 459 for  
EQUATION 11.2
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Thus, the test procedure can be summarized as follows.

	 Equation 11.7 	 �F Test for Simple Linear Regression   
To test H0: β = 0 vs. H1: β ≠ 0, use the following procedure:

	 	 (1)	 Compute the test statistic

			   F = Reg MS/Res MS

			   that follows an F1,n−2 distribution under H0.

	 	 (2)	 For a two-sided test with significance level α, if

				    F > F1,n−2,1−α, then reject H0 ; if 

				    F ≤ F1,n−2,1−α, then accept H0.

	 	 (3)	 The exact p-value is given by Pr F Fn1 2, − >( ).
		�  The acceptance and rejection regions for the regression F test are illustrated in 

Figure 11.7. The computation of the p-value for the regression F test is shown 
in Figure 11.8. These results are typically summarized in an analysis-of-variance 
(ANOVA) table, as in Table 11.2.

0 Value

Fr
eq

u
en

cy

F ≤ F1, n – 2, 1 – α
Acceptance region

F > F1, n – 2, 1 – α
Rejection region

F1, n – 2, 1 – α

F1, n – 2 distribution

F = Reg MS/Res MS
   = (Lxy/Lxx)/[(Lyy – Lxy/Lxx)/(n – 2)]2 2

	 Figure 11.7 	 Acceptance and rejection regions for the simple linear-regression F test
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p = Pr(F1, n – 2 > F)

p-value

F

F1, n – 2 distribution

	 Figure 11.8 	 Computation of the p-value for the simple linear-regression F test
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	 Table 11.2 	 ANOVA table for displaying regression results

	 SS	 df	 MS	 F statistic	 p-value

Regression 	 (a)a 	 1	 (a)/1	 F = [(a)/1]/[(b)/(n − 2)]	 Pr(F1,n−2 > F )
Residual	 (b)b	 n − 2	 (b)/(n − 2)

Total	 (a) + (b)

a(a) = Regression SS. 
b(b) = Residual SS.

	 Example 11.12 	 Obstetrics  Test for the significance of the regression line derived for the birth-
weight−estriol data in Example 11.8 (on p. 463).

	  	 Solution:  From Example 11.8,

		  Lxy = 412, Lxx = 677.42

Furthermore,

		
y L y yi

i
yy i i

i

2

1

31
2

1

31 2

32 418 31 3= = −






=

= =
∑ ∑, 22 418 992 31 6742

1

31

, − =
=
∑
i

Therefore,

		

Reg SS Reg MS

To

= = = =L Lxy xx
2 2412 677 42 250 57/ / . .

ttal SS

Res SS Total SS Reg SS

= =

= − = −

Lyy 674

674 2550 57 423 43

31 2 29

. .

/ /

=
= −( ) =Res MS Res SS Res SS == =
= =

423 43 29 14 60

250 57 14

. / .

/ . / .F Reg MS Res MS 660 17 16 1 29 0= . ~ ,F Hunder

From Table 8 in the Appendix,

		  F F F1 29 999 1 20 999 14 82 17 16, ,. , ,. . .< = < =

Therefore,	 p < .001 

and H0 is rejected and the alternative hypothesis, namely that the slope of the re-
gression line is significantly different from 0, is accepted, implying a significant linear 
relationship between birthweight and estriol level. These results are summarized in 
the ANOVA table (Table 11.3).

	 Table 11.3 	 ANOVA results for the birthweight−estriol data in Example 11.12

Analysis of Variance

Source	 DF	 SS	 MS	 F	 P

Regression	 1	 250.57	 250.57	 17.16	 0.000

Residual Error	 29	 423.43	 14.60

Total	 30	 674.00

Using the Computer to Perform the F Test for  
Simple Linear Regression
We can use the lm command of R to fit linear regression models. The syntax for a 
univariate regression model follows.
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First, we fit the model with the lm command as follows

model<- lm(y ~ x)

To obtain the ANOVA table for this model, we then use the command:

anova(model)

	 Example 11.13 	 Obstetrics  Fit a linear regression model based on the data in Example 11.8 (on 
p. 463) using a computer program.

Solution:  We use the lm command of R as follows:

> model<- lm(birthweight ~ estriol)
> anova(model)
Analysis of Variance Table

Response: birthweight
		  Df	 Sum Sq	 Mean Sq	 F value	 Pr(>F)
estriol	 1	 250.57	 250.574	 17.162	 0.0002712***
Residuals	 29	 423.43	 14.601
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The results are the same as in Example 11.12.

A summary measure of goodness of fit frequently referred to in the literature is R2.

	 Definition 11.14 	 R2 is defined as Reg SS/Total SS.

R2 can be thought of as the proportion of the variance of y that is explained by x. If 
R2 = 1, then all variation in y can be explained by variation in x, and all data points fall 
on the regression line. In other words, once x is known y can be predicted exactly, with 
no error or variability in the prediction. If R2 = 0, then x gives no information about y, 
and the variance of y is the same with or without knowing x. If R2 is between 0 and 1, 
then for a given value of x, the variance of y is lower than it would be if x were unknown 
but is still greater than 0. In particular, the best estimate of the variance of y given x (or 
σ2 in the regression model in Equation 11.2) is given by Res MS (or sy x⋅

2 ). For large n, sy x⋅
2  ≈ 

s2
y (1 - R2). Thus, R2 represents the proportion of the variance of y that is explained by x.

	 Example 11.14 	 Obstetrics  Compute and interpret R2 and sy x.
2  for the birthweight−estriol data in 

Example 11.12.

	 	 Solution:  From Table 11.3, the R2 for the birthweight−estriol regression line is given 
by 250.57/674 = .372. Thus, about 37% of the variance of birthweight can be ex-
plained by estriol level. Furthermore, sy x.

2 = 14.60, as compared with

		
s y y ny i

i

n
2 2

1

1 674 30 22 47= −( ) −( ) = =
=
∑ / .

Thus, for the subgroup of women with a specific estriol level, such as 10 mg/24 hr, 
the variance of birthweight is 14.60, whereas for all women with any estriol level, 
the variance of birthweight is 22.47. Note that 

		  s s Ry x y⋅
2 2 214 60 22 47 650 1 1 372 628= = ≈ − = − =. / . . . .

See page 459 for  
EQUATION 11.2
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In some computer packages (e.g., Stata) the expression 1 − s2
y . x /s2

y  is referred to as 
adjusted R2. Thus, for the estriol data, R2 = 0.372, while adjusted R2 = 0.350. For large n, 
adjusted R2 ≈ R2. For small n, a better measure of % variation of y explained by x is 
given by the adjusted R2.

	 Example 11.15 	 Pulmonary Disease  Forced expiratory volume (FEV) is a standard measure of pul-
monary function. To identify people with abnormal pulmonary function, standards 
of FEV for normal people must be established. One problem here is that FEV is re-
lated to both age and height. Let us focus on boys who are ages 10−15 and postulate 
a regression model of the form FEV = α + β(height) + e. Data were collected on FEV 
and height for 655 boys in this age group residing in Tecumseh, Michigan [2]. Table 
11.4 presents the mean FEV in liters for each of twelve 4-cm height groups. Find the 
best-fitting regression line, and test it for statistical significance. What proportion of 
the variance of FEV can be explained by height?

	 Table 11.4 	 Mean FEV by height group for boys ages 10−15 in Tecumseh, Michigan

Height	 Mean FEV	 Height	 Mean FEV 
(cm)	 (L)	 (cm)	 (L)

134a	 1.7	 158	 2.7
138	 1.9	 162	 3.0
142	 2.0	 166	 3.1
146	 2.1	 170	 3.4
150	 2.2	 174	 3.8
154	 2.5	 178	 3.9

aThe middle value of each 4-cm height group is given here.
Source: Based on the American Review of Respiratory Disease, 108, 258−272, 1973.

	 	 Solution:  A linear-regression line is fitted to the points in Table 11.4:

		

x x yi
i

i t
ii

= = =
= ==
∑ ∑∑1872 294 320 32 3

1

12
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Therefore,
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12

12 32 3 0 0513 1872 12 5 313∑





= − ( )[ ] = −. . .

Thus, the fitted regression line is 

		  FEV = −5.313 + 0.0513 × height

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



472              C H A P T E R  11      Regression and Correlation Methods

Statistical significance is assessed by computing the F statistic in Equation 11.7 as follows:

		

Reg SS Reg MS

Total

= = = =L Lxy xx
2 2117 4 2288 6 024. .

SS

Res SS

= = − =

= −

Lyy 93 11 32 3 12 6 169

6 169 6

2. . .

. .0024 0 145

2 0 145 10 0 01

=
= −( ) = =

.

/ . / .Res MS Res SS n 445

414 8 1 10 0F F H= =Reg MS Res MS under/ . ~ ,

Clearly, the fitted line is statistically significant because from Table 8 in the Appen-
dix, F1,10,.999 = 21.04, so p < .001. These results can be displayed in an ANOVA table 
(Table 11.5).

	 Table 11.5 	 ANOVA table for the FEV−height regression results in Example 11.15

Analysis of Variance

Source	 DF	 SS	 MS	 F	 P

Regression	 1	 6.0239	 6.0239	 414.78	 0.000

Residual Error	 10	 0.1452	 0.0145

Total	 11	 6.1692

Finally, the proportion of the variance of FEV that is explained by height is es-
timated by adjusted R2 = 1 - .0145/(6.1692/11) = .974. Thus, differences in height 
explain most of the variability in FEV among boys in this age group.

t Test for Simple Linear Regression
In this section an alternative method for testing the hypothesis H0: β = 0 vs.  
H1: β ≠ 0 is presented. This method is based on the t test and is equivalent to the 
F test presented in Equation 11.7. The procedure is widely used and also provides 
interval estimates for β.

The hypothesis test here is based on the sample regression coefficient b or, more 
specifically, on b/se(b), and H0 will be rejected if |b|/se(b) > c for some constant c and 
will be accepted otherwise.

The sample regression coefficient b is an unbiased estimator of the population 
regression coefficient β and, in particular, under H0, E(b) = 0. Furthermore, the vari-
ance of b is given by

		  σ σ2 2 2

1

x x Li xx
i

n

−( ) =
=
∑

In general, σ2 is unknown. However, the best estimate of σ2 is given by sy x⋅
2 . Hence

		  se b s Ly x xx( ) / /≈ ( )⋅
1 2

Note that since L n s1xx x
2( )= − ,  se b s s nit follows that ( ) / 1 .y x x( )= −⋅

Thus, the standard error of the slope estimate (b) depends both on the sample size n 
and the variation of the x values used to estimate the regression line. The greater the 
variation of the x values, the smaller the se(b).

See page 468 for  
EQUATION 11.7
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Finally, under H0, t = b/se(b) follows a t distribution with n − 2 df. Therefore, the  
following test procedure for a two-sided test with significance level α is used.

	 Equation 11.8 	 t Test for Simple Linear Regression 
		  To test the hypothesis H0: β = 0 vs.

		  H1: β ≠ 0, use the following procedure: 

	 	 (1)	 Compute the test statistic

			   t b s Ly x xx= ( )⋅
2 1 2

/
/

	 	 (2)	 For a two-sided test with significance level α,

			   If	 t tn> − −2 1 2, /α     or    t t tn n< = −− − −2 2 2 1 2, / , /α α

			   then reject H0;

			   if	 − ≤ ≤− − − −t t tn n2 1 2 2 1 2, / , /α α

			   then accept H0.

	 	 (3)	 The p-value is given by

				    p = 2 × (area to the left of t under a tn−2 distribution) if t < 0 

				    p = 2 × (area to the right of t under a tn−2 distribution) if t ≥ 0

		�  The acceptance and rejection regions for this test are shown in Figure 11.9. 
Computation of the p-value is illustrated in Figure 11.10.

The t test in this section and the F test in Equation 11.7 are equivalent in that 
they always provide the same p-values. Which test is used is a matter of personal 
preference; both appear in the literature.

	 Example 11.16 	 Obstetrics  Assess the statistical significance for the birthweight−estriol data using 
the t test in Equation 11.8.

	 	 Solution:  From Example 11.8 (p. 463), b = Lxy  / Lxx = 0.608. Furthermore, from Table 11.3 
and Example 11.12 (on p. 469),

		
se b s Ly x xx( ) = ( ) = ( ) =⋅

2 1 2 1 214 60 677 42 0 147
/ /. . .

See page 468 for  
EQUATION 11.7

	 Figure 11.9 	 Acceptance and rejection regions for the t test for simple linear regression
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Thus, t = b/se(b) = 0.608/0.147 = 4.14 ~ t29 under Ho 

Because    t29,.9995 = 3.659 < 4.14 = t

we have    p < 2 × (1 − .9995) = .001

This information is summarized in Table 11.6. Note that the p-values based on the 
F test in Table 11.3 (on p. 469) and the t test in Table 11.6 are the same (p = .000).

	 Table 11.6  	 The t test approach for the birthweight−estriol example

The regression equation is

brthwgt = 21.5 + 0.608 estriol

Predictor	 Coef	 SE Coef	 T	 P

Constant	 21.523	 2.620	 8.21	 0.000

estriol	 0.6082	 0.1468	 4.14	 0.000

Using the Computer to Perform the t Test for  
Simple Linear Regression
We can also use the lm command of R to perform the t test for linear regression.

1.	 We use the command

		  model<- lm(y~x)

	 where y = dependent variable and x = independent variable.

2.	 To obtain the t test output, we then use the command

		  summary(model)

The summary contains:

(a)	 The estimated regression coefficient
(b)	Its standard error (se(b))
(c)	 The t statistic in Equation 11.8
(d)	The R2 and adjusted R2 of the regression model

Figure 11.10		 Computation of the p-value for the t test for simple linear regression
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     tn – 2 distribution).
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	 Example 11.17 	 Obstetrics  Use the computer to perform the t test for simple linear regression for 
the data in Example 11.8 (on p. 463).

Solution:  We use the lm command of R. The results are as follows:

> model<- lm(birthweight ~ estriol)
> summary(model)

Call:
lm(formula = birthweight ~ estriol)

Residuals:
	 Min	 1Q	 Median	 3Q	 Max 
	-8.1200	 -2.0381	 -0.0381	 3.3537	 6.8800 

Coefficients:
		  Estimate	 Std. Error	 t value	 Pr(>|t|)
(Intercept)	 21.5234	 2.6204	 8.214	 4.68e-09 ***
estriol	 0.6082	 0.1468	 4.143	 0.000271 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.821 on 29 degrees of freedom
Multiple R-squared:  0.3718,    Adjusted R-squared:  0.3501 
F-statistic: 17.16 on 1 and 29 DF,  p-value: 0.0002712

We see that the regression coefficient, standard error, t statistic, and p-value (listed in 
the last column of the estriol row) are the same as in Example 11.16.

	 11.5	 I n t e r v a l  E s t i m at i o n  f o r  Li  n e a r  Reg   r e s s i o n

Interval Estimates for Regression Parameters
Standard errors and interval estimates for the parameters of a regression line are 
often computed to obtain some idea of the precision of the estimates. Furthermore, 
if we want to compare our regression coefficients with previously published regres-
sion coefficients β0 and α0, where these estimates are based on much larger samples 
than ours, then, based on our data, we can check whether β0 and α0 fall within the 
95% confidence intervals for β and α, respectively, to decide whether the two sets of 
results are comparable.

The standard errors of the estimated regression parameters are given as follows.

	 Equation 11.9 	 Standard Errors of Estimated Parameters in Simple Linear Regression

			 

se b
s

L

se a s
n

x
L

y x

xx

y x
xx

( ) =

( ) = +










⋅

⋅

2

2
2

1

Furthermore, the two-sided 100% × (1 − α) confidence intervals for β and α are  
given by
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	 Equation 11.10 	 �Two-Sided 100% × (1 − α) Confidence Intervals for the Parameters of a Regres
sion Line 

	 	 �If b and a are, respectively, the estimated slope and intercept of a regression line 
as given in Equation 11.3 and se(b), se(a) are the estimated standard errors as 
given in Equation 11.9, then the two-sided 100% × (1 − α) confidence intervals 
for β and α are given by

			   b t se bn± − −2 1 2, / ( )α     and   a t± − −n se(a),2 1 2, /α     respectively.

	 Example 11.18 	 Obstetrics  Provide standard errors and 95% confidence intervals for the regression 
parameters of the birthweight−estriol data in Table 11.1 (on p. 459).

	 	 Solution:  From Example 11.16 (on p. 473), the standard error of b is given by 

		  14 60 677 42 0 147. / . .=

Thus, a 95% confidence interval for β is obtained from

		  0.608 ± t29,.975(0.147) = 0.608 ± 2.045(0.147) = 0.608 ± 0.300 = (0.308, 0.908)

		  Compute x to obtain the standard error of a. From Example 11.8,

		  x
xi

i= = ==
∑

1

31

31
534
31

17 23.

Thus, the standard error of a is given by

		
14 60

1
31

17 23
677 42

2 62
2

.
.
.

.+






=

It follows that a 95% confidence interval for α is provided by

		  21.52 ± t29,.975(2.62) = 21.52 ± 2.045(2.62) = 21.52 ± 5.36 = (16.16, 26.88)

These intervals are rather wide, which is not surprising due to the small sample size.
Note that se(b) and se(a) are also provided by the computer output from R in the 
solution to Example 11.17.

Suppose another data set based on 500 pregnancies, where the birthweight−
estriol regression line is estimated as y = 25.04 + 0.52x, is found in the literature.  
Because 0.52 is within the 95% confidence interval for the slope and 25.04 is within 
the 95% confidence interval for the intercept, our results are comparable to those of 
the earlier study. We assume in this analysis that the variability in the slope (0.52) 
and intercept (25.04) estimates from the sample of 500 pregnancies is negligible 
compared with the error from the data set with 31 pregnancies.

Interval Estimation for Predictions Made from Regression Lines
One important use for regression lines is in making predictions. Frequently, the  
accuracy of these predictions must be assessed.

	 Example 11.19 	 Pulmonary Function  Suppose we want to use the FEV−height regression line obtained 
in Example 11.15 (on p. 471) to develop normal ranges for 10- to 15-year-old boys of 
specific heights. In particular, consider John H., who is 12 years old and 160 cm tall 
and whose FEV is 2.5 L. Can his FEV be considered abnormal for his age and height?

See page 463 for  
Equation 11.3
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In general, if all boys of height x are considered, then the average FEV for such 
boys can be best estimated from the regression equation by ŷ a bx= + . How accurate 
is this estimate? The answer to this question depends on whether we are making pre-
dictions for one specific boy or for the mean value of all boys of a given height. The first 
estimate would be useful to a pediatrician interested in assessing the lung function 
of a particular patient, whereas the second estimate would be useful to a researcher 
interested in relationships between pulmonary function and height over large popu-
lations of boys. The standard error (se1) of the first type of estimate and the resulting 
interval estimate are given as follows.

	 Equation 11.11 	 �Predictions Made from Regression Lines for Individual Observations 
	 	 �Suppose we wish to make predictions from a regression line for an individual 

observation with independent variable x that was not used in constructing the 
regression line. The distribution of observed y values for the subset of individu-
als with independent variable x is normal with mean = = +ŷ a bx and standard 
error given by

			 
se y s

n
x x

Ly x
xx

1
2

2

1
1

( ˆ)
( )= + + −







⋅

		  Furthermore, 100% × (1 − α) of the observed values will fall within the interval

			   ˆ ( ˆ), /y t se yn± − −2 1 2 1α

		  This interval is sometimes called a 100% × (1 − α) prediction interval for y.

	 Example 11.20 	 Pulmonary Function  Can the FEV of John H. in Example 11.19 be considered abnor-
mal for his age and height?

	 	 Solution:  John’s observed FEV is 2.5 L. The regression equation relating FEV and 
height was computed in Example 11.15 (p. 471) and is given by y = −5.313 + 0.0513 
× height. Thus, the estimated average FEV for 12-year-old boys of height 160 cm is

		  ˆ . . .y = − + × =5 313 160 0 0513 2 90 L

Before computing the se y1( ˆ), we need to obtain x. From Example 11.15,

		  x
xi

i= = ==
∑

1

12

12
1872
12

156 0.

Thus, se y1( ˆ) is given by

		
se y1

2

0 0145 1
1

12
160 156

2288
0( ˆ) .

( )
.= + + −







 = 00145 1 090 0 126( . ) .=

Furthermore, 95% of boys of this age and height will have an FEV between

		  2 90 0 126 2 90 2 228 0 126 2 9010 975. ( . ) . . ( . ) .,.± = ± =t ±± =0 28 2 62 3 18. ( . , . )

How can this prediction interval be used? Because the observed FEV for John H. 
(2.5 L) does not fall within this interval, we can say that John’s lung function is ab-
normally low for a boy of his age and height; to find a reason for this abnormality, 
further exploration, if possible, is needed.
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The magnitude of the standard error in Equation 11.11 depends on how far the 
observed value of x for the new sample point is from the mean value of x for the 
data points used in computing the regression line ( )x . The standard error is smaller 
when x is close to x than when x is far from x. In general, making predictions from a 
regression line for values of x that are very far from x is risky because the predictions 
are likely to be more inaccurate.

	 Example 11.21 	 Pulmonary Function  Suppose Bill is 190 cm tall, with an FEV of 3.5 L. Compare the 
standard error of his predicted value with that for John, given in Example 11.20.

	 	 Solution:  From Equation 11.11,

		
se y1

2

0 0145 1
1

12
190 156

2288
( ˆ) .

( )= + + −









			   = = > =0 0145 1 589 0 152 0 126 1. ( . ) . . se   (computed in Example 11.20)

This result is expected because 190 cm is further than 160 cm from x = 156 cm.

Suppose we want to assess the mean value of FEV for a large number of boys of 
a particular height rather than for one particular boy. This parameter might interest 
a researcher working with growth curves of pulmonary function in children. How 
can the estimated mean FEV and the standard error of the estimate be found? The 
procedure is as follows.

	 Equation 11.12 	 �Standard Error and Confidence Interval for Predictions Made from Regression Lines 
for the Average Value of y for a Given x 

	 	 �The best estimate of the average value of y for a given x is ŷ a bx= + . Its standard 
error, denoted by se y2( ˆ), is given by

			 
se y s

n
x x

Ly x
xx

2
2

21
( ˆ)

( )= + −







⋅

		�  Furthermore, a two-sided 100% × (1 − α) confidence interval for the average 
value of y is

			   ˆ ( ˆ), /y t se yn± − −2 1 2 2α

	 Example 11.22 	 Pulmonary Function  Compute the standard error and 95% confidence interval for 
the average value of FEV over a large number of boys with height of 160 cm.

	 	 Solution:  Refer to the results of Example 11.20 for the necessary raw data to perform 
the computations. The best estimate of the mean value of FEV is the same as given 
in Example 11.20, which was 2.90 L. However, the standard error is computed differ-
ently. From Equation 11.12,

		
se y2

2

0 0145
1

12
160 156

2288
0 01( ˆ) .

( )
.= + −







 = 445 0 090 0 036( . ) .=

Therefore, a 95% confidence interval for the mean value of FEV over a large number 
of boys with height 160 cm is given by

		  2 90 0 036 2 90 2 228 0 036 210 975. ( . ) . . ( . ) .,.± = ± =t 990 0 08 2 82 2 98± =. ( . , . )
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Notice that this interval is much narrower than the interval computed in 
Example 11.20 (2.62, 3.18), which is a range encompassing approximately 95% of 
individual boys’ FEVs. This disparity reflects the intuitive idea that there is much 
more precision in estimating the mean value of y for a large number of boys with the 
same height x than in estimating y for one particular boy with height x.

Note again that the standard error for the average value of y for a given value 
of x is not the same for all values of x but gets larger the further x is from the mean 
value of x x( ) used to estimate the regression line.

	 Example 11.23 	 Pulmonary Function  Compare the standard error of the average FEV for boys of 
height 190 cm with that for boys of 160 cm.

	 	 Solution:  From Equation 11.12,

		

se y2

2

0 0145
1
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2288
0 01( ˆ) .
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.= + −







 = 445 0 589

0 092 0 036 1602

( . )

. . ( ˆ)= > = =se y xfor cm

This result is expected because 190 cm is further than 160 cm from x = 156 cm.

Using the Computer to Obtain Confidence Limits for 
Predictions from Linear Regression Models
We can use the predict function of R for this purpose after fitting the linear regres-
sion model.

1.	 First, run the regression and assign the results to the object named model as 
follows:

	 model<- lm(y ~ x)

2.	 Create a vector of observations (i.e., x values) labeled x1,…, xk for which you 
obtain a predicted value of y and assign this vector to the object named newdata 
as follows:

	 newdata<- dataframe(x = c(x1,x2,…,xk))

3.	 Obtain predicted values and confidence limits for each of the x values in 
newdata.

	 (a) � To obtain confidence limits for predicted values for a single new observa-
tion, use the syntax

		  predict(model, newdata, interval = “prediction”)

	 (b) � To obtain confidence limits for the mean predicted value for a given x 
value, use the syntax

	  predict(model, newdata, interval = “confidence”)

	 To obtain se’s of predicted values use the additional option, se.fit = TRUE for 
either (a) or (b). However, note that for both (a) and (b) the se’s printed out will cor-
respond to se2 as specified in the text.

	 Example 11.24 	 Pulmonary Disease  Use the computer to obtain predicted FEV’s and associated 95% 
confidence limits for individual boys of height 160 cm and 190 cm, respectively.
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Solution:  We use the predict command of R for this purpose. The output is as 
follows:

1.	 We first fit the model and print out the ANOVA table as follows:

	 > model<- lm(FEV ~ height)
	 > anova(model)
	 Analysis of Variance Table

	 Response: FEV
	            Df   Sum Sq    Mean Sq    F value     Pr(>F)    
	 height     1    6.0239     6.0239     414.78   1.797e-09 ***
	 Residuals  10   0.1452       0.0145                      
	 ---
	 Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

2.	 We now create a vector newdata that has the x values of 160 and 190 cm.
	 > newdata<- data.frame(height = c(160, 190))

3.	 We print out the elements of newdata as follows:
	 > newdata
	   height
	 1  160
	 2  190

4.	 We obtain predicted values and confidence limits for individual boys with these 
heights:

	 > predict(model, newdata, se.fit = TRUE, interval = “prediction”)

	 $fit

	     fit       lwr      upr
	 1 2.896911 2.616527 3.177295
	 2 4.436247 4.097809 4.774685

	 $se.fit
	      1            2 
	 0.03621930   0.09245595 

	 $df
	 [1] 10

	 $residual.scale
	 [1] 0.1205127

The predicted values and 95% confidence limits match those of Examples 11.20 and 
11.21. However, the se.fit corresponds to se2(ŷ) rather than se1(ŷ).

	 Example 11.25 	 Pulmonary Disease  Use the computer to obtain predicted FEV’s for an average boy 
with height 160 cm and 190 cm, respectively.

Solution:  We follow steps 1–3 as in the solution to Example 11.24. We then specify:

> predict(model, newdata, se.fit = TRUE, interval = “confidence”)

$fit

    fit       lwr      upr

1 2.896911 2.816210 2.977613

2 4.436247 4.230242 4.642252
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$se.fit
     1          2 
0.03621930 0.09245595 

$df
[1] 10

$residual.scale
[1] 0.1205127

The predicted values, se’s, and 95% confidence limits, match those of Examples 11.22 
and 11.23.

R E V I E W  QU  E ST  I ONS    1 1 A

1	 What is a residual? Why are residuals important in regression analysis?

2	 A 79-year-old man was admitted to the hospital with coronary-artery disease,  
abdominal pain, and worsening intermittent claudication (which roughly means loss 
of circulation in the legs, making walking difficult and/or painful) [3]. As part of the 
patient’s workup, his lab values were followed over time while in the hospital. His 
hematocrit (%) values over the first 7 days in the hospital are shown in Table 11.7.

	 Table 11.7 	 Hematocrit (%) values over the first 7 days in the hospital for a patient 	
with intermittent claudication

Day 0	 Day 3	 Day 4	 Day 5	 Day 6	 Day 7

28.9	 28.7	 26.4	 30.4	 30.3	 33.2

	 (a)	 Fit a linear-regression line to the hematocrit values over the 7-day period.

	 (b)	 Is there a statistically significant change in his hematocrit values over time?

	 (c)	 Suppose we want to predict his hematocrit on the eighth hospital day.

		   (i)	 What is the best estimate of this value?

		  (ii)	 What is the standard error of this estimate?

		  (iii)	 What is a 95% confidence interval associated with this estimate?

	 11.6	 A s s e s s i n g  t h e  G o o d n e s s  o f  Fi  t  o f 

Reg   r e s s i o n  Li  n e s

A number of assumptions were made in using the methods of simple linear regres-
sion in the previous sections of this chapter. What are some of these assumptions, 
and what possible situations could be encountered that would make these assump-
tions not viable?

	 Equation 11.13 	 Assumptions Made in Linear-Regression Models

	 	 (1)	 For any given value of x, the corresponding value of y has an average value 
α + βx, which is a linear function of x.

	 	 (2)	 For any given value of x, the corresponding value of y is normally distrib-
uted about α + βx with the same variance σ2 for any x.

	 	 (3)	 For any two data points (x1, y1), (x2, y2), the error terms e1, e2 are independent 
of each other.

R
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 I 

E 
W
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Let us now reassess the birthweight−estriol data for possible violation of linear re-
gression assumptions. To assess whether these assumptions are reasonable, we can use 
several different kinds of plots. The simplest plot is the x − y scatter plot. Here we plot 
the dependent variable y vs. the independent variable x and superimpose the regres-
sion line y = a + bx on the same plot. We have constructed a scatter plot of this type 
for the birthweight−estriol data in Figure 11.1 (on p. 458). The linearity assumption 
appears reasonable in that there is no obvious curvilinearity in the raw data. However, 
there is a hint that there is more variability about the regression line for higher estriol 
values than for lower estriol values. To focus more clearly on this issue, we can com-
pute the residuals about the fitted regression line and then construct a scatter plot of 
the residuals vs. either the estriol values (x) or the predicted birthweights ( ˆ )y a bx= + .

From Equation 11.2, we see that the errors (e) about the true regression line  
(y = α + βx) have the same variance σ2. However, it can be shown that the residuals 
about the fitted regression line (y = a + bx) have different variances depending on 
how far an individual x value is from the mean x value used to generate the regres-
sion line. Specifically, residuals for points (xi, yi) where xi is close to the mean x value 
for all points used in constructing the regression line (i.e., x xi −  is small) will tend 
to be larger than residuals where x xi −  is large. Interestingly, if x xi −  is very large, 
then the regression line is forced to go through the point (xi, yi) (or nearly through 
it) with a small residual for this point. The standard deviation of the residuals is 
given in Equation 11.14.

	 Equation 11.14 	 �Standard Deviation of Residuals About the Fitted Regression Line   
Let (xi, yi) be a sample point used in estimating the regression line, y = α  + βx.

		  If y = a + bx is the estimated regression line, and

			   êi = residual for the point (xi, yi) about the estimated regression line, then

			   ˆ ( )e y a bxi i i= − +  and

			 
sd e

n
x x

Li
i

xx
(ˆ ) ˆ ( )= − − −







σ2

2

1
1

		  The Studentized residual corresponding to the point (xi, yi) is ˆ / (ˆ )e sd ei i .

In Figure 11.11, we have plotted the Studentized residuals (the individual residu-
als divided by their standard deviations) vs. the predicted birthweights (g/100)  
(ŷ = 21.52 + 0.608 × estriol).

A point labeled 2 indicates that there are two identical data points—for example, 
the second and third points in Table 11.1 (on p. 459) are both (9, 25). There is still a 
hint that the spread increases slightly as the predicted birthweight increases. However, 
this impression is mainly due to the four data points with the lowest predicted values, 
all of which have residuals that are close to 0. One commonly used strategy that can 
be employed if unequal residual variances are present is to transform the dependent 
variable (y) to a different scale. This type of transformation is called a variance-
stabilizing transformation. The goal of using such a transformation is to make the 
residual variances approximately the same for each level of x (or, equivalently, each 
level of the predicted value). The most common transformations when the residual 
variance is an increasing function of x are either the ln or square-root transformations. 
The square-root transformation is useful when the residual variance is proportional to 

See page 459 for  
Equation 11.2
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the average value of y (e.g., if the average value goes up by a factor of 2, then the re-
sidual variance goes up by a factor of 2 also). The ln transformation is useful when the 
residual variance is proportional to the square of the average values (e.g., if the average 
value goes up by a factor of 2, then the residual variance goes up by a factor of 4). For 
purposes of illustration, we have computed the regression using the ln transformation 
for birthweight (i.e., y = ln birthweight). The residual plot is shown in Figure 11.12.

The plots in Figures 11.11 and 11.12 look similar. The plot using the square-root 
transformation for birthweight is also similar. Therefore, we would probably choose 
to keep the data in the original scale for the sake of simplicity. However, in other 
data sets the use of the appropriate transformation is crucial and each of the linear-
ity, equal-variance, and normality assumptions can be made more plausible using 
a transformed scale. However, occasionally a transformation may make the equal-
variance assumption more plausible but the linearity assumption less plausible. 
Another possibility is to keep the data in the original scale but employ a weighted 
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	 Figure 11.11 	 Plot of Studentized residuals vs. the predicted value of birthweight for the 
birthweight−estriol data in Table 11.1
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regression in which the weight is approximately inversely proportional to the resid-
ual variance. This may be reasonable if the data points consist of averages over vary-
ing numbers of individuals (e.g., people living in different cities, where the weight 
is proportional to the size of the city). Weighted regression is beyond the scope of 
this text (see Draper & Smith [4] for a more complete discussion of this technique).

Other issues of concern in judging the goodness of fit of a regression line are 
outliers and influential points. In Section 8.10, we discussed methods for the de-
tection of outliers in a sample, where only a single variable is of interest. However, 
it is more difficult to detect outliers in a regression setting than in univariate prob-
lems, particularly if multiple outliers are present in a data set. Influential points are 
defined heuristically as points that have an important influence on the coefficients 
of the fitted regression lines. Suppose we delete the ith sample point and refit the 
regression line from the remaining n − 1 data points. If we denote the estimated 

	 Figure 11.12 	 Plot of Studentized residuals vs. the predicted value of ln(birthweight) for the 
birthweight−estriol data in Table 11.1
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slope and intercept for the reduced data set by b(i) and a(i), respectively, then the 
sample point will be influential if either b b i− ( )  or a a i− ( )  is large. Outliers and in-
fluential points are not necessarily the same. An outlier ( , )x yi i  may or may not be 
influential, depending on its location relative to the remaining sample points. For 
example, if x xi −  is small, then even a gross outlier will have a relatively small in-
fluence on the slope estimate but will have an important influence on the intercept 
estimate. Conversely, if x xi −  is large, then even a data point that is not a gross 
outlier may be influential. See Draper & Smith [4] and Weisberg [5] for a more com-
plete description of residual analysis, detection of outliers, and influential points in 
a regression setting.

We have discussed using residual analysis to assess the validity of the linear-
ity assumption (assumption 1 in Equation 11.13), and the validity of the equal-
variance assumption (assumption 2 in Equation 11.13). The normality assumption 
is most important in small samples. In large samples, an analog to the central-limit 
theorem can be used to establish the unbiasedness of b as an estimator of β and 
the appropriateness of the test of significance concerning β (such as the F test for 
simple linear regression in Equation 11.7 or the t test for simple linear regression 
in Equation 11.8), or formulas for confidence-interval width of β (Equation 11.10), 
even if the error terms are not normally distributed. The independence assumption 
(assumption 3, Equation 11.13) is important to establish the validity of p-values and 
confidence-interval width from simple linear regression. Specifically, if multiple data 
points from the same individual are used in fitting a regression line, then p-values 
will generally be too low, and confidence-interval width will generally be too narrow 
using standard methods of regression analysis (which assume independence). We 
discuss this type of clustered data in more detail in Chapter 13.

	 11.7	 T h e  C o r r e l at i o n  C o e f f i c ie  n t

The discussion of linear-regression analysis in Sections 11.2−11.6 primarily focused 
on methods of predicting a dependent variable (y) as a function of an independent 
variable (x). Often we are interested not in predicting one variable from another but 
rather in investigating whether or not there is a relationship between two variables.

	 Example 11.26 	 Cardiovascular Disease  Serum cholesterol is an important risk factor in the etiology 
of cardiovascular disease. Much research has been devoted to understanding the 
environmental factors that cause elevated cholesterol levels. For this purpose, 
cholesterol levels were measured on 100 genetically unrelated spouse pairs. We are 
not interested in predicting the cholesterol level of a husband from that of his wife 
but instead would like some quantitative measure of the relationship between their 
levels. We will use the correlation coefficient for this purpose.

First, we discuss the related concept of covariance. The covariance is a measure 
used to quantify the relationship between two random variables.

	 Definition 11.15 	 The covariance between two random variables X and Y is denoted by Cov(X, Y) and 
is defined by

		  Cov X Y E X Yx y,( ) = −( ) −( )



µ µ

which can also be written as E(XY) − µxµy, where µx is the average value of X, µy is the 
average value of Y, and E(XY) = average value of the product of X and Y.

See pages 463, 468, 473, 
and 476 for  
Equations 11.3, 
11.7,  11.8,  and 
11.10 , respectively
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It can be shown that if the random variables X and Y are independent, then the 
covariance between them is 0. If large values of X and Y tend to occur among the 
same subjects (as well as small values of X and Y), then the covariance is positive. 
If large values of X and small values of Y (or conversely, small values of X and large 
values of Y) tend to occur among the same subjects, then the covariance is negative.

One issue is that the covariance between two random variables X and Y is in the 
units of X multiplied by the units of Y. Thus, it is difficult to interpret the strength of 
association between two variables from the magnitude of the covariance. To obtain 
a measure of relatedness independent of the units of X and Y, we consider the  
correlation coefficient.

	 Definition 11.16 	 The correlation coefficient between two random variables X and Y is denoted by 
Corr(X, Y) or ρ and is defined by

		  ρ σ σ= =Corr X Y Cov X Y x y( , ) ( , ) ( )

where σx and σy are the standard deviations of X and Y, respectively.

Unlike the covariance, the correlation coefficient is a dimensionless quantity 
that is independent of the units of X and Y and ranges between −1 and 1. For ran-
dom variables that are approximately linearly related, a correlation coefficient of 
0 implies independence. A correlation coefficient close to 1 implies nearly perfect 
positive dependence with large values of X corresponding to large values of Y and 
small values of X corresponding to small values of Y. An example of a strong posi-
tive correlation is between forced expiratory volume (FEV), a measure of pulmonary 
function, and height (Figure 11.13a). A somewhat weaker positive correlation exists 
between serum cholesterol and dietary intake of cholesterol (Figure 11.13b). A cor-
relation coefficient close to −1 implies ≈ perfect negative dependence, with large 
values of X corresponding to small values of Y and vice versa, as is evidenced by the 
relationship between resting pulse rate and age in children under the age of 10  
(Figure 11.13c). A somewhat weaker negative correlation exists between FEV and 
number of cigarettes smoked per day in children (Figure 11.13d).

For variables that are not linearly related, it is difficult to infer independence or 
dependence from a correlation coefficient.

	 Example 11.27 	 Let X be the random variable height z-score for 7-year-old children, where height 
z-score = (height − µ)/σ.

		  µ = mean height for 7-year-old children
		  σ = standard deviation of height for 7-year-old children

Let Y = height z-score2 = X2. Compute the correlation coefficient between X and Y, 
assuming that X is normally distributed.

	 	 Solution:  Because X is symmetric about 0 and Y is the same for positive and negative 
values of X with the same absolute value, it is easy to show that Corr(X, Y) = 0. How-
ever, X and Y are totally dependent because if we know X, then Y is totally deter-
mined. For example, if X = 2, then Y = 4. Thus, it would be a mistake to assume that 
the random variables X and Y are independent if the correlation coefficient between 
them is 0. This relationship can only be inferred for linearly related variables. 

In Definition 11.16, we defined the population correlation coefficient ρ. In gen-
eral, ρ is unknown and we have to estimate ρ by the sample correlation coefficient r.
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	 Definition 11.17 	 The sample (Pearson) correlation coefficient (r) is defined by

	 L L Lxy xx yy/

The correlation is not affected by changes in location or scale in either variable 
and must lie between −1 and +1. The sample correlation coefficient can be inter-
preted in a similar manner to the population correlation coefficient ρ.

	 Equation 11.15 	 Interpretation of the Sample Correlation Coefficient

	 	 (1)	 If the correlation is greater than 0, such as for birthweight and estriol, 
then the variables are said to be positively correlated. Two variables (x, y) 
are positively correlated if as x increases, y tends to increase, whereas as x  
decreases, y tends to decrease.

	 	 (2)	 If the correlation is less than 0, such as for pulse rate and age, then the 
variables are said to be negatively correlated. Two variables (x, y) are nega-
tively correlated if as x increases, y tends to decrease, whereas as x decreases, 
y tends to increase.

	 	 (3)	 If the correlation is exactly 0, such as for birthweight and birthday, then the 
variables are said to be uncorrelated. Two variables (x, y) are uncorrelated if 
there is no linear relationship between x and y.

		�  Thus the sample correlation coefficient provides a quantitative estimate of the de-
pendence between two variables: the closer |r| is to 1, the more closely related the 
variables are; if |r| = 1, then one variable can be predicted exactly from the other.

	 Figure 11.13 	 Interpretation of various degrees of correlation
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		�	   As was the case for the population correlation coefficient (ρ), interpreting the 
sample correlation coefficient (r) in terms of degree of dependence is only correct if 
the variables x and y are normally distributed and in certain other special cases. If the 
variables are not normally distributed, then the interpretation may not be correct.

	 Example 11.28 	 Obstetrics  Compute the sample correlation coefficient for the birthweight−estriol 
data presented in Table 11.1 (on p. 459).

	 	 Solution:  From Examples 11.8 and 11.12 (on pp. 463 and 469, respectively),

		  L L Lxy xx yy= = =412 677 42 674.

Therefore,  r L L Lxy xx yy= = = =412 677 42 674 412 675 71 61. ( ) . .

Relationship Between the Sample Correlation Coefficient (r) 
and the Population Correlation Coefficient (ρ)
We can relate the sample correlation coefficient r and the population correlation 
coefficient ρ more clearly by dividing the numerator and denominator of r by (n − 1) 
in Definition 11.17, whereby

	 Equation 11.16 	 r
L n

L
n

L

n

xy

xx yy

=
−

−




 −







/ ( )1

1 1

We note that s L nx xx
2 1= −/ ( ) and s L ny yy

2 1= −/ ( ). Furthermore, if we define the  
sample covariance by s L nxy xy= −/ ( )1 , then we can re-express Equation 11.16 in the 
following form.

	 Equation 11.17 	 r
s

s s
x yxy

x y
= = sample covariance between and

(( )(sample standard deviation of sample stx aandard deviation of y)

This is completely analogous to the definition of the population correlation coef-
ficient ρ given in Definition 11.16 with the population quantities, Cov(X, Y), σx, and 
σy replaced by their sample estimates sxy, sx, and sy.

Relationship Between the Sample Regression Coefficient (b) 
and the Sample Correlation Coefficient (r)
The relationship between the sample regression coefficient (b) and the sample cor-
relation coefficient (r) is given in Equation 11.18.

	 Equation 11.18 	 b
rs

s
y

x
=

To derive Equation 11.18, note from Equation 11.3 that b = Lxy / Lxx and from Defini-

tion 11.17 that r L L Lxy xx yy= / . Therefore, if r is multiplied by L Lyy xx/ , we obtain
See page 463 for  
EQUATION 11.3
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	 Equation 11.19 	 r
L

L

L

L L

L

L

L

L
byy

xx

xy

xx yy

yy

xx

xy

xx
= × = =

Furthermore, from Definition 11.4 (on p. 462),

		

s
L

n

s
L

n

s s L L

y
yy

x
xx

y x yy xx

2

2

2 2

1

1

=
−

=
−

=/ /

or  s s L Ly x yy xx/ /=

Substituting s sy x/  for L Lyy xx/  on the left-hand side of Equation 11.19 yields the 
relationship in Equation 11.18.

How can Equation 11.18 be interpreted? The regression coefficient (b) can be in-
terpreted as a rescaled version of the correlation coefficient (r), where the scale factor 
is the ratio of the standard deviation of y to that of x. Note that r will be unchanged 
by a change in the units of x or y (or even by which variable is designated as x and 
which is designated as y), whereas b is in the units of y/x.

	 Example 11.29 	 Pulmonary Function  Compute the correlation coefficient between FEV and height 
for the pulmonary-function data in Example 11.15 (on p. 471).

	 	 Solution:  From Example 11.15,

		  L L Lxy xx yy= = =117 4 2288 6 169. .

Therefore,  r = = =117 4
2288 6 169

117 4
118 81

988
.

( . )
.
.

.

Thus, a very strong positive correlation exists between FEV and height. The sample 
regression coefficient b was calculated as 0.0513 in Example 11.15. Furthermore, the 
sample standard deviation of x and y can be computed as follows:

		

s
x x

n
L

n

s

x

i
i

n

xx=
−

−
=

−
= = ==

∑ ( )
.

2

1

1 1
2288
11

208 14 42

yy

i
i

n

yy
y y

n

L

n
=

−

−
=

−
= = ==

∑ ( )
.

. .

2

1

1 1
6 169

11
0 561 0 7449

and their ratio is thus given by

		  s sy x/ . / . .= =0 749 14 42 0519

Finally, b can be expressed as a rescaled version of r as

		  b r s sy x= ( / )  or  .0513 = .988(.0519)

Notice that if height is re-expressed in inches rather than centimeters (1 in. = 2.54 cm), 
then sx is divided by 2.54, and b is multiplied by 2.54; that is,

		  b bin cm. . . . .= × = × =2 54 0513 2 54 130

where bin. is in the units of liters per inch and bcm is in the units of liters per centimeter. 
However, the correlation coefficient remains the same at .988.
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When should the regression coefficient be used, and when should the correla-
tion coefficient be used? The regression coefficient is used when we specifically want 
to predict one variable from another. The correlation coefficient is used when we 
simply want to describe the linear relationship between two variables but do not 
want to make predictions. In cases in which it is not clear which of these two aims is 
primary, both a regression and a correlation coefficient can be reported.

	 Example 11.30 	 Obstetrics, Pulmonary Disease, Cardiovascular Disease  For the birthweight−estriol data 
in Example 11.1 (on p. 457), the obstetrician is interested in using a regression equation 
to predict birthweight from estriol levels. Thus the regression coefficient is more appro-
priate. Similarly, for the FEV−height data in Example 11.15 (on p. 471), the pediatrician 
is interested in using a growth curve relating a child’s pulmonary function to height, 
and again the regression coefficient is more appropriate. However, in collecting data on 
cholesterol levels in spouse pairs in Example 11.26 (on p. 485), the geneticist is interested 
simply in describing the relationship between cholesterol levels of spouse pairs and is not 
interested in prediction. Thus, the correlation coefficient is more appropriate here.

In this section, we have introduced the concept of a correlation coefficient. In 
the next section, we discuss various hypothesis tests concerning correlation coef-
ficients. Correlation coefficients are used when we are interested in studying the 
association between two variables but are not interested in predicting one variable 
from another. On the flowchart at the end of this chapter (Figure 11.33, p. 538), we 
answer yes to (1) interested in relationships between two variables? and (2) both 
variables continuous? no to (3) interested in predicting one variable from another? 
yes to (4) interested in studying the correlation between two variables? and yes to  
(5) both variables normal? This leads us to the box “Pearson correlation methods.”

R E V I E W  QU  E ST  I ONS    1 1 B

1	 What is the difference between a regression coefficient and a correlation coefficient?

2	 Refer to the data in Table 2.13, on page 36.

	 (a)	 Compute the correlation coefficient between white-blood count following  
admission and duration of hospital stay.

	 (b)	 Discuss what this correlation coefficient means.

	 11.8	 S tat i s t i c a l  I n f e r e n c e  f o r  C o r r e l at i o n 

C o e f f i c ie  n t s

In the previous section, we defined the sample correlation coefficient. Based on 
Equation 11.17, if every unit in the reference population could be sampled, then the 
sample correlation coefficient (r) would be the same as the population correlation 
coefficient, denoted by ρ, which was introduced in Definition 11.16 (on p. 486).

In this section, we will use r, which is computed from finite samples, to test vari-
ous hypotheses concerning ρ.

One-Sample t Test for a Correlation Coefficient
	 Example 11.31 	 Cardiovascular Disease  Suppose serum-cholesterol levels in spouse pairs are 

measured to determine whether there is a correlation between cholesterol levels in 
spouses. Specifically, we wish to test the hypothesis H0: ρ = 0 vs. H1: ρ ≠ 0. Suppose that  
r = .25 based on 100 spouse pairs. Is this evidence enough to warrant rejecting H0?

See page 488 for  
Equation 11.17

R
 E
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 I 

E 
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In this instance, the hypothesis test would naturally be based on the sample cor-
relation coefficient r and H0 would be rejected if |r| is sufficiently far from 0. Assum-
ing that each of the random variables x = serum-cholesterol level for the husband 
and y = serum-cholesterol level for the wife is normally distributed, then the best 
procedure for testing the hypothesis is given as follows:

	 Equation 11.20 	 �One-Sample t Test for a Correlation Coefficient   
To test the hypothesis H0: ρ = 0 vs. H1: ρ ≠ 0, use the following procedure:

	 	 (1)	 Compute the sample correlation coefficient r.

	 	 (2)	 Compute the test statistic

					    t r n r= − −( ) ( )/ /2 11 2 2 1 2

			   which under H0 follows a t distribution with n − 2 df.

	 	 (3)	 For a two-sided level α test,

			   if  t tn> − −2 1 2, /α     or    t tn< − − −2 1 2, /α

			   then reject H0.

			   If  − ≤ ≤− − − −t t tn n2 1 2 2 1 2, / , /α α

			   then accept H0.

	 	 (4)	 The p-value is given by

				  
p t tn= × −2 2(area to the left of under a disttribution if

area to the right of

)

(

t

p

<
= ×

0

2 tt t tnunder a distribution if− ≥2 0)

	 	 (5)	 We assume an underlying normal distribution for each of the random vari-
ables used to compute r.

		�  The acceptance and rejection regions for this test are shown in Figure 11.14. 
Computation of the p-value is illustrated in Figure 11.15.

	 Example 11.32 	 Perform a test of significance for the data in Example 11.31.

	 	 Solution:  We have n = 100, r = .25. Thus, in this case,

		  t = − = =. . . /. .25 98 1 25 2 475 968 2 562

From Table 5 in the Appendix,

	 t t t t60 99 60 995 120 99 1202 39 2 66 2 358, . , . , .. . .= = = ,, . .995 2 617=

Therefore, because 60 < 98 < 120,

		  . / .005 2 01< <p     or    . .01 02< <p

and H0 is rejected. Alternatively, using R, the exact p-value = 2 × [1 − pt(2.56, 98)] = .012. 
We conclude there is a significant aggregation of cholesterol levels between spouses. 
This result is possibly due to common environmental factors such as diet. But it could 
also be due to the tendency for people of similar body build to marry each other, and 
their cholesterol levels may have been correlated at the time of marriage.

Interestingly, the one-sample t test for correlation coefficients in Equation 11.20 
is mathematically equivalent to the F test in Equation 11.7 and the t test in Equation 
11.8 for simple linear regression, in that they always yield the same p-values. The 
question as to which test is more appropriate is best answered by whether a regres-
sion or a correlation coefficient is the parameter of primary interest.

See pages 468 and 473 for  
EQUATIONS 11.7 
and 11.8,  
respectively
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	 Figure 11.14 	 Acceptance and rejection regions for the one-sample t test for a 	
correlation coefficient

0
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	 Figure 11.15 	 Computation of the p-value for the one-sample t test for a 	
correlation coefficient
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to the right of t under a
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Using the Computer to Perform the One-Sample t Test  
for Correlation
We use the R command cor.test with syntax

	 cor.test(x, y)

where x and y correspond to vectors of observations for the x and y variables, 
respectively.

	 Example 11.33 	 Pulmonary Disease  Use the computer to obtain the correlation between FEV and 
height for the data set used in Example 11.15 (on p. 471) and test the hypothesis H0: 
ρ = 0 vs. H1: ρ ≠ 0.

Solution:  We use the cor.test command of R for this purpose. The syntax and output 
is as follows:

> cor.test(FEV, height)

        Pearson’s product-moment correlation

data:  FEV and height
t = 20.3661, df = 10, p-value = 1.797e-09
alternative hypothesis: true correlation is not equal to 0
sample estimates:
     cor 
0.988159 

Note that t2 = F statistic for simple linear regression given in Table 11.5 (on p. 472) 
(414.8) as shown below, indicating that the p-values from these two tests are the same.

> output<- lm(FEV~ height)
> anova(output)
Analysis of Variance Table

Response: FEV
           Df    Sum Sq       Mean Sq    F value     Pr(>F)    
height       1      6.0239     6.0239     414.78   1.797e-09 ***
Residuals  10    0.1452     0.0145                      
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> F<- 20.3661^2
> F
[1] 414.778

One-Sample z Test for a Correlation Coefficient
In the previous section, a test of the hypothesis H0: ρ = 0 vs. H1: ρ ≠ 0 was considered. 
Sometimes the correlation between two random variables is expected to be some 
quantity ρ0 other than 0 and we want to test the hypothesis H0: ρ = ρ0 vs. H1: ρ ≠ ρ0.

	 Example 11.34 	 Suppose the body weights of 100 fathers (x) and first-born sons (y) are measured and 
a sample correlation coefficient r of .38 is found. We might ask whether or not this 
sample correlation is compatible with an underlying correlation of .5 that might be 
expected on genetic grounds. How can this hypothesis be tested?
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In this case, we want to test the hypothesis H0: ρ = .5 vs. H1: ρ ≠ .5.The problem 
with using the t test formation in Equation 11.20 is that the sample correlation coef-
ficient r has a skewed distribution for nonzero ρ that cannot be easily approximated 
by a normal distribution. Fisher considered this problem and proposed the following 
transformation to better approximate a normal distribution:

	 Equation 11.21 	 Fisher’s z Transformation of the Sample Correlation Coefficient r   
The z transformation of r given by

		
z

r
r

= +
−







1
2

1
1

ln

is approximately normally distributed under H0 with mean

		
z0 0 0

1
2

1 1= + −ln[( ) / ( )]ρ ρ

and variance 1/(n − 3). The z transformation is very close to r for small values  
of r but tends to deviate substantially from r for larger values of r. A table of the  
z transformation is given in Table 12 in the Appendix.

	 Example 11.35 	 Compute the z transformation of r = .38.

	 	 Solution:  The z transformation can be computed from Equation 11.21 as follows:

		  z = +
−





 = 





1
2

1 0 38
1 0 38

1
2

1 38
0 62

ln
.
.

ln
.
.

== = =1
2

2 226
1
2

0 800 0 400ln( . ) ( . ) .

Alternatively, we could refer to Table 12 in the Appendix with r = .38 to obtain  
z = 0.400.

Fisher’s z transformation can be used to conduct the hypothesis test as follows:  
Under H0, Z is approximately normally distributed with mean z0 and variance  
1/(n − 3) or, equivalently,

		  λ = − −( ) ~ ( , )Z z n N0 3 0 1

H0 will be rejected if z is far from z0. Thus, the following test procedure for a two-
sided level α test is used.

	 Equation 11.22 	 	 One-Sample z Test for a Correlation Coefficient   
To test the hypothesis H0: ρ = ρ0 vs. H1: ρ ≠ ρ0, use the following procedure:

(1)	 Compute the sample correlation coefficient r and the z transformation of r.

(2)	 Compute the test statistic

		        λ = − −( )z z n0 3

(3)	 If  λ α> −z1 2/     or    λ α< − −z1 2/     reject H0.

		  If  − ≤ ≤− −z z1 2 1 2α αλ/ /     accept H0.

See page 491 for  
EQUATION 11.20

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



	 11.8      Statistical Inference for Correlation Coefficients              495

(4)	 The exact p-value is given by

		      
p
p

= × ≤
= × − >

2
2 1

Φ
Φ

( )
[ ( )]

λ λ
λ λ

if 0
if 0

(5)	 Assume an underlying normal distribution for each of the random variables 
used to compute r and z.

The acceptance and rejection regions for this test are shown in Figure 11.16. 
Computation of the p-value is illustrated in Figure 11.17.

	 Example 11.36 	 Perform a test of significance for the data in Example 11.34.

	 	 Solution:  In this case r = .38, n = 100, ρ0 = .50. From Table 12 in the Appendix,

		  z0
1
2

1 5
1 5

549
1
2

1 38
1 38

= +
−





 = +

−
ln

.

.
. ln

.

.
z = 


 = .400

Hence,

		
λ = − = − = −( . . ) ( . )( . ) . ~ (0 400 0 549 97 0 149 9 849 1 47 0N ,, )1

Thus, the p-value is given by

		  2 1 1 47 2 1 9292 142× − = × − =[ ( . )] ( . ) .Φ

Therefore, we accept H0 that the sample estimate of .38 is compatible with an under-
lying correlation of .50; this would be expected on purely genetic grounds. 

To sum up, the z test in Equation 11.22 is used to test hypotheses about nonzero 
null correlations, whereas the t test in Equation 11.20 is used to test hypotheses 
about null correlations of zero. The z test can also be used to test correlations of 
zero under the null hypothesis, but the t test is slightly more powerful in this case 
and is preferred. However, if ρ0 ≠ 0, then the one-sample z test is very sensitive to 

See page 491 for  
EQUATION 11.20

	 Figure 11.16 	 Acceptance and rejection regions for the one-sample z test 	
for a correlation coefficient
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non-normality of either x or y. This is also true for the two-sample correlation test 
presented later in this section (see p. 499).

Interval Estimation for Correlation Coefficients
In the previous two sections, we learned how to estimate a correlation coefficient ρ 
and how to perform appropriate hypothesis tests concerning ρ. It is also of interest 
to obtain confidence limits for ρ. An easy method for obtaining confidence limits for 
p can be derived based on the approximate normality of Fisher’s z transformation of r. 
This method is given as follows.

	 Equation 11.23 	 	 Interval Estimation of a Correlation Coefficient (ρ) 
	 	 	 Suppose we have a sample correlation coefficient r based on a sample of n pairs 

of observations. To obtain a two-sided 100% × (1 − α) confidence interval for the 
population correlation coefficient (ρ):

(1)	 Compute Fisher’s z transformation of r z
r
r

= = +
−





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1
2

1
1

ln .

(2)	 Let zρ = Fisher’s z transformation of ρ
ρ
ρ

= +
−







1
2

1
1

ln .

	 Figure 11.17 	 Computation of the p-value for the one-sample z test for a correlation coefficient
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			   A two-sided 100% × (1 − α) confidence interval for zρ = (z1, z2) where

				    z z z n

z z z n

1 1 2

2 1 2

3

3

= − −

= + −
−

−

α

α

/

/

			   and z1-  α/2 = 100% × (1 − α/2) percentile of an N(0, 1) distribution

	 	 (3)	 A two-sided 100% × (1 − α) confidence interval for ρ is then given by (ρ1, ρ2) 
where

				  
ρ

ρ

1

2

2

2

2

2

1

1

2

2

1
1
1
1

= −
+

= −
+

e
e
e
e

z

z

z

z

The interval (z1, z2) in Equation 11.23 can be derived in a similar manner to the 
confidence interval for the mean of a normal distribution with known variance (see 
Equation 6.7), which is given by

	 Equation 11.24 	 ( , ) /z z z z n1 2 1 2 3= ± −−α

We then solve Equation 11.23 for r in terms of z, whereby

	 Equation 11.25 	 r
e
e

z

z= −
+

2

2
1
1

We now substitute the confidence limits for zρ—that is, (z1, z2) in Equation 11.24— 
into Equation 11.25 to obtain the corresponding confidence limits for ρ given by  
(ρ1, ρ2) in Equation 11.23. The transformation from z to r in Equation 11.25 is some-
times referred to as the inverse Fisher’s z transformation.

	 Example 11.37 	 In Example 11.34 (on p. 493), a sample correlation coefficient of .38 was obtained 
between the body weights of 100 pairs of fathers (x) and first-born sons (y). Provide 
a 95% confidence interval for the underlying correlation coefficient ρ.

	 	 Solution:  From Example 11.36, the z transformation of r = 0.400. From step 2 of 
Equation 11.23, a 95% confidence interval for zρ is given by (z1, z2), where

		  z1 0 400 1 96 97 0 400 0 199 0 201= − = − =. . / . . .

		  z2 0 400 1 96 97 0 400 0 199 0 599= + = + =. . / . . .

From step 3 of Equation 11.23, a 95% confidence interval for ρ is given by (ρ1, ρ2) 
where

		  ρ1
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See page 177 for  
Equation 6.7
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ρ2

2 599
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1 198

1 198

1
1

1
1

2

= −
+

= −
+

=

e
e
e
e

(. )

(. )

.

.

.33139
4 3139
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.

.=

Thus, a 95% confidence interval for ρ = (.198, .536).
Notice that the confidence interval for zρ, given by (z1, z2) = (0.201, 0.599), is 

symmetric about z (0.400). However, when the confidence limits are transformed 
back to the original scale (the scale of ρ) the corresponding confidence limits for ρ 
are given by (ρ1, ρ2) = (.198, .536), which are not symmetric around r = .380. The rea-
son for this is that Fisher’s z transformation is a nonlinear function of r, which only 
becomes approximately linear when r is small (i.e., |r| ≤ .2).

Using the Computer to Obtain Confidence Limits  
for a Correlation Coefficient
We can use the cor.test command of R for this purpose. The syntax is as follows:

1.	 a<- cor.test(x,y)

	 where x and y are vectors of observations corresponding to the x and y vari-
ables.

2.	 a$estimate

	 This provides a point estimate of the correlation coefficient.

3.	 a$conf.int

	 This provides a 95% CI for ρ based on Fisher’s z transformation as given in 
Equation 11.23.

If you want all the output at once, you can just specify cor.test(x,y), but you will get 
additional output beyond that given in (2) and (3) above.

	 Example 11.38 	 Obstetrics  Use the computer to obtain the correlation coefficient between birth-
weight and estriol using the data in Table 11.1 (on p. 459), and provide a 95% CI 
about this estimate.

Solution:  We use the cor.test command of R. The syntax is as follows:

> a<- cor.test(Birthweight, Estriol)

> a$estimate

      cor 

0.6097313 

> a$conf.int

[1] 0.3257757 0.7927878

attr(,”conf.level”)

[1] 0.95

Thus, the correlation coefficient = 0.610 with 95% CI = (0.326, 0.793). Note again 
that this interval is not symmetric about the point estimate (0.610).
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Sample-Size Estimation for Correlation Coefficients
	 Example 11.39 	 Nutrition  Suppose a new dietary questionnaire is constructed to be administered over 

the Internet, based on dietary recall over the past 24 hours. To validate this question-
naire, participants are given 3 days’ worth of food diaries, in which they fill out in real 
time exactly what they eat for 3 days, spaced about 1 month apart. The average intake 
over 3 days will be considered a gold standard. The correlation between the 24-hour 
recall and the gold standard will be an index of validity. How large a sample is needed 
to have 80% power to detect a significant correlation between these measures, if it is 
expected that the true correlation is .5 and a one-sided test is used with α = .05?

The result is given in Equation 11.26.

	 Equation 11.26 	 	 Power and Sample-Size Estimation for Correlation Coefficients 
	 	 	 Suppose we wish to test the hypothesis H0: ρ = 0 vs. H1: ρ = ρ0 > 0. For the specific 

alternative  ρ = ρ0, to test the hypothesis with a one-sided significance level of α 
and specified sample size n, the power is given by

		  Power = − −( )−Φ z n z0 13 α

For the specific alternative ρ = ρ0, to test the hypothesis with a one-sided  
significance level of α and specified power of 1 − β, we require a sample size of

		  n z z z= +( )





+− −1 1
2

0
2 3α β

		  The derivations of these formulas are given in Section 11.14 (p. 537).

	 	 Solution:  In this case, we have ρ0 = .5. Therefore, from Table 12 in the Appendix, z0 = .549. 
Also, α = .05, 1 − β = .80. Thus, from Equation 11.26, we have

		

n z z= +( )



 +

= +( )

. . .

. . .

95 80
2 2

2

549 3

1 645 0 84 54922 3

23 5





 +

= .

Therefore, to have 80% power, we need 24 participants in the validation study.

	 Example 11.40 	 Nutrition  Suppose that 50 participants are actually enrolled in the validation study. 
What power will the study have if the true correlation is .5 and a one-sided test is 
used with α = .05?

	 	 Solution:  We have α = .05, ρ0 = .50, z0 = .549, n = 50. Thus, from Equation 11.26,

		

Power = −( )
= −( )
= ( )

Φ

Φ
Φ

.

. .

.

.549 47

3 764 1 645

2 12

95z

== .983

Therefore, the study will have 98.3% power.

Two-Sample Test for Correlations
The use of Fisher’s z transformation can be extended to two-sample problems.

	 Example 11.41 	 Hypertension  Suppose there are two groups of children. Children in one group 
live with their natural parents, whereas children in the other group live with adop-
tive parents. One question that arises is whether or not the correlation between the 
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blood pressure of a mother and a child is different in these two groups. A different 
correlation would suggest a genetic effect on blood pressure. Suppose there are 
1000 mother−child pairs in the first group, with correlation .35, and 100 mother–
child pairs in the second group, with correlation .06. How can this question be  
answered?

We want to test the hypothesis H0: ρ1 = ρ2 vs. H1: ρ1 ≠ ρ2. It is reasonable to base 
the test on the difference between the z’s in the two samples. If |z1 − z2| is large, then 
H0 will be rejected; otherwise, H0 will be accepted. This principle suggests the follow-
ing test procedure for a two-sided level α test.

	 Equation 11.27 	 �Fisher’s z Test for Comparing Two Correlation Coefficients   
To test the hypothesis H0: ρ1 = ρ2 vs. H1: ρ1 ≠ ρ2, use the following procedure:

	 	 (1)	� Compute the sample correlation coefficients (r1, r2) and Fisher’s z transfor-
mation (z1, z2) for each of the two samples.

	 	 (2)	 Compute the test statistic

				 
λ = −

−
+

−

z z

n n

N H1 2

1 2

01
3

1
3

0 1∼ ( , ) under

	 	 (3)	 If  λ > z1−α/2  or  λ < −z1−α/2  reject H0.

			   If  −z1−α/2 ≤ λ ≤ z1−α/2  accept H0.

		  (4)	 The exact p-value is given by

				 
p

p

= ≤
= × −[ ] >

2 0

2 1 0

Φ
Φ

( )

( )

λ λ
λ λ

if

if

	 	 (5)	 Assume an underlying normal distribution for each of the random variables 
used to compute r1, r2 and z1, z2.

		�  The acceptance and rejection regions for this test are shown in Figure 11.18. 
Computation of the p-value is illustrated in Figure 11.19.

	 Figure 11.18 	 Acceptance and rejection regions for Fisher’s z test 	
for comparing two correlation coefficients
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	 Example 11.42 	 Perform a significance test for the data in Example 11.41.

	 	 Solution:  We have

	 	 r n r n1 1 2 235 1000 06 100= = = =. .

Thus, from Table 12 in the Appendix,

		  z z1 20 365 0 060= =. .

and    λ = −

+
= ( ) =0 365 0 060

1
997

1
97

9 402 0 305 2 87 0
. .

. . . (∼ N ,, )1  under H0

Hence, the p-value is given by

		  2 1 2 87 004× − ( )[ ] =Φ . .

Therefore, there is a significant difference between the mother−child correlations in 
the two groups, implying a significant genetic effect on blood pressure.

	 Figure 11.19 	 Computation of the p-value for Fisher’s z test 	
for comparing two correlation coefficients

0λ

λ

p/2

p/2

0

Value

Fr
eq

u
en

cy

0
0

Value

Fr
eq

u
en

cy

If λ ≤ 0, then p = 2 Φ(λ).

If λ > 0, p = 2 × [1 – Φ(λ)].

N(0, 1) distribution

N(0, 1) distribution

λ =
z1 – z2

n1 – 3
1

n2 – 3
1+

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



502              C H A P T E R  11      Regression and Correlation Methods

R E V I E W  QU  E ST  I ONS    1 1 C

1	 What is the difference between the one-sample t test for correlation coefficients 
and the one-sample z test for correlation coefficients?

2	 Refer to the data in Table 2.13 on page 36.

	 (a)	 What test can be used to assess whether there is a significant association 
between the first white-blood count following admission and the duration of 
hospital stay?

	 (b)	 Implement the test in Review Question 11C.2a, and report a two-tailed p-value.

	 (c)	 Provide a 95% confidence interval for the correlation coefficient in Review 
Question 11C.2a.

3	 Refer to the data in Table 2.13 (p. 36).

	 (a)	 Suppose we want to compare the correlation coefficient between duration of 
hospital stay and white-blood count for males vs. females. What test can we 
use to accomplish this?

	 (b)	 Perform the test in Review Question 11C.3a, and report a two-tailed p-value.

	 11.9	 M u lt i p l e  Reg   r e s s i o n

In Sections 11.2 through 11.6 problems in linear-regression analysis in which there 
is one independent variable (x), one dependent variable (y), and a linear relationship 
between x and y were discussed. In practice, there is often more than one independ-
ent variable and we would like to look at the relationship between each of the inde-
pendent variables (x1,…, xk) and the dependent variable (y) after taking into account 
the remaining independent variables. This type of problem is the subject matter of 
multiple-regression analysis.

	 Example 11.43 	 Hypertension, Pediatrics  A topic of interest in hypertension research is how the 
relationship between the blood-pressure levels of newborns and infants relate to sub-
sequent adult blood pressure. One problem that arises is that the blood pressure of a 
newborn is affected by several extraneous factors that make this relationship difficult 
to study. In particular, newborn blood pressures are affected by (1) birthweight and 
(2) the day of life on which blood pressure is measured. In this study, the infants were 
weighed at the time of the blood-pressure measurements. We refer to this weight as 
the “birthweight,” although it differs somewhat from their actual weight at birth. 
Because the infants grow in the first few days of life, we would expect that infants 
seen at 5 days of life would on average have a greater weight than those seen at 2 days  
of life. We would like to be able to adjust the observed blood pressure for these two 
factors before we look at other factors that may influence newborn blood pressure.

Estimation of the Regression Equation
Suppose a relationship is postulated between systolic blood pressure (SBP) (y), birth-
weight (x1), and age in days (x2), of the form

	 Equation 11.28 	 y x x e= + + +α β β1 1 2 2

where e is an error term that is normally distributed with mean 0 and variance σ2. 
We would like to estimate the parameters of this model and test various hypotheses 

R
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E 
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concerning it. The same method of least squares that was introduced in Section 11.3  
for simple linear regression will be used to fit the parameters of this multiple- 
regression model. In particular, α, β1, β2 will be estimated by a, b1 and b2, respec-
tively, where we choose a, b1 and b2 to minimize the sum of

		  y a b x b x− + +[ ]( )1 1 2 2
2

over all the data points.
In general, if we have k independent variables x1,…, xk, then a linear-regression 

model relating y to x1,…, xk, is of the form

	 Equation 11.29 	 	 y x ej j
j

k

= + +
=
∑α β

1

		  where e is an error term that is normally distributed with mean 0 and variance σ2.

We estimate α, β1,…, βk by a, b1,…, bk using the method of least squares, where we 
minimize the sum of

		  y a b xj j
j

k

− +




















=

∑
1

2

	 Example 11.44 	 Hypertension, Pediatrics  Suppose age (days), birthweight (oz), and SBP are measured 
for 16 infants and the data are as shown in Table 11.8. Estimate the parameters of 
the multiple-regression model in Equation 11.28.

	 Table 11.8 	 Sample data for infant blood pressure, age, 	
and birthweight for 16 infants

	  Age	 Birthweight	 SBP 
	 i	 (days) (x1)	 (oz) (x2)	 (mm Hg) (y)

  1	 3	 135	 89
  2	 4	 120	 90
  3	 3	 100	 83
  4	 2	 105	 77
  5	 4	 130	 92
  6	 5	 125	 98
  7	 2	 125	 82
  8	 3	 105	 85
  9	 5	 120	 96
10	 4	  90	 95
11	 2	 120	 80
12	 3	  95	 79
13	 3	 120	 86
14	 4	 150	 97
15	 3	 160	 92
16	 3	 125	 88

	 	 Solution:  Use the SAS PROC REG program to obtain the least-squares estimates. The 
results are given in Table 11.9.

According to the parameter-estimate column, the regression equation is given by

		  y x x53.45 5.89 + 0.1261 2= +
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The regression equation tells us that for a newborn the average blood pressure 
increases by an estimated 5.89 mm Hg per day of age, and 0.126 mm Hg per ounce 
of birthweight.

	 Example 11.45 	 Hypertension, Pediatrics  Calculate the predicted average SBP of a three-day-old 
baby with birthweight 8 lb (128 oz).

	 	 Solution:  The average SBP is estimated by

		  53.45 + 5.89(3) + 0.126(128) = 87.2 mm Hg

The regression coefficients in Table 11.9 are called partial-regression coefficients.

	 Definition 11.18 	 Suppose we consider the multiple-regression model

		
y x ej j

j

k

= + +
=
∑α β

1

where e follows a normal distribution with mean 0 and variance σ2. The βj, j = 1, 
2,…, k are referred to as partial-regression coefficients. βj represents the average 
increase in y per unit increase in xj, with all other variables held constant (or stated 
another way, after adjusting for all other variables in the model), and is estimated by 
the parameter bj.

Table 11.9	 	 �Least-squares estimates of the regression parameters for the newborn blood-pressure 	
data in Table 11.8 using the SAS PROC REG program

	 The REG Procedure

Model:  MODEL1

Dependent Variable: sysbp

Number of Observations Read     16

Number of Observations Used     16

	 Analysis of Variance

	 Sum of	 Mean

	 Source	 DF	 Squares	 Square	 F Value	 Pr > F

	 Model	 2	 591.03564	 295.51782	 48.08	 <.0001

	 Error	 13	 79.90186	 6.14630

	 Corrected Total	 15	 670.93750

	 Root MSE	 2.47917	 R-Square	 0.8809

	 Dependent Mean	 88.06250	 Adj R-Sq	 0.8626

	 Coeff Var	 2.81524

	 Parameter Estimates

						      Squared

		  Parameter	 Standard			   Partial

Variable	 DF	 Estimate	 Error	 t Value	 Pr > |t|	 Corr Type II

Intercept	 1	 53.45019	 4.53189	 11.79	 <.0001	 .

agedys	 1	 5.88772	 0.68021	 8.66	 <.0001	 0.85214

brthwgt	 1	 0.12558	 0.03434	 3.66	 0.0029	 0.50715
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Partial-regression coefficients differ from simple linear-regression coefficients as 
given in Equation 11.2. The latter represent the average increase in y per unit in-
crease in x, without considering any other independent variables. If there are strong 
relationships among the independent variables in a multiple-regression model, 
then the partial-regression coefficients may differ considerably from the simple 
linear-regression coefficients obtained from considering each independent variable 
separately.

	 Example 11.46 	 Hypertension  Interpret the regression coefficients in Table 11.9.

	 	 Solution:  The partial-regression coefficient for age = b1 = 5.89 mm Hg/day represents 
the estimated average increase in SBP per 1-day increase in age for infants of the 
same birthweight. The partial-regression coefficient for birthweight = b2 = 0.126 mm 
Hg/oz represents the estimated average increase in SBP per 1 oz increase in birth-
weight for infants of the same age. 

We are often interested in ranking the independent variables according to their 
predictive relationship with the dependent variable y. It is difficult to rank the 
variables based on the magnitude of the partial-regression coefficients because the 
independent variables are often in different units. Specifically, from the multiple-
regression model in Equation 11.29, we see that b estimates the increase in y per unit 
increase in x, while holding the values of all other variables in the model constant. If 
x is increased by 1 standard deviation unit (sx) to x + sx, then y would be expected to 
increase by b × sx raw units or (b × sx)/sy standard deviation units of y (sy).

	 Definition 11.19 	 The standardized regression coefficient (bs) is given by b × (sx /sy). It represents the 
estimated average increase in y (expressed in standard deviation units of y) per stan-
dard deviation increase in x, after adjusting for all other variables in the model.

Thus, the standardized regression coefficient is a useful measure for comparing 
the predictive value of several independent variables because it tells us the predicted 
increase in standard-deviation units of y per standard-deviation increase in x. By 
expressing change in standard-deviation units of x, we can control for differences in 
the units of measurement for different independent variables.

	 Example 11.47 	 Compute the standardized regression coefficients for age in days and birthweight 
using the data in Tables 11.8 and 11.9.

	 	 Solution:  From Table 11.8, sy = 6.69, =s 0.946x1
, =s 18.75x2

. Therefore, 

		

=
×

=

=
×

=

b

b

(age indays)
5.888 0.946

6.69
0.833

(birthweight)
0.1256 18.75

6.69
0.352

s

s

Thus, the average increase in SBP is 0.833 standard-deviation units of blood pres-
sure per standard-deviation increase in age, holding birthweight constant, and 
0.352 standard-deviation units of blood pressure per standard-deviation increase 
in birthweight, holding age constant. Age therefore appears to be the more impor-
tant variable after controlling for both variables simultaneously in the multiple-
regression model.

See page 459 for  
Equation 11.2
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Hypothesis Testing
	 Example 11.48 	 Hypertension, Pediatrics  We would like to test various hypotheses concerning the 

data in Table 11.8 (on p. 503). First, we would like to test the overall hypothesis that 
age and birthweight when considered together are significant predictors of blood 
pressure. How can this be done?

Specifically, we will test the hypothesis H k0 1 2 0: . . .β β β= = = =  vs. H1: at least 
one of β1,…, βk ≠ 0. The test of significance is similar to the F test in Section 11.4. The 
test procedure for a level α test is given as follows.

	 Equation 11.30 	 F Test for Testing the Hypothesis H0: β1 = β2 = . . . = βk = 0 vs.

	 	 H1: at least one of the βj ≠ 0 in Multiple Linear Regression

	 	 (1)	 Estimate the regression parameters using the method of least squares, and 
compute Reg SS and Res SS,

			   where	 Res SS

Reg SS Total SS Res SS

= −( )
= −

=
∑ y yi i
i

n
ˆ 2

1

TTotal SS = −( )

= +

=

=

∑

∑

y y

y a b x

i
i

n

i j ij
j

k

2

1

1

ˆ

			   xij = jth independent variable for the ith subject, j = 1,…, k; i = 1,…, n

	 	 (2)	 Compute Reg MS = Reg SS/k, Res MS = Res SS/(n − k − 1).

	 	 (3)	 Compute the test statistic

				    F = Reg MS Res MS

			   which follows an Fk,n−k−1 distribution under H0.

	 	 (4)	 For a level α  test,

			   if F > Fk,n−k−1,1−α  then reject H0

			   if F ≤ Fk,n−k−1,1−α  then accept H0

	 	 (5)	 The exact p-value is given by the area to the right of F under an Fk,n−k−1 distri-
bution = Pr(Fk,n−k−1 > F).

		�  The acceptance and rejection regions for this test procedure are shown in 
Figure 11.20. Computation of the exact p-value is illustrated in Figure 11.21.

	 Example 11.49 	 Hypertension, Pediatrics  Test the hypothesis H0: β1 = β2 = 0 vs. H1: either β1 ≠ 0 or 
β2 ≠ 0 using the data in Tables 11.8 and 11.9.

	 	 Solution:  Refer to Table 11.9 and note that

		  Reg SS = 591.04 (called Model SS)

		  Reg MS = 591.04/2 = 295.52 (called Model MS)

		  Res SS = 79.90 (called Error SS)

		  Res MS = 79.90/13 = 6.146 (called Error MS)

		  F = Reg MS/Res MS = 48.08 ~ F2,13 under H0

Using R, the p-value = Pr(F2,13 > 48.08) = 1 − pf(48.08, 2, 13)
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Thus, we can conclude that the two variables, when considered together, are signifi-
cant predictors of blood pressure.

The significant p-value for this test could be attributed to either variable. We 
would like to perform significance tests to identify the independent contributions of 
each variable. How can this be done?

In particular, to assess the independent contribution of age, we assume birthweight is 
making a contribution under either hypothesis, and we test the hypothesis H0: β1 = 0, β2 ≠ 0  
vs. H1: β1 ≠ 0, β2 ≠ 0. Similarly, to assess the independent contribution of birthweight, we 
assume age is making a contribution under either hypothesis and test the hypothesis H0: 
β2 = 0, β1 ≠ 0 vs. H1: β2 ≠ 0, β1 ≠ 0. In general, if we have k independent variables, then 
to assess the specific effect of the lth independent variable (xl), on y after controlling for 
the effects of all other variables, we wish to test the hypothesis H0: βℓ = 0, all other βj ≠ 0  
vs. H1: all βj ≠ 0. We focus on assessing the independent contribution of the lth variable (e.g., 
for age l = 1). Our approach is to compute the standard error of the partial-regression coeffi-
cient for age and base our test on t = b

ℓ

/se(b
ℓ

), which will follow a t distribution with n − k − 1  
df under H0. Specifically, the following test procedure for a level α test is used.

0
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	 Figure 11.20 	 Acceptance and rejection regions for testing the hypothesis H0 : β1 = β2 = . . . = βk = 0 
vs. H1: at least one of the βj ≠ 0 in multiple linear regression
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	 Figure 11.21 	 Computation of the p-value for testing the hypothesis H0: β1 = β2 = . . . = βk = 0 vs. H1: 
at least one of the βj ≠ 0 in multiple linear regression
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	 Equation 11.31 	 �t Test for Testing the Hypothesis H0: βl

 = 0, All Other βj ≠ 0 vs. H1: βl

 ≠ 0, All Other 
βj ≠ 0 in Multiple Linear Regression

	 	 (1)	 Compute

				    t b se b= l l( )

			   which should follow a t distribution with n − k − 1 df under H0.

	 	 (2)	 If	 t < tn−k−1,α/2	 or	 t > tn−k−1,1−α/2 then reject H0

			   If	 tn−k−1,α/2 ≤ t ≤ tn−k−1,1−α/2 then accept H0

	 	 (3)	 The exact p-value is given by

				    2 0

2 0
1

1

× > ≥
× ≤ <

− −

− −

Pr t t t

Pr t t t
n k

n k

( )

( )

if

if

		�  The acceptance and rejection regions for this test are depicted in Figure 11.22. 
The computation of the exact p-value is illustrated in Figure 11.23.

	 Figure 11.22 	 Acceptance and rejection regions for the t test for multiple linear regression
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Figure 11.23 	 Computation of the exact p-value for the t test for multiple linear regression
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(a) If t < 0, then p = 2 × (area to the left of t under a
     tn – k – 1 distribution).

(b) If t ≥ 0, then p = 2 × (area to the right of t under a
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	 Example 11.50 	 Hypertension, Pediatrics  Test for the independent contributions of age and birth-
weight in predicting SBP in infants, using the output in Table 11.9 (on p. 504).

	 	 Solution:  From Table 11.9,

		

b
se b
t b se b

p Pr t

b
se b

t b se b
p Pr t

5.888
( ) 0.6802

(age) / ( ) 8.66
2 ( 8.66) .001

0.1256
( ) 0.0343

(birthweight) / ( ) 3.66
2 ( 3.66) .003

1

1

1 1

13

2

2

2 2

13

=
=
= =
= × > <

=
=
= =
= × > =

Therefore, both age and birthweight have highly significant associations with SBP, 
even after controlling for the other variable.

It is possible that an independent variable (x1) will seem to have an important 
effect on a dependent variable (y) when considered by itself but will not be signifi-
cant after adjusting for another independent variable (x2). This usually occurs when 
x1 and x2 are strongly related to each other and when x2 is also related to y. We refer 
to x2 as a confounder of the relationship between y and x1. We discuss confounding 
in more detail in Chapter 13. Indeed, one of the advantages of multiple-regression 
analysis is that it allows us to identify which few variables among a large set of in-
dependent variables have a significant relationship to the dependent variable after 
adjusting for other important variables.

	 Example 11.51 	 Hypertension, Pediatrics  Suppose we consider two independent variables, x1 = birth-
weight, x2 = body length, and try to use these variables to predict SBP in newborns 
(y). Perhaps both x1 and x2, when considered separately in a simple linear-regression 
model as given in Equation 11.2, have a significant relationship to blood pressure. 
However, because birthweight and body length are closely related to each other, af-
ter adjusting for birthweight, body length may not be significantly related to blood 
pressure based on the test procedure in Equation 11.31. One possible interpretation 
of this result is that the effect of body length on blood pressure can be explained by 
its strong relationship to birthweight.

In some instances, two strongly related variables are entered into the same 
multiple-regression model and, after controlling for the effect of the other variable, 
neither variable is significant. Such variables are referred to as collinear. It is best to 
avoid using highly collinear variables in the same multiple-regression model because 
their simultaneous presence can make it impossible to identify the specific effects of 
each variable.

	 Example 11.52 	 Hypertension  A commonly used measure of obesity is body-mass index (BMI), 
which is defined as weight/(height)2. It is well known that both weight and BMI, con-
sidered separately, are strongly related to level of blood pressure. However, if they are 
entered simultaneously in the same multiple-regression model, then it is possible 
that neither will be significant because they are strongly related to each other. 

See page 459 for  
Equation 11.2
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Thus, if we control for weight, there may be no additional predictive power for BMI, 
and vice versa.

In Equation 11.31, we have considered the test of the hypothesis H0: that a spe-
cific partial-regression coefficient βℓ = 0 vs. the alternative hypothesis H1: that  
βℓ ≠ 0. Under both H0 and H1, all other partial-regression coefficients are allowed 
to be different from 0. We used a t statistic to test these hypotheses. Another 
way to perform this test is in the form of a partial F test, which is given as  
follows.

	 Equation 11.32 	 Partial F Test for Partial-Regression Coefficients in Multiple Linear Regression  	
To test the hypothesis H0: βℓ

 = 0, all other βj ≠ 0 vs. H1: βℓ

 ≠ 0, all other βj ≠ 0 in 
multiple linear regression, we

		  (1)	 Compute

		
F =

−Regr SS Regr SSfull model all variablesexceptt in themodel

full modelRes MS
βl

which should follow an F1,n−k−1 distribution under H0.

		  (2)	 The exact p-value is given by Pr(F1,n−k−1 > F).

		  (3)	 It can be shown that the p-value from using the partial F test given in (2) is 
the same as the p-value obtained from using the t test in Equation 11.31.

Many statistical packages use variable selection strategies such as forward and 
backward selection based on a succession of partial F tests. A complete discus-
sion of variable selection strategies is provided in [4] and [5].

Criteria for Goodness of Fit
In Section 11.6, we discussed criteria for goodness of fit in simple linear-regression 
models, based on residual analysis. Similar criteria can be used in a multiple-regres-
sion setting.

	 Example 11.53 	 Hypertension, Pediatrics  Assess the goodness of fit of the multiple-regression model in 
Table 11.9 (on p. 504) fitted to the infant blood-pressure data in Table 11.8 (on p. 503).

	 	 Solution:  We compute the residual for each of the 16 sample points in Table 11.8. 
The standard error of each of the fitted residuals is different and depends on the dis-
tance of the corresponding sample point from the average of the sample points used 
in fitting the regression line. Thus, we will usually be interested in the Studentized 
residuals = STUDENT(i) = êi/sd(êi). (See [4] or [5] for the formulas used to compute 
sd(êi) in a multiple-regression setting.) We have plotted the Studentized residuals 
against the predicted blood pressure (Figure 11.24a) and each of the independent 
variables (Figures 11.24b and 11.24c). This lets us identify any outlying values as 
well as violations of the linearity and equal-variance assumptions in the multiple-
regression model.

There seems to be a possible outlying value with a Studentized residual ≅ 3.0 
corresponding to an age in days = 4.0 and a birthweight = 90 oz (observation 10).  
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To focus more clearly on outlying values, some computer packages let the user delete 
an observation, recompute the regression model from the remaining data points, 
and compute the residual of the deleted observation based on the recomputed 
regression. The rationale for this procedure is that the outlying value may have af-
fected the estimates of the regression parameters. Let

		  y a b x b xi i
k
i

k= + + +( ) ( ) ( )
1 1 L

denote the estimated regression model with the ith sample point deleted. The re-
sidual of the deleted point from this regression line is

		  ˆ( ) ( ) ( ) ( )e y a b x b xi
i

i i
i k

i
ik= − + + + 1 1 L
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	 Figure 11.24a 	 Plot of Studentized residuals vs. predicted values of SBP for the multiple-
regression model in Table 11.9
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with standard error sd(ê (i)) . The corresponding Studentized residual is  
ê(i)/sd(ê(i)) and is denoted by RSTUDENT(i). It is sometimes called an externally 
Studentized residual because the ith data point was not used in estimating the 
regression parameters, as opposed to STUDENT(i), which is sometimes called an 
internally Studentized residual because the ith data point was used in estimat-
ing the regression parameters. We have plotted the externally Studentized residuals 
[RSTUDENT(i)] against the predicted blood pressure (Figure 11.25a) and each of 
the independent variables (Figures 11.25b and 11.25c). These plots really highlight 
the outlying value. Data point 10 has a value of RSTUDENT that is approximately  
7 standard deviations above zero, which indicates a gross outlier.

The plots in Figures 11.25a−11.25c do not really reflect the multivariate nature 
of the data. Specifically, under the multiple-regression model in Equation 11.29, 
the relationship between y and a specific independent variable xℓ is characterized 
as follows.

See page 503 for  
Equation 11.29
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	 Figure 11.24b 	 Plot of Studentized residuals vs. age in days for the multiple-regression 	
model in Table 11.9
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	 Equation 11.33 	 y is normally distributed with expected value = α
ℓ

 + β
ℓ

x
ℓ

 and variance σ2 where

		  α α β β β βl l l l lL L= + + + + + +− − + +1 1 1 1 1 1x x x xk k

Thus, given the values of all other independent variables (x1,…, x
ℓ−1, xℓ+1,…, xk),

(1)	 The average value of y is linearly related to x
ℓ

.

(2)	 The variance of y is constant (i.e., σ2).

(3)	 y is normally distributed.

A partial-residual plot is a good way to check the validity of the assumptions in 
Equation 11.33.

	 Definition 11.20 	 A partial-residual plot characterizing the relationship between the dependent  
variable y and a specific independent variable xℓ in a multiple-regression setting is 
constructed as follows:

	 Figure 11.24c 	 Plot of Studentized residuals vs. birthweight for the multiple-regression 	
model in Table 11.9
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(1)	 A multiple regression is performed of y on all predictors other than x
ℓ

 (i.e., x1,…, 
x
ℓ−1, xℓ+1,…, xk), and the residuals are saved.

(2)	 A multiple regression is performed of x
ℓ

 on all other predictors (i.e., x1,…, x
ℓ−1, 

x
ℓ+1,…, xk), and the residuals are saved.

(3)	 The partial-residual plot is a scatter plot of the residuals in step 1 on the y-axis 
against the residuals in step 2 on the x-axis.

Many computer packages compute partial-residual plots as an option in their multiple- 
regression routines, so the user need not perform the individual steps 1 to 3. The 
partial-residual plot reflects the relationship between y and xℓ after each variable is 
adjusted for all other predictors in the multiple-regression model, which is a primary 
goal of performing a multiple-regression analysis. It can be shown that if the multiple- 
regression model in Equation 11.29 holds, then the residuals in step 1 should be 

See page 503 for  
EQUATION 11.29

	 Figure 11.25a 	 Plot of RSTUDENT vs. the predicted SBP for the multiple-regression model in 
Table 11.9
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linearly related to the residuals in step 2 with slope = β
ℓ

 (i.e., the partial-regression 
coefficient pertaining to x

ℓ

 in the multiple-regression model in Equation 11.29) and 
constant residual variance σ2. A separate partial-residual plot can be constructed re-
lating y to each predictor x1,…, xk.

	 Example 11.54 	 Hypertension, Pediatrics  Construct a separate partial-residual plot relating SBP to 
age and birthweight for the data in Table 11.8 (on p. 503).

	 	 Solution:  We refer to the SAS output in Figures 11.26a and 11.26b. The y-axis in 
Figure 11.26a corresponds to residuals of SBP after adjusting for birthweight. The 
x-axis corresponds to residuals of age in days after adjusting for birthweight. Figure 
11.26b is defined similarly. Hence, the x- and y-axes correspond to residuals and are 
not in the familiar units of blood pressure and age in days in Figure 11.26a, for ex-
ample. In Figure 11.26a, the relationship between SBP and age appears to be linear 

	 Figure 11.25b 	 Plot of RSTUDENT vs. age in days for the multiple-regression model in 	
Table 11.9
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with the exception of observation 10. Notice that the three x values clustered in 
the lower left of the plot all correspond to age = 2 days. However, they have differ-
ent abscissas in this plot because they reflect the residual of age after correcting for 
birthweight and the three birthweights are all different (see observations 4, 7, and 
11 with birthweights = 105, 125, and 120 oz, respectively). In these data, the fitted 
regression line of age on birthweight is given by age = 2.66 + 0.0054 × birthweight. 
In Figure 11.26b, we notice that the relationship between SBP and birthweight is ap-
proximately linear (perhaps slightly curvilinear) with the exception of observation 
10, which we previously identified as an outlier. 

Because we identified observation 10 as an outlier, we deleted this observation 
and reran the regression analysis based on the reduced sample of size 15. The regres-
sion model is given in Table 11.10 and the partial-residual plots in Figures 11.27a 
and 11.27b. The estimated multiple-regression model is

		  y 47.94 5.28 age + 0.183 birthweight= + × ×

	 Figure 11.25c 	 Plot of RSTUDENT vs. birthweight for the multiple-regression model in 	
Table 11.9
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which differs considerably from the multiple-regression model in Table 11.9 (on p. 504) 
(y = 53.45 + 5.89 × age + 0.126 × birthweight), particularly for the estimated regression 
coefficient for birthweight, which increased by about 50%. No outliers are evident in 
either of the partial-residual plots in Figure 11.27. There is only a slight hint of curvi-
linearity in Figure 11.27b, which relates SBP to birthweight (after controlling for age).

In Section 11.9, we were introduced to multiple linear regression. This technique 
is used when we wish to relate a normally distributed outcome variable y (called the 
dependent variable) to several (more than one) independent variables x1,…, xk. The 
independent variables need not be normally distributed. Indeed, the independent 
variables can even be categorical, as discussed further in the Case Study in Sections 
11.10 and 12.5. On the flowchart at the end of this chapter (Figure 11.33, p. 538), we 
answer no to (1) interested in relationships between two variables? and we answer 
continuous to (2) outcome variable continuous or binary? This leads us to the box 
labeled “multiple-regression methods.”

	 Figure 11.26a 	 Partial-residual plot of SBP vs. age in days for the model in Table 11.9
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R E V I E W  QU  E ST  I ONS    1 1 D

1	 What is the difference between a univariate-regression model and a multiple-  
regression model?

2	 What is the difference between a simple-regression coefficient and a partial-
regression coefficient?

3	 Refer to the data in Table 2.13 (on p. 36).

	 (a)  Run a multiple-regression model of ln(duration of hospital stay) on age, sex, 
white-blood count on admission to the hospital and service (1 = medical/2 = 
surgical). 

	 (b)  Interpret the results in a meaningful way.

	 Figure 11.26b 	 Partial-residual plot of SBP vs. birthweight for the model in Table 11.9
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	 11.10	 C a s e  S t u d y :  E f f e c t s  o f  Le  a d  E x p o s u r e  o n 

Ne  u r o l o gi  c  a n d  P s y c h o l o gi  c a l  F u n c t i o n 

i n  C h i l d r e n

In Table 8.11 (on p. 318), we compared the mean finger-wrist tapping score 
(MAXFWT) between exposed and control children using a two-sample t test. How-
ever, another approach would be to use regression methods to compare the two 
groups using dummy-variable coding to denote group membership.

	 Definition 11.21 	 A dummy variable is a binary variable used to represent a categorical variable with 
two categories (say A and B). The dummy variable is set to the value c1 if a subject is 
in category A and to c2 if a subject is in category B. The most common choices for the 
values c1 and c2 are 1 and 0, respectively.

	 Figure 11.27a 	 Partial-residual plot of SBP vs. age in days based on the data in Table 11.9 	
after deleting one outlier (observation 10) (n = 15)

–1.4 –1.2 –1.0 –0.8 –0.6 –0.4 –0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

1

1

1

1

1
1

1

1

1

1

1 1
1

1

1

–8

–6

–4

–2

0

2

4

6

8

10

Age in Days

The SAS System

Plot of rsysbp*ragedys.   Symbol used is ‘1’.

Sy
st

ol
ic

 B
P

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



520              C H A P T E R  11      Regression and Correlation Methods

	 Example 11.55 	 Environmental Health, Pediatrics Use regression methods to compare the mean 
MAXFWT between exposed and control children.

	 	 Solution:  We will represent group membership by the dummy variable CSCN2 
defined by

		
CSCN

if child isexposed
if child iscontrol

2
1
0

=




We then can run a simple linear-regression model of the following form.

	 Equation 11.34 	 MAXFWT CSCN= + × +α β 2 e

What do the parameters of this model mean? If a child is in the exposed group, 
then the average value of MAXFWT for that child is α + β; if a child is in the  

	 Figure 11.27b 	 Partial-residual plot of SBP vs. birthweight based on the data in Table 11.9 	
after deleting one outlier (observation 10) (n = 15)
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control group, then the average value of MAXFWT for that child is α. Thus,  
β represents the difference between the average value of MAXFWT for children in 
the exposed group vs. the control group. Our best estimate of α + β is given by the 
sample mean of MAXFWT for children in the exposed group; our best estimate 
of α is given by the sample mean of MAXFWT for children in the control group. 
Thus, our best estimate of β is given by the mean difference in MAXFWT between 
the exposed and control groups. Another way to interpret β is as the average in-
crease in MAXFWT per 1-unit increase in CSCN2. However, a 1-unit increase in 
CSCN2 corresponds to the difference between the exposed and control groups for 
CSCN2. We have run the regression model in Equation 11.34 using the SAS PROC 
REG procedure. The results are given in Table 11.11. We see there is a significant  
difference between the mean MAXFWT for the two groups (p = .003). The estimated 
mean difference between the MAXFWT scores for the two groups is −6.66 taps/10 
seconds with standard error = 2.22 taps per 10 seconds. The regression coefficient b 
corresponds exactly to the mean difference reported in Table 8.11, on p. 318 (mean 
for exposed group = 48.44 taps per 10 seconds; mean for control group = 55.10 taps 
per 10 seconds, mean difference = −6.66 taps per 10 seconds). The standard error 
for b corresponds exactly to the standard error of the mean difference given by a 
two-sample t test with equal variances. The absolute value of the t statistic and the 
p-value for the two procedures are also the same.

This leads to the following general principle.

Table 11.10 	 �Multiple-regression model of SBP on birthweight and age based on data in Table 11.8 	
after deleting one outlier (observation 10) (n = 15)

The REG Procedure

Model: MODEL1

Dependent Variable: sysbp systolic BP

Number of Observations Read          15

Number of Observations Used          15

Analysis of Variance

                                             Sum of           Mean

              Source              DF        Squares         Square     F Value      Pr > F

              Model                2      602.96782      301.48391      217.52      <.0001

              Error               12       16.63218        1.38601

              Corrected Total     14      619.60000

                    Root MSE            1.17729     R-Square     0.9732

                    Dependent Mean     87.60000     Adj R-Sq     0.9687

                    Coeff Var           1.34394

	 Parameter Estimates

							       Squared

			   Parameter	 Standard			   Partial

Variable	 Label	 DF	 Estimate	 Error	 t Value	 Pr > |t|	 Corr Type II

Intercept	 Intercept	 1	 47.93769	 2.30154	 20.83	 <.0001	 .

brthwgt	 Age in Days	 1	 5.28248	 0.33520	 15.76	 <.0001	 0.95391

agedys	 Birthweight	 1	 0.18316	 0.01840	 9.96	 <.0001	 0.89200
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	 Equation 11.35 	 �Relationship Between Simple Linear Regression and t Test Approaches  
Suppose we wish to compare the underlying mean between two groups where 
the observations in group 1 are assumed to be normally distributed with mean 
μ1 and variance σ2 and the observations in group 2 are assumed to be normally 
distributed with mean μ2 and variance σ2. To test the hypothesis H0: μ1 = μ2 vs. 
H1: μ1 ≠ μ2, we can use one of two equivalent procedures:

	 	 (1)	 We can perform a two-sample t test with equal variances.

	 	 (2)	 We can set up a linear-regression model of the form

				    y x e= + +α β

			�   where y is the outcome variable and x = 1 if a subject is in group 1 and 0 if a 
subject is in group 2 and e ~ N(0,σ2).

		�  The t statistic in procedure 1 1 11 2
2

1 2= −( ) +( )y y s n n  is the same as the t statis-
tic in procedure 2 = b/se(b). The estimated mean difference between the groups 
in procedure 1 1 2= −y y  is the same as the estimated slope (b) in procedure 2. 

The standard error of the mean difference in procedure 1 1 12
1 2= +( )s n n  is the 

same as the standard error of b in procedure 2. The t statistics and p-values are 
the same in procedure 1 and procedure 2.

One issue with neurologic-function data in children is that they are often 
strongly related to age and in some cases to gender as well. Even slight age differ-
ences between the exposed and control groups could explain differences between 

Table 11.11 			 Simple linear-regression model comparing exposed and control children for MAXFWT (n = 95)

The REG Procedure

Model: MODEL1

Dependent Variable: maxfwt

Number of Observations Read                        124

Number of Observations Used                         95

Number of Observations with Missing Values          29

Analysis of Variance

			   Sum of	 Mean

	 Source	 DF	 Squares	 Square	 F Value	 Pr > F

	 Model	 1	 940.63327	 940.63327	 9.02	 0.0034

	 Error	 93	 9697.30357	 104.27208

	 Corrected Total	 94	 10638

	 Root MSE	 10.21137	 R-Square	 0.0884

	 Dependent Mean	 52.85263	 Adj R-Sq	 0.0786

	 Coeff Var	 19.32046

Parameter Estimates

	 Parameter	 Standard

Variable	 DF	 Estimate	 Error	 t Value	 Pr > |t|

Intercept	 1	 55.09524	 1.28651	 42.83	 <.0001

cscn2	 1	 -6.65774	 2.21667	 -3.00	 0.0034
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the groups in neurologic function. The first issue is to determine whether MAXFWT 
is related to age and/or to gender. For this purpose, we might construct a multiple-
regression model of the form

	 Equation 11.36 	 MAXFWT age sex= + + +α β β1 2 e

where age is in years and sex is coded as 1 if male and 2 if female. Note: A slightly more 
accurate measure of age could be obtained if we used age in years + (age in months)/12 
rather than simply age in years. The results from fitting the model in Equation 11.36 
using age in years are given in Table 11.12. We see that MAXFWT is strongly related 
to age (p < .001) and is slightly, but not significantly, lower in girls than boys. Older 
children and males have higher values of MAXFWT (mean MAXFWT increases by 2.5 
taps per 10 seconds for every 1 year increase in age for children of the same sex and 
is 2.4 taps per 10 seconds higher in boys than in girls of the same age). The partial-
residual plots of MAXFWT vs. age and sex are given in Figures 11.28a and 11.28b, re-
spectively. From Figure 11.28a, we see that MAXFWT is strongly and approximately 
linearly related to age. No obvious outlying values are apparent. From Figure 11.28b, 
we see that males (corresponding to the left cloud of points) tend to have slightly 
higher values of MAXFWT (after correcting for age) than females. The Studentized 
residual plot vs. the predicted MAXFWT is given in Figure 11.29. No outliers are  
apparent from this plot, either. Also, the variance of MAXFWT looks similar for dif-
ferent values of sex and the predicted MAXFWT.

Table 11.12 	 	 Multiple-regression model of MAXFWT on age and sex (n = 95)

The REG Procedure

Model: MODEL1

Dependent Variable: maxfwt

Number of Observations Read                        124

Number of Observations Used                         95

Number of Observations with Missing Values          29

Analysis of Variance

			   Sum of	 Mean

	 Source	 DF	 Squares	 Square	 F Value	 Pr > F

	 Model	 2	 5438.14592	 2719.07296	 48.11	 <.0001

	 Error	 92	 5199.79092	 56.51947

	 Corrected Total	 94	 10638

	 Root MSE	 7.51794	 R-Square	 0.5112

	 Dependent Mean	 52.85263	 Adj R-Sq	 0.5006

	 Coeff Var	 14.22435

Parameter Estimates

	 Parameter	 Standard

Variable	 DF	 Estimate	 Error	 t Value	 Pr > |t|

Intercept	 1	 31.59139	 3.16011	 10.00	 <.0001

ageyrs	 1	 2.52068	 0.25706	 9.81	 <.0001

sex	 1	 -2.36574	 1.58722	 -1.49	 0.1395
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From Table 11.11, mean MAXFWT differs between the exposed and control 
groups by 6.66 therefore taps per 10 seconds. Thus, even a 1-year difference in mean 
age between the two groups would account for approximately (2.52/6.66) × 100% or 
38% of the observed mean difference in MAXFWT. It is therefore essential to redo 
the crude analyses in Table 11.11, adjusting for possible age and sex differences be-
tween groups. We will use the multiple-regression model.

	 Equation 11.37 	 MAXFWT CSCN age sex= + × + × + × +α β β β1 2 32 e

where CSCN2 = 1 if in the exposed group and 0 if in the control group and sex = 
1 if male and 2 if female. The fitted model is given in Table 11.13. We see that the 
estimated mean difference between the groups is −5.15 ± 1.56 taps/10 sec (p = .001), 
after controlling for age and sex. The effects of age and sex are similar to those seen 

	 Figure 11.28a 	 Partial-residual plot of MAXFWT vs. age (in years) (n = 95)
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in Table 11.12. The partial-residual plot of MAXFWT on group (CSCN2) is given in 
Figure 11.30. The left cloud of points corresponds to the control group and the right 
cloud to the exposed group. The control group does appear to have generally higher 
values than the exposed group, although there is considerable overlap between the 
two groups. Also, the range of residual values for the control group appears to be 
greater than for the exposed group. However, the control group (n = 63) is larger 
than the exposed group (n = 32), which could account, at least in part, for the dif-
ference in the range. In Table 8.11, on p. 318, when we performed a two-sample t 
test comparing the two groups we found that the within-group standard deviation 
was 10.9 for the control group and 8.6 for the exposed group (p = .14 using the F 
test). Another interesting finding is that the age- and sex-adjusted mean difference 
between the groups (−5.15 taps/10 sec) is smaller than the crude difference (−6.66 
taps/10 seconds). This difference is explained in part by differences in the age−sex 
distribution between the two groups. The model in Equation 11.37 is called an 
analysis-of-covariance model. This model is a general procedure for assessing the 

	 Figure 11.28b 	 Partial-residual plot of MAXFWT vs. sex (n = 95)
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mean difference in a normally distributed outcome variable between groups after 
controlling for one or more confounding variables (sometimes called covariates). 
Groups are defined by a categorical variable, which may have two or more catego-
ries. The covariates may be any combination of either continuous (e.g., age) or cat-
egorical (e.g., sex) variables. We discuss analysis-of-covariance models in more detail 
in Chapter 12.

	 11.11	 P a r t i a l  a n d  M u lt i p l e  C o r r e l at i o n

Partial Correlation
The correlation coefficient is a measure of linear association between two variables x and 
y. In some instances, it is important to assess the degree of association between two vari-
ables after controlling for other covariates. The partial correlation accomplishes this goal.

	 Figure 11.29 	 Studentized residual plotted against predicted MAXFWT (n = 95)
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	 Definition 11.22 	 Suppose we are interested in the association between two variables x and y but want 
to control for other covariates z1,…, zk. The partial correlation is defined to be the 
Pearson correlation between two derived variables ex and ey, where

ex = the residual from the linear regression of x on z1,…, zk

ey = the residual from the linear regression of y on z1,…, zk

	 Example 11.56 	 Hypertension, Pediatrics  Consider the pediatric blood-pressure data given in Table 11.9 
(on p. 504), where we related SBP to age and birthweight for 16 infants. Estimate the par-
tial correlation between SBP and each risk factor after controlling for the other risk factor.

	 	 Solution:  Look at Table 11.9, under the last column, labeled Squared Partial Corr 
Type II. The partial correlation between SBP and age after controlling for birthweight 
is . .8521 92= . The partial correlation between SBP and birthweight after correcting 
for age is . .5071 71= .These relationships are displayed in the partial-residual plots 
of SBP on age (Figure 11.26a, on p. 517) and birthweight (Figure 11.26b, on p. 518), 
respectively.

Multiple Correlation
The partial-correlation coefficient provides a measure of association between 
two variables while controlling for the effects of one or more other covariates. 
In a multiple-regression setting, where we have an outcome variable (y) and 

Table 11.13 	 	 �Multiple-regression model comparing mean MAXFWT between exposed and control 	
children after controlling for age and sex (n = 95)

The REG Procedure

Model: MODEL1

Dependent Variable: maxfwt

Number of Observations Read                        124

Number of Observations Used                         95

Number of Observations with Missing Values          29

Analysis of Variance

			   Sum of	 Mean

	 Source	 DF	 Squares	 Square	 F Value	 Pr > F

	 Model	 3	 5994.81260	 1998.27087	 39.16	 <.0001

	 Error	 91	 4643.12424	 51.02334

	 Corrected Total	 94	 10638

	 Root MSE	 7.14306	 R-Square	 0.5635

	 Dependent Mean	 52.85263	 Adj R-Sq	 0.5491

	 Coeff Var	 13.51506

Parameter Estimates

	 Parameter	 Standard

Variable	 DF	 Estimate	 Error	 t Value	 Pr > |t|

Intercept	 1	 34.12129	 3.09869	 11.01	 <.0001

cscn2	 1	 -5.14717	 1.55831	 -3.30	 0.0014

ageyrs	 1	 2.44202	 0.24540	 9.95	 <.0001

sex	 1	 -2.38521	 1.50808	 -1.58	 0.1172
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there are two or more predictor variables (x1,…, xk), then the partial correla-
tion between y and a single predictor xj is a measure of the specific association 
between y and xj, while controlling for all other predictors x1,…, xj−1, xj+1,…, xk. 
However, we are also often interested in the association between y and all the 
predictors when considered as a group. This measure of association is given by 
the multiple correlation.

	 Definition 11.23 	 Suppose we have an outcome variable y and a set of predictors x1,…, xk. The maxi-
mum possible correlation between y and a linear combination of the predictors 
c x c xk k1 1 + +L  is given by the correlation between y and the regression function 
β β1 1x xk k+ +L  and is called the multiple correlation between y and {x1,…, xk}. It is 
estimated by the Pearson correlation between y and b x b xk k1 1 + +L , where b1,…, bk are 
the least-squares estimates of β1,…, βk. The multiple correlation can also be shown to 

be equivalent to Reg SS TotalSS = R2  from Equation 11.30.See page 506 for  
EQUATION 11.30

	 Figure 11.30 	 Partial-residual plot of MAXFWT on CSCN2 after correcting for age and sex (n = 95)
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	 Example 11.57 	 Hypertension, Pediatrics  Compute the multiple correlation between SBP and the 
predictors (age, birthweight) based on the data in Table 11.8 (on p. 503).

	 	 Solution:  Refer to Table 11.9 (on p. 504). The R2 for the regression model is 
591.04/670.94 = .8809. The multiple correlation is . .8809 94= . This indicates a 
strong association between y and the set of predictors {age, birthweight}.

	 11.12	 R a n k  C o r r e l at i o n

Sometimes we may want to look at the relationship between two variables, but one 
or both of the variables are either ordinal or have a distribution that is far from 
normal. Significance tests based on the Pearson correlation coefficient will then no 
longer be valid, and nonparametric analogs to these tests are needed.

	 Example 11.58 	 Obstetrics  The Apgar score was developed in 1952 as a measure of the physical 
condition of an infant at 1 and 5 minutes after birth [6]. The score is obtained by 
summing five components, each of which is rated as 0, 1, or 2 and represents dif-
ferent aspects of the condition of an infant at birth [7]. The method of scoring is 
displayed in Table 11.14. The score is routinely calculated for most newborn infants 
in U.S. hospitals. Suppose we are given the data in Table 11.15. We wish to relate the 
Apgar scores at 1 and 5 minutes and to assess the significance of this relationship. 
How should this be done?

	 Table 11.14 	 Method of Apgar scoring

	 Score

Sign	 0	 1	 2

Heart rate	 Absent	 Slow (< 100)	 ≥ 100
Respiratory effort	 Absent	 Weak cry; hypoventilation	 Good, strong cry
Muscle tone	 Limp	 Some flexion of extremities	 Well flexed
Reflex irritability	 No response	 Some motion	 Cry
Color	 Blue; pale	 Body pink; extremities blue	 Completely pink

Source: Based on JAMA, 168(15), 1985−1988, 1958.

	 Table 11.15 	 Apgar scores at 1 and 5 minutes for 24 newborns

	 Apgar	 Apgar		  Apgar	 Apgar 
	 score,	 score, 		  score, 	 score,  
Infant	 1 min	 5 min	 Infant	 1 min	 5 min

	   1	 10	 10	 13	 6	 9
	   2	 3	 6	 14	 8	 10
	   3	 8	 9	 15	 9	 10
	   4	 9	 10	 16	 9	 10
	   5	 8	 9	 17	 9	 10
	   6	 9	 10	 18	 9	 9
	   7	 8	 9	 19	 8	 10
	   8	 8	 9	 20	 9	 9
	   9	 8	 9	 21	 3	 3
	10	 8	 9	 22	 9	 9
	11	 7	 9	 23	 7	 10
	12	 8	 9	 24	 10	 10
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The ordinary correlation coefficient developed in Section 11.7 (p. 487) should 
not be used because the significance of this measure can be assessed only if the 
distribution of each Apgar score is assumed to be normally distributed. Instead, a 
nonparametric analog to the correlation coefficient based on ranks should be used.

	 Definition 11.24 	 The Spearman rank-correlation coefficient (rs) is an ordinary correlation coeffi-
cient based on ranks.

Thus,  r
L

L Ls
xy

xx yy
=

×

where the L’s are computed from the ranks rather than from the actual scores.

The rationale for this estimator is that if there were a perfect positive correlation 
between the two variables, then the ranks for each person on each variable would 
be the same and rs = 1. The less perfect the correlation, the closer to zero rs would be.

	 Example 11.59 	 Obstetrics  Compute the Spearman rank-correlation coefficient for the Apgar-score 
data in Table 11.15.

	 	 Solution:  We use MINITAB to rank the Apgar 1-minute and 5-minute scores as shown 
in Table 11.16 under APGAR_1R and APGAR_5R, respectively. Average ranks are used 
for tied values. We then compute the correlation coefficient between APGAR_1R and 
APGAR_5R and obtain rs = .593. Note that MINITAB can directly compute the Spear-
man Rank Correlation without the user explicitly computing ranks as shown in the 
last two rows of Table 11.16.

We would now like to test the rank correlation for statistical significance. A simi-
lar test to that given in Equation 11.20 for the Pearson correlation coefficient can be 
performed, as follows.

	 Equation 11.38 	 t Test for Spearman Rank Correlation

	 	 (1)	 Compute the test statistic

				  
t

r n

r
s

s

s

= −

−

2

1 2

			   which under the null hypothesis of no correlation follows a t distribution 
with n − 2 degrees of freedom.

	 	 (2)	 For a two-sided level α test,

			   if    ts > tn−2,1−α /2    or    ts < tn−2,α /2 = −tn−2,1−α /2

			   then reject H0; otherwise, accept H0.

	 	 (3)	 The exact p-value is given by

				  

p t ts n= × −2 2(area to the leftof undera distributionn if

area to the rightof undera

)

(

t

p t t
s

s n

<
= × −

0

2 2 ddistribution if) ts ≥ 0

	 	 (4)	 This test is valid only if n ≥ 10.

		�  The acceptance and rejection regions for this test are given in Figure 11.31. The 
computation of the exact p-value is illustrated in Figure 11.32.

See page 491 for  
Equation 11.20
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	 Table 11.16 	 Ranks of Apgar-score data from Table 11.15 and Computation 	
of Spearman Correlation.

Data Display

Row	 APGAR_1M	 APGAR_5M	 APGAR_1R	 APGAR_5R

 1	 10	 10	 23.5	 19.5

 2	 3	 6	 1.5	 2.0

 3	 8	 9	 10.0	 8.5

 4	 9	 10	 18.5	 19.5

 5	 8	 9	 10.0	 8.5

 6	 9	 10	 18.5	 19.5

 7	 8	 9	 10.0	 8.5

 8	 8	 9	 10.0	 8.5

 9	 8	 9	 10.0	 8.5

10	 8	 9	 10.0	 8.5

11	 7	 9	 4.5	 8.5

12	 8	 9	 10.0	 8.5

13	 6	 9	 3.0	 8.5

14	 8	 10	 10.0	 19.5

15	 9	 10	 18.5	 19.5

16	 9	 10	 18.5	 19.5

17	 9	 10	 18.5	 19.5

18	 9	 9	 18.5	 8.5

19	 8	 10	 10.0	 19.5

20	 9	 9	 18.5	 8.5

21	 3	 3	 1.5	 1.0

22	 9	 9	 18.5	 8.5

23	 7	 10	 4.5	 19.5

24	 10	 10	 23.5	 19.5

Correlations: APGAR_1R, APGAR_5R

Pearson correlation of APGAR_1R and APGAR_5R = 0.593

P-Value = 0.002

Spearman Rho: APGAR_lM, APGAR_5M

Spearman rho for APGAR_1M and APGAR_5M = 0.593
P-Value = 0.002 

	 Figure 11.31 	 Acceptance and rejection regions for the t test for 	
a Spearman rank-correlation coefficient
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	 Example 11.60 	 Obstetrics  Perform a significance test for the Spearman rank-correlation coefficient 
based on the Apgar-score data in Table 11.15 (on p. 529).

	 	 Solution:  Note that rs = .593 from Example 11.59 (on p. 530). The test statistic is given by

		
=

−

−
=

−
= =t

r n

r

2

1

.593 22

1 .593

2.781
.805

3.45s
s

s
2 2

which follows a t22 distribution under H0. The two-sided p-value is given by

		  2 × [1 − pt(3.45, 22)] = 0.002

This agrees with the MINITAB output in Table 11.16.

Thus, there is a significant correlation between the ranks for the two scores.

Note that the test procedure given in Equation 11.38 is valid only for n ≥ 10.  
If n < 10, then the t distribution is not a good approximation to the distribution of 
ts, and a table giving exact significance levels must be used. For this purpose, exact 

	 Figure 11.32 	 Computation of the exact p-value for the t test for 	
a Spearman rank-correlation coefficient
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two-sided critical values for rs when n ≤ 9 are presented in Table 13 in the Appendix. 
This table can be used in the following way:

(1)	 Suppose the critical value in the table for significance level α is c.

(2)	 Reject H0 using a two-sided test with significance level α if rs ≥ c or rs ≤ −c, and 
accept H0 otherwise.

	 Example 11.61 	 Suppose rs = .750 based on a sample of size 9. Assess the statistical significance of the 
results.

	 	 Solution:  From Table 13 in the Appendix, the critical value for α = .05, n = 9 is .683 
and for α = .02, n = 9 is .783. Because .683 < .750 < .783, it follows that the two-tailed 
p-value is given by .02 ≤ p < .05.

In this section, we have discussed rank-correlation methods. These methods are 
used when we are interested in studying the association between two continuous 
variables, where at least one of the variables is not normally distributed. On the 
flowchart at the end of this chapter (Figure 11.33, p. 538), we answer yes to (1) inter-
ested in relationships between two variables? and (2) both variables continuous? no 
to (3) interested in predicting one variable from another? which leads to (4) inter-
ested in studying the correlation between two variables, and no to (5) both variables 
normal? This leads us to the box labeled “rank-correlation methods.”

Rank-correlation methods are also useful for studying the association between 
two ordinal variables. Again referring to the flowchart at the end of this chapter 
(Figure 11.33, p. 538), we answer yes to (1) interested in relationships between two 
variables? no to (2) both variables continuous? no to (3) one variable continuous 
and one categorical? and yes to (4) ordinal data? This also leads us to the box labeled 
“rank-correlation methods.”

R E V I E W  QU  E ST  I ONS    1 1 E

1	 What is the difference between an ordinary (Pearson) correlation coefficient and a 
partial-correlation coefficient?

2	 Suppose that the Pearson correlation coefficient between y and x1 is .30 but that 
the partial-correlation coefficient between y and x1, controlling for x2, is 0. How do 
you interpret the results?

3	 What is the difference between an ordinary (Pearson) correlation coefficient and a 
multiple-correlation coefficient?

4	 Under what circumstances do we prefer to use rank correlation as a measure of 
association instead of ordinary (Pearson) correlation?

	 11.13	 I n t e r v a l  E s t i m at i o n  f o r  R a n k - C o r r e l at i o n 

C o e f f i c ie  n t s

It is worthwhile considering what underlying parameter we wish to estimate with 
a rank-correlation coefficient. Suppose X Yi i,  are the scores for the ith subject, 
i n= …1, ,  with corresponding sample ranks denoted by rank( )Xi  and rank( )Yi , re-
spectively. Let us define the sample percentile of Xi and Yi by ˆ ( ) / ( )P X ni i= +rank 1 ,  
ˆ ( ) / ( )P Y ni i

∗ = +rank 1 . These are sample estimates of the cumulative distribution 

R
 E

 V
 I 

E 
W

  

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



534              C H A P T E R  11      Regression and Correlation Methods

function (cdf) for X and Y  for the ith subject. Since dividing by a constant (n + 1) 
does not affect the rank of an individual observation, the Spearman rank-correlation 
coefficient rs can be defined by 

		  r X Y P Ps i i i i= [ ] = ∗corr rank rank corr( ), ( ) ( ˆ , ˆ )

If n → ∞, P̂i and P̂i
∗ will approach Pi and Pi

∗ where 

		  F X P F Y PX i i i iY( ) , ( )= = ∗

and F FX Y,  are the true cdfs (or percentiles) of X and Y  in the reference population. 
P Pi i, ∗ are sometimes referred to as the grades of X Yi i,  in the reference population. The 
underlying rank correlation we are trying to estimate is the correlation between the 
grades of X and Y  for the ith subject given by 

		  ρs i iP P= ∗corr( , )

where rs is the sample (point) estimate of ρs. It is also of interest to obtain interval 
estimates for ρs. 

We cannot use the method used for interval estimates for Pearson correlation 
coefficients given in Equation 11.23 (p. 496) because the sampling distribution of the 
Spearman rank-correlation coefficient ( )rs  is different from that of the Pearson correla-
tion coefficient ( )r . However, a valid method based on sample probits can be used [8]. 

	 Equation 11.39  	 Interval Estimation for Spearman Rank-Correlation Coefficients 
	 	 �Suppose we have an estimated Spearman rank-correlation rs based on a sample 

of size n. To obtain an approximate two-sided 100 1% ( )× − α  confidence interval 
for ρs (the underlying rank correlation) we proceed as follows: 

	 	 (1)	 Compute the sample ranks for Xi; and Yi: denoted by rank (Xi) and rank (Yi) 
respectively.

	 	 (2)	 Compute the sample probit Ĥi and (Ĥ∗
i ) corresponding to X Yi i, , where  

ˆ ( ˆ ), ˆ ( ˆ ) ˆ (H P H P P Xi i i i i i= = =− ∗ − ∗Φ Φ1 1 and rank )) ( )n + 1 and P nˆ rank (Y ) ( 1)i i
* *= +

		  The probit has previously been referred to as the inverse normal distribution 
in Chapter 5. Thus, probit ( . ) .0 5 05= =z , probit ( . ) ..0 975 1 96975= =z , etc. For 
example, in R = =H P H Pˆ qnorm (ˆ ) and ˆ qnorm ( ˆ )i i i i

* * .

	 	 (3)	 Compute the Pearson correlation rh between sample probits given by 

			   r H Hh i i= ∗corr( ˆ , ˆ )

		  which is a sample estimate of the probit correlation ρh i iH H= ∗corr( , ) where 
H Pi i= −Φ 1( ), H Pi i

∗ − ∗= Φ 1( ). 

	 	 (4)	 Because rh is a slightly negatively biased estimate of ρh (Olkin and Pratt [9]), 
we compute the bias-corrected estimator of ρh given by 

			 
r r r nh h hcor, ( ) /[ ( )] .= + − −{ }1 1 2 42

	 	 (5)	 Let zh = Fisher’s z-transform of ρ ρ ρh h hln≡ + −0 5 1 1. [( ) / ( )].

	 	 (6)	 Compute a 100 1% ( )× − α  confidence interval for zh given by 

			   ( , ) ˆ //z z z z nh h h1 2 1 2 3= ± −−α

		  where ẑh = Fisher’s z-transform of r ln r rh h hcor cor cor, , ,. [( /( )])= − −0 5 1 1 . 
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	 	 (7)	 The corresponding 100 1% ( )× − α  confidence interval for ρh is ( , )r rh h1 2 , where 

			   r z z rh h h h1 1 1 22 1 2 1 2= − + =[exp( ]/[exp( ) ], [exp() zz zh h2 21 2 1) ]/[exp( ) ].− +

	 	 (8)	� Furthermore, a 100 1% ( )× − α  confidence interval for ρs is given by ( , )r rs s1 2
, 

where 

			   ( , ) [( / )sin ( / ), ( / )sin (r r r rs s h1 2 6 2 61
1

1
2= − −π π hh / )].2

	 	 (9)	� This procedure is valid for n ≥ 10. The rationale for this procedure is that 
for normally distributed scales such as H and H ∗, there is a relationship 
between the underlying rank correlation and Pearson correlation given by 
Moran [10]

			   ρ π ρs h h, ( / )sin ( / )= −6 21

		  where ρh i iH H= ∗corr( , ) and ρs h i iP P, ( , )= ∗corr . However, because the probit 

transformation is rank-preserving, Pi and Pi
∗ are the same in the probit scale 

and the original scale. Thus, ρ ρs h s i iP P, ( , )= = ∗corr . 

	 Example 11.62 	 Obstetrics  Obtain a 95% confidence interval for the underlying Spearman rank-
correlation ρs for the Apgar score data in Tables 11.15 and 11.16 (on pp. 529 and 
531, respectively) using R. 

	 	 Solution: 

	 	 1.	 (a) �We first compute the sample ranks for APGAR_1M and APGAR_5M, labeled 
APGAR_1R and APGAR_5R, respectively.

		     > APGAR_1R<- rank(APGAR_1M)

		     >APGAR_1R

		   �  [1] 23.5 1.5 10.0 18.5 10.0 18.5 10.0 10.0 10.0 10.0 4.5 
10.0 3.0 10.0 18.5

		    [16] 18.5 18.5 18.5 10.0 18.5 1.5 18.5 4.5 23.5

		     > APGAR_5R<- rank(APGAR_5M)

		     >APGAR_5R

		   �  [1] 19.5 2.0 8.5 19.5 8.5 19.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 
19.5 19.5

		    [16] 19.5 19.5 8.5 19.5 8.5 1.0 8.5 19.5 19.5

	 (b) We now compute the point estimate of the rank correlation as follows:

		     >a<- cor.test(APGAR_1R, APGAR_5R)

		     > r_s<- a$estimate

		     > r_s

		     cor

		     0.5927144

	 (c) We now compute the sample size of APGAR_lR and store it in the variable n.

		     > n<- length(APGAR_1R)

		     > n

		    [1] 24
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2.	 �We now compute the probits for APGAR_lM AND APGAR_5M and denote them 
by APGAR_lH and APGAR_5H, respectively.

	 > APGAR_1H<- qnorm{APGAR_1R/(n+1)}

	 > APGAR_1H

	� [1] 1.5547736 -1.5547736 -0.2533471 0.6433454 -0.2533471 
0.6433454

	� [7] -0.2533471 -0.2533471 -0.2533471 -0.2533471 -0.9153651 
-0.2533471

	� [13] -1.1749868-0.2533471 0.6433454 0.6433454 0.6433454 
0.6433454

	� [19] -0.2533471 0.6433454 -1.5547736 0.6433454 -0.9153651 
1.5547736

	 > APGAR_5H<- qnorm{APGAR_5R/(n+1)}

	 > APGAR_5H

	� [1] 0.7721932-1.4050716-0.4124631 0.7721932-0.4124631 
0.7721932

	� [7] -0.4124631 -0.4124631 -0.4124631 -0.4124631 -0.4124631 
-0.4124631

	� [13] -0.41?4631 0.7721932 0.7721932 0.7721932 0.7721932 
-0.4124631

	� [19] 0.7721932 -0.4124631-1.7506861-0.4124631 0.7721932 
0.7721932

3.	� We now compute the Pearson correlation between the sample probits and 
denote it by r_h as follows:

	 > r_h<- cor(APGAR_1H, APGAR_5H)

	 > r_h

	 [1] 0.6447438

4.	� We now compute the bias-corrected estimate of ρh and denote it by rcor_h as 
follows:

	 > rcor_h<- r_h* (1 + (1- r_h^2)/(2*(n-4)))

	 > rcor_h

	 [1] 0.654162

6.	� (a) � We now compute the Fisher’s z transform of rcor_h and denote it by z_h as 
follows:

		  > z_h<- 0.5 * log((1 + rcor_h)/(1 - rcor_h))

		  > z_h

		  [1] 0.7825396

	 (b) � We now compute a 95% Cl associated with z_h using Equation 11.23 
(p. 496) and denote this interval by (z1_h, z2_h) as follows:

		  > z1_h<- z_h - 1.96/sqrt(n-3)

		  > z1_h

		  [1] 0.3548325

		  > z2_h<- z_h + 1.96/sqrt(n-3)
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		  > z2_h

		  [1] 1.210247

7.	 We now compute a 95% Cl for ρh denoted by (rl_h, r2_h) as follows:

	 > r1_h<- (exp(2*z1_h)-1)/(exp(2*z1_h)+1)

	 > r1_h

	 [1] 0.3406543

	 > r2_h<- (exp(2*z2_h)-1)/(exp(2*z2_h)+1)

	 > r2_h

	 [1] 0.8367535

8.	� We now compute the corresponding 95% Cl for ρs denoted by (rl_s, r2_s) as fol-
lows:

	 > r1_s<- (6/pi)*asin(r1_h/2)

	 > r1_s

	 [1] 0.3268947

	 > r2_s<- (6/pi)*asin(r2_h/2)

	 > r2_s

	 [1] 0.8244049

Thus, in summary the point estimate of the Spearman correlation = 0.593, with 95% 
Cl = (0.327, 0.824).

It is instructive to compare the Pearson and Spearman correlations in this example. 
The Pearson correlation and associated 95% Cl between the original scores 
(APGAR_1M, APGAR_5M) is obtained as follows:

> b<- cor.test(APGAR_1M, APGAR_5M)

> b$estimate

     cor

0.8448476

> b$conf.int

[1] 0.6696857 0.9309638

attr(,”conf.level”)

[1] 0.95

Thus, the Pearson correlation = 0.845 with 95% Cl = (0.670, 0.931), which is very 
different from the Spearman correlation above. Based on the ordinal nature of the 
rankings, the Spearman correlation is preferable in this instance.

A SAS macro implementing the procedures for obtaining interval estimates 
for Spearman rank-correlation coefficients is available at the following website:  
https://sites.google.com/a/channing.harvard.edu/bernardrosner/home/.

	 11.14	 De  r i v at i o n  o f  e q u at i o n  1 1 . 2 6  ( p a g e  4 9 9 )

To derive Equation 11.26, we use the Fisher’s z-transform approach. Specifically, we 
want to test the hypothesis H0: ρ = 0 vs. H1: ρ = ρ0 > 0. Under H0,

		  z N n~ [ , / ( )]0 1 3−
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	 Figure 11.33 	 Flowchart for appropriate methods of statistical inference
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We will reject H0 at level α if z n z− > −3 1 α . Suppose z0 is the Fisher’s z transform of 
ρ0. If we subtract z n0 3−  from both sides of the equation, it follows that

		  λ α= − − > − −−n z z z z n3 30 1 0( )

Furthermore, under H1, λ ~ N(0, 1). Therefore,

		

Pr z z n z z n

z n z

λ α α> − −( ) = − − −( )
= − −

− −

−

1 0 1 0

0 1

3 1 3

3

Φ

Φ αα( )
If we require a power of 1 − β, then we set the right-hand side to 1 − β or, equiva-
lently,

		  z n z z0 1 13− − =− −α β

If follows that

		  Power = − = − −( )−1 30 1β αΦ z n z

The corresponding sample-size estimate is obtained by solving for n, whereby

		  n z z z= +( )





+− −1 1
2

0
2 3α β

	 11.15	 S u m m a r y

In this chapter, we studied methods of statistical inference that are appropriate 
for investigating the relationship between two or more variables. If only two 
variables, both of which are continuous, are being studied, and we wish to pre-
dict one variable (the dependent variable) as a function of the other variable (the 
independent variable), then simple linear-regression analysis is used. If we simply 
want to look at the association between two normally distributed variables with-
out distinguishing between dependent and independent variables, then Pearson 
correlation methods are more appropriate. If both variables are continuous but 
are not normally distributed, or are ordinal variables, then rank correlation can be 
used instead. If both variables of interest are categorical and we are interested in 
the association between the two variables, then the contingency-table methods of 
Chapter 10 can be used. If, in contrast, we are almost certain there is some associa-
tion between the two variables and we want to quantify the degree of association, 
then the Kappa statistic can be used.

In many instances we are interested in more than two variables and we want 
to predict the value of one variable (the dependent variable) as a function of sev-
eral independent variables. If the dependent variable is normally distributed, then 
multiple-regression methods can be used. Multiple-regression methods can be very 
powerful because the independent variables can be either continuous or categorical, 
or a combination of both.

In many situations we have a continuous outcome variable that we want 
to relate to one or more categorical variables. In general, this situation can be 
handled with ANOVA methods. However, in many instances the formulation is 
easier if multiple-regression methods are used. We will discuss these alternative 
approaches in Chapter 12. The preceding methods are summarized in the flowchart 
in Figure 11.33 (p. 538) and again in the back of the book.
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Hematology
The data in Table 11.17 are given for 9 patients with aplastic 
anemia [11].

*11.1  Fit a regression line relating the percentage of  
reticulocytes (x) to the number of lymphocytes (y).

*11.2  Test for the statistical significance of this regression 
line using the F test.

*11.3  What is R2 for the regression line in Problem 11.1?

*11.4  What does R2 mean in Problem 11.3?

*11.5  What is sy x⋅
2 ?

*11.6  Test for the statistical significance of the regression 
line using the t test.

*11.7  What are the standard errors of the slope and inter-
cept for the regression line in Problem 11.1?

Table 11.17  � Hematologic data for patients 	
with aplastic anemia

Patient		  Lymphocytes 
number	 % Reticulocytes	 (per mm2)

1	 3.6	 1700
2	 2.0	 3078
3	 0.3	 1820
4	 0.3	 2706
5	 0.2	 2086
6	 3.0	 2299
7	 0.0	 676
8	 1.0	 2088
9	 2.2	 2013

Source: Based on The New England Journal of Medicine, 312(16), 
1015−1022, 1985.

11.8  What is the z transformation of .34?

Pulmonary Function
Suppose the correlation coefficient between FEV for 100 
sets of identical twins is .7, whereas the comparable cor-
relation for 120 sets of fraternal twins is .38.

*11.9  What test procedure can be used to compare the 
two correlation coefficients?

*11.10  Perform the procedure in Problem 11.9 using the 
critical-value method.

*11.11  What is the p-value of the test?

Suppose the correlation coefficient between weight is .78 
for the 100 sets of identical twins and .50 for the 120 sets 
of fraternal twins.

*11.12  Test for whether the true correlation coefficients  
differ between these groups. Report a p-value.

Hypertension
The Update to the Task Force Report on Blood Pressure 
Control in Children [12] reported the observed 90th per-
centile of SBP in single years of age from age 1 to 17 based 
on prior studies. The data for boys of average height are 
given in Table 11.18.

Suppose we seek a more efficient way to display the data 
and choose linear regression to accomplish this task.

11.13  Fit a regression line relating age to SBP, using the 
data in Table 11.18.

Table 11.18  � 90th percentile of SBP in boys ages 
1−17 of average height

Age (x)	 SBPa (y)	 Age (x)	 SBPa (y)

1	 99	 10	 115
2	 102	 11	 117
3	 105	 12	 120
4	 107	 13	 122
5	 108	 14	 125
6	 110	 15	 127
7	 111	 16	 130
8	 112	 17	 132
9	 114

a90th percentile for each 1-year age group.

11.14  Provide a 95% confidence interval for the param-
eters of the regression line.

11.15  What is the predicted blood pressure for an average 
13-year-old boy as estimated from the regression line?

11.16  What is the standard error of the estimate in Problem 
11.15?

11.17  Answer Problems 11.15 and 11.16 for a 17-year-old 
boy.

11.18  Do you think the linear regression provides a good fit 
to the data? Why or why not? Use residual analysis to justify 
your answer.

Cancer
The following statistics are taken from an article by Burch relat-
ing cigarette smoking to lung cancer [13]. The article presents 
data relating mortality from lung cancer to average cigarette 
consumption (lb/person) for females in England and Wales 
over a 40-year period. The data are given in Table 11.19.
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11.27  What is the estimated standard error of the slope 
estimate?

Hint: Use the t test for simple linear regression.

11.28  Provide a 95% Cl for the true slope (β).

The actual regression equation used to derive the estimated 
24-hour urinary Na for men in North America also included 
several additional variables and was as follows:

Table 11.20  � Multiple linear regression of 24-
hour urinary Na on casual urinary 
measurements and other risk factors, 
INTERSALT Study, men, n = 1369

Variable	 Beta	 se

Intercept	 25.46	 16.63
Casual Na (mmoi/L)	 0.46	 0.02
Casual creatinine (mmoi/L)	 -2.75	 0.22
Casual potassium (mmoi/L)	 -0.13	 0.04
Body mass index (kg/m2)	 4.10	 0.31
Age (years)	 0.26	 0.78

Age2 (years2)	 0.00	 0.01

11.29  What does the regression coefficient for casual 
potassium (-0.13) mean in words?

11.30  Provide a two-sided p-value and a 95% Cl associ-
ated with this coefficient.

Hypertension
Refer to the data in Table 3.11 (on p. 69). Another method 
for relating measures of reactivity for the automated and 
manual blood pressures is the correlation coefficient. Sup-
pose the correlation coefficient relating these two measures 
of reactivity is .19, based on 79 people having reactivity 
measured by each type of blood-pressure monitor.

11.31  What is the appropriate procedure to test if there is 
a relationship between reactivity as measured by the auto-
mated and manual monitors?

11.32  Conduct the test procedure in Problem 11.31, and 
report a p-value. What do the results mean, in words?

11.33  Provide a 95% confidence interval for the correlation 
coefficient between these two measures of reactivity.

Nutrition
Refer to Data Set VALID.DAT at www.cengagebrain.com

11.34  Assess the agreement between the food-frequency 
questionnaire and the dietary record with regard to total fat 
intake, saturated fat intake, alcohol intake, and total caloric 
intake. Quantify the level of agreement by representing the 
dietary intake both in the original continuous scale and on a 
quintile scale.

Table 11.19  � Cigarette consumption and lung-
cancer mortality in England and 
Wales, 1930−1969

	  log10 annual 
		  cigarette 
	 log10 mortality	 consumption 
Period	 (over 5 years), y	 (lb/person), x

1930−1934	 −2.35	 −0.26
1935−1939	 −2.20	 −0.03
1940−1944	 −2.12	 0.30
1945−1949	 −1.95	 0.37
1950−1954	 −1.85	 0.40
1955−1959	 −1.80	 0.50
1960−1964	 −1.70	 0.55
1965−1969	 −1.58	 0.55

Source: Based on the Journal of the Royal Statistical Society,  
A., 141, 437−477, 1978.

11.19  Compute the correlation between 5-year lung- 
cancer mortality and annual cigarette consumption when 
each is expressed in the log10 scale.

11.20  Test this correlation for statistical significance, and 
report a p-value.

11.21  Fit a regression line relating 5-year lung-cancer 
mortality to annual cigarette consumption when each is 
expressed in the log10 scale.

11.22  To test the significance of this regression line, is it 
necessary to perform any additional tests other than those 
in Problem 11.20? If so, perform them.

11.23  What is the expected lung-cancer mortality rate with 
an annual cigarette consumption of 1 lb/person?

11.24  Why are the variables mortality rate and annual ciga-
rette consumption expressed in the log10 scale?

Hypertension
The INTERSALT Study investigators collected standardized 
data on timed 24-hour urinary excretion for 10,079 men and 
women from 52 population samples in 32 countries (Brown 
et al.) [14] One of the goals of the INTERSALT Study was to 
quantify the relationship between 24-hour urinary Na (y) and 
estimated 24-hour urinary Na (x) obtained from casual urine 
specimens at one point in time. The investigators presented 
a simple linear regression of y on x, separately for men and 
women. The regression equation for men was:

Y = 1.03 x − 7.19, with R2 = 0.27, n = 1369

11.25  What does the R2 of 0.27 mean in words?

11.26  What is a two-sided p-value for the regression?

Hint: Assume that a t distribution with > 200 df is the same 
as a N(0,1) distribution.

 Data set available
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Hypertension, Pediatrics
In Problems 6.56−6.58, we described Data Set INFANTBP. 
DAT (see also at www.cengagebrain.com). The data set 
concerns the possible relationship between infant blood 
pressure and responsiveness to salt and sugar, respec-
tively. Indices were constructed summarizing responsive-
ness to salt and sugar.

11.44  Use linear-regression methods to relate each salt 
and sugar index proposed to systolic blood pressure (SBP). 
Assess the goodness of fit of the proposed models; use ap-
propriate data transformations, if necessary.

11.45  Answer Problem 11.44 for diastolic blood pressure.

Environmental Health, Pediatrics
Refer to Data Set LEAD.DAT at www.cengagebrain.com. 
In Section 11.10, we used regression methods to relate 
MAXFWT to lead exposure group.

11.46  Use regression methods to assess the relationship 
between full-scale IQ (IQF) and lead exposure group, where 
lead exposure is quantified as a categorical variable with 
two categories (exposed and control). Control for the possi-
ble confounding effects of age and gender in your analysis. 
Assess the goodness of fit of the model(s) you propose.

11.47  LD72 and LD73 are variable names for the actual 
blood-lead levels in 1972 and 1973, respectively. Use 
regression methods to assess the relationship between 
MAXFWT and the actual blood-lead level(s), while con-
trolling for age and sex. Assess the goodness of fit of the 
model(s) you propose.

11.48  Answer the same questions posed in Problem 11.47 
for IQF.

Pediatrics, Endocrinology
Transient hypothyroxinemia, a common finding in premature 
infants, is not thought to have long-term consequences or 
to require treatment. A study was performed to investigate 
whether hypothyroxinemia in premature infants is a cause of 
subsequent motor and cognitive abnormalities [16]. Blood 
thyroxine values were obtained on routine screening in the 
first week of life from 536 infants who weighed 2000 g or 
less at birth and were born at 33 weeks gestation or earlier. 
The data in Table 11.21 were presented concerning the 
relationship between mean thyroxine level and gestational 
age.

11.49  What is the best-fitting regression line relating mean 
thyroxine level to gestational age?

Hint:
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11.35  Provide 95% confidence limits for each of your 
estimates.

Pulmonary Disease
Refer to Data Set FEV.DAT at www.cengagebrain.com

11.36  Use regression methods to look at the relationship 
between level of pulmonary function and other factors 
(e.g., age, height, and personal smoking) when considered 
separately and simultaneously. Assess the goodness of fit 
of the models you develop. Perform analyses for males and 
females combined (where gender is controlled for in the 
analysis), as well as gender-specific analyses.

Hepatic Disease
Refer to Data Set HORMONE.DAT at www.cengagebrain 
.com

11.37  Use methods of linear-regression analysis to assess 
whether there are dose−response relationships with regard 
to biliary and pancreatic secretion levels. Perform separate 
analyses for each of the four active hormones tested.

11.38  Use methods of linear-regression analysis to assess 
whether there are dose–response relationships with regard 
to biliary and pancreatic pH levels. Perform separate analy-
ses for each of the four active hormones tested.

Pediatrics, Cardiovascular Disease
An important area of investigation is the development of 
strategies for altering cardiovascular risk factors in children. 
Low-density lipoprotein (LDL) cholesterol has consistently 
been shown to be related to cardiovascular disease in 
adults. A study was conducted in Bogalusa, Louisiana, and 
Brooks County, Texas, to identify modifiable variables that 
are related to LDL cholesterol in children [15]. It was found 
that the correlation coefficient between LDL cholesterol and 
ponderal index [weight (kg)/height3 (cm3)], which is a meas-
ure of obesity, was .28 among 903 Caucasian boys and .14 
among 474 African American boys.

*11.39  What test can be used to assess whether there 
is a significant association between LDL cholesterol and 
ponderal index?

*11.40  Implement the test in Problem 11.39 for Caucasian 
boys, and report a two-sided p-value.

*11.41  What test can be used to compare correlations be-
tween Caucasian and African American boys?

*11.42  Implement the test in Problem 11.41, and report a 
p-value.

*11.43  Provide a 95% confidence interval for the true cor-
relation among Caucasian boys (ρ1) and African American 
boys (ρ2), respectively.

 Data set available
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Table 11.21  � Relationship between mean 	
thyroxine level and gestational age 
among 536 premature infants

(x) 	 (y)  
Gestational age	 Mean thyroxine level 
(weeks)	 (μg/dL)

	≤ 24a	 6.5
	 25	 7.1
	 26	 7.0
	 27	 7.1
	 28	 7.2
	 29	 7.1
	 30	 8.1
	 31	 8.7
	 32	 9.5
	 33	 10.1

aTreated as 24 in subsequent analyses.

11.50  Is there a significant association between mean thy-
roxine level and gestational age? Report a p-value.

11.51  Assess the goodness of fit of the regression line fit-
ted in Problem 11.49.

To test the primary hypothesis of the study, infants were 
categorized by gestational age and were designated as 
having severe hypothyroxinemia if their thyroxine concen-
tration was 2.6 sd below the mean score for the assay 
that their specimen came from. Thyroxine assays typically 
were done in batches of 240 specimens; a mean and sd 
were calculated for each batch, based on a sample size of 
240. Children in the study were given the Bayley Mental 
Development Index at <30 months of age. The Bayley test 
is a commonly used test of mental development in young 
children. The results for the subgroup of children with 
gestational age 30−31 weeks are shown in Table 11.22.

Table 11.22  � Bayley Mental Development Index 
by presence or absence of severe 
hypothyroxinemia

Severe hypothyroxinemia	 Mean score ± sd	 n

No	 106 ± 21	 138
Yes	 88 ± 25	 17

11.52  Perform a test to compare the mean Bayley score 
between children with and without severe hypothyroxinemia 
(report a p-value).

11.53  Suppose we wanted to use data on children of all 
gestational ages in the study. Suggest a type of analysis 
that could be used to relate the Bayley score to severe hy-
pothyroxinemia while controlling for gestational age. (Do not 
actually carry out the analysis.)

Cardiovascular Disease
The STRIP study (Special Turku Coronary Risk Factor In-
tervention Project for Children) is a longitudinal randomized 
prevention trial where repeated dietary counseling aiming at 
reducing intake of saturated fat took place from infancy to 
age 7 (Nupponen et al.) [17]. Subjects who had complete 
data on components of the metabolic syndrome (MetS) 
(waist circumference, blood pressure, triglycerides, glu-
cose, and HDL cholesterol) at ages 15–20 were included 
in the study. There was an intervention group who received 
dietary counseling and a control group who received only 
standard clinical care.

One of the goals of the study was to look at the correlation 
among components of the MetS. The correlation coef-
ficient between waist circumference and HDL-cholesterol 
(HDL-C) was –0.24 among the 243 subjects in the inter-
vention arm.

11.54  Suppose we wish to perform a test to assess 
whether the correlation coefficient is significantly different 
from 0. State the hypotheses to be tested, the algebraic 
form of the test statistic used to test the hypotheses, and 
the name of the hypothesis test.

11.55  Perform the test in Problem 11.54, report a two-
tailed p-value, and state your conclusion clearly, in context. 
Hint: Assume that a t distribution with > 200 df is the same 
as a N(0,1) distribution.

11.56  Provide a 95% confidence interval for the correlation 
coefficient.

The mean ± sd for waist circumference was 72.8 ± 7.8 cm.

The mean ± sd for HDL-C was 20.7 ± 4.1 mg/dl.

11.57  Determine the slope and intercept of the least squares 
regression line of HDL-C on waist circumference, and 
write out the equation of the least squares regression line. 
Hint: Use the relationship between the regression and cor-
relation coefficient to estimate the regression coefficient of 
HDL-C on waist circumference.

11.58  What is the expected HDL-C for an average person 
with a waist circumference= 90 cm?

11.59  Provide a 95% Cl for the estimate in Problem 11.58.

Hypertension
Endothelin is a powerful vasoconstrictor peptide derived from 
the endothelium. The contribution of endothelin to blood-
pressure regulation in patients with hypertension was as-
sessed by studying the effect of an endothelin-receptor 
antagonist, Bosentan. In the study, 293 patients with mild to 
moderate hypertension were randomized to receive one of 
four oral doses of Bosentan (100, 500, 1000, or 2000 mg 
daily), a placebo, or the ACE (angiotensin-converting enzyme) 
inhibitor enalapril (an established antihypertensive drug) [18]. 
The reported mean changes in systolic blood pressure (SBP) 
over a 24-hour period are shown in Table 11.23.
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Table 11.23   Mean change in SBP over 24 hours

	 Mean	 Bosentan	 ln(dose) 
Group	 change	 dose (mg)

Placebo	 −0.9	 1	 0
100 mg bosentan	 −2.5	 100	 4.61
500 mg bosentan	 −8.4	 500	 6.21
1000 mg bosentan	 −7.4	 1000	 6.91
2000 mg bosentan	 −10.3	 2000	 7.60

11.60  Fit a regression line relating the mean change in SBP 
to the ln(dose) of Bosentan. (Note: For the placebo group, as-
sume the dose of Bosentan = 1 mg; hence the ln(dose) = 0.)

11.61  What test can be used to assess whether the mean 
change in SBP is significantly related to ln(dose) of Bosentan?

11.62  Implement the method in Problem 11.61, and report 
a two-tailed p-value.

11.63  What is the estimated mean change in SBP for an 
average patient taking 2000 mg of Bosentan? Provide a 
95% confidence interval corresponding to this estimate.

Endocrinology
Refer to Data Set BONEDEN.DAT at www.cengagebrain 
.com.

11.64  Use regression analysis to relate the number of 
pack-years smoked to the bone density of the lumbar spine. 
Assess the goodness of fit of the regression line. (Hint: For 
a twinship, relate the difference in bone density between the 
heavier- and lighter-smoking twin to the difference in the 
number of pack-years of smoking.)

11.65  Answer the question in Problem 11.64 for bone den-
sity at the femoral neck.

11.66  Answer the question in Problem 11.64 for bone den-
sity at the femoral shaft.

One of the issues in relating bone density to smoking is that 
smokers and nonsmokers differ in many other characteris-
tics that may be related to bone density; these differences 
are referred to as confounders.

11.67  Compare the weight of the heavier- vs. the lighter-
smoking twin using hypothesis-testing methods.

11.68  Repeat the analyses in Problem 11.64 controlling 
for weight differences between the heavier- and the lighter- 
smoking twins.

11.69  Answer the question in Problem 11.68 for bone den-
sity at the femoral neck.

11.70  Answer the question in Problem 11.68 for bone den-
sity at the femoral shaft.

11.71  Consider other possible confounding variables in 
comparing the heavier- vs. lighter-smoking twin. Repeat the 

analyses in Problems 11.67−11.70, adjusting for these con-
founding variables. What is your overall conclusion regarding 
the possible association between bone density and smoking?

Nutrition
Refer to Data Set VALID.DAT at www.cengagebrain.com.

11.72  Use rank-correlation methods to relate alcohol  
intake as reported on the diet record with alcohol intake as 
reported on the food-frequency questionnaire.

11.73  Answer Problem 11.72 for total fat intake.

11.74  Answer Problem 11.72 for saturated fat intake.

11.75  Answer Problem 11.72 for total caloric intake.

11.76  Do you think parametric or nonparametric methods 
are better suited to analyze the data in VALID.DAT? Explain.

General

11.77  Suppose we have an estimated rank correlation of 
.45 based on a sample of size 24. Assess the significance 
of the results.

11.78  Suppose we have an estimated rank correlation of 
.75 based on a sample of size 8. Assess the significance of 
the results.

Endocrinology
A 65-year-old woman with low bone density in 2002 was 
treated with alendronate through the year 2009. Bone den-
sity was measured irregularly over this period. The results 
for change in bone density of the lumbar spine are shown 
in Table 11.24.

11.79  What is the estimated rate of increase in bone den-
sity of the lumbar spine per year? What is the standard error 
of the estimated rate of increase per year?

Table 11.24  � Change in bone density, lumbar 
spine, over time

	 Time from baseline	 Bone density, 
Visit (i)	 (months) (ti)	 lumbar spine (g/cm2) (xi)

1	 0	 0.797
2	 8	 0.806
3	 18	 0.817
4	 48	 0.825
5	 64	 0.837
6	 66	 0.841
7	 79	 0.886
8	 92	 0.881
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11.80  Provide a significance test to assess whether the 
mean bone density has changed significantly over time. 
Provide a two-tailed p-value.

11.81  The normal change in bone density over time from 
age 40 to age 80 is a decrease of 0.15 g/cm2. Does the 
rate of change in this woman differ significantly from the 
expected age-related change?

Another parameter measured was bone density at the femo-
ral neck (hip). The results are shown in Table 11.25.

Table 11.25  � Change in bone density, femoral 
neck, over time

	 Time from baseline	 Bone density,  
Visit (i)	 (months) (ti)	 femoral neck (g/cm2) (yi)

1	 0	 0.643
2	 8	 0.638
3	 18	 0.648
4	 48	 0.674
5	 64	 0.640
6	 66	 0.676
7	 79	 0.651
8	 92	 0.680

11.82  Provide a measure of association between bone 
density of the lumbar spine and bone density of the femoral 
neck.

11.83  Provide a 95% CI corresponding to the measure of 
association obtained in problem 11.82. 

11.84  Assess whether there is a significant relationship 
between bone density of the lumbar spine and bone density 
of the femoral neck. Please provide a two-tailed p-value.

Ophthalmology
Lutein, an important carotenoid in the maintenance of ocular 
health, has been found postmortem in the macula of eyes. 
Hence, a study is planned to supplement patients with high 
doses of lutein in capsule form to possibly prevent age-related 
macular degeneration, an important eye disease that can 
cause partial or total blindness in large numbers of elderly 
people.

To assess compliance in study participants, a blood sam-
ple will be drawn. It is estimated that a serum lutein > 5 
μg/dL would indicate that a participant is taking study 
medication.

The study began in 1999. A test sample of 9 participants 
had their lutein level measured in 1999 and again in 2003. 
The researchers found a calibration error in the 1999 as-
says, but the 2003 assays were correct. The data are 
shown in Table 11.26.

Table 11.26  � Serum-lutein data analyzed in 1999 	
and 2003

	 1999 Serum-lutein	 2003 Serum-lutein 
Sample	 level (μg/dL)	 level (μg/dL)

1	 3.5	 6.4
2	 2.9	 7.5
3	 4.1	 8.4
4	 5.1	 9.6
5	 6.4	 12.0
6	 1.9	 4.2
7	 1.3	 3.1
8	 4.1	 6.3
9	 2.3	 4.4

Mean	 3.511	 6.878
sd	 1.616	 2.839

11.85  Using regression methods, derive a calibration formula 
predicting the 2003 level as a function of the 1999 level.

11.86  Suppose a participant had a 1999 serum-lutein level 
of 5.0 μg/dL. What is that person’s predicted serum lutein 
based on the 2003 assay? What is a 95% confidence inter-
val around this estimate?

In 1999, 100 participants were randomized to lutein and 
100 participants were randomized to placebo. Each par-
ticipant had his or her blood analyzed using the old assay 
method in 2000 after taking the study capsules for 1 year.

The mean serum-lutein level in the active group was 7.0 ± 
4.0 (mean ± sd) based on the old assay and is assumed to 
be normally distributed. The mean serum-lutein level in the 
placebo group was 2.0 ± 1.5 (mean ± sd) based on the old 
assay and is assumed to be normally distributed.

11.87  If a serum-lutein value >5.0 μg/dL indicates that a 
participant is taking lutein capsules, then what percentage 
of the active group is complying? (Assume the old assay is 
correct and that the serum values can be measured exactly; 
that is, no continuity correction is needed.)

11.88  If a serum-lutein value <5.0 μg/dL indicates that a 
participant is not taking lutein capsules, then what percent-
age of the placebo group is complying (not taking lutein 
capsules outside the study)? Assume that the old assay is 
correct and that the serum values can be measured exactly.

Diabetes
The Mayo Clinic is based in Rochester, Minnesota. Residents 
of Rochester and surrounding areas get almost all their medi-
cal care at the Mayo Clinic. In addition, migration in and out 
of Rochester is relatively low. This makes it feasible to track 
disease history over time and to assess whether the incidence 
of disease has changed over time. The data in Table 11.27 
were presented concerning the incidence of diabetes over time 
among Rochester, Minnesota, residents ages 30 and over [19].
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Table 11.27  � Age-adjusted incidence of diabetes 
mellitus among Rochester, Minnesota, 
residents, age ≥ 30 years from 
1970−1994

Time period	 Time-period score	 Annual incidencea

1970−1974	 1	 240.4
1975−1979	 2	 243.1
1980−1984	 3	 256.7
1985−1989	 4	 315.9
1990−1994	 5	 371.8

Mean	 3.0	 285.6
sd	 1.58	 57.1
N	 5	 5

aIncidence rates are per 100,000 participants and are age- and sex- 
adjusted to the 1980 U.S. Caucasian population. For simplicity, express  
annual incidence per 105 participants (e.g., as 240.4 rather than .002404 
for the time period 1970−1974).

11.89  Fit a linear-regression model relating annual inci-
dence of diabetes to time period. (For this purpose, score 
the time period as 1 if 1970−1974, 2 if 1975−1979, . . . , 5 
if 1990−1994.)

11.90  Test for whether there has been a significant change 
in diabetes incidence over time.

11.91  Based on your answers to Problems 11.89 and 
11.90, make a projection of the incidence rate of diabetes 
mellitus during the period 1995−1999, and provide a 95% 
confidence interval about this estimate.

Diabetes
A group of 10-year-old boys were first ascertained in a 
camp for diabetic boys. They had their weight measured 
at baseline and again when they returned to camp 1 year 
later. Each time, a serum sample was obtained from which 
a determination of hemoglobin A1c (HgbA1c) was made. 
HgbA1c (also called glycosylated hemoglobin) is routinely 
used to monitor compliance with taking insulin injections. 
Usually, the poorer the compliance, the higher the HgbA1c 
level will be. The hypothesis is that the level HgbA1c is 
related to weight. The data in Table 11.28 were obtained.

11.92  What test can be performed to assess the relation-
ship between weight and HgbA1c at the initial visit?

11.93  Please perform the test in Problem 11.92, and report 
a two-tailed p-value.

11.94  Do the results in Problem 11.93 imply a relationship 
between change in HgbA1c and change in weight for an 
individual boy? Why or why not?

11.95  Compute a rank correlation between change in 
weight and change in HgbA1c, each over 1 year. Use 

Table 11.28   Relationship between weight change and change in HgbA1c among diabetic boys

		  1st visit		  2nd visit

					     Weight 2nd visit	 HgbA1c 2nd visit  
	 Weight	 HgbA1c	 Weight	 HgbA1c	 − weight 1st visit (kg)	 − HgbA1c 1st visit (%) 
	 (kg)	 %	 (kg)	 (%)		   
ID no.	 (y)	 (x)	 (y)	 (x)	 (y)	 (x)

1	 40.5	 9.9	 45.5	 8.4	 + 5.0	 −1.5
2	 43.2	 11.3	 47.0	 9.2	 + 3.8	 −2.1
3	 36.3	 10.4	 42.0	 9.6	 + 5.7	 −0.8
4	 30.8	 7.4	 35.3	 8.1	 +4.5	 + 0.7
5	 29.9	 9.8	 33.2	 7.9	 + 3.3	 −1.9
6	 39.7	 8.5	 46.1	 7.7	 + 6.4	 −0.8
7	 36.9	 7.3	 37.8	 7.7	 + 0.9	 + 0.4
8	 36.4	 7.8	 37.0	 8.4	 + 0.6	 + 0.6
9	 34.5	 7.8	 34.3	 9.6	 −0.2	 + 1.8
10	 35.2	 5.7	 38.4	 6.5	 + 3.2	 + 0.8
11	 43.0	 7.4	 48.6	 7.4	 + 5.6	 0
12	 38.4	 6.5	 42.7	 7.0	 +4.3	 + 0.5
13	 42.0	 7.1	 48.0	 7.4	 + 6.0	 + 0.3
14	 34.1	 8.9	 41.3	 8.1	 + 7.2	 −0.8
15	 43.5	 9.3	 51.4	 7.4	 + 7.9	 −1.9

Mean	 37.63	 8.34	 41.91	 8.03	 4.28	 −0.31
sd	 4.35	 1.56	 5.73	 0.90	 2.40	 1.18
n	 15	 15	 15	 15	 15	 15
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this measure to directly test the hypothesis that change in 
weight over 1 year is related to change in HgbA1c. Report 
a two-tailed p-value, and provide a 95% confidence interval 
for the underlying rank correlation.

Cancer, Endocrinology
Obesity is very common in American society and is a risk fac-
tor for breast cancer in postmenopausal women. One mech-
anism explaining why obesity is a risk factor is that it may 
raise estrogen levels in women. In particular, one biomarker 
of estrogen, serum estradiol, is a strong risk factor for breast 
cancer. To better assess these relationships, researchers 
studied a group of 151 African American and 60 Caucasian 
premenopausal women. Adiposity was quantified by two 
different measures: BMI = weight (kg)/height2 (m2) and waist-
hip ratio (WHR) = waist circumference/hip circumference. 
BMI is a measure of overall adiposity, whereas WHR is a 
measure of abdominal adiposity. In addition, a complete hor-
monal profile was obtained, including serum estradiol (ES_1). 
Finally, other breast-cancer risk factors were also assessed 
among these women, including (1) ethnicity (ETHNIC = 1 if 
African American, = 0 if Caucasian), (2) age (ENTAGE), (3) 
parity (NUMCHILD = number of children), (4) age at first birth 
(AGEFBO), (5) any children (ANYKIDS = 1 if yes, = 0 if no), 
(6) age at menarche (AGEMNRCH = age when menstrual 
periods began). The data are provided in Data Set ESTRADL.
DAT at www.cengagebrain.com

11.96  Is there a crude association between either measure 
of adiposity (BMI, WHR), considered separately, and serum 
estradiol?

11.97  Are these relationships similar for Caucasian and 
African American women?

11.98  Do the relationships between the adiposity measures 
and serum estradiol persist after controlling for the other 
breast-cancer risk factors in list items 1 to 6?

11.99  It is well known that African American women have 
higher levels of obesity than Caucasian women. Are there 
differences between estradiol levels for African American 
women and Caucasian women after controlling for obesity?

Diabetes
Refer to Data Set DIABETES.DAT at www.cengagebrain 
.com. Another approach to addressing Problem 8.139 
(p. 333) is to calculate b = the rate of growth of weight over 
time for each individual boy, using linear-regression analysis, 
and relate b to h = the mean HgbA1c over all follow-up visits.

11.100  Perform the analysis just suggested for weight. Is 
there a significant association between the rate of growth 
(b) and mean HgbA1c (h)?

11.101  Repeat the analysis in Problem 11.100 for height.

11.102  Repeat the analysis in Problem 11.100 for BMI.

Ophthalmology
Retinitis pigmentosa (RP) is a hereditary ocular disease 
in which patches of pigment appear on the retina, po-
tentially resulting in substantial vision loss and in some 
cases complete blindness. An important issue is how fast 
the subjects decline. Visual field is an important measure 
of area of vision, which is measured in degree2. A visual 
field area for a normal person is around 11,000 degree2. 
The longitudinal data in Table 11.29 were provided by an 
individual patient.

Table 11.29  � Longitudinal visual field data for 	
one RP patient

	 Time	 Visual field area	 ln 
Visit	 (yr)	 (degree2)	 (visual field area)

1	 0	 3059	 8.03
2	 1	 3053	 8.02
3	 2	 1418	 7.26
4	 3	 1692	 7.43
5	 4	 1978	 7.59
6	 5	 1567	 7.36
7	 6	 1919	 7.56
8	 7	 1998	 7.60
9	 11	 1648	 7.41
10	 13	 1721	 7.45
11	 15	 1264	 7.14

mean	 6.09	 1938	 7.532
sd	 4.97	 597	 0.280

Suppose the rate of change of ln (visual field) is a linear 
function of follow-up time.

11.103  Write down a linear regression model that summa-
rizes this relationship.

11.104  Fit the regression line using the method of least 
squares, and assess whether there is a significant change 
in visual field over time for this subject. Report a two-sided 
p-value.

11.105  What does the intercept mean in this context? 
What is the estimated % decline in visual field per year?

11.106  What is the estimated visual field for this subject 
after 20 years of follow-up? Provide a 95% confidence 
interval associated with this estimate.

Cardiology
Coronary flow reserve (CFR) was estimated in 31 patients 
with hypertension. Investigators measured the myocardial 
velocity ratio (MVR) following high-dose dobutamine, and 
obtained the statistical data shown in Table 11.30. Data set available
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Table 11.30  � Descriptive statistics for CFR and 
MVR for 31 hypertensive patients

	 Mean	 sd

CFR	 2.0	 0.4
MVR	 0.82	 0.2

11.107  If the corrected sum of cross products (Lxy) is 
0.744, estimate the slope in the regression of CFR(y) on 
MVR(x).

11.108  Estimate the intercept of this regression line.

11.109  Test whether there is a significant relation between 
these two variables at the 5% level.

11.110  What is the residual variance around the regression 
line?

11.111  What is the value of adjusted R2 for this line? How 
do you interpret it?

Hypertension
A study was performed in South Wales to investigate the 
degree of heredity in blood pressure. A group of 623 indi-
viduals (called propositii) over 5 years of age were randomly 
selected in two geographically defined populations in 
South Wales (Miall and Oldham [20]). The individuals and 
their first-degree relatives participated in the survey. The 
data from this study are provided in the dataset WALES.
DAT, at www.cengagebrain.com, with documentation in 
WALES.DOC.

They had their blood pressure measured by one observer 
in their homes at baseline and at 3 follow-up exams. A cor-
relation coefficient was computed based on 248 families 
between the blood pressure of the propositus and the blood 
pressure of their fathers. The correlation coefficient for sys-
tolic blood pressure (SBP) was 0.313.

11.112  Test whether this correlation coefficient is sig-
nificantly different from 0, and report a p-value (two-tailed). 
Hint: Assume that a t distribution with > 200 df is approxi-
mately normal.

11.113  Provide a 95% Cl for the true correlation coef-
ficient.

Pulmonary Disease
The Data Set FEV.DAT at www.cengagebrain.com con-
tains pulmonary function measures on 654 children ages 
3−19 seen in East Boston, Massachusetts,  as part of the 
Childhood Respiratory Disease (CRD) Study. The data set 

contains data on age, gender, height (inches), FEV = volume 
of air expelled in 1 second (liters), and smoking status. The 
code sheet for these data is given in Table 11.31.

Table 11.31   FEV.DOC

Column	 Variable	 Format or Code

1−5	 ID number	

7−8	 Age (yrs)	

10−15	 FEV (liters)	 X.XXXX

17−20	 Height (inches)	 XX.X

22	 Sex	 0=female/1=male

24	 Smoking Status	 0=non-current smoker/

		  l=current smoker

Some descriptive statistics of the variables in the data set 
using Minitab are given in Table 11.32.

Table 11.32   Descriptive statistics for FEV.DAT

Results for: FEV	
Descriptive Statistics: Age, FEV, Hgt

Variable	 N	 N*	 Mean	 SE Mean	 StDev

Age	 654	 0	 9.931	 0.116	 2.954

FEV	 654	 0	 2.6368	 0.0339	 0.8671

Hgt	 654	 0	 61.144	 0.223	 5.704

Variable	 Minimum	 Q1	 Median	 Q3

Age	 3.000	 8.000	 10.000	 12.000

FEV	 0.7910	 1.9770	 2.5475	 3.1205

Hgt	 46.000	 57.000	 61.500	 65.500

Variable	 Maximum

Age	 19.000

FEV	 5.7930

Hgt	 74.000

Tally for Discrete Variables: Sex, Smoke

Sex	 Count	 Percent	 Smoke	 Count	 Percent

0	 318	 48.62	 0	 589	 90.06

1	 336	 51.38	 1	 65	 9.94

N =	 654		  N =	 654	

We first ran a regression of FEV on smoking as shown in 
Table 11.33. Data set available
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Table 11.33   �Regression of FEV on smoking 	
in FEV.DAT

Regression Analysis: FEV vs. Smoke

The regression equation is

FEV = 2.57 + 0.711 Smoke

Predictor	 Coef	 SE Coef	 T	 P

Constant	 2.56614	 0.03466	 74.04	 0.000

Smoke	 0.7107	 0.1099	 6.46	 0.000

S = 0.841185  R-Sq = 6.0%  R-Sq(adj) = 5.9%
Analysis of Variance

Source	 DF	 SS	 MS	 F	 P

Regression	 1	 29.570	 29.570	 41.79	 0.000

Residual	 652	 461.350	 0.708		   

 Error

Total	 653	 490.920			 

11.114  The regression coefficient for smoking is 0.7 ± 0.1, 
p < .001. Does this mean that smokers have higher pulmo-
nary function than nonsmokers? Why or why not?

It is well known that age, height, and sex are important pre-
dictors of pulmonary function. Hence, we ran the regression 
model in Table 11.34.

Table 11.34  � Regression of FEV on age, height, 	
gender and smoking in FEV.DAT

Regression Analysis: FEV vs. Age, Hgt, Sex, Smoke
The regression equation is

FEV = − 4.46 + 0.0655 Age + 0.104 Hgt + 0.157 
Gender − 0.0872 Smoke

Predictor	 Coef	 SE Coef	 T	 P

Constant	 −4.4570	 0.2228	 −20.00	 0.000

Age	 0.065509	 0.009489	 6.90	 0.000

Hgt	 0.104199	 0.004758	 21.90	 0.000

Sex	 0.15710	 0.03321	 4.73	 0.000

Smoke	 −0.08725	 0.05925	 −1.47	 0.141

S = 0.412216 R-Sq = 77.5% R-Sq(adj) = 77.4%

Analysis of Variance

Source	 DF	 SS	 MS	 F	 P

Regression	 4	 380.640	 95.160	 560.02	 0.000

Residual	 649	 110.280	 0.170		   

 Error

Total	 653	 490.920			 

11.115  What does the regression coefficient for smoking 
mean in Table 11.34? How does it differ from the regres-
sion coefficient in Table 11.33?

There was some previous literature that the effect of age 
and height on FEV might not be linear. Hence, we ran the 
regression model in Table 11.35.

Table 11.35  � Quadratic regression of FEV on age, 
height, gender, and smoking

Regression Analysis: FEV vs. Age, Hgt,...

The regression equation is

FEV = − 4.84 + 0.0633 Age + 0.110 Hgt + 0.0952  
Sex + 0.00177 (Age-10)^2 + 0.00284 (Hgt-61)^2 − 0.140 
Smoke

Predictor	 Coef	 SE Coef	 T	 P

Constant	 −4.8360	 0.2392	 −20.22	 0.000

Age	 0.06334	 0.01095	 5.78	 0.000

Hgt	 0.109594	 0.005239	 20.92	 0.000

Sex	 0.09515	 0.03287	 2.90	 0.004

(Age-10)^2	 0.001767	 0.001754	 1.01	 0.314

(Hgt-61)^2	 0.0028438	 0.0004949	 5.75	 0.000

Smoke	 −0.13959	 0.05746	 −2.43	 0.015

S = 0.395080 R−Sq = 79.4% R-Sq(adj) = 79.2%

Analysis of Variance

Source	 DF	 SS	 MS	 F	 P

Regression	 6	 389.931	 64.988	 416.36	 0.000

Residual	 647	 100.989	 0.156		   

 Error

Total	 653	 490.920			 

11.116  Is there evidence of nonlinearity for age or for 
height?

11.117  What is the estimated mean FEV for a nonsmoking 
15-year-old boy with height = 5’6” (66 inches)?

Nutrition
The assessment of diet is an important exposure for 
many disease outcomes. However, there is often much 
imprecision in dietary recall. In one study, 70- to 79-year-
old women were asked about the preschool diet of their 
children (ages 2−4) using a food frequency questionnaire 
(FFQ). A unique aspect of the study is that simultaneous 
diet record data exist on the same children recorded in 
real time by their mothers when they were ages 2−4 and 
their mothers were 20 to 40 years old. The data in Table 
11.36 were available on average servings of margarine 
per week.
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The Pearson correlation between intake from the two re-
cording methods was 0.448. Assume that FFQ and DR 
margarine intake are normally distributed.

11.118  Test the hypothesis that the true Pearson correla-
tion (ρ) is significantly different from zero [provide a p-value 
(two-tailed)].

11.119  Provide a 95% confidence interval for ρ.

The distribution of dietary intake for individual food items is 
often not very normally distributed.

An alternative measure of correlation between the FFQ and 
DR that does not depend on the assumption of normality is the 
Spearman rank correlation (rs). For the margarine data, rs = .679.

11.120  Test the hypothesis that the Spearman rank cor-
relation is significantly different from 0 [provide a p-value 
(two-tailed)].

11.121  Provide a 95% confidence interval for the true 
Spearman rank correlation (ρs).

Table 11.36  � Margarine intake assessed by 	
two different recording methods 
(servings per week, [n = 12])

ID	 FFQ	 DR

340	 7	 0
399	 7	 0.5
466	 0	 0
502	 0	 0
541	 0	 0
554	 7	 2.5
558	 7	 3
605	 7	 0.5
611	 21	 3.7
618	 0	 2.5
653	 21	 4.1
707	 7	 8.5
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	 12.1	 I n t r o d u c t i o n  t o  t h e  O n e - W ay 

A n a ly s i s  o f  V a r i a n c e

In Chapter 8 we were concerned with comparing the means 
of two normal distributions using the two-sample t test for 
independent samples. Frequently, the means of more than 
two distributions need to be compared.

	 Example 12.1 	 Pulmonary Disease  A topic of public-health interest is whether passive smoking (ex-
posure among nonsmokers to cigarette smoke in the atmosphere) has a measurable 
effect on pulmonary health. White and Froeb studied this question by measuring 
pulmonary function in several ways in the following six groups [1]:

(1)	 Nonsmokers (NS): People who themselves did not smoke and were not exposed 
to cigarette smoke either at home or on the job.

(2)	 Passive smokers (PS): People who themselves did not smoke and were not ex-
posed to cigarette smoke in the home but were employed for 20 or more years 
in an enclosed working area that routinely contained tobacco smoke.

(3)	 Noninhaling smokers (NI): People who smoked pipes, cigars, or cigarettes but who 
did not inhale.

(4)	 Light smokers (LS): People who smoked and inhaled 1–10 cigarettes per day for 
20 or more years. (Note: There are 20 cigarettes in a pack.)

(5)	 Moderate smokers (MS): People who smoked and inhaled 11–39 cigarettes per day 
for 20 or more years.

(6)	 Heavy smokers (HS): People who smoked and inhaled 40 or more cigarettes per 
day for 20 or more years.

A principal measure used by White and Froeb to assess pulmonary function was 
forced mid-expiratory flow (FEF). They were interested in comparing mean FEF 
among the six groups.

The t test methodology generalizes nicely in this case to a procedure called the one-
way analysis of variance (ANOVA).

Multisample  
Inference 12
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	 12.2	 O n e - W ay  ANO   V A — Fi  x e d - E f f e c t s  M o d e l

	E xample 12.2 	 Pulmonary Disease  Refer to Example 12.1. The authors identified 200 males 
and 200 females in each of the six groups except for the NI group, which was 
limited to 50 males and 50 females because of the small number of such people 
available. The mean and standard deviation of FEF for each of the six groups 
for males are presented in Table 12.1. How can the means of these six groups be 
compared?

	T able 12.1	 FEF data for smoking and nonsmoking males

Group 
number,		  Mean FEF	 sd FEF	  
i	 Group name	 (L/s)	 (L/s)	 ni

	1	 NS	 3.78	 0.79	 200
	2	 PS	 3.30	 0.77	 200
	3	 NI	 3.32	 0.86	 50
	4	 LS	 3.23	 0.78	 200
	5	 MS	 2.73	 0.81	 200
	6	 HS	 2.59	 0.82	 200

Source: Based on The New England Journal of Medicine, 302 (13), 720–723, 1980.

Suppose there are k groups with ni observations in the ith group. The jth 
observation in the ith group will be denoted by yij. Let’s assume the following 
model.

	E quation 12.1	 y eij i ij= + +µ α

where µ is a constant, αi is a constant specific to the ith group, and eij is an error 
term, which is normally distributed with mean 0 and variance σ2. Thus, a typi-
cal observation from the ith group is normally distributed with mean µ + αi and 
variance σ2.

It is not possible to estimate both the overall constant µ as well as the k con-
stants αi, which are specific to each group. The reason is that we only have k 
observed mean values for the k groups, which are used to estimate k + 1 parameters. 
As a result, we need to constrain the parameters so that only k parameters will be 
estimated. Some typical constraints are (1) the sum of the αi’s is set to 0, or (2) the αi 
for the last group (αk) is set to 0. We use the former approach in this text. However, 
SAS uses the latter approach.

	D efinition 12.1	 The model in Equation 12.1 is a one-way analysis of variance, or a one-way 
ANOVA model. With this model, the means of an arbitrary number of groups, 
each of which follows a normal distribution with the same variance, can be 
compared. Whether the variability in the data comes mostly from variability 
within groups or can truly be attributed to variability between groups can also be 
determined.

The parameters in Equation 12.1 can be interpreted as follows.
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	E quation 12.2	 Interpretation of the Parameters of a One-Way ANOVA Fixed-Effects Model

(1)	 µ represents the underlying mean of all groups taken together.

(2)	 αi represents the difference between the mean of the ith group and the over-
all mean.

(3)	 eij represents random error about the mean µ + αi for an individual observa-
tion from the ith group.

Intuitively, in Table 12.1 an observed FEF is represented as a sum of an overall mean 
FEF plus an effect of each smoking group plus random variability within each smok-
ing group. Group means are compared within the context of this model.

	 12.3	 H y p o t h e s i s  T e s t i n g  i n  O n e - W ay  ANO   V A —

Fi  x e d - E f f e c t s  M o d e l

The null hypothesis (H0) in this case is that the underlying mean FEF of each of the 
six groups is the same. This hypothesis is equivalent to stating that each αi = 0 be-
cause the αi sum up to 0. The alternative hypothesis (H1) is that at least two of the 
group means are not the same. This hypothesis is equivalent to stating that at least 
one αi ≠ 0. Thus, we wish to test the hypothesis H0: all αi = 0 vs. H1: at least one αi ≠ 0.

F Test for Overall Comparison of Group Means
The mean FEF for the ith group will be denoted by yi, and the mean FEF over all 
groups by y . The deviation of an individual observation from the overall mean can 
be represented as

	E quation 12.3	 y y y y y yij ij i i− = − + −( ) ( )

The first term on the right-hand side ( )y yij i−  represents the deviation of an indi-
vidual observation from the group mean for that observation and is an indication 
of within-group variability. The second term on the right-hand side ( )y yi −  repre-
sents the deviation of a group mean from the overall mean and is an indication of 
between-group variability. These terms are depicted in Figure 12.1.

Generally speaking, if the between-group variability is large and the within-
group variability is small, as in Figure 12.1a, then H0 is rejected and the underlying 
group means are declared significantly different. Conversely, if the between-group 
variability is small and the within-group variability is large, as in Figure 12.1b, then 
H0, the hypothesis that the underlying group means are the same, is accepted.

If both sides of Equation 12.3 are squared and the squared deviations are summed 
over all observations over all groups, then the following relationship is obtained:

	E quation 12.4	 y y y y yij
j

n

i

k

ij i
j

n

i

k

i

i i
−( ) = −( ) +

== ==
∑∑ ∑∑2

11

2

11

−−( )
==
∑∑ y
j

n

i

k i 2

11

because the cross-product term can be shown to be zero.
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	D efinition 12.2	 The term

		
y yij

j

n

i

k i
−( )

==
∑∑ 2

11

is called the Total Sum of Squares (Total SS).

	D efinition 12.3	 The term

		
y yij i

j

n

i

k i
−( )

==
∑∑ 2

11

is called the Within Sum of Squares (Within SS).

	D efinition 12.4	 The term

		
y yi

j

n

i

k i
−( )

==
∑∑ 2

11

is called the Between Sum of Squares (Between SS).

B

A

y1

y1

y2

y3

y4

y5

y6 y

y

y2

y3

y4

y5

y6

y1j

y1j

(a)

(b)

A
B

B is small relative to A.

B is large relative to A.

A = yij – yi = within-group variability

B = yi – y = between-group variability

	Fi gure 12.1	 Comparison of between-group and within-group variability
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Thus, the relationship in Equation 12.4 can be written as Total SS = Within SS + 
Between SS.

To perform the hypothesis test, it is easier to use the short computational form 
for the Within SS and Between SS in Equation 12.5.

	E quation 12.5	 Short Computational Form for the Between SS and Within SS

		  
BetweenSS = −







=

=

=∑
∑

n y

n y

n
n yi i

i

k i i
i

k

i i
2

1

1

2

22

1

2

2

1

1

i

k

i i
i

k

y
n

n s

=

=

∑

∑

−

= −

..

( )WithinSS

where y.. = sum of the observations across all groups, n = total number of observa-
tions over all groups, and s2

i  = sample variance for the ith group.

	 Example 12.3 	 Pulmonary Disease  Compute the Within SS and Between SS for the FEF data in 
Table 12.1.

	 	 Solution:  We use Equation 12.5 as follows:

		

BetweenSS = + + +200 3 78 200 3 30 200 2 52 2( . ) ( . ) ( .... 99

200 3 78 200 3 30 200 2 59

2)

( . ) ( . ) ( . )...

 

−
+ + +[ ]]

= − = −

2

2
1050

10 505 58 3292 1050 10 505 58 10 3, . / , . , 221 20 184 38

199 0 79 199 0 772 2

. .

( . ) ( . )

=

= +WithinSS ++ +

+ +

49 0 86 199 0 78

199 0 81 199 0 82

2 2

2

( . ) ( . )

( . ) ( . )22

124 20 117 99 36 24 121 07 130 56 133 81= + + + + +. . . . . . ==663 87.

Finally, the following definitions are important.

	D efinition 12.5	 Between Mean Square = Between MS = Between SS/(k − 1)

	D efinition 12.6	 Within Mean Square = Within MS = Within SS/(n − k)

The significance test will be based on the ratio of the Between MS to the Within 
MS. If this ratio is large, then we reject H0; if it is small, we accept (or fail to reject) 
H0. Furthermore, under H0, the ratio of Between MS to Within MS follows an F dis-
tribution with k − 1 and n − k degrees of freedom. Thus, the following test procedure 
for a level α test is used.

	E quation 12.6	 Overall F Test for One-Way ANOVA

		    To test the hypothesis H0: αi = 0 for all i vs. H1: at least one αi ≠ 0, use the follow-
ing procedure:

(1)	 Compute the Between SS, Between MS, Within SS, and Within MS using 
Equation 12.5 and Definitions 12.5 and 12.6.
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(2)	 Compute the test statistic F = Between MS/Within MS, which follows an F 
distribution with k − 1 and n − k df under H0.

(3)	 If  F > Fk−1,n−k,1−α  then reject H0

		  If  F ≤ Fk−1,n−k,1−α  then accept H0

(4)	 The exact p-value is given by the area to the right of F under an Fk−1,n−k distri-
bution = Pr(Fk−1,n−k > F).

The acceptance and rejection regions for this test are shown in Figure 12.2. 
Computation of the exact p-value is illustrated in Figure 12.3. The results from 
the ANOVA are typically displayed in an ANOVA table, as in Table 12.2.

	T able 12.2	 Display of one-way ANOVA results

Source of 
variation	 SS	 df	 MS	 F statistic	 p-value

Between	 n y
y
n

Bi i
i

k
2

1

2

=
∑ − =..

	 k – 1	
B

k −1	
B k
A n k

F
( )
( )

−
−

=1
	 Pr F Fk n k( ),− − >1

Within	 ( )n s Ai i
i

k

− =
=
∑ 1 2

1
	 n – k	

A
n k−

Total	 Between SS + Within SS

	 Example 12.4 	 Pulmonary Disease  Test whether the mean FEF scores differ significantly among the 
six groups in Table 12.1 (on page 552).

	 	 Solution:  From Example 12.3, Between SS = 184.38 and Within SS = 663.87. There-
fore, because there are 1050 observations combined over all 6 groups, it follows that

		  Between MS = 184.38/5 = 36.875

		  Within MS = 663.87/(1050 − 6) = 663.87/1044 = 0.636

		  F = Between MS/Within MS = 36.875/0.636 = 58.0 ~ F5,1044 under H0

0 Value

Fr
eq

u
en

cy

Fk – 1, n – k distribution

F > Fk – 1, n – k, 1 – α
Rejection region

Fk – 1, n – k, 1 – α

F ≤ Fk – 1, n – k, 1 – α
Acceptance region

F = Between MS/Within MS ~ Fk – 1, n – k under H0

	Fi gure 12.2	 Acceptance and rejection regions for the overall F test for one-way ANOVA
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Refer to Table 8 in the Appendix and find that

		  F5 120 999 4 42, ,. .=

Because F5,1044,.999 < F5,120,.999 = 4.42 < 58.0 = F

it follows that p < .001. The exact p-value obtained from Stata = Ftail(5,1044,58) =  
2.5 × 10 −53. Therefore, we can reject H0, that all the means are equal, and can  
conclude that at least two of the means are significantly different. These results are 
displayed in an ANOVA table (Table 12.3).

	T able 12.3	 ANOVA table for FEF data in Table 12.1

	 SS	 df	 MS	 F statistic	 p-value

Between	 184.38	 5	 36.875	 58.0	 p < .001
Within      	 663.87	 1044	 0.636		
Total	 848.25

Using the Computer to Perform One-Way ANOVA
We can use the aov command of R for this purpose. The syntax is as follows:

  model<- aov(depvar ~ groupvar)

  summary(model)

These commands will perform the one-way ANOVA and will produce the ANOVA 
table in Table 12.2. Depvar is the dependent variable, and groupvar is the grouping 
variable, which should be categorical.

	 Example 12.5 	 Renal disease  Refer to the data in Swiss.dat which was a data set of 300 women 
whose goal was to relate intake of phenacetin-containing analgesics to kidney func-
tion. For this example, we will relate baseline kidney function specified by Serum 
creatinine in 1968 (creat_68) to phenacetin intake, which is specified by group (1 = 
high NAPAP/2 = low NAPAP/3 = control). NAPAP is a biomarker of recent intake of 
phenacetin-containing analgesics. Women in both groups 1 and 2 are regular users 

0

Value

Fr
eq

u
en

cy

Fk – 1, n – k distribution

p-value

F

F = Between MS/Within MS ~ Fk – 1, n – k under H0

	Fi gure 12.3	 Computation of the exact p-value for the overall F test for one-way ANOVA
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of phenacetin-containing analgesics, with group 1 women having higher intake. 
Group 3 is a group of non-users of phenacetin-containing analgesics. Use one-way 
ANOVA for this purpose.

	 	 Solution:  There were 100 women in each group, but after excluding missing values 
(denoted by na in R), there were 295 women with creat_68. The mean, sd, and sam-
ple size of each group are given below together with a boxplot of creat_68 by group. 
It appears that creat_68 is higher in group 1 than the other 2 groups. 

> tapply(creat_68, group, mean, na.rm = TRUE)

     1           2        3

1.0747959    0.9147475    0.8914286 

> tapply(creat_68, group, sd, na.rm = TRUE)

     1           2        3

0.4730516    0.2353865    0.2272879

> creat_68.na<- is.na(creat_68)

> creat_68_a<- creat_68[creat_68.na == FALSE]

> length(creat_68_a)

[1] 295

> group_a<- group[creat_68.na == FALSE]

> length(group_a)

[1] 295

> tapply(creat_68_a, group_a, length)

 1    2    3

98   99   98

plot(group_a, creat_68_a, xlab = “Group”, ylab = “Creat_68”)

Group

C
re

at
_6

8 2.5

2.0

1.5

1.0

0.5

3.0

3.5

4.0

1.0 1.5 2.0 3.02.5
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The ANOVA is given below. 

> baseline<- aov(creat_68 ~ group_cat)

> summary(baseline)

             Df      Sum Sq    Mean Sq    F value   Pr(>F)

group_cat    2      1.95     0.9775     8.879     0.000181***

Residuals  292     32.15     0.1101

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

5 observations deleted due to missingness

There are overall significant differences by group (F = 8.79, p_value = 0.00018).

The Between sum of squares in Table 12.2 (on page 556) is denoted by the name of the 
grouping variable (group_cat), and the Within sum of squares is denoted by Residuals.

	 12.4	 Comparisons of Specific Groups in One-Way ANOVA

In the previous section a test of the hypothesis H0: all group means are equal, vs. H1: 
at least two group means are different, was presented. This test lets us detect when 
at least two groups have different underlying means, but it does not let us determine 
which of the groups have means that differ from each other. The usual practice is 
to perform the overall F test just discussed. If H0 is rejected, then specific groups are 
compared, as discussed in this section.

t Test for Comparison of Pairs of Groups
Suppose at this point we want to test whether groups 1 and 2 have means that are 
significantly different from each other. From the underlying model in Equation 12.1 
(p. 552), under either hypothesis,

	E quation 12.7	 Y1 1isnormally distributed with mean and variaµ α+ nnce

and isnormally distributed with mean

σ

µ

2
1

2

n

Y ++ α σ2
2

2and variance n

The difference of the sample means ( )y y1 2−  will be used as a test criterion. Thus, 
from Equation 12.7, because the samples are independent it follows that

	E quation 12.8	 Y Y N
n n1 2 1 2

2

1 2

1 1− − +














∼ α α σ,

However, under H0, α1 = α2 and Equation 12.8 reduces to

	E quation 12.9	 Y Y N
n n1 2

2

1 2
0

1 1− +




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



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If σ2 were known, then we could divide by the standard error

		
σ 1 1

1 2n n
+

and obtain the test statistic:

	E quation 12.10	 Z
Y Y

n n

= −

+




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1 2

2

1 2

1 1σ

The test statistic Z would follow an N(0, 1) distribution under H0. Because σ2 is gen-
erally unknown, the best estimate of it, denoted by s2, is substituted, and the test 
statistic is revised accordingly.

How should σ2 be estimated? Recall from Equation 12.1 that Yij ~ N(µ + αi, σ
2). 

Thus, the underlying variance of each group is the same. Therefore, a pooled esti-
mate of group-specific variances is reasonable. Recall that when a pooled estimate 
of the variance from two independent samples was obtained in Chapter 8, we used 
a weighted average of the sample variances from the individual samples, where the 
weights were the number of degrees of freedom in each sample. In particular, from 
Equation 8.10,

		  s n s n s n n2
1 1

2
2 2

2
1 21 1 2= −( ) + −  + −( ) ( )

For the one-way ANOVA, there are k sample variances and a similar approach is used 
to estimate σ2 by computing a weighted average of k individual sample variances, 
where the weights are the number of degrees of freedom in each of the k samples. 
This formula is given as follows.

	E quation 12.11	 Pooled Estimate of the Variance for One-Way ANOVA

		  
s n s n n si i

i

k

i
i

k

i i
i

k
2 2

1 1

2

1

1 1 1= −( ) −( ) = −( )
= = =
∑ ∑ ∑









 − =( )n k Within MS

However, note from Equations 12.5, 12.11, and Definition 12.6 (on page 555) that 
this weighted average is the same as the Within MS. Thus, the Within MS is used to 
estimate σ2. Note that s2 had (n1 − 1) + (n2 − 1) = nl + n2 − 2 df in the two-sample case. 
Similarly, for the one-way ANOVA, s2 has

		  ( ) ( ) ( ) ( )n n n df n n n k n kk k1 2 1 21 1 1− + − + + − = + + + − = −L L ddf

	 Example 12.6 	 Pulmonary Disease  What is the best estimate of σ2 for the FEF data in Table 12.1? 
How many df does it have?

	 	 Solution:  From Table 12.3 (p. 557), the best estimate of the variance is the Within 
MS = 0.636. It has n − k df = 1044 df.

See page 287 for  
Equation 8.10

See page 555 for  
Equation 12.5
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Hence, the test statistic Z in Equation 12.10 will be revised, substituting s2 for σ2, 
with the new test statistic t distributed as tn−k rather than N(0, 1). The test procedure 
is given as follows.

	E quation 12.12	 t Test for the Comparison of Pairs of Groups in One-Way ANOVA (LSD Procedure)  
Suppose we wish to compare two specific groups, arbitrarily labeled as group 1 and 
group 2, among k groups. To test the hypothesis H H0 1 2 1 1 2: :α α α α= ≠vs. , use the 
following procedure:

(1)	 Compute the pooled estimate of the variance s2 = Within MS from the one 
way ANOVA.

(2)	 Compute the test statistic

		        

t
y y

s
n n

= −

+ 1





1 2

2

1 2

1

which follows a tn−k distribution under H0.

(3)	 For a two-sided level α test,

if    t t t tn k n k> <− − −, ,1 2 2α αor

then reject H0

if    t t tn k n k− − −≤ ≤, ,α α2 1 2

then accept H0

(4)	 The exact p-value is given by

		      p = 2 × the area to the left of t under a tn–k distribution if t < 0
				    = 2 × Pr(tn–k < t)

		  	 p	 = 2 × the area to the right of t under a tn–k distribution if t ≥ 0
				    = 2 × Pr(tn–k > t)

(5)	 A 100% × (1 - α) CI for µ1 - µ2 is given by

		
y y t s

n n
1 1

n k1 2 ,1 /2
2

1 2
− ± +





− −α

The acceptance and rejection regions for this test are given in Figure 12.4. 
The computation of the exact p-value is illustrated in Figure 12.5. This test is 
often referred to as the least significant difference (LSD) method.

	 Example 12.7 	 Pulmonary Disease  Compare each pair of groups for the FEF data in Table 12.1, 
and report any significant differences.

	 	 Solution:  First plot the mean ± se of the FEF values for each of the six groups in 
Figure 12.6 to obtain some idea of the magnitude of the differences between groups. 
The standard error for an individual group mean is estimated by s ni , where s2 = 
Within MS. Notice that the nonsmokers have the best pulmonary function; the 
passive smokers, noninhaling smokers, and light smokers have about the same 
pulmonary function and are worse off than the nonsmokers; and the moderate and 
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	Fi gure 12.4	 Acceptance and rejection regions for the t test for the comparison  
of pairs of groups in one-way ANOVA (LSD approach)
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	Fi gure 12.5	 Computation of the exact p-value for the t test for the comparison  
of pairs of groups in one-way ANOVA (LSD approach)
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If t < 0, then p = 2 × the area
to the left of t under a
tn – k distribution.

If t ≥ 0, then p = 2 × the area
to the right of t under
a tn – k distribution.
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heavy smokers have the poorest pulmonary function. Note also that the standard-
error bars are wider for the noninhaling smokers than for the other groups because 
this group has only 50 people compared with 200 for all other groups. Are the ob-
served differences in the figure statistically significant as assessed by the LSD proce-
dure in Equation 12.12? The results are presented in Table 12.4.

There are very highly significant differences (1) between the nonsmokers and all 
other groups, (2) between the passive smokers and the moderate and heavy smokers, 
(3) between the noninhalers and the moderate and heavy smokers, and (4) between 
the light smokers and the moderate and heavy smokers. There are no significant 
differences between the passive smokers, noninhalers, and light smokers and no 
significant differences between the moderate and heavy smokers, although there is 
a trend toward significance with the latter comparison. Thus, these results tend to 
confirm what Figure 12.6 shows. They are very interesting because they show that 
the pulmonary function of passive smokers is significantly worse than that of non-
smokers and is essentially the same as that of noninhaling and light smokers (≤ l/2 
pack cigarettes per day).

A frequent error in performing the t test in Equation 12.12 when compar-
ing groups 1 and 2 is to use only the sample variances from these two groups 
rather than from all k groups to estimate σ2. If the sample variances from only 
two groups are used, then different estimates of σ2 are obtained for each pair of 
groups considered, which is not reasonable because all the groups are assumed to 
have the same underlying variance σ2. Furthermore, the estimate of σ2 obtained 
by using all k groups will be more accurate than that obtained from using any 
two groups because the estimate of the variance will be based on more informa-
tion. This is the principal advantage of performing the t tests in the framework 

	Fi gure 12.6	 Mean ± se for FEF for each of six smoking groups

NS PS NI LS MS HS
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/s

)
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Source: Based on The New England Journal of Medicine, 302 (13), 720−723, 1980.
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	T able 12.4	 Comparisons of specific pairs of groups for the FEF data in Table 12.1 (on page 552) 
using the LSD t test approach

Groups 
compared	 Test statistic	 p-value

NS, PS	 t = −

+






= =378 330

0636
1

200
1

200

048
6

008
. .

.

.
.

.
002a	 < .001

NS, NI	     t = −

+






= =378 332

0636
1

200
1

50

046
3

0126
. .

.

.
.

.
665 	 < .001

NS, LS	 t = −

+






= =378 323

0636
1

200
1

200

055
6

008
. .

.

.
.

.
990	 < .001

NS, MS	 t = − = =378 273
0080

105
1317

008
. .

.
.

.
.

	 < .001

NS, HS	 t = − = =378 259
0080

119
1492

008
. .

.
.

.
.

	 < .001

PS, NI	 t = − = − = −330 332
0126

002
016

0126
. .

.
.

.
.

	 0.87

PS, LS	 t = − = =330 323
0080

007
088

008
. .

.
.

.
.

	 0.38

PS, MS	 t = − = =330 273
0080

057
715

008
. .

.
.

.
.

	 < .001

PS, HS	 t = − = =330 259
0080

071
890

008
. .

.
.

.
.

	 < .001

NI, LS	 t = − = =332 323
0126

009
071

0126
. .

.
.

.
.

	 0.48

NI, MS	 t = − = =332 273
0126

059
468

0126
. .

.
.

.
.

	 < .001

NI, HS	 t = − = =332 259
0126

073
579

0126
. .

.
.

.
.

	 < .001

LS, MS	 t = − = =323 273
008

050
627

008
. .

.
.

.
.

	 < .001

LS, HS	 t = − = =323 259
008

064
803

008
. .

.
.

.
.

	 < .001

MS, HS	 t = − = =273 259
008

014
176

008
. .

.
.

.
.

	 0.08

aAll test statistics follow a t1044 distribution under H0.
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of a one-way ANOVA rather than by considering each pair of groups separately 
and performing t tests for two independent samples as given in Equation 8.11 
for each pair of samples. However, if there is reason to believe that not all 
groups have the same underlying variance (σ2), then the one-way ANOVA should 
not be performed, and t tests based on pairs of groups should be used instead.

	 Example 12.8 	 Renal Disease  Perform the LSD test for comparison of baseline serum creatinine 
among phenacetin-intake groups using the Swiss data discussed in Example 12.5 
(p. 557).

	 	 Solution:  We have already found overall significant differences among groups in 
Example 12.5. We now use the one-way ANOVA routine of Minitab to compare indi-
vidual groups using the Fisher LSD method. The output is given below.

Results for: swiss.txt

One-way ANOVA: creat_68 versus group

Method

Null hypothesis         All means are equal
Alternative hypothesis  At least one mean is different
Significance level      α = 0.05
Rows unused             5

Equal variances were assumed for the analysis.

Factor Information

Factor  Levels  Values
group        3  1, 2, 3

Analysis of Variance

Source   DF  Adj SS  Adj MS  F-Value  P-Value
group     2   1.955  0.9775     8.88    0.000
Error   292  32.147  0.1101
Total   294  34.102

Model Summary

       S   R-sq  R-sq(adj)  R-sq(pred)
0.331803  5.73%      5.09%       3.78%

Means

group   N    Mean   StDev       95% CI
1      98  1.0748  0.4731  (1.0088, 1.1408)
2      99  0.9147  0.2354  (0.8491, 0.9804)
3      98  0.8914  0.2273  (0.8255, 0.9574)

Pooled StDev = 0.331803

See page 288 for  
Equation 8.11
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Fisher Pairwise Comparisons

Grouping Information Using the Fisher LSD Method and 95% Confidence

group   N    Mean  Grouping
1      98  1.0748    A
2      99  0.9147    B
3      98  0.8914    B

Means that do not share a letter are significantly different.

Fisher Individual Tests for Differences of Means

Difference 
of Levels

Difference 
of Means

SE of  
Difference 95% CI T-Value

Adjusted  
P-Value

2 - 1
3 - 1
3 - 2

-0.1600
-0.1834
-0.0233

0.0473
0.0474
0.0473

(-0.2531, -0.0670)
(-0.2767, -0.0901)
(-0.1164,  0.0697)

-3.39
-3.87
-0.49

0.001
0.000
0.622

We see that there are significant differences between the Hi Napap group 
(group 1) vs. each of the other two groups (p = 0.001 and 0.000, respectively), but 
no significant differences between the Lo Napap group (group 2) vs. the control 
group (group 3) (p = 0.622). In addition, plots are provided below of the indi-
vidual group means as well as a 95% CI for the differences between the means of 
specific groups.

Group

Interval Plot of creat_68 vs group
95% CI for the Mean

C
re

at
_6

8 1.0

0.95

0.90

0.85

0.80

1.05

1.10

1.15

1

The pooled standard deviation was used to calculate the intervals.

2 3
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3–1

3–2

2–1

–0.3 –0.2 –0.1 0.10.0

If an interval does not contain zero, the corresponding means are
significantly different.

Fisher Individual 95% CIs
Differences of Means for creat_68

Linear Contrasts
In Equation 12.12, methods for comparing specific groups within the context of the 
ANOVA were developed. More general comparisons, such as the comparison of a 
collection of l1 groups with another collection of l2 groups, are frequently desired.

	E xample 12.9 	 Pulmonary Disease  Suppose we want to compare the pulmonary function of the 
group of smokers who inhale cigarettes with that of the group of nonsmokers. The 
three groups of inhaling smokers in Table 12.1 could just be combined to form one 
group of 600 inhaling smokers. However, these three groups were selected so as to be 
of the same size, whereas in the general population the proportions of light, mod-
erate, and heavy smokers are not likely to be the same. Suppose large population 
surveys report that 70% of inhaling smokers are moderate smokers, 20% are heavy 
smokers, and 10% are light smokers. How can inhaling smokers as a group be com-
pared with nonsmokers?

The estimation and testing of hypotheses for linear contrasts is used for this type 
of question.

	D efinition 12.7	 A linear contrast (L) is any linear combination of the individual group means such that 
the linear coefficients add up to 0. Specifically,

		
L c yi i

i

k

=
=
∑

1

where  ci
i

k

=
∑ =

1

0

Notice that the comparison of two means that was considered earlier in this sec-
tion is a special case of a linear contrast.

See page 561 for  
EQUATION 12.12
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	E xample 12.10 	 Pulmonary Disease  Suppose we want to compare the pulmonary function of 
the nonsmokers and the passive smokers. Represent this comparison as a linear 
contrast.

	 	 Solution:  Because the nonsmokers are the first group and the passive smokers are 
the second group, this comparison can be represented by the linear contrast

		  L y y= −1 2    that is,    c1 = +1    c2 = −1

	 Example 12.11 	 Pulmonary Disease  Suppose we want to compare the pulmonary function of non-
smokers with that of inhaling smokers, assuming that 10% of inhaling smokers are 
light smokers, 70% are moderate smokers, and 20% are heavy smokers. Represent 
this comparison as a linear contrast.

	 	 Solution:  This comparison can be represented by the linear contrast

		  y y y y1 4 5 60 1 0 7 0 2− − −. . .

because the nonsmokers are group 1, the light smokers group 4, the moderate smok-
ers group 5, and the heavy smokers group 6.

How can we test whether the underlying mean of a linear contrast is different 
from 0? In general, for any linear contrast,

		  L c y c y c yk k= + + +1 1 2 2
. . .

we wish to test the hypothesis H HL L0 10 0: :µ µ= ≠vs. , where µL is the mean of the 
linear contrast L:

		  c c ck k1 1 2 2α α α+ + +. . .

Because Var y s ni i( ) = 2 , we can derive Var(L) using Equation 5.9, where

		
Var L s c ni i

i

k

( ) =
=
∑2 2

1

Thus, the following test procedure, which is analogous to the LSD t test for pairs of 
groups in Equation 12.12, can be used.

	E quation 12.13	 t Test for Linear Contrasts in One-Way ANOVA

	 	 	 Suppose we want to test the hypothesis H HL L0 10 0: :µ µ= ≠vs. , using a two-
sided test with significance level = α, 

	 	 	 where y N cij i L i i
i

k

∼ ( , ),µ α σ µ α+ =
=
∑2

1

 and ci
i

k

=
∑ =

1

0.

(1)	 Compute the pooled estimate of the variance = s2 = Within MS from the 
one-way ANOVA.

(2)	 Compute the linear contrast

		      
L c yi i

i

k

=
=
∑

1

See pages 133 and 561 for  
Equation 5.9 and 
EQUATION 12.12
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(3)	 Compute the test statistic

		      

t
L

s
c
n
i

ii

k
=

=
∑2

2

1

(4)	 If    t t t tn k n k> <− − −, ,1 2 2α αor then rejecct H0.

		  If    t t t Hn k n k− − −≤ ≤, , .α α2 1 2 0then accept

(5)	 The exact p-value is given by

			   p = 2 × the area to the left of t under a tn−k distribution

			      = 2 × Pr(tn−k < t), if t < 0

			   p = 2 × the area to the right of t under a tn−k distribution

			      = 2 × Pr(tn−k > t), if t ≥ 0

	 Example 12.12 	 Pulmonary Disease  Test the hypothesis that the underlying mean of the linear con-
trast defined in Example 12.11 is significantly different from 0.

	 	 Solution:  From Table 12.3, s2 = 0.636. Furthermore, the linear contrast L is given by

		  L y y y y= − − − = − ( ) −1 4 5 60 1 0 7 0 2 3 78 0 1 3 23 0 7 2. . . . . . . .773 0 2 2 59 1 03( ) − ( ) =. . .

The standard error of this linear contrast is given by

		
se L s

c
n
i

ii

k

( ) = = +
−( ) +

=
∑2

2

1

2 2

0 636
1

200
0 1
200

.
( ) . −−( ) +

−( )











=
0 7
200

0 2
200

0 070
2 2. .

.

Thus,

		  t L se L t H= = =( ) . . .1 03 0 070 14 69 1044 0∼ under

Clearly, this linear contrast is very highly significant (p < .001), and the inhal-
ing smokers as a group have strikingly worse pulmonary function than the 
nonsmokers.

Another useful application of linear contrasts is when the different groups cor-
respond to different dose levels of a particular quantity, and the coefficients of the 
contrast are chosen to reflect a particular dose–response relationship. This applica-
tion is particularly useful if the sample sizes of the individual groups are small and 
a comparison of any pair of groups does not show a significant difference, but the 
overall trend is consistent in one direction.

	 Example 12.13 	 Pulmonary Disease  Suppose we want to study whether or not the number of 
cigarettes smoked is related to the level of FEF among those smokers who inhale 
cigarette smoke. Perform a test of significance for this trend.

	 	 Solution:  Focus on the light smokers, moderate smokers, and heavy smokers in 
this analysis. We know that the light smokers smoke 1 to 10 cigarettes per day, 
and we will assume they smoke an average of (1 + 10)/2 = 5.5 cigarettes per day. 
The moderate smokers smoke 11 to 39 cigarettes per day, and we will assume they 
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smoke an average of (11 + 39)/2 = 25 cigarettes per day. The heavy smokers smoke at 
least 40 cigarettes per day. We will assume they smoke exactly 40 cigarettes per day, 
which will underestimate the trend but is the best we can do with the information 
presented. We want to test the contrast

		  L y y y= + +5 5 25 404 5 6.

for statistical significance. The problem is that the coefficients of this contrast do not 
add up to 0; indeed, they add up to 5.5 + 25 + 40 = 70.5. However, if 70.5/3 = 23.5 
is subtracted from each coefficient, then they will add up to 0. Thus, we wish to test 
the contrast

		  L y y y y= −( ) + −( ) + −( ) = −5 5 23 5 25 23 5 40 23 5 184 5 6. . . . 44 5 61 5 16 5+ +. .y y

for statistical significance. This contrast represents the increasing number of cigarettes 
smoked per day in the three groups. From Equation 12.13 and Table 12.1 (p. 552),

		  L = − ( ) + ( ) + ( ) = − +18 3 23 1 5 2 73 16 5 2 59 58 14 4 1. . . . . . . 00 42 74 11 31+ = −. .

		
se L( ) .

. .=
−( ) + +










0 636

18
200

1 5
200

16 5
200

2 2 2




= ( ) = =0 636 2 99 1 903 1 38. . . .

Thus,  t L se L t H= = − = −( ) . . . ~11 31 1 38 8 20 1044 0under

Clearly, this trend is very highly significant (p < .001), and we can say that among 
smokers who inhale, the greater the number of cigarettes smoked per day, the worse 
the pulmonary function will be.

Multiple Comparisons—Bonferroni Approach
In many studies, comparisons of interest are specified before looking at the actual 
data, in which case the t test procedure in Equation 12.12 and the linear-contrast 
procedure in Equation 12.13 are appropriate. In other instances, comparisons of 
interest are only specified after looking at the data. In this case a large number 
of potential comparisons are often possible. Specifically, if there are a large num-
ber of groups and every pair of groups is compared using the t test procedure in 
Equation 12.12, then some significant differences are likely to be found just by 
chance.

	 Example 12.14 	 �Suppose there are 10 groups. Thus, there are 
10
2

45






=  possible pairs of groups to be 

compared. Using a 5% level of significance would imply that .05(45), or about two 
comparisons, are likely to be significant by chance alone. How can we protect our-
selves against the detection of falsely significant differences resulting from making 
too many comparisons?

Several procedures, referred to as multiple-comparisons procedures, ensure 
that too many falsely significant differences are not declared. The basic idea of these 
procedures is to ensure that the overall probability of declaring any significant differ-
ences between all possible pairs of groups is maintained at some fixed significance level 
(say α). One of the simplest and most widely used such procedures is the method of 
Bonferroni adjustment. This method is summarized as follows.

See page 561 for  
EQUATION 12.12
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	E quation 12.14	 Comparison of Pairs of Groups in One-Way ANOVA—Bonferroni Multiple- 
Comparisons Procedure

	 	 	 Suppose we wish to compare two specific groups, arbitrarily labeled as group 1 
and group 2, among k groups. To test the hypothesis H H0 1 2 1 1 2: :α α α α= ≠vs. , 
use the following procedure:

(1)	 Compute the pooled estimate of the variance s2 = Within MS from the one-
way ANOVA.

(2)	 Compute the test statistic

		    

t
y y

s
n n

= −

+






1 2

2

1 2

1 1

(3)	 For a two-sided level α test, let α α∗ =






k
2

		  If     t t t t
n k n k

> <
− − −∗ ∗, ,1 2 2α α

or then rejject H0

		  If     t t t H
n k n k− − −∗ ∗≤ ≤

, ,α α2 1 2 0then accept

The acceptance and rejection regions for this test are given in Figure 12.7. 

(4)	 The Bonferroni corrected p-value = min k t t2
2

Pr( ), 1n k






>












−  

		  = min[k(k - 1)Pr(tn-k > |t |, 1)] = k
2







 LSD p-value.

		  This test is called the Bonferroni multiple-comparisons procedure.

The rationale behind this procedure is that in a study with k groups, there are 
k
2






 

possible two-group comparisons. Suppose each two-group comparison is con
ducted at the α* level of significance. Let E be the event that at least one of the 
two-group comparisons is statistically significant. Pr(E) is sometimes referred to as 
the “experiment-wise type I error.” We wish to determine the value α* such that 
Pr(E) = α. To find α*, we note that

	Fi gure 12.7	 Acceptance and rejection regions for the comparison of pairs of  
groups in one-way ANOVA (Bonferroni approach)

+

0
0

Value

tn – k distribution

Fr
eq

u
en

cy

t > tn – k, 1 – α*/2
Rejection region

tn – k, 1 – α*/2tn – k, α*/2

tn – k, α*/2 ≤ t
≤ tn – k, 1 – α*/2

Acceptance region

t < tn – k, α*/2
Rejection region

t = 
y1 – y2

s2 1
n1

1
n2
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Pr(E) = Pr(none of the two-group comparisons are statistically significant) = 1 − α. 
If each of the two-group comparisons were independent, then from the multiplica-

tion law of probability, Pr(E) = (1 − α*)c, where c = 
k
2






. Therefore,

	E quation 12.15	 1 1− = −( )α α *
c

If α* is small, then it can be shown that the right-hand side of Equation 12.15 can be 
approximated by 1 − cα*. Thus

		  1 1− ≅ − ∗α αc

or

		  α α α∗ ≅ =






c
k
2

 as given in Equation 12.14.

Usually all the two-group comparisons are not statistically independent, whereby 

the appropriate value α* is greater than α
k
2






. Thus, the Bonferroni procedure is 

conservative in the sense that Pr(E) < α.

	 Example 12.15 	 �Apply the Bonferroni multiple-comparisons procedure to the FEF data in Table 12.1 
(p. 552).

	 	 Solution:  We wish to conduct a test with experiment-wise type I error = .05. We have 

a total of n = 1050 subjects and k = 6 groups. Thus, n − k = 1044 and c = 
6
2






 = 15. Thus,  

α* = .05/15 = .0033. Therefore, we conduct t tests between each pair of groups using the 
.0033 level of significance. From Equation 12.14, the critical value for each of these 
t tests is t t1044 1 0033 2 1044 99833, . / ,.− = . We will approximate a t distribution with 1044 df 
by an N(0, 1) distribution or, t z1044 99833 99833,. .≈ . From Table 3 in the Appendix, z.99833 =  
2.935. We now refer to Table 12.4 (p. 564), which provides the t statistics for each 
two-group comparison. We notice that the absolute value of all t statistics for two-
group comparisons that were statistically significant using the LSD approach are 
≥3.65. Because 3.65 > 2.935, it follows that they will remain statistically signifi-
cant under the Bonferroni procedure. Furthermore, the comparisons that were not 
statistically significant with the LSD procedure are also not significant under the  
Bonferroni procedure. This must be the case because the Bonferroni procedure 
is more conservative than the LSD procedure. In this example, the critical region  
using the LSD procedure with a two-sided test (α = .05) is t < −1.96 or t > 1.96, 
whereas the comparable critical region using the Bonferroni procedure is t < −2.935 
or t > 2.935.

	 	 Similarly, the Bonferroni-corrected p-value for, say, the comparison of the NS vs. the 
PS group = 6(5) Pr[N(0,1) > 6.02].

	 	 Using Stata, this is given by 30 [1 - normal(6.02)] = 2.6 × 10-8. Bonferroni-corrected 
p-values for each of the other comparisons are obtained similarly.

The results of the multiple-comparisons procedure are typically displayed as in 
Figure 12.8. A line is drawn between the names or numbers of each pair of means 
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that is not significantly different. This plot allows us to visually summarize the 
results of many comparisons of pairs of means in one concise display.

Note that the results of the LSD procedure in Table 12.4 (on page 564) and the 
Bonferroni procedure in Example 12.15 are the same: There are three distinct groups, 
namely heavy and moderate smokers; light smokers, passive smokers, and nonin-
haling smokers; and nonsmokers. In general, multiple-comparisons procedures are 
more strict than ordinary t tests (LSD procedure) if more than two means are being 
compared. That is, there are comparisons between pairs of groups for which the t test 
would declare a significant difference but the multiple-comparisons procedure would 
not. This is the price paid for trying to fix the α level of finding any significant differ-
ence among pairs of groups in using the multiple-comparisons procedure rather than 
for particular pairs of groups in using the t test. If only two means are being compared, 
then the p-values obtained from using the two procedures are identical.

Also note from Equation 12.14 that as the number of groups being compared 
(k) increases, the critical value for declaring statistical significance becomes larger. 

This is because as k increases, c
k

=




2
 increases and therefore α* = α/c decreases. The 

critical value, tn k− −, *1 2α , therefore increases because as k increases, the degrees of free-
dom (n − k) decreases and the percentile 1 − α*/2 increases, both of which result in 
a larger critical value. This is not true for the LSD procedure, where the critical value 
tn k− −,1 2α  remains roughly the same as k increases.

When should the more conservative multiple-comparisons procedure in Equation 
12.14 rather than the LSD procedure in Equation 12.12 be used to identify specific 
differences between groups? This area is controversial. Some researchers routinely use 
multiple-comparisons procedures for all one-way ANOVA problems; others never use 
them. My opinion is that multiple-comparisons procedures should be used if there are 
many groups and not all comparisons between individual groups have been planned 
in advance. However, if there are relatively few groups and only specific comparisons 
of interest are intended, which have been planned in advance, preferably stated in a 
written set of procedures for a study (commonly called a protocol), then I prefer to use 
ordinary t tests (i.e., the LSD procedure) rather than multiple-comparisons procedures. 
In a sense, by first performing the overall F test for one-way ANOVA (Equation 12.6), 
and only comparing pairs of groups with the LSD procedure (Equation 12.12) if the 
overall F test is statistically significant, we have protected ourselves to some extent 
from the multiple-comparisons problem, even with the LSD procedure.

The multiple-comparisons issue also occurs when one is considering multiple 
endpoints within the same study as opposed to comparing multiple groups for the 
same endpoint, as we have discussed in Equation 12.14.

	 Example 12.16 	 Cardiovascular Disease  In the Physicians’ Health Study, the primary goal was to 
compare the rate of cardiovascular death between physicians randomized to aspirin 

See page 561 for  
EQUATION 12.12

See page 555 for  
EQUATION 12.6

2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8

HS MS LS PS NS
NI

FEF level

	Fi gure 12.8	 Display of results of Bonferroni multiple-comparisons procedure  
on FEF data in Table 12.1 (on page 552)
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treatment vs. placebo. However, it became clear early in the study that there wasn’t 
enough power to assess this endpoint. Instead, several broader endpoints (such as a 
combined endpoint of either nonfatal myocardial infarction or fatal coronary heart 
disease) were also considered. A strict interpretation of the Bonferroni principle 
would require dividing the α error by c = number of endpoints considered. However, 
each endpoint was specified in advance and they all are also highly correlated with 
each other. In our opinion, there was no need to adjust for multiple comparisons in 
this setting. These issues are discussed in more detail in Michels and Rosner [2].

	 Example 12.17 	 Renal Disease  Use the Bonferroni procedure to compare group means using the 
Swiss study data in Example 12.5 (on page 557).

	 	 Solution:  We use the one-way procedure of Stata. The results are given as follows. 
The option tabulate means that a table with the mean and sd of each group are 
displayed. The option bon means that the Bonferroni procedure is used to compare 
group means.

. oneway creat_68 group, bon tabulate

            |         Summary of creat_68
      group |        Mean   Std. Dev.       Freq.
------------+------------------------------------
          1 |   1.0747959   .47305157          98
          2 |   .91474747   .23538654          99
          3 |   .89142857   .22728791          98
------------+------------------------------------
      Total |   .96016949   .34057919         295

                        Analysis of Variance
    Source              SS         df      MS            F Prob > F
-----------------------------------------------------------------

Between groups      1.95497678      2   .977488389      8.88  0.0002
 Within groups     32.1473139    292      .110093541
-----------------------------------------------------------------
    Total          34.1022907   294   .115994186
 

The mean difference between groups is given below together with the Bonferroni-
corrected p-values.

                       Comparison of creat_68 by group
                                (Bonferroni)
Row Mean-|
Col Mean |          1          2
---------+----------------------
       2 |   -.160048
         |      0.002
         |
       3 |   -.183367   -.023319
         |      0.000      1.000
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We see that there is still a significant difference between the High Napap group 
(group 1) and each of the other groups even after using the Bonferroni-correction.

Multiple-Comparisons Procedures for Linear Contrasts
The multiple-comparisons procedure in Equation 12.14 is applicable for comparing 
pairs of means. In some situations, linear contrasts involving more complex compar-
isons than simple contrasts based on pairs of means are of interest. In this context, if 
linear contrasts, which have not been planned in advance, are suggested by looking 
at the data, then a multiple-comparisons procedure might be used to ensure that 
under H0, the probability of detecting any significant linear contrast is no larger 
than α. Scheffé’s multiple-comparisons procedure is applicable in this situation and 
is summarized as follows.

	E quation 12.16	 Scheffé’s Multiple-Comparisons Procedure

	 	 	 Suppose we want to test the hypothesis H HL L0 10 0: : ,µ µ= ≠vs.  at significance 
level α, where

		  
L c y c ci i

i

k

L i i
i

k

i
i

k

= = =
= = =
∑ ∑ ∑, ,

1 1 1

0µ µ and

we have k groups, with ni subjects in the ith group and a total of n ni
i

k

=
=
∑

1

 sub-

jects overall. To use Scheffé’s multiple-comparisons procedure in this situation, 
perform the following steps:

(1)	 Compute the test statistic

		      

t
L

s
c
n
i

ii

k
=

=
∑2

2

1

		  as given in Equation 12.13.

(2)	 If

		        t c k F t c k Fk n k k> = −( ) < = − −( )− − − −2 1 1 11 1, , α or 11 1, ,n k− −α

		  then reject H0

		  If  c t c1 2≤ ≤ , then accept H0.

	 Example 12.18 	 Pulmonary Disease  Test the hypothesis that the linear contrast defined in 
Example 12.13 (on page 569), representing the relationship between level of FEF 
and the number of cigarettes smoked among smokers who inhale cigarettes, is sig-
nificantly different from 0 using Scheffé’s multiple-comparisons procedure.

	 	 Solution:  From Example 12.13, t = L/se(L) = −8.20. There are six groups and 1050 sub-

jects. Thus, because t is negative, the critical value is given by c k Fk n k1 1 11= − −( ) − − −, , α

= − ⋅5 5 1044 95 5 1044 95F F, ,. , ,.  is approximated by F5,∞,.95 = 2.21. We have c1 5 2 21 3 32= − ( ) = −. .

c1 5 2 21 3 32= − ( ) = −. . . Because t c= − < = −8 20 3 321. . , H0 is rejected at the 5% level and a significant 
trend among inhaling smokers, with pulmonary function decreasing as the number 
of cigarettes smoked per day increases, is declared.

See page 571 for  
EQUATION 12.14

See page 568 for  
EQUATION 12.13
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Scheffé’s multiple-comparisons procedure could also have been used when 
pairs of means were being compared because a difference between means is a 
special case of a linear contrast. However, the Bonferroni procedure introduced 
in Equation 12.14 is preferable in this instance because if only pairs of means 
are being compared, then significant differences can appropriately be declared 
more often than with Scheffé’s procedure (which is designed for a broader set of 
alternative hypotheses) when true differences exist in this situation. Indeed, from 
Example 12.15 (on page 572), the critical region using the Bonferroni procedure 
was t < −2.935 or t > 2.935, whereas the corresponding critical region using Scheffé 
procedure is t < −3.32 or t > 3.32.

Once again, if a few linear contrasts, which have been specified in advance, are 
to be tested, then it may not be necessary to use a multiple-comparisons procedure 
because if such procedures are used, there is less power to detect differences for lin-
ear contrasts whose means are truly different from zero than the t tests introduced 
in Equation 12.13. Conversely, if many contrasts are to be tested, which have not 
been specified before looking at the data, then the multiple-comparisons procedure 
in this section may be useful in protecting against declaring too many significant 
differences.

Based on our work in Sections 12.1−12.4, Figure 12.9 summarizes the general 
procedure used to compare the means of k independent, normally distributed 
samples.

The False-Discovery Rate
In some settings, particularly in genetic studies with many hypotheses, control of 
the experiment-wise type I error sometimes does not seem a reasonable approach to 
controlling for multiple comparisons because it results in very conservative inferen-
tial procedures.

See page 571 for  
EQUATION 12.14

See page 568 for  
EQUATION 12.13

Perform the overall F test
for one-way ANOVA as

given in Equation 12.6 (p. 555).

Significant Not significant

To identify the specific groups that are
significantly different, perform either
1. t tests as given in the LSD procedure
    in Equation 12.12 (p. 561),
2. tests for linear contrasts as given in
    Equation 12.13 (p. 568),
3. or the Bonferroni or Scheffé’s
    multiple-comparisons procedures in
    Equations 12.14 (p. 571) and 12.16
 (p. 575) for comparisons of pairs of
 means, or more general linear
 contrasts, respectively.

Declare all means as
not significantly different.

	Fi gure 12.9	 General procedure for comparing the means of k independent,  
normally distributed samples
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	 Example 12.19 	 Cardiovascular Disease, Genetics  A subsample of 520 cases of cardiovascular dis-
ease (CVD) and 1100 controls was obtained among men in a prospective cohort 
study. This type of study is called a nested case–control study. Baseline blood samples 
were obtained from men in the subsample and analyzed for 50 candidate single-
nucleotide polymorphisms (SNPs). Each SNP was coded as 0 if homozygous wild 
type (the most common), 1 if heterozygote, and 2 if homozygous mutant. The 
association of each SNP with CVD was assessed using contingency-table methods. 
A chi-square test for trend was run for each SNP. This yielded 50 separate p-values. 
If the Bonferroni approach in Equation 12.14 were used, then α* = .05/50 = .001. 
Thus, with such a low value for α* it is likely that very few of the hypotheses would 
be rejected, resulting in a great loss in power. Instead, an alternative approach 
based on the false-discovery rate (FDR) was used to control for the problem of 
multiple testing.

The FDR approach was developed by Benjamini and Hochberg [3]. The primary 
goal is not to control the overall experiment-wise type I error rate. It is expected if 
many genes are being tested that there will be several (many) reported positive (statis-
tically significant) results. The FDR attempts to control the proportion of false-positive 
results among reported statistically significant results.

	E quation 12.17	 False-Discovery-Rate (FDR) Testing Procedure

(1)	 Suppose we have conducted k separate tests with p-values = p1 , . . . , pk.

(2)	 For convenience we will renumber the tests so that p1 ≤ p2 ≤ . . . ≤ pk.

(3)	 Define q kp i i ki i= =, , . . . , ,1  where i = rank of the p-values among the  
k tests.

(4)	 Let FDRi = false-discovery rate for the ith test be defined by min (qi, . . . , qk).

(5)	 Find the largest i such that FDRi < FDR0 = critical level for the FDR  
(usually .05).

(6)	 Reject H0 for the hypotheses 1, . . . , i, and accept H0 for the remaining 
hypotheses.

An advantage of the FDR approach is that it is less conservative than the Bonfer-
roni procedure and as a result yields more power to detect genuine positive effects.

	 Example 12.20 	 Cardiovascular Disease, Genetics  Apply the FDR approach to the genetics data  
described in Example 12.19.

	 	 Solution:  In Figure 12.10, we present a stem-and-leaf plot and box plot of the p-values 
from the tests of each of the 50 SNPs. The p-values for the nominally significant genes are 
provided in Table 12.5. Note that 10 of the genes are statistically significant, with 
nominal p-values ranging from <.0001 to .048. We then applied the FDR approach, 
with results given in Table 12.6. The naive (nominal) p-values from Table 12.5 are 
given in the second column. The “Bonferroni p-value” = min {50 × nominal p-value, 
1.0} is given in the third column. It represents the level of significance at which the 
results for a specific SNP would be just statistically significant if a Bonferroni correc-
tion were made. The qi in step 3 of Equation 12.17 are given in the fourth column. 
Notice that the qi are not necessarily in the same order as the original nominal 
p-values. The FDR for each gene is given in the last column.

See page 571 for  
EQUATION 12.14
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	T able 12.5	 Ordered p-values for 10 most significant SNPs

	 SNP	 p-Value

  1	 gene30	 <.0001
  2	 gene20	 .011
  3	 gene48	 .017
  4	 gene50	 .017
  5	 gene4	 .018
  6	 gene40	 .019
  7	 gene7	 .026
  8	 gene14	 .034
  9	 gene26	 .042
10	 gene47	 .048

Stem Leaf                      #  Boxplot
   9 013                       3     |
   8 7                         1     |
   8 01                        2     |
   7                                 |
   7 0                         1     |
   6 5789                      4     |
   6 112                       3  +-----+
   5 67                        2  |     |
   5 114                       3  |     |
   4 5689                      4  |     |
   4 0144                      4  *--+--*
   3 58                        2  |     |
   3 24                        2  |     |
   2 89                        2  |     |
   2 234                       3  |     |
   1                              |     |
   1 3                         1  |     |
   0 5699                      4  +-----+
   0 012222334                 9     |
     ----+----+----+----+
 Multiply Stem.Leaf by 10**-1

	Fi gure 12.10	 p-Values from tests of 50 SNPs

	T able 12.6	 Use of the FDR approach to analyzing the CVD data

		  Nominal	 Bonferroni	  
	 SNP	 p-value	 p-value	 qi	 FDRi

  1	 gene30	 <.0001	 .0035	 .0035	 .0035
  2	 gene20	 .011	 .54	 .28	 .16
  3	 gene48	 .017	 .86	 .28	 .16
  4	 gene50	 .017	 .87	 .22	 .16
  5	 gene4	 .018	 .92	 .18	 .16
  6	 gene40	 .019	 .94	 .16	 .16
  7	 gene7	 .026	 1.00	 .19	 .19
  8	 gene14	 .034	 1.00	 .21	 .21
  9	 gene26	 .042	 1.00	 .23	 .23
10	 gene47	 .048	 1.00	 .24	 .24
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Because only gene 30 has FDRi < .05, we reject H0 only for this gene. This procedure 
guarantees that no more than 5% of the reported positive results will be false posi-
tives. Note that both qi and FDRi are noticeably less conservative than the Bonferroni 
p-values.

In this section, we have learned about one-way ANOVA methods. This 
technique is used to compare the means among several (>2) normally distrib-
uted samples. To place these methods in a broader perspective, see the master 
flowchart at the end of the book (pp. 895–902). Beginning at the Start box, we 
answer no to (1) only one variable of interest? and proceed to 4 . We then an-
swer yes to (2) interested in relationships between two variables? no to (3) both 
variables continuous? and yes to (4) one variable continuous and one categori-
cal? This leads us to the box labeled “analysis of variance.” We then answer 1 
to (5) number of ways in which the categorical variable can be classified, yes to 
(6) outcome variable normal or can central-limit theorem be assumed to hold? 
and no to (7) other covariates to be controlled for? This leads us to the box 
labeled “one-way ANOVA.”

RE  V I E W  QUEST     I ONS    1 2 A

1	 What is the one-way ANOVA? How does it differ from performing separate t-tests 
for each pair of groups in a study?

2	 What is the LSD procedure?

3	 What is the Bonferroni procedure? How does it differ from the LSD procedure? Is 
it easier or harder to reject the null hypothesis with the Bonferroni procedure than 
with the LSD procedure?

	 12.5	 C a s e  S t u d y :  E f f e c t s  o f  L e a d  E x p o s u r e  o n 

N e u r o l o g i c  a n d  P s y c h o l o g i c a l  F u n c t i o n 

i n  C h i l d r e n

Application of One-Way ANOVA
In Section 8.8 (Table 8.7, on page 305), we analyzed the difference in mean finger-
wrist tapping score (MAXFWT) by lead-exposure group. The children were subdivided 
into an exposed group who had elevated blood-lead levels (≥40 µg/100 mL) in either 
1972 or 1973 and a control group who had normal blood-lead levels (<40 µg/100 mL) 
in both 1972 and 1973. We first removed outliers from each group using the Extreme  
Studentized Deviate (ESD) procedure and then used a two-sample t test to compare 
mean scores between the two groups (see Table 8.7). However, because the neuro-
logic and psychological tests were performed in 1973, one could argue that it would 
be better to define an exposed group based on blood-lead levels in 1973 only. For 
this purpose, the variable LEAD_GRP in the data set allows us to subdivide the  
exposed group into two subgroups. Specifically, we will consider three lead-exposure 
groups according to the variable LEAD_GRP:

If LEAD_GRP = 1, then the child had normal blood-lead levels (<40 µg/ 
100 mL) in both 1972 and 1973 (control group).

R
 E

 V
 I 

E 
W
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If LEAD_GRP = 2, then the child had elevated blood-lead levels (≥40 µg/ 
100 mL) in 1973 (the currently exposed group).

If LEAD_GRP = 3, then the child had elevated blood-lead levels in 1972 and 
normal blood-lead levels in 1973 (the previously exposed group).

The mean and standard deviation of MAXFWT for each group are given in Table 12.7 
and the corresponding box plots in Figure 12.11.

It appears the mean MAXFWT scores are similar in both the currently exposed 
and previously exposed groups (groups 2 and 3) and are lower than the corre-
sponding mean score in the control group (group 1). To compare the mean scores 
in the  three groups, we will use the one-way ANOVA. We begin by using the 
overall F test for one-way ANOVA given in Equation 12.6 to test the hypothesis 
H0: α1 = α2 = α3 vs. H1: at least two of the αi are different. The results are given in 
Table 12.8.

We see there is an overall significant difference among the mean MAXFWT 
scores in the three groups. The F statistic is given under F value = 4.60. The p-value = 
Pr(F2,92 > 4.60) is listed under Pr > F and is .0125. Therefore, we will proceed to look at 
differences between each pair of groups. We will use the LSD procedure in Equation 
12.12 because these comparisons are planned in advance. The results are given in 
Table 12.9.

See page 555 for  
EQUATION 12.6

See page 561 for  
EQUATION 12.12
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The UNIVARIATE Procedure
Variable = maxfwt

	Fi gure 12.11	 Box plots of MAXFWT by group
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	T able 12.7	 Descriptive statistics of MAXFWT by group

	 The MEANS Procedure

	 Analysis Variable: maxfwt
lead_	        N 
group	 Obs	 N	 Mean	 Std Dev	 Minimum	 Maximum

1	 77	 63	 55.0952381	 10.9348721	 23.0000000	 84.0000000

2	 22	 17	 47.5882353	 7.0804204	 34.0000000	 58.0000000

3	 21	 15	 49.4000000	 10.1966381	 35.0000000	 70.0000000

*N Obs is the total number of subjects in each group. N is the number of subjects used in the analysis in each group 
(i.e., subjects who have a MAXFWT value that is not an outlier). Note: The test was given only to children ages ≥ 5.

	T able 12.8	 Overall F test for one-way ANOVA for MAXFWT

The GLM Procedure

Dependent Variable: maxfwt

			  Sum of 

	Source	 DF	 Squares	 Mean Square	 F Value	 Pr > F

	Model	 2	 966.79062	 483.39531	 4.60	 0.0125

	Error	 92	 9671.14622	 105.12115

	Corrected Total	 94	 10637.93684

        R-Square        Coeff Var         Root MSE        maxfwt Mean

        0.090881         19.39896         10.25286           52.85263

	Source	 DF	 Type I SS	 Mean Square	 F Value	 Pr > F

	lead_group	 2	 966.7906236	 483.3953118	 4.60	 0.0125

	Source	 DF	 Type III SS	 Mean Square	 F Value	 Pr > F

	lead_group	 2	 966.7906236	 483.3953118	 4.60	 0.0125

				   Standard

	Parameter	 Estimate	 Error	 T Value	 Pr > |T|

	Intercept	 49.40000000 B	 2.64727727	 18.66	 <.0001

	lead_group Control	 5.69523810 B	 2.94561822	 1.93	 0.0563

	lead_group Cur exp	 –1.81176471 B	 3.63203446	 –0.50	 0.6191

	lead_group Prv exp	 0.00000000 B	 .	 .	 .

We see that there is a significant difference between the mean MAXFWT score 
for the currently exposed group and the control group ( p = .0087, listed under 
Pr > |t| in the first row corresponding to the control group and the second column 
corresponding to the currently exposed group). There is a strong trend toward 
a significant difference between the previously exposed group and the control 
group ( p = .0563). There is clearly no significant difference between the mean 
MAXFWT scores for the currently and previously exposed groups ( p-value = .6191). 
Other data given in Table 12.9 are the mean and standard error of the mean by 
group, listed under the maxfwt LSMEAN and Standard Error LSMEAN columns, 
respectively. In this case, the MAXFWT LSMEAN column contains the ordinary 
arithmetic mean (same as Table 12.7). The standard error is (Error Mean Square/
ni)

1/2 because our best estimate of the common within-group variance is the Error 
Mean Square (which we have previously referred to as the Within Mean Square). 
The third column provides a test of the hypothesis that the underlying mean in 
each specific group = 0 (specified as Pr > |t|). This is not relevant in this example 
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	T able 12.9	 Comparison of group means for MAXFWT for pairs of specific groups (LSD 
procedure) 

	 The GLM Procedure  

Least Squares Means

	lead_	 maxfwt	 Standard		  LSMEAN 

	group	 LSMEAN	 Error	 Pr > |t|	 Number

	Control	 55.0952381	 1.2917390	 <.0001	 1

	Cur exp	 47.5882353	 2.4866840	 <.0001	 2

	Prv exp	 49.4000000	 2.6472773	 <.0001	 3

Least Squares Means for lead_group

t for H0: LSMean(i)= LSMean(j) /  Pr > |t|

	 Dependent Variable: maxfwt

	 i/j	 1	 2	 3

	 1		  2.678991	 -1.933461

			     0.0087	    0.0563

	 2	 -2.67899		   -0.49883

		    0.0087		     0.6191

	 3	 -1.93346	 0.498829	

		    0.0563	   0.6191

but would be if we were studying change scores over time. For uses of the general 
linear-model procedure other than for one-way ANOVA, the LSMEAN is different 
from the ordinary arithmetic mean. We discuss this issue in detail later in this sec-
tion (see p. 587).

Another approach for analyzing these data is to look at the 95% confidence 
interval for the difference in underlying means for specific pairs of groups. This is 
given by

		
y y t n ni i n k i i1 2 1 2975− ± +( )− ,. Within MS 1 1

with results in Table 12.10. We note again that there are significant differences 
between the control group (group 1) and the currently exposed group (group 2) 
for MAXFWT 95% CI = (1.9, 13.1) but not between groups 1 and 3, 95% CI = (−0.2, 
11.5), or between groups 2 and 3, 95% CI = (−9.0, 5.4).

Relationship Between One-Way ANOVA and Multiple 
Regression
In Table 12.7 we divided the exposed group into subgroups of currently exposed 
and previously exposed children. We then used a one-way ANOVA model to com-
pare the mean MAXFWT among the currently exposed, previously exposed, and 
control groups. Another approach to this problem is to use a multiple-regression 
model with dummy variables. In Definition 11.21 (on page 519) we defined a 
single dummy variable to represent a categorical variable with two categories. This 
approach can be extended to represent a categorical variable with any number of 
categories.
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	T able 12.10	 95% confidence intervals for mean difference in MAXFWT between pairs of groups

	 The GLM Procedure  

Least Squares Means

	 lead_	 maxfwt
	 group	 LSMEAN	 95% Confidence Limits

	 Control	 55.095238	 52.529733	 57.660743

	 Cur exp	 47.588235	 42.649466	 52.527004

	 Prv exp	 49.400000	 44.142279	 54.657721

Least Squares Means for Effect lead_group

			   Difference 

			   Between	 95% Confidence Limits for 

	 i	 j	 Means	 LSMean(i) - LSMean(j)

	

 1	 2	 7.507003	 1.941641	 13.072365

	 1	 3	 5.695238	 -0.155014	 11.545490

	 2	 3	 -1.811765	 -9.025299	 5.401769

	E quation 12.18	 Use of Dummy Variables to Represent a Categorical Variable with k Categories

Suppose we have a categorical variable C with k categories. To represent that 
variable in a multiple-regression model, we construct k − 1 dummy variables 
of the form

			       x1
1

=



if subject is in category 2
0 otherwise

=x2
1 if subject is in category 3
0 otherwise





=−x
k

k 1
1 if subject is in category
0 otherwwise





The category omitted (category 1) is referred to as the reference group.

It is arbitrary which group is assigned to be the reference group; the choice of a 
reference group is usually dictated by subject-matter considerations. In Table 12.11, 
we give the values of the dummy variables for subjects in different categories of C.

	T able 12.11	 Representation of a categorical variable C by dummy variables

	 Dummy variables

Category of C	 x1	 x2	 . . . 	 xk−1

1	 0	 0	 . . . 	 0
2	 1	 0	 . . . 	 0
3	 0	 1	 . . . 	 0

. . . 				  

k	 0	 0	 . . . 	 1

. .
 .
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Notice that subjects in each category of C have a unique profile in terms of x1 . . . ,  
xk−1. To relate the categorical variable C to an outcome variable y, we use the 
multiple-regression model

	E quation 12.19	 y x x x ek k= + + + + +− −α β β β1 2 2 2 1 1. . .

How can we use the multiple-regression model in Equation 12.19 to compare spe-
cific categories? From Equation 12.19, the average value of y for subjects in category 1 
(the reference category) = α, the average value of y for subjects in category 2 = α + β1. 
Thus, β1 represents the difference between the average value of y for subjects in cat-
egory 2 vs. the average value of y for subjects in the reference category. Similarly, βj 
represents the difference between the average value of y for subjects in category  
( j + 1) vs. the reference category, j = 1, . . . , k − 1. In the fixed-effects one-way 
ANOVA model in Equation 12.1, we were interested in testing the hypothesis H0: all 
underlying group means are the same vs. H1: at least two underlying group means 
are different. An equivalent way to specify these hypotheses in a multiple-regression 
setting is H0: all βj = 0 vs. H1: at least one of the βj ≠ 0. The latter specification of the 
hypotheses is the same as those given in Equation 11.30 where we used the overall 
F test for multiple linear regression. Thus, a fixed-effects one-way ANOVA model can 
be represented by a multiple linear-regression model based on a dummy-variable 
specification for the grouping variable. These results are summarized as follows.

	E quation 12.20	 Relationship Between Multiple Linear Regression and One-Way ANOVA Approaches

Suppose we wish to compare the underlying mean among k groups where the 
observations in group j are assumed to be normally distributed with mean = µj = 
µ + αj and variance = σ2. To test the hypothesis H0: µj are the same for all j = 1, 
. . . , k vs. H1: at least two µj are different, we can use one of two equivalent 
procedures:

		  (1)	 We can perform the overall F test for one-way ANOVA.

		  (2)	 Or we can set up a multiple-regression model of the form

			         
y x ej j

j

k

= + +
=

−

∑α β
1

1

where y is the outcome variable and xj = 1 if a subject is in group ( j + 1) and = 0  
otherwise, j = 1, . . . , k – 1.

The Between SS and Within SS for the one-way ANOVA model in procedure 1 are  
the same as the Regression SS and Residual SS for the multiple linear-regression 
model in procedure 2. The F statistics and p-values are the same as well.

To compare the underlying mean of the ( j + 1)th group vs. the reference 
group, we can use one of two equivalent procedures:

		  (3)	 We can use the LSD procedure based on one-way ANOVA, where we com-
pute the t statistic

			            t
y y

s n n
tj

j
n k=

−
+

+

+
−

1 1

1 11 1/ /
∼

See page 552 for  
Equation 12.1

See page 506 for  
Equation 11.30

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



	 12.5      Case Study: Effects of Lead Exposure on Neurologic and Psychological Function in Children              585

and s2 = Within MS, n n
j

k

j=
=
∑

1

		  (4)	 Or we can compute the t statistic

			       
t

b

se b
tj

j
n k= −( )

∼

The test statistics and the p-values are the same under procedures 3 and 4.

To compare the underlying mean of the ( j + 1)th and ( l + 1)th groups, we 
can use one of two equivalent procedures:

		  (5)	 We can use the LSD procedure based on one-way ANOVA, whereby we com-
pute the t statistic

			         

t
y y

s n n
tj l

j l
n k=

−
+

+ +

+ +
−

1 1

1 11 1/ /
∼

and s2 = Within MS

		  (6)	 Or t
b b

se b b
tj l

j l
n k=

−
− −( )

∼

The standard error of bj – bl and test statistic t can usually be obtained as a 
linear-contrast option for multiple-regression programs available in most 
statistical packages.

Another way to compute se(bj - bl) is to print out the variance-covariance 
matrix of the regression coefficients, which is an option in most statistical 
packages. If there are k regression coefficients, then the (j, j)th element of 
this matrix is the variance of bj = Var(bj). The ( j, l )th element of this matrix 
is the covariance between bj and bl = Cov(bj, bl). Then it can be shown that

		    Var b b Var b Var b Cov b bj l j l j l( ) ( ) ( ) ( , )− = + − 2

and

		    se b b Var b bj l j l( ) ( )− = −

	E xample 12.21 	 Environmental Health, Pediatrics  Compare the mean MAXFWT among control 
children, currently exposed children, and previously exposed children, respectively, 
using a multiple-regression approach.

	 	 Solution:  We set up dummy variables using the control group as the reference 
group and

		

grp2 =
if currently exposed

0 otherwise

grp3

1



==
if previously exposed

0 otherwise
1




The multiple-regression model is

		  y e= + × + × +α β β1 2grp2 grp3

This model is fitted in Table 12.12 using SAS PROC REG.
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The analysis-of-variance table reveals that there are significant differences 
among the three groups ( p = .0125) and exactly matches the p-value in Table 
12.8 (on page 581) based on the F test for one-way ANOVA. The parameter 
estimates reveal that currently exposed children (grp2 = 1) have mean MAXFWT 
that is 7.51 taps/10 seconds slower than control children ( p = .009), whereas 
previously exposed children (grp3 = 1) have mean MAXFWT that is 5.70 taps/10 
seconds slower than control children, which is not quite statistically significant 
( p = .056).

If we wish to compare currently and previously exposed children, then we 
can use either a linear-contrast option for SAS PROC REG or a least squares means 
(LSMEANs) option for SAS PROC GLM. We have used the latter, as shown in Table 
12.9 (on page 582). We see that the currently and previously exposed children are 
not significantly different ( p = .62). In this case, the LSMEAN is the same as the 
ordinary arithmetic mean. The standard error of a group mean = s n j kj/ , , . . . ,= 1  
where s = =Residual MS Error MS . For example, for the control group, the
se = =105 12115 63 1 292. / . .

One-Way Analysis of Covariance
In Equation 11.37, we compared the mean MAXFWT between exposed and control 
children after controlling for age and sex. We can also compare mean MAXFWT 
among the control group, the currently exposed group, and the previously exposed 
group, after controlling for age and sex, by using the model:

See page 524 for  
EQUATION 11.37

	T able 12.12	 Multiple-regression model relating MAXFWT to group (control, currently exposed, 
previously exposed) (n = 95)

The REG Procedure

Model: M0DEL1

Dependent Variable: maxfwt

	Number of Observations Read                         95

	Number of Observations Used                         95

Analysis of Variance

                             Sum of         Mean

Source            DF        Squares        Square     F Value     Pr > F

Model              2      966.79062     483.39531        4.60     0.0125

Error             92     9671.14622     105.12115

Corrected Total   94          10638

     Root MSE            10.25286      R-Square      0.0909

     Dependent Mean      52.85263      Adj R-Sq      0.0711

     Coeff Var           19.39896

Parameter Estimates

                        Parameter       Standard

   Variable     DF       Estimate          Error    t Value     Pr > |t|

   Intercept     1       55.09524        1.29174      42.65      <.0001

   lead_grp2     1       -7.50700        2.80218      -2.68      0.0087

   lead_grp3     1       -5.69524        2.94562      -1.93      0.0563
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	E quation 12.21	 y e= + × + × + × + × +α β β β β1 2 3 4grp2 grp3 age sex

The models in Equations 11.37 and 12.21 are referred to as one-way analysis-
of-covariance (or one-way ANCOVA) models. In ANCOVA, we wish to compare 
the mean of a continuous outcome variable among two or more groups defined 
by a single categorical variable, after controlling for other potential confounding 
variables (also called covariates). We have fitted this model using PROC GLM of SAS  
(see Table 12.13).

Several hypotheses can be tested using Equation 12.21. First, we can test the 
hypothesis H0: β1 = β2 = β3 = β4 = 0 vs. H1: at least one βj ≠ 0. In words, this is a 
test of whether any of the variables in Equation 12.21 have any relationship to 
MAXFWT. The results are given at the top of Table 12.13 (F-value = 29.06, p-value <  
.0001). Thus, some of the variables are having a significant effect on MAXFWT. Sec-
ond, to test for the effect of group after controlling for age and sex, we can test the 
hypothesis H0: β1 = 0, β2 = 0, β3 ≠ 0, β4 ≠ 0 vs. H1: all βj ≠ 0, j = 1, . . . , 4. This is given 
in the middle of Table 12.13, under the heading Type III SS. The type III SS provides 
an estimate of the effect of a specific risk factor, after controlling for the effects of 
all other variables in the model. In this case, the effect of group is significant after 
we control for age and sex (F-value = 5.40, p = .0061). Third, we are interested in 
comparing specific categories of the group variable as shown in the bottom of 
Table 12.13 under Least-Squares Means. We see that both the currently exposed ( p = 
.009) and the previously exposed ( p = .018) groups have significantly lower mean 
MAXFWT scores than the control group, after adjusting for age and sex, whereas 
there is no significant difference between the currently exposed and previously 
exposed groups ( p = .909). To estimate the mean difference between groups, we 
refer to the MAXFWT LSMEAN column at the bottom of Table 12.13. In this case, 
the LSMEAN column is different from the ordinary arithmetic mean. Instead, it 
represents a mean value for each group that is, in a sense, adjusted for age and sex. 
Specifically, for each category of a categorical variable, the LSMEAN represents the 
average value of MAXFWT for a hypothetical sample of individuals who

(1)	 For each continuous variable in the model have a mean value equal to the over-
all sample mean (over all categories) for that variable

(2)	 And for any other categorical variable in the model (with k categories) have a 
proportion of 1/k of individuals in each category

	 Example 12.22 	 Environmental Health, Pediatrics  Compute the LSMEAN for the control, currently ex-
posed, and previously exposed groups in the multiple-regression model in Table 12.13.

	 	 Solution:  Besides group, the model has one continuous variable (age) and one other 
categorical variable (sex). The overall mean age for the entire sample (n = 95) is 
9.768 years. Also, in the PROC GLM analyses in Table 12.13, the previously exposed 
group is the reference group (the SAS convention is to use the last group as the refer-
ence group) and females are coded as 1 and males as 0. Thus, the LSMEAN by group is

Control:

Currently exposed:

Previously exposed:

26.765 4.992 2.440 9.768
1
2

2.395 1 54.4 taps /10seconds

26.765 0.295 2.440 9.768
1
2

2.395 1 49.1taps /10seconds

26.765 + 2.440 9.768
1
2

2.395 1 49.4 taps /10seconds

( ) ( )( )

( ) ( )( )

( ) ( )( )

+ + + − =

− + + − =

+ − =

See page 530 for  
Equation 11.37
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	Table 12.13 � SAS PROC GLM output relating MAXFWT to group, age, and sex (n=95)

The GLM Procedure

Dependent Variable: maxfwt

Source              DF        Sum of Squares        Mean Square      F Value      Pr > F

Model                4            5995.49850         1498.87462        29.06      <.0001

Error               90            4642.43834           51.58265

Corrected Total     94           10637.93684

                  R-Square     Coeff Var      Root MSE    maxfwt Mean

                  0.563596      13.58893      7.182106       52.85263

Source              DF          Type I SS             Mean Square      F Value      Pr > F

lead_group           2         966.790624              483.395312         9.37      0.0002

ageyrs               1        4900.426329             4900.426329        95.00      <.0001

sex                  1         128.281546              128.281546         2.49      0.1183

Source              DF        Type III SS             Mean Square      F Value      Pr > F

lead_group           2         557.352577              278.676289         5.40      0.0061

ageyrs               1        5027.978708             5027.978708        97.47      <.0001

sex                  1         128.281546              128.281546         2.49      0.1183

                                                    Standard

Parameter                      Estimate               Error        t Value     Pr > |t|

Intercept                   26.76514260 B        3.02389880           8.85       <.0001

lead_group  Control          4.99198543 B        2.06543844           2.42       0.0177

lead_group  Cur exp         -0.29455702 B        2.55441917          -0.12       0.9085

lead_group  Prv exp          0.00000000 B         .                    .          .

ageyr                        2.44032385          0.24717388           9.87       <.0001

sex          Female         -2.39491720 B        1.51865886          -1.58       0.1183

sex          Male            0.00000000 B         .                    .          .

The GLM Procedure

Least Squares Means

lead_            maxfwt           Standard                          LSMEAN

group            LSMEAN              Error          Pr > |t|        Number

Control      54.3977803          0.9139840            <.0001             1

Cur exp      49.1112378          1.7622906            <.0001             2

Prv exp      49.4057948          1.8550823            <.0001             3

Least Squares Means for effect lead_group

t for H0: LSMean(i) = LSMean(j)Pr > |t|

Dependent Variable: maxfwt

        i/j                   1              2               3

         1                         2.671532        2.416913

                                     0.0090          0.0177

         2          -2.67153                       -0.11531

                      0.0090                         0.9085

         3          -2.41691       0.115313

                      0.0177         0.9085
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Thus, both currently and previously exposed children have mean MAXFWT about  
5 taps per 10 seconds slower than control children after adjusting for age and sex.  
Finally, we see that mean MAXFWT increases by 2.44 taps per 10 seconds for each 
year of age (p < .001) and that females have a lower mean MAXFWT score than 
males of the same age and group by 2.39 taps per 10 seconds, although the sex effect 
is not statistically significant (p = .12).

In this section, we have discussed the one-way ANCOVA. The one-way ANCOVA 
is used to assess mean differences among several groups after controlling for other 
covariates (which can be either continuous or categorical). On the master flowchart 
(pp. 895–902), we answer (1) to (4) in the same way as for the ANOVA (see p. 579). 
This leads us to the box labeled “analysis of variance.” We could then answer 1 to (5) 
number of ways in which the categorical variable can be classified? yes to (6) outcome 
variable normal or can central-limit theorem be expected to hold? and yes to (7) other 
covariates to be controlled for? This leads us to the box labeled “one-way ANCOVA.”

RE  V I E W  QUEST     I ONS    1 2 B

1	 What is a dummy variable?

2	 What is the ANCOVA? How does it differ from the ANOVA?

3	 Suppose we want to study whether HgbA1c (a serum marker of compliance with 
diabetes medication) is related to ethnic group (assume the only ethnic groups are 
Caucasian/African American/Hispanic/Asian) among diabetic patients, while con-
trolling for age and sex.

	 (a)  Write down an ANCOVA model to perform this analysis.

	 (b)  Interpret the coefficients for the model in Review Question 12B.3a.

	 12.6	 Tw  o - W ay  ANO   V A

In Sections 12.1–12.4, the relationship between pulmonary function and cigarette 
smoking was used to illustrate the fixed-effects one-way ANOVA. In this example, 
groups were defined by only one variable, cigarette smoking. In some instances, the 
groups being considered can be classified by two different variables and thus can be 
arranged in the form of an R × C contingency table. We would like to be able to look 
at the effects of each variable after controlling for the effects of the other variable. 
The latter type of data is usually analyzed using a technique called the two-way 
ANOVA.

	 Example 12.23 	 Hypertension, Nutrition  A study was performed to look at the level of blood pressure 
in two different vegetarian groups, both compared with each other and with nor-
mals. A group of 226 strict vegetarians (SV), who ate no animal products of any kind, 
63 lactovegetarians (LV), who ate dairy products but no other animal foods, and 460 
normals (NOR), who ate a standard American diet, provided data for the study. Mean 
systolic blood pressure (SBP) by dietary group and sex is given in Table 12.14.

We are interested in the effects of sex and dietary group on SBP. The effects of 
sex and dietary group may be independent, or they may be related or “interact” with 
each other. One approach to this problem is to construct a two-way ANOVA model 
predicting mean SBP level as a function of sex and dietary group.

R
 E

 V
 I 

E 
W
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	D efinition 12.8	 An interaction effect between two variables is defined as one in which the effect of one 
variable depends on the level of the other variable.

	 Example 12.24 	 Hypertension, Nutrition  Suppose we hypothesize that SV males have mean SBP lev-
els that are 10 mm Hg lower than those of normal males, whereas SV females have 
mean SBP levels identical to those of normal females. This relationship would be an 
example of an interaction effect between sex and dietary group because the effect of 
diet on blood pressure would be different for males and females.

In general, if an interaction effect is present, then it becomes difficult to inter-
pret the separate (or main) effects of each variable because the effect of one factor 
(e.g., dietary group) depends on the level of the other factor (e.g., sex).

The general model for the two-way ANOVA is given as follows.

	E quation 12.22	 Two-Way ANOVA—General Model

		    y eijk i j ij ijk= + + + +µ α β γ

where

yijk is the SBP of the kth person in the ith dietary group and the jth sex group

µ is a constant

αi is a constant representing the effect of dietary group

βj is a constant representing the effect of sex

γij is a constant representing the interaction effect between dietary 
group and sex

eijk is an error term, which is assumed to be normally distributed with 
mean 0 and variance σ2

By convention,

		      α β γi j ij
j

c

j

c

i

r

= = =
===
∑∑∑ 0 0

111

,   for all i

		      γ ij
i

r

=
=
∑ 0

1
  for all j

	T able 12.14	 Mean SBP by dietary group and sex

	 Sex

Dietary group	 Male	 Female

SV	 Mean	 109.9	 102.6
	 n	 138	 88

LV	 Mean	 115.5	 105.2
	 n	 26	 37

NOR	 Mean	 128.3	 119.6
	 n	 240	 220
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Thus, from Equation 12.22, yijk is normally distributed with mean µ + αi + βj + γij 
and variance σ2.

Hypothesis Testing in Two-Way ANOVA
Let us denote the mean SBP for the ith row and jth column by yij

− , the mean SBP for 
the ith row by yi

−
., the mean SBP for the jth column by y j

−
. , and the overall mean by

y−.. . The deviation of an individual observation from the overall mean can be repre-
sented as follows.

	E quation 12.23	 y y y y y y y y yijk ijk ij i j ij− = −( ) + −( ) + −( ) +.. . .. . .. −− − +( )y y yi j. . ..

	D efinition 12.9	 The first term on the right-hand side y yijk ij−( ) represents the deviation of an individual 
observation from the group mean for that observation. The expression is an indica-
tion of within-group variability and is called the error term.

	D efinition 12.10	 The second term on the right-hand side y yi. ..−( ) represents the deviation of the mean of 
the ith row from the overall mean and is called the row effect.

	D efinition 12.11	 The third term on the right-hand side y yj. ..−( ) represents the deviation of the mean of 
the jth column from the overall mean and is called the column effect.

	D efinition 12.12	 The fourth term on the right-hand side

		  y y y y y y y yij i j ij i j− − +( ) = −( ) − −( ). . .. . . ..

represents the deviation of the column effect in the ith row y yij i−( ).  from the overall 
column effect y yj. ..−( ) and is called the interaction effect.

We would like to test the following hypotheses concerning these data:

(1)	 Test for the presence of row effects: H0: all αi = 0 vs. H1: at least one αi ≠ 0. This is 
a test for the effect of dietary group on SBP level after controlling for the effect 
of sex.

(2)	 Test for the presence of column effects: H0: all βj = 0 vs. H1: at least one β j ≠ 0. 
This is a test for the effect of sex on SBP level after controlling for the effect of 
dietary group.

(3)	 Test for the presence of interaction effects: H0: all γij = 0 vs. H1: at least one γ ij ≠ 0. 
This is a test of whether or not there is a differential effect of dietary group between 
males and females. For example, dietary group may have an effect on SBP only 
among men.

For simplicity, we have ignored the interaction term in subsequent analyses. 
The SAS General Linear Model procedure (PROC GLM) has been used to analyze the 
data. In particular, two “indicator” or “dummy” variables were set up to represent 
study group (x1, x2), where

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



592              C H A P T E R  12      Multisample Inference

		     x1 = 1 if a person is in the first (SV) group
		   = 0 otherwise 

		     x2 = 1 if a person is in the second (LV) group
	  = 0 otherwise

and the normal group is the reference group. A variable x3 is also included to repre-
sent sex, where

		     x3 = 1 if male
	  = 0 if female

The multiple-regression model can then be written as

	E quation 12.24	 y x x x e= + + + +α β β β1 1 2 2 3 3

The results from using the SAS GLM procedure are shown in Table 12.15. The pro-
gram first provides a test of the overall hypothesis H0: β1 = β2 = β3 = 0 vs. H1: at least 
one of the βj ≠ 0, as given in Equation 11.30. The F statistic corresponding to this test 
is 105.85 ~ F3,745 under H0, with p-value < .001. Thus, at least one of the effects (study 
group or sex) is significant. In the second part of the display, the program lists the 
type III SS and the corresponding F statistic (F-value) and p-value (Pr > F). The type 
III SS provides an estimate of the effects of specific risk factors after controlling for 
the effects of all other variables in the model. Thus, to test the effect of study group 
after controlling for sex, we wish to test the hypothesis H0: β1 = β2 = 0, β3 ≠ 0, vs. H1: 
at least one of β1, β2 ≠ 0, β3 ≠ 0. The F statistic for this comparison is obtained by 
dividing the study MS = (51,806.42/2) = 25,903.21 by the error MS = 195.89, yield-
ing an F statistic = 132.24 ~ F2,745 under H0, and a p-value (Pr > F) = .0001. Thus, there 
are highly significant effects of dietary group on SBP even after controlling for the 
effect of sex. Similarly, to test for the effect of sex, we test the hypothesis H0: β3 = 0, 
at least one β1, β2 ≠ 0, vs. H1: β3 ≠ 0, at least one β1, β2 ≠ 0. The F statistic for the sex 
effect is given by (13,056/1)/195.89 = 66.65 ~ F1,745 under H0, p = .0001. Thus, there 
are highly significant effects of sex after controlling for the effect of dietary group, 
with males having higher blood pressure than females. SAS also displays a type I 
SS as well as an associated F statistic and p-value. The purpose of the type I SS is 
to enter and test the variables in the order specified by the user. In this case, study 
group was specified first and sex was specified second. Thus, the effect of study 
group is assessed first (without controlling for sex), yielding an F statistic of 125.45 ~  
F2,745 under H0, p = .0001. Second, the effect of sex is assessed after controlling for 
study group. This is the same hypothesis as was tested above using the type III SS. In 
general, except for the last user-specified risk factor, results from the type I SS (where 
all variables above the current variable on the user-specified variable list are con-
trolled for) and the type III SS (where all other variables in the model are controlled 
for) will not necessarily be the same. Usually, unless we are interested in entering 
the variables in a prespecified order, hypothesis testing using the type III SS will be 
of greater interest.

Although there was a significant effect of study group after controlling for sex, 
this does not identify which specific dietary groups differ from one another on SBP. 
For this purpose, t tests are provided comparing specific dietary groups (1 = SV, 2 = 
LV, 3 = NOR) after controlling for sex. Refer to the 3 × 3 table listed for STUDY under 
PROB > T . The (two-tailed) p-value comparing dietary group i with dietary group j is  

See page 506 for  
EQUATION 11.30
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given in the (i, j) cell of the table [as well as the (j, i) cell]. Thus, referring to the  
(1, 2) cell, we see that the mean SBP of people in group 1 (SV) differs significantly from 
that of people in group 2 (LV) after controlling for sex (p = .0425). Similarly, referring 
to the (1, 3) or (3, 1) cells, we see that the mean SBP of people in group 1 (SV) differs 
significantly from that of people in group 3 (NOR) (p = .0001). Similar results are 
obtained from a comparison of people in groups 2 (LV) and 3 (NOR). Furthermore, 
a 2 × 2 table is listed for the sex effect, yielding a p-value for a comparison of the 
two sexes [refer to the (1, 2) or (2, 1) cell of the table] after controlling for the effect 
of study group (p = .0001). This test is actually superfluous in this instance because 
there were only two groups under sex and thus the F test under type III SS for the sex 
effect is equivalent to the sex-effect t test.

Finally, note that at the bottom of the display are estimates of the regression 
parameters as well as their standard errors and associated t statistics. These have a 
similar interpretation to that of the multiple-regression parameters in Definition 
11.18 (on page 504). In particular, the regression coefficient b1 = –17.9 mm Hg is an 
estimate of the difference in mean SBP between the SV and NOR groups after con-
trolling for the effect of sex. Similarly, the regression coefficient b2 = –13.8 mm Hg 

�Table 12.15 � �SAS GLM procedure output illustrating the effects of study group and sex on SBP using the data 
set in Table 12.14

Sas

General Linear Models Procedure

Dependent Variable: Msys

Source        Df   Sum of Squares       Mean Square  F Value         Pr > F      R-Square      C.V.

Model            3   62202.79213079    20734.26404360   105.85      0.0001      0.298854   11.8858

Error          745  145934.76850283      195.88559531             Root Mse                Msys Mean

Corrected  

Total         748  208137.56063362                                          13.99591352            117.75303516

Source      Df            Type I Ss   F Value   Pr > F    Df     Type Iii Ss  F Value  Pr > F

Study        2     49146.49426085    125.45   0.0001    2  51806.42069945   132.24  0.0001

Sex          1     13056.29786994     66.65   0.0001    1  13056.29786994    66.65  0.0001

Study                Prob > |T|

                                            Sv        Lv        Nor

                              Sv         .        0.0425     0.0001

                              Lv        0.0425     .         0.0001	

                              Nor       0.0001    0.0001      .

Sex                   Prob > |T|

                                                Male     Female

                              Male              .        0.0001

                              Female           0.0001     .

                                              T For H0:                           Std Error Of

     Parameter                Estimate         Parameters           Pr > |T|            Estimate

     Intercept         119.75747587            141.53            0.0001          0.84614985

     Study      Sv     –17.86546724            –15.66            0.0001          1.14061756

                Lv     –13.79147908             –7.32            0.0001          1.88356205

                Nor      0.00000000               .               .               .

     Sex        Male     8.42854624              8.16            0.0001          1.03239026

                Female   0.00000000               .               .               .
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is an estimate of the difference in mean SBP between the LV and NOR groups after 
controlling for the effect of sex. Also, the estimated difference in mean SBP between 
the SV and LV groups is given by [–17.9 – (–13.8)] = –4.1 mm Hg; thus the SVs on 
average have SBP 4.1 mm Hg lower than the LVs after controlling for the effect of 
sex. Because no explicit parameter was entered for the third study group (the normal 
group), the program lists the default value of 0. Finally, the regression coefficient b3 = 
8.4 mm Hg tells us males have mean SBP 8.4 mm Hg higher than females, even after 
controlling for effect of study group.

It is possible to assess interaction effects for two-way ANOVA models (e.g., using 
the SAS PROC GLM program), but for the sake of simplicity these were not included 
in this example. Two-way and higher-way ANOVA are discussed in more detail in 
Kleinbaum et al. [4].

Two-Way ANCOVA
We often want to look at the relationship between one or more categorical variables 
and a continuous outcome variable. If there is one categorical variable, then one-
way ANOVA can be used; if there are two (or more) categorical variables, then two-
way (higher-way) ANOVA can be used. However, other differences among the groups 
may make it difficult to interpret these analyses.

	 Example 12.25 	 Hypertension, Nutrition  In Example 12.23 (on page 589), differences in mean SBP 
by dietary group and sex were presented using a two-way ANOVA model. Highly sig-
nificant differences were found among dietary groups after controlling for sex, with 
mean SBP of SV < mean SBP of LV < mean SBP of NOR. However, other important dif-
ferences between these groups, such as differences in weight, and possibly age, may 
explain all or part of the apparent blood-pressure differences. How can we examine 
whether these blood-pressure differences persist, after accounting for the confounding  
variables?

The multiple-regression model in Equation 12.24 can be extended to allow for 
the effects of other covariates using the two-way ANCOVA. If weight is denoted by 
x4 and age by x5, then we can use the multiple-regression model

	E quation 12.25	 y x x x x x e= + + + + + +α β β β β β1 1 2 2 3 3 4 4 5 5

where e ~ N(0, σ2). We have fitted this model using the SAS PROC GLM program 
as shown in Table 12.16.

Note from the top of Table 12.16 that the overall model is highly significant 
(F-value = 103.16, p = .0001), indicating that some of the variables are having a 
significant effect on SBP. To identify the effects of specific variables, refer to the 
type III SS. Note that each of the risk factors has a significant effect on SBP after 
controlling for the effects of all other variables in the model (p = .0001). Finally, 
of principal importance is whether there are differences in mean blood pressure 
by dietary group after controlling for the effects of age, sex, and weight. In this 
regard, different conclusions are reached from those reached in Table 12.15. 
Referring to the t statistics for STUDY, we see that there is not a significant 
difference in mean SBP between the SVs (group 1) and the LVs (group 2) after 
controlling for the other variables (p = .7012). There are still highly significant 
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differences between each of the vegetarian groups and normals (p = .0001). Thus, 
there must have been differences in either age and/or weight between the SV and 
LV groups that accounted for the significant blood-pressure difference between 
these groups in Table 12.15. Finally, the estimates of specific regression param-
eters are given at the bottom of Table 12.16. Note that after controlling for age, 
sex, and weight, the estimated differences in mean SBP between the SV and NOR 
groups = β1 = –8.2 mm Hg, between the LV and NOR groups = β2 = –9.0 mm Hg, 
and between the SV and LV groups = β1 – β2 = –8.23 – (–8.95) = 0.7 mm Hg. These 
differences are all much smaller than the estimated differences in Table 12.15, 
of –17.9 mm Hg, –13.8 mm Hg, and –4.1 mm Hg, respectively, where age and 
weight were not controlled for. The difference in mean SBP between males and 
females is also much smaller in Table 12.16 after controlling for age and weight 

�Table 12.16 � �SAS GLM procedure output illustrating the effects of study group, age, sex, and weight on SBP 
using the data set in Table 12.14

SAS

GENERAL LINEAR MODELS PROCEDURE

DEPENDENT VARIABLE: MSYS

SOURCE             DF    SUM OF SQUARES     MEAN SQUARE   F VALUE       PR > F   R-SQUARE          C.V.

MODEL               5    85358.44910498  17071.68982100    103.16       0.0001   0.410402       10.9264

ERROR             741   122628.85342226    165.49103026               ROOT MSE                MSYS MEAN

CORRECTED TOTAL   746   207987.30252724                            12.86433171             117.73630968

SOURCE             DF         TYPE I SS   F VALUE    PR > F    DF      TYPE III SS    F VALUE    PR > F

STUDY GROUP         2    49068.28440076    148.25    0.0001     2    8257.21427825      24.95    0.0001

SEX                 1    13092.51273176     79.11    0.0001     1    4250.57708379      25.68    0.0001

AGE                 1    12978.84918739     78.43    0.0001     1   10524.41438768      63.60    0.0001

WGT                 1    10218.80278507     61.75    0.0001     1   10218.80278507      61.75    0.0001

STUDY PROB > |T|

                                                 SV       LV      NOR

                                SV            .       0.7012   0.0001

                                LV           0.7012    .       0.0001

                                NOR          0.0001   0.0001    .

SEX   PROB > |T|

                                             MALE      FEMALE

                                MALE        .          0.0001

                                FEMALE     0.0001       .

                                                     T FOR H0:                         STD ERROR OF

         PARAMETER                   ESTIMATE      PARAMETER=0         PR > |T|            ESTIMATE

         INTERCEPT                82.74987242            25.69           0.0001          3.22121552

         STUDY GROUP    SV        –8.22799340            –6.20           0.0001          1.32786689

                        LV        –8.95389632            -5.03           0.0001          1.78082376

                        NOR        0.00000000              .              .               .

         SEX            MALE       5.50352855             5.07           0.0001          1.08593669

                        FEMALE     0.00000000              .              .               .

         AGE                       0.47488301             7.97           0.0001          0.05954906

         WGT                       0.13011703             7.86           0.0001          0.01655851
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(5.5 mm Hg) than in Table 12.15 (8.4 mm Hg), where these factors were not 
controlled for. Also, we see from Table 12.16 that the estimated effects of age 
and weight on mean SBP are 0.47 mm Hg per year and 0.13 mm Hg per lb, re-
spectively. Thus, it is important to control for the effects of possible explanatory 
variables in performing regression analyses.

In this section, we have learned about the two-way ANOVA and the two-way 
ANCOVA. The two-way ANOVA is used when we wish to simultaneously relate 
a normally distributed outcome variable to two categorical variables of primary 
interest. The two-way ANCOVA is used when we wish to simultaneously relate 
a normally distributed outcome variable to two categorical variables of primary 
interest and, in addition, wish to control for one or more other covariates, which 
may be continuous or categorical. We saw that both the two-way ANOVA and 
the two-way ANCOVA models can be represented as special cases of multiple-
regression models.

On the master flowchart at the end of the book (pp. 895–902), we answer (1) 
to (4) in the same way as for one-way ANOVA (see p. 579). This leads us to the 
box labeled “analysis of variance.” We then answer 2 to (5) number of ways in 
which the categorical variable can be classified. If we have no other covariates to 
control for, then we answer no to (6) other covariates to be controlled for? and 
are led to the box labeled “two-way ANOVA.” If we have other covariates to be 
controlled for, then we answer yes to (6) and are led to the box labeled “two-way 
ANCOVA.”

If we want to study the primary effect of more than two categorical variables as 
predictors of a continuous outcome variable, then two-way ANOVA and two-way 
ANCOVA generalize to multiway ANOVA and multiway ANCOVA, respectively. This 
is beyond the scope of this book; see [4].

RE  V I E W  QUEST     I ONS    1 2 C

1	 What is the difference between a two-way ANOVA and a one-way ANOVA?

2	 What is the difference between a two-way ANOVA and a two-way ANCOVA?

3	 What do we mean by an interaction effect?

4	 Refer to the data in HOSPITAL.DAT at www.cengagebrain.com

	 (a)  Fit a model relating ln(duration of hospitalization) to service and antibiotic use. 
What type of model is this?

	 (b)  Fit a model relating ln(duration of hospitalization) to service and antibiotic 
use, while controlling for differences in age and sex. What type of model is 
this?

	 (c)  Interpret the results in Review Question 12C.4a and b.

	 12.7	 T h e  K r u s k a l - W a l l i s  T e s t

In some instances we want to compare means among more than two samples, but 
either the underlying distribution is far from being normal or we have ordinal data. 
In these situations, a nonparametric alternative to the one-way ANOVA described in 
Sections 12.1–12.4 of this chapter must be used.

 Data set available

R
 E

 V
 I 

E 
W
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	 Example 12.26 	 Ophthalmology  Arachidonic acid is well known to have an effect on ocular  
metabolism. In particular, topical application of arachidonic acid has caused lid  
closure, itching, and ocular discharge, among other effects. A study was conducted 
to compare the anti-inflammatory effects of four different drugs in albino rabbits 
after administration of arachidonic acid [5]. Six rabbits were studied in each group. 
Different rabbits were used in each of the four groups. For each animal in a group, 
one of the four drugs was administered to one eye and a saline solution was adminis-
tered to the other eye. Ten minutes later arachidonic acid (sodium arachidonate) was 
administered to both eyes. Both eyes were evaluated every 15 minutes thereafter for 
lid closure. At each assessment the lids of both eyes were examined and a lid-closure 
score from 0 to 3 was determined, where 0 = eye completely open, 3 = eye com-
pletely closed, and 1, 2 = intermediate states. The measure of effectiveness (x) is the 
change in lid-closure score (from baseline to follow-up) in the treated eye minus the 
change in lid-closure score in the saline eye. A high value for x is indicative of an effec-
tive drug. The results, after 15 minutes of follow-up, are presented in Table 12.17. 
Because the scale of measurement was ordinal (0, 1, 2, 3), the use of a nonparametric 
technique to compare the four treatment groups is appropriate.

	T able 12.17	 Ocular anti-inflammatory effects of four drugs on lid closure after administration of 
arachidonic acid

	 Indomethacin	 Aspirin	 Piroxicam	 BW755C
Rabbit  
Number	 Scorea	 Rank	 Score	 Rank	 Score	 Rank	 Score	 Rank

1	 + 2	 13.5	 + 1	 9.0	 + 3	 20.0	 + 1	 9.0
2	 + 3	 20.0	 + 3	 20.0	 + 1	 9.0	   0	 4.0
3	 + 3	 20.0	 + 1	 9.0	 + 2	 13.5	   0	 4.0
4	 + 3	 20.0	 + 2	 13.5	 + 1	 9.0	   0	 4.0
5	 + 3	 20.0	 + 2	 13.5	 + 3	 20.0	   0	 4.0
6	 0	 4.0	 + 3	 20.0	 + 3	 20.0	 - 1	 1.0

a(Lid-closure score at baseline – lid-closure score at 15 minutes)drug eye – (lid-closure score at baseline – lid-closure 
score at 15 minutes)saline eye

We would like to generalize the Wilcoxon rank-sum test to enable us to com-
pare more than two samples. To do so, the observations in all treatment groups are 
pooled and ranks are assigned to each observation in the combined sample. The 
average ranks Ri( ) in the individual treatment groups are then compared. If the aver-
age ranks are close to each other, then H0, that the treatments are equally effective, is 
accepted. If the average ranks are far apart, then H0 is rejected and we conclude that 
at least some of the treatments are different. The test procedure for accomplishing 
this goal is known as the Kruskal-Wallis test.

	E quation 12.26	 The Kruskal-Wallis Test

	 	 	 To compare the means of k samples (k > 2) using nonparametric methods, use 
the following procedure:

		  (1)	 Pool the observations over all samples, thus constructing a combined sam-
ple of size N ni= Σ

		  (2)	 Assign ranks to the individual observations, using the average rank in the 
case of tied observations.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



598              C H A P T E R  12      Multisample Inference

		  (3)	 Compute the rank sum Ri for each of the k samples.

		  (4)	 If there are no ties, compute the test statistic
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3

where tj refers to the number of observations (i.e., the frequency) with the 
same value in the jth cluster of tied observations and g is the number of 
tied groups.

		  (5)	 For a level α test,

if H k> χ α− −1 1
2

,  then reject H0

if H k≤ χ α− −1 1
2

,  then accept H0

		  (6)	 To assess statistical significance, the p-value is given by

			            p Pr Hk= >( )−χ 1
2

		  (7)	 This test procedure should be used only if minimum ni ≥ 5 (i.e., if the small-
est sample size for an individual group is at least 5).

The acceptance and rejection regions for this test are shown in Figure 12.12. 
Computation of the exact p-value is given in Figure 12.13.

	 Example 12.27 	 Ophthalmology  Apply the Kruskal-Wallis test procedure to the ocular data in 
Table 12.17, and assess the statistical significance of the results.

	 	 Solution:  First pool the samples together and assign ranks to the individual observa-
tions. This procedure is performed in Table 12.18 with ranks given in Table 12.17.

0

Value

Fr
eq

u
en

cy

χk – 1 distribution

H > χk – 1, 1 – α
Rejection region

2

χk – 1, 1 – α
2

2

H ≤ χk – 1, 1 – α
Acceptance region

2

	Fi gure 12.12	 Acceptance and rejection regions for the Kruskal-Wallis test
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	T able 12.18	 Assignment of ranks to the individual observations in Table 12.17

Lid-closure		  Range of	 Average 
score	 Frequency	 ranks	 rank

	–1	 1	 1	 1.0
	 0	 5	 2–6	 4.0
	+1	 5	 7–11	 9.0
	+2	 4	 12–15	 13.5
	+3	 9	 16–24	 20.0

Then compute the rank sum in the four treatment groups:

		

R
R

1

2

13 5 20 0 4 0 97 5
9 0 20 0

= + + + =
= + +

. . . . . . .
. . . . .. . .
. . . . . . .

+ =
= + + + =
=

20 0 85 0
20 0 9 0 20 0 91 5

9
3

4

R

R .. . . . . . .0 4 0 1 0 26 0+ + + =

Because there are ties, compute the Kruskal-Wallis test statistic H as follows:
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×
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To assess statistical significance, compare H with a chi-square distribution with k - 1 =  
4 - 1 = 3 df. Note from Table 6 in the Appendix that χ3 99

2 11 34,. .= , χ3 995
2 12 84,. .= . 

Because 11.34 < H < 12.84, it follows that .005 < p < .01. Using R, the exact p-value 
is given by p = 1 - p χ2(11.804,3) = 0.008. Thus, there is a significant difference in the 
anti-inflammatory potency of the four drugs.

Note that although the sample sizes in the individual treatment groups were 
the same in Table 12.17, the Kruskal-Wallis test procedure can, in fact, be used for 

0
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eq

u
en

cy

χk – 1 distribution
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2

	Fi gure 12.13	 Computation of the exact p-value for the Kruskal-Wallis test
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samples of unequal size. Also, if there are no ties, the Kruskal-Wallis test statistic H in 
Equation 12.26 can be written in the form

	E quation 12.27	 H
N N

n R Ri i
i

k

=
+( ) −( )

=
∑12

1

2

1

where Ri = average rank in the ith sample and R = average rank over all samples com-
bined. Thus, if the average rank is about the same in all samples, then R Ri −  will 
tend to be small and H0 will be accepted. On the contrary, if the average rank is very 
different across samples, then R Ri −  will tend to be large and H0 will be rejected.

The test procedure in Equation 12.26 is applicable only if minimum ni ≥ 5. If 
one of the sample sizes is smaller than 5, then either the sample should be com-
bined with another sample, or special small-sample tables should be used, or exact 
permutation test methods should be employed. Table 14 in the Appendix provides 
critical values for selected sample sizes for the case of three samples (i.e., k = 3). The 
procedure for using this table is as follows:

(1)	 Reorder the samples so that n1 ≤ n2 ≤ n3, that is, so that the first sample has the 
smallest sample size and the third sample has the largest sample size.

(2)	 For a level α test, refer to the α column and the row corresponding to the sample 
sizes n1, n2, n3 to find the critical value c.

(3)	 If H ≥ c, then reject H0 at level α (i.e., p < α); if H < c, then accept H0 at level α 
(i.e., p ≥ α).

(4)	 Note that this table can only be used if there are no ties in the data set.

	E xample 12.28 	 Suppose there are three samples of size 2, 4, and 5, H = 6.141 and there are no ties. 
Assess the statistical significance of the results.

	 	 Solution:  Refer to the n1 = 2, n2 = 4, n3 = 5 row. The critical values for α = .05 and α = .02  
are 5.273 and 6.541, respectively. Because H ≥ 5.273, it follows that the results are 
statistically significant (p < .05). Because H < 6.541, it follows that p ≥ .02. Thus  
.02 ≤ p < .05.

Using the Computer to Perform the Kruskal-Wallis test
We can use the kruskal.test command of R for this purpose. The syntax is as 
follows:

  kruskal.test(x, g)

where
x is a vector of data values,
g is a vector of group identifiers for the corresponding values of x,
x and g must be of the same length.

This command performs the Kruskal-Wallis test adjusted for ties, if present.

	E xample 12.29 	 Ophthalmology  Analyze the lid closure data in Table 12.17 (on page 597) using the 
Kruskal-Wallis test based on a computer program.

	 	 Solution:  We have read the lid closure data into a data set lid.txt with 3 variables:  
rabbit as an ID variable (1 to 24), group (1 to 4), and score (0 to 3). 
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> lid<- read.table(“c:\\Users\\Rosner\\Documents\\lid.txt”, 
header = T, sep = “\t”)

A listing of the data for the first 5 subjects is given below.

        rabbit    group     score

1           1             1              2
2           2             1              3
3           3             1              3
4           4             1              3
5           5             1              3

We now use the kruskal.test command as follows:

> kruskal.test(score, group)

	 Kruskal-Wallis rank sum test

data: score and group

Kruskal-Wallis chi-squared = 11.8041, df = 3, p-value = 0.008085

The chi-square = 11.804, with 3 df and p-value = 0.008, which agrees with the results 
in Example 12.27 (p. 598).

Comparison of Specific Groups Under the  
Kruskal-Wallis Test
In Example 12.27 (on page 598) we determined that the treatments in Table 12.17 
(on page 597) were not all equally effective. To determine which pairs of treatment 
groups are different, use the following procedure.

	E quation 12.28	 Comparison of Specific Groups Under the Kruskal-Wallis Test (Dunn Procedure) 
To compare the ith and jth treatment groups under the Kruskal-Wallis test, use 
the following procedure:

		  1.	 compute

			   (a)  z
R R

N N
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 if there are ties.

		  2.	 For a two-sided level a test

		  	 if |z| > z1-a/2, then reject H0,

		  	 if |z| < z1-a/2, then accept H0.
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		  3.	 The two-sided p-value = 2 × [1 - Φ(|z|)].

		  4.	 The acceptance and rejection regions for this test are shown in Figure 12.14.

0
0

Value

N(0, 1) distribution = distribution of z in
Equation 12.28 under H0
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eq

u
en

cy

z > z1 – � /2
Rejection region

–z1 – � /2 z1 – � /2
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|z| ≤ z1 – � /2

z < –z1 – � /2
Rejection region

	Fi gure 12.14	 Acceptance and rejection regions for the Dunn procedure

	 Example 12.30 	 Ophthalmology  Determine which groups are significantly different using the ocular 
data in Table 12.17 (on page 597).

	 	 Solution:  From Example 12.27 (on page 598),

		
R

97.5
6

16.25,1 = =

		
R

85.0
6

14.17,2 = =

		
R

91.5
6

15.25,3 = =

		
R

26.0
6

4.33.4 = =

We will use the dunn.test package of R to perform the Dunn test. This needs to be 
loaded since it is not part of the standard R environment. The syntax of this com-
mand is

  dunn.test(x, g)

where x and g are defined similarly to that in kruskal.test. For each combination of 
row rank mean (i) and column rank mean (j), the test statistic zij is provided together 
with the corresponding Dunn test p-value (pij). The results are as follows:

> dunn.test(score, group)

  Kruskal-Wallis rank sum test

data: score and group

Kruskal-Wallis chi-squared = 11.8041, df = 3, p-value = 0.01
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       Comparison of score by group                         
             (No adjustment)                                

Row Mean-|

Col Mean |           1              2            3

-------+---------------------------------------------

    2 |           0.530283

     |            0.2980

     |

    3 |           0.254536     -0.275747

     |            0.3995       0.3914

     |

    4 |           3.033224     2.502940      2.778688

     |            0.0012       0.0062        0.0027

We see that there is a significant difference between group 4 (BW755C) and each 
of the active drug groups (Indomethacin, Aspirin, and Piroxicam) with p-values = 
0.0012, 0.0062, and 0.0027, respectively, while there was no significant difference 
among the 3 active drug groups (groups 1, 2, 3).

The Dunn test was originally specified as a way of adjusting individual group 
comparisons for multiple comparisons using the Bonferroni test, where one uses  
p-valueBonferroni = p-valueij × k (k - 1)/2, where k = the number of groups. 

To obtain this version of the dunn test, we specify:

		  dunn.test(x, g, method = “bonferroni”)

However, I have found that this makes for a very conservative test procedure. 
The default for R is to use the test without adjustment for multiple comparisons as 
specified in Equation 12.28.

In this section, we have discussed the Kruskal-Wallis test, which is a nonpara-
metric test for the comparison of the distributions of several groups. It is used as an 
alternative to one-way ANOVA when the assumption of normality is questionable. 
On the master flowchart at the end of the book (pp. 895–902), we would answer 
(1) to (4) in the same way as for one-way ANOVA (see p. 579). This leads to the box  
labeled “analysis of variance.” We then answer 1 to (5) number of ways in which 
the categorical variable can be classified, and no to (6) outcome variable normal or 
can central-limit theorem be assumed to hold? This leads us to the successive boxes 
labeled “nonparametric ANOVA” and “Kruskal-Wallis test.”

RE  V I E W  QUEST     I ONS    1 2 D

1	 What is the difference between the Kruskal-Wallis test and the one-way ANOVA?

2	 What is the Dunn procedure? What is it used for?

3	 Suppose we have data on vitamin E intake (IU/day) (from both diet and vitamin 
supplements) at baseline in four treatment groups in a clinical trial of nutritional 
supplements. It is important to establish that the vitamin E intakes of the four treat-
ment groups are comparable at baseline. The data for the first 10 participants in 
each group are given in Table 12.19.

	 (a)  	Why might a nonparametric analysis of these data be useful?

	 (b)  Perform the Kruskal-Wallis test to assess whether there are any significant 
overall group differences in vitamin E intake. Please report a p-value.

	 (c)  If the results in Review Question 12D.3b are statistically significant, then iden-
tify which specific groups are significantly different.

R
 E

 V
 I 

E 
W
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	T able 12.19	 Baseline vitamin E intake by treatment group in a clinical trial  
of nutritional supplements

Subject	 Group 1	 Group 2	 Group 3	 Group 4

	 1	 5.92	 5.22	 4.33	 5.37
	 2	 8.24	 3.29	 16.31	 6.39
	 3	 7.27	 3.67	 6.19	 4.90
	 4	 6.24	 4.29	 7.95	 4.75
	 5	 5.21	 109.17	 4.02	 3.07
	 6	 8.25	 5.82	 6.12	 10.64
	 7	 8.33	 7.17	 5.60	 6.50
	 8	 4.12	 4.42	 12.20	 159.90
	 9	 6.27	 5.29	 3.33	 6.00
	10	 5.38	 55.99	 7.33	 7.31

	 12.8	 O n e - W ay  ANO   V A — T h e  R a n d o m - E f f e c t s  M o d e l

In Example 12.1 (on page 551), we studied the effect of both active and passive 
smoking on the level of pulmonary function. We were specifically interested in the 
difference in pulmonary function between the PS and the NS groups. This is an 
example of the fixed-effects analysis-of-variance model because the subgroups 
being compared have been fixed by the design of the study. In other instances, we 
are interested in whether there are overall differences between groups and what 
percentage of the total variation is attributable to between-group vs. within-group 
differences but are not interested in comparing specific groups.

	 Example 12.31 	 Endocrinology  The Nurses’ Health Study is a large prospective study of approximately 
100,000 American nurses to whom a health-related questionnaire was mailed every 
2 years starting in 1976. In one substudy, blood samples were obtained from a subset of 
nurses and serum levels of various hormones were related to the development of breast 
cancer. As a first step in this process, blood samples were obtained from 5 postmeno-
pausal women. Each blood sample was split into two equal aliquots, which were sent 
in a blinded fashion to one laboratory for analysis. The same procedure was followed 
for each of four different laboratories. The goal of the study was to assess how much 
variation in the analyses was attributable to between-person vs. within-person variation. 
Comparisons were made both between different hormones and between different labo-
ratories [6].

Table 12.20 shows the reproducibility data for plasma estradiol from one labo-
ratory. Can we estimate the degree of between-person and within-person variation 
from the data?

	T able 12.20	 Reproducibility data for plasma estradiol (pg/mL), Nurses’ Health Study

				    Absolute value of 
		  Replicate		  difference between	 Mean 
Subject	 1		  2	 replicates	 value

	1	 25.5	 30.4	 4.9	 27.95
	2	 11.1	 15.0	 3.9	 13.05
	3	 8.0	 8.1	 0.1	 8.05
	4	 20.7	 16.9	 3.8	 18.80
	5	 5.8	 8.4	 2.6	 7.10
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It appears from Table 12.20 that the variation between replicates depends to 
some extent on the mean level. Subject 1, who has the largest absolute difference 
between replicates (4.9), also has the highest mean value (27.95). This is common 
with many laboratory measures. For this reason, we will analyze the reproducibility 
data on the ln scale. The justification for using this transformation is that it can be 
shown that if the within-person standard deviation is proportional to the mean level 
in the original scale, then the within-person standard deviation will be approxi-
mately independent of the mean level on the ln scale [7]. Using the ln scale will also 
enable us to estimate the coefficient of variation (CV) (a frequently used index in 
reproducibility studies).

To assess between- and within-person variability, consider the following 
model:

	E quation 12.29	 y e i k j nij i ij i= + = =µ + α , , , , , . . . ,1 1K and

where
			   yij = jth replicate for ln (plasma estradiol) for the ith subject

	 	 	 �αi is a random variable representing between-subject variability, which is  
assumed to follow an N(0, σA

2) distribution

			�   eij is a random variable representing within-subject variability, which follows 
an N(0, σ2) distribution and is independent of αi and any of the other eij

The model in Equation 12.29 is referred to as a random-effects one-way  
analysis-of-variance model. The underlying mean for the ith subject is given by  
µ + αi, where αi is drawn from a normal distribution with mean 0 and variance σA

2. 
Thus, two different individuals i1, i2 will have different underlying means µ α+ i1

 and 
µ α+ i2 , respectively. The extent of the between-subject variation is determined by σA

2. 
As σA

2 increases, the between-subject variation increases as well. The within-subject 
variation is determined by σ2. Thus, if we have two replicates yi1, yi2 from the same 
individual (i), they will be normally distributed with mean µ + αi and variance σ2. 
An important goal in the random-effects ANOVA is to test the hypothesis H0: σA

2 = 0 
vs. H1: σA

2 > 0. Under H0, there is no underlying between-subject variation; all varia-
tion seen between individual subjects is attributable to within-person variation  
(or “noise”). Under H1 there is a true underlying difference among means for indi-
vidual subjects. How can we test these hypotheses and estimate the variance compo-
nents σA

2 and σ2 ? The result is given as follows:

	E quation 12.30	 One-Way ANOVA—Random-Effects Model

	 	 	 Suppose we have the model yij = µ + αi + eij, i = 1, . . . , k; j = 1, . . . , ni where  
αi ~ N(0, σA

2) and eij ~ N(0, σ2). To test the hypothesis H0: σA
2 = 0 vs. H1: σA

2 > 0,

		  (1)	 Compute the test statistic F = Between MS
Within MS

, which follows an Fk−1,N−k distri-
bution under H0 where

			   Between MS = n y y ki i
i

k

−( ) −( )
=
∑ 2

1

1

			   Within MS = y y N kij i
j

n

i

k i
−( ) −( )

==
∑∑ 2

11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



606              C H A P T E R  12      Multisample Inference

		  (2)	 If F > Fk−1,N−k,1−α, then reject H0.

If F ≤ Fk−1,N−k,1−α, then accept H0.

		  (3)	 The exact p-value is given by the area to the right of F under an Fk−1,N−k 
distribution.

		  (4)	 The within-group variance component (σ2) is estimated by the Within MS.

		  (5a)	If we have a balanced design (i.e., n1 = n2 = . . . = nk = n), then the between-
group variance component (σ2

A) is estimated by

			         
ˆ max ,σA

Between MS Within MS2 0= −









n

		  (5b)	If we have an unbalanced design (i.e., at least two of the ni are unequal), 
then the between-group variance component (σ2

A) is estimated by

			         
ˆ max ,σA

Between MS Within MS2

0
0= −













n

		  where

n n n n ki i
i

k

i
i

k

i

k

0
2

1 11

1= −






−( )

= ==
∑ ∑∑

The derivation of this equation is given in Section 12.11 (p. 619).

	 Example 12.32 	 Endocrinology  Test whether the underlying mean ln plasma estradiol is the same 
for different subjects using the data in Table 12.20.

	 	 Solution:  We have used the SAS GLM (general linear model) procedure to per-
form the significance test in Equation 12.30 based on the ln estradiol values in 
Table 12.20. These results are given in Table 12.21.

	T able 12.21	 Analysis of the plasma-estradiol data (ln scale) in Table 12.20  
using the SAS GLM procedure

The GLM Procedure

Dependent Variable: lgestradiol
Source           DF   Sum of Squares    Mean Square   F Value          Pr > F
Model             4       2.65774661     0.66443665        22.15       0.0022
Error             5       0.15001218     0.03000244
Corrected Total   9       2.80775879 

           R-Square        Coeff Var       Root MSE       lgestradiol Mean
           0.946572         6.744243       0.173212               2.568296

Source           DF        Type I SS    Mean Square   F Value          Pr > F
subj              4       2.65774661     0.66443665        22.15       0.0022

Source           DF      Type III SS    Mean Square   F Value          Pr > F
subj              4       2.65774661     0.66443665        22.15       0.0022

In Table 12.20 we have 5 subjects and 2 replicates per subject. The F statistic 
(given under F Value) = 22.15 ~ F4,5 under H0. The p-value = Pr(F4,5 > 22.15) = .0022 
(given under Pr > F). Thus, there are significant differences among the underlying 
mean ln(plasma estradiol) values for different subjects.
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	 Example 12.33 	 Endocrinology  Estimate the between-person and within-person variance compo-
nents for ln(plasma estradiol) using the data in Table 12.20 (on page 604).

	 	 Solution:  From Equation 12.30 we have that the within-person variance compo-
nent estimated by the Within Mean Square. In Table 12.21, this is called the Error 
Mean Square (or MSE) = 0.030. To estimate the between-person variance, we refer to 
Equation 12.30. Because this is a balanced design, we have

		

ˆ max ,σA
Between MS Within MS2

2
0

0

= −











= .. . .
.

6644 0 0300
2

0 6344
2

0 317
− = =

Thus, the between-person variance is about 10 times as large as the within-person 
variance, which indicates good reproducibility.

Alternatively, we could refer to the SAS GLM procedure output given in  
Table 12.22.

	T able 12.22	 Representation of the Expected Mean Squares in terms  
of sources of variance using the data in Table 12.20

The GLM Procedure

Source       Type III Expected Mean Square

subj         Var(Error) + 2 Var(subj)

We see that the subject (or Between Mean Square) gives an unbiased estimate of 
within-person variance + 2 between-person variance [which is denoted by Var(Error) +  
2 Var(subj)] = σ2 + 2σ2

A. Thus, because we already have an estimate of Var(Error) we 
can compute Var(subject) by subtraction; that is, (Model Mean Square − Error Mean 
Square)/2 = 0.317. The representation in Table 12.22 is most useful for unbalanced 
designs because it obviates the need for the user to compute n0 in step 5b of Equa-
tion 12.30. In this case, the expected value of the person Mean Square would be 
Var(Error) + n0 Var(subject).

Another parameter that is often of interest in reproducibility studies is the coef-
ficient of variation (CV). Generally speaking, CVs of <20% are desirable, whereas CVs 
of >30% are undesirable. The CV in reproducibility studies is defined as

		
CV = ×100%

within-personstandard deviation
withinn-personmean

We could estimate the mean and standard deviation for each of the five subjects 
in Table 12.20 based on the raw plasma-estradiol values and average the individual 
CV estimates. However, if the standard deviation appears to increase as the mean 
increases, then a better estimate of the CV is given as follows [7].

	E quation 12.31	 Estimation of the CV in Reproducibility Studies

	 	 	 Suppose we have k subjects enrolled in a reproducibility study where there are 
ni replicates for the ith subject, i = 1, . . . , k. To estimate the CV,

		  (1)	 Apply the ln transformation to each of the values.
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		  (2)	 Estimate the between- and within-subject variance components using a 
one-way random-effects model ANOVA as shown in Equation 12.30.

		  (3)	 The CV in the original scale is estimated by

			       100 2% × Within MS from step

	 Example 12.34 	 Endocrinology  Estimate the CV for plasma estradiol given the data in Table 12.21.

	 	 Solution:  We have from Table 12.21 that the Within-person Mean Square based on 
ln-transformed plasma-estradiol values is given by 0.0300. Thus

		  CV = × =100 0 0300 17 3% . . %

Alternatively, we could have used 100% × Root MSE = 100% × Error MeanSquare =  
17.3%. Note that the CV given in Table 12.21 (6.74%) is not appropriate in this case 
because it is simply based on 100% MSE× /lestradl mean, which would give us the 
CV for ln(plasma estradiol) rather than plasma estradiol itself. Similarly, if we had 
run the GLM procedure using the raw scale rather than the ln scale (see Table 12.23), 
the CV given (16.4%) would also not be appropriate because it is based on the 
assumption that the standard deviation is independent of the mean value, which is 
not true in the raw scale.

	T able 12.23	 Analysis of the plasma-estradiol data (original scale) in  
Table 12.20 (on page 604) using the SAS GLM procedure

The GLM Procedure
Dependent Variable: estradiol

Source           DF   Sum of Squares   Mean Square   F Value   Pr > F

Model             4     593.3140000   148.3285000     24.55   0.0017

Error             5      30.2150000     6.0430000

Corrected Total   9     623.5290000

           R-Square       Coeff Var      Root MSE      estradiol Mean

           0.951542        16.39928      2.458251            14.99000

Source           DF        Type I SS   Mean Square   F Value   Pr > F

subj              4     593.3140000   148.3285000     24.55   0.0017 

Source           DF      Type III SS   Mean Square   F Value   Pr > F

subj              4     593.3140000   148.3285000     24.55   0.0017

In some examples, there are more than two sources of variation.

	 Example 12.35 	 Hypertension  Suppose we obtain blood-pressure recordings from each of k subjects. 
We ask each subject to return to the clinic at n1 visits. At each of the n1 visits, we 
obtain n2 blood-pressure readings. In this setting, we would be interested in three 
components of blood-pressure variation: (1) between persons, (2) between different 
visits for the same person, and (3) between different readings for the same person at 
the same visit.

This is called a random-effects ANOVA model with more than one level of 
nesting. This type of problem is beyond the scope of this book. See Snedecor and  
Cochran [8] for a lucid description of this problem.
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In this section, we have examined the one-way ANOVA random-effects model. 
The random-effects model differs from the fixed-effects model in several important 
ways. First, with a random-effects model, we are not interested in comparing mean 
levels of the outcome variable (e.g., estradiol) among specific levels of the grouping 
(or categorical variable). Thus, in Example 12.31 (on page 604), we were not interested 
in comparing mean estradiol levels among different specific women. Instead, the 
women in the study are considered a random sample of all women who could have 
participated in the study. It is usually a foregone conclusion that individual women 
will have different estradiol levels. Instead, what is of interest is estimating what pro-
portion of the total variability of estradiol is attributable to between-person vs. within-
person variation. Conversely, in the fixed-effects ANOVA (e.g., Example 12.1, on page 
551), we were interested specifically in comparing mean FEF levels for nonsmokers vs. 
passive smokers. In the fixed-effects case, the levels of the categorical variable have 
inherent meaning and the primary goal is to compare mean levels of the outcome 
variable (FEF) among different levels of the grouping variable.

RE  V I E W  QUEST     I ONS    1 2 E

1	 What is the difference between a fixed-effects ANOVA model and a random-effects 
ANOVA model? When do we use each?

2	 Consider the activated-protein-C (APC) resistance split-sample data in Table 2.19 
(on page 39).

	 (a)  Fit a one-way random-effects ANOVA model to these data.

	 (b)  Estimate the between-person and within-person components of variation.

	 (c)  Do you think this is a reproducible assay? Why or why not?

	 12.9	 T h e  I n t r a c l a s s  C o r r e l at i o n  C o e f f i c i e n t

In Sections 11.7−11.8, we were concerned with Pearson correlation coefficients 
between two distinct variables denoted by x and y. For example, in Example 11.26 
(on page 485) we were concerned with the correlation between cholesterol levels of a 
wife (x) and a husband (y). In Example 11.34 (on page 493) we were concerned with 
the correlation of body weight between a father (x) and his first-born son (y). In some 
instances, we are interested in the correlation between variables that are not readily 
distinguishable from each other.

	 Example 12.36 	 Endocrinology  In Example 12.31 (on page 604), we were concerned with the repro-
ducibility of two replicate measures obtained from split samples of plasma estradiol 
from 5 women. In this instance, the replicate-sample determinations are indistin-
guishable from each other, since each plasma sample was split into two halves at 
random. Thus, it is impossible to specifically identify an x or y variable.

A more fundamental issue is that in Equation 11.17 the sample correlation coef-
ficient was written in the form

		  sxy /(sxsy)

Thus, from Equation 11.17 an alternative definition of the correlation coefficient r 
is the ratio of the sample covariance between x and y divided by the product of the 
standard deviation of x multiplied by the standard deviation of y. The implicit as-
sumption in Equation 11.17 is that x and y are distinct variables and thus the sample 

See page 488 for  
Equation 11.17
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mean and standard deviation are computed separately for x and y. In Example 12.31 
(on page 604), we could, at random, assign one of the two replicates to be x and 
the other y for each woman and compute r in Equation 11.17 based on separate 
estimates of the sample mean and standard deviation for x and y. However, if x and 
y are indistinguishable from each other, a more efficient estimate of the mean and 
standard deviation can be obtained by using all available replicates for each woman. 
Thus, a special type of correlation is needed between repeated measures on the same 
subject, called an intraclass correlation coefficient.

	D efinition 12.13	 Suppose we have k subjects and obtain ni replicates from the ith subject, i = 1, . . . , k. 
Let yij represent the jth replicate from the ith subject. The correlation between two 
replicates from the same subject—i.e., between yij and yil where j ≠ l and 1 ≤ j ≤ ni,  
1 ≤ l ≤ ni is called an intraclass correlation coefficient, denoted by ρI.

If yij follows a one-way random-effects ANOVA model, where

		  y e N e Nij i ij i ij= + + ( ) ( )µ α α σ σ, , , ,∼ ∼0 02 2
A

then it can be shown that ρI = σ2
A / (σ

2
A + σ2); i.e., ρI is the ratio of the between-person 

variance divided by the sum of the between-person and the within-person variance. 
The intraclass correlation coefficient is a measure of reproducibility of replicate 
measures from the same subject. It ranges between 0 and 1, with ρI = 0 indicating no 
reproducibility at all (i.e., large within-person variability and 0 between-person vari-
ability) and ρI = 1 indicating perfect reproducibility (i.e., 0 within-person variability 
and large between-person variability). According to Fleiss [9],

	E quation 12.32	 Interpretation of Intraclass Correlation

		  ρI < 0.4 indicates poor reproducibility

		  0.4 ≤ ρI < 0.75 indicates fair to good reproducibility

		  ρI ≥ 0.75 indicates excellent reproducibility

There are several methods of estimation for the intraclass correlation coeffi-
cient. The simplest and perhaps most widely used method is based on the one-way 
random-effects model ANOVA, which we discussed in Section 12.8.

	E quation 12.33	 �Point and Interval Estimation of the Intraclass Correlation Coefficient 
		  Suppose we have a one-way random-effects model ANOVA, where

			   y e e N N iij i ij ij i= + + ( ) ( ) =µ α σ α σ, , , , , ,∼ ∼0 0 12 2
A .. . . , ; , . . . ,k j ni= 1

			   The intraclass correlation coefficient ρI = σA
2/(σA

2 + σ2). A point estimate of  
		  ρI is given by

			   ˆ max ˆ / ˆ ˆ ,ρ σ σ σI A A= +( )





2 2 2 0

		�  where σ̂A
2  and σ̂2 are the estimates of the between-subject and within-subject 

variance components from a one-way random-effects model ANOVA given 
in Equation 12.30. This estimator is sometimes referred to as the analysis-of-
variance estimator.

See page 605 for  
EQUATION 12.30

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



	 12.9      The Intraclass Correlation Coefficient              611

			   An approximate two-sided 100% × (1 − α) CI for ρI is given by (c1, c2) where
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		�  F is the F statistic from the significance test of the hypothesis H0: σA
2 = 0 vs. 

		�  H1: σA
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as given in Equation 12.30.

			   If all subjects have the same number of replicates (n), then n0 = n.

	 Example 12.37 	 Endocrinology  Estimate the intraclass correlation coefficient between replicate 
plasma-estradiol samples based on the data in Table 12.20 (on page 604).

	 	 Solution:  We will use the ln(plasma estradiol) values as we did in Table 12.21 (on page 
606) because we found that the within-person variance was relatively constant on the 
log scale but depended on the mean value in the original (raw) scale. From Example 
12.33 (on page 607), we have ˆ .σA

2 0 317= , ˆ .σ2 0 030= . Therefore, our point estimate of 
the intraclass correlation is given by

		

ρI =
+

= =

0 317
0 317 0 030

0 317
0 347

0 914

.
. .

.

.
.

Thus, there is excellent reproducibility for ln(plasma estradiol). To obtain confidence 
limits about this estimate, we refer to Equation 12.33. From Table 12.21, we see that 
the F statistic from the SAS General Linear Model procedure based on a one-way 
random-effects model ANOVA is 22.15. Also, because this is a balanced design (i.e., 
we have the same number of replicates for each subject), we have n0 = n = 2. We also 
need the critical values (which we obtain from Table 8 in the Appendix or from R) 
given by F4,5,.975 = 7.39 and F4,5,.025= 1/F5,4,.975 = 1/9.36 = 0.107. Therefore, the 95% CI 
for ρI is given by (c1, c2), where
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Therefore, the 95% CI for ρI = (.500, .990), which is quite wide.

Another interpretation for the intraclass correlation is based on reliability rather than 
reproducibility.

	 Example 12.38 	 Hypertension  Suppose we wish to characterize blood pressure for an individual 
over a short time period (e.g., a 1-month period). Blood pressure is an impre-
cise measure with a lot of within-person variation. Therefore, the ideal way to 
characterize a subject’s blood pressure is to take many replicate measures over a 
short period of time and use the average (T ) as an estimate of the true level of 
blood pressure. We then might ask to what extent does a single blood pressure 
(X) relate to T? The answer to this question is given by the intraclass correlation 
coefficient.

	E quation 12.34	 Alternative Interpretation of the Intraclass Correlation Coefficient as a Measure of  
Reliability

		  Suppose we have a one-way random-effects model ANOVA, where

			   y e e N Nij i ij ij i= + + ( ) ( )µ α σ α σ, , , ,∼ ∼0 02 2
A

		�  where yij denotes the jth replicate from the ith subject. The average of an infi-
nite number of replicates for the ith subject is denoted by Yi = µ + αi. The square 
of the correlation between Yi and a single replicate measure yij is given by the 
intraclass correlation coefficient. Therefore, the intraclass correlation coefficient 
can also be interpreted as a measure of reliability and is sometimes called the 
reliability coefficient.

	Solution to Example 12.38	 Solution:  It has been shown that the intraclass correlation coefficient for diastolic 
blood-pressure (DBP) measurements for 30- to 49-year-olds based on a single visit 
is .79 [10]. Thus, the correlation between DBP obtained at one visit and the “true” 
DBP is . .79 89= . To increase the reliability of blood-pressure measurements, cli-
nicians often take an average blood pressure over several visits. The rationale for 
this practice is that the reliability of a mean DBP over, say, three visits is higher 
(.96) than for a single visit (.89) in the sense that its correlation with the true DBP 
is higher. In each instance the average of three readings was used to characterize 
DBP at any one visit. This is the rationale for the screening design of the Trial of 
Hypertension Prevention (TOHP), in which approximately 20,000 people were 
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screened in order to identify approximately 2000 subjects with high-normal DBP 
(defined as having a mean DBP of 80−89 mm Hg based on an average of nine 
readings over three visits with three measurements per visit) [11].

Using the Computer to Estimate Intraclass Correlation
We can use the loneway command of Stata for this purpose if there are an equal 
number of replicates per subject. The syntax is as follows:

loneway response_var group_var, exact

	 Example 12.39 	 Endocrinology  Use the computer to estimate the intraclass correlation for 
ln(estradiol) for the reproducibility data in Table 12.20 (on page 604).

	 	 Solution:  We use the loneway command of Stata for this purpose. The results are as 
follows:

. loneway ln_estradiol subject, exact

One-way Analysis of Variance for ln_estradiol: 

Number of obs = 10
R-squared = 0.9466

Source               SS        df      MS       F      Prob > F

-----------------------------------------------------------------

Between subject   .50234258    4   .12558565  22.18     0.0022

Within subject    .02831351    5   .0056627

-----------------------------------------------------------------

Total             .53065609    9   .05896179

Intraclass       Asy.        ------ Exact -----

correlation       S.E.        [95% Conf. Interval]

-----------------------------------------------------

            0.91371     0.07833       0.50024    0.99042

These results are the same as in the Solution to Example 12.37.

In this section, we have been introduced to the intraclass correlation coeffi-
cient. Suppose individuals (e.g., children) are categorized into groups by a grouping 
variable (e.g., families). The intraclass correlation coefficient is used to estimate the 
correlation between two separate members of the same group (e.g., two children 
in the same family). It is defined differently from an ordinary Pearson correlation 
coefficient (see Section 11.7). For a Pearson correlation, there are two distinct vari-
ables being compared (e.g., cholesterol levels for a husband vs. cholesterol levels 
for a wife). The mean and variance of each variable is estimated separately. For an 
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intraclass correlation coefficient, it is arbitrary which child is denoted as the x vari-
able and which is denoted as the y variable. Thus, the estimated mean and variance 
of x and y are the same and are obtained by a pooled estimate over all children 
over all families. The intraclass correlation coefficient can also be interpreted as a 
measure of the percentage of total variation that is attributable to between-group 
(e.g., between-family) variation.

RE  V I E W  QUEST     I ONS    1 2 F

1	 What is an intraclass correlation coefficient? How does it differ from an ordinary 
Pearson correlation coefficient?

2	 Refer to Table 2.19 on page 39.

	 (a)	 Compute the intraclass correlation coefficient between replicate APC- 
resistance values.

	 (b)	 Interpret what it means.

	 (c)	 What is the correlation coefficient between a single APC-resistance value and 
the mean APC-resistance value over a large number of values for an individual 
subject?

	 12.10	 Mi  x e d  M o d e l s

In some instances we wish to classify units of analysis by two categorical variables 
at the same time (say x1, x2) and look at the effects of x1 and x2 simultaneously on a 
continuous outcome variable y, where one of the variables (say x1) can be considered 
random and the other variable (x2) can be considered fixed. 

	 Example 12.40 	 Ophthalmology  A study was performed among dry-eye patients comparing an active 
drug with placebo. The subjects were either given active drug or placebo and then 
were put into a “dry-eye room,” which is a room with very low humidity ( %)< 10 , 
to exacerbate their symptoms, hopefully to a greater extent with placebo than with 
active drug. An important physiologic measure used with dry-eye patients is the tear 
break-up time (TBUT), which is the time it takes for a tear to dissolve; a smaller num-
ber indicates worse symptoms (more tearing). The TBUT was measured at baseline 
(bas), immediately after drop instillation (im), and at 5 minutes (pst5), 10 minutes 
(pst10), and 15 minutes (pst15) after instillation. Data were obtained from both the 
right (od) and left (os) eyes, and two replicates were obtained for each eye. The data 
were obtained on the same subjects under three different experimental conditions 
prior to drop instillation (3-second nonblink period, 6-second nonblink period, 
10-second nonblink period). These data are available in the data set TEAR.DAT.

The results for the right eye among placebo subjects ( )n = 14  after the 3-second 
nonblink period are given in Table 12.24. We wish to test whether there are dif-
ferences in TBUT among subjects and over time. In this design, the two factors to 
consider are the subject (which is a random effect) and the time point (which is a 
fixed effect). This type of design is called a mixed model. How should we analyze the 
data in this setting? 

We will use a two-way mixed-effects ANOVA model for this purpose given as  
follows.

R
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�Table 12.24 � �Tear break-up time over 15 minutes among 14 dry-eye patients in the placebo group of a clinical 
trial after a 3-second nonblink period

	 od bas 1	 od bas 2	 od im 1	 od im 2	 od pst5 1	 od pst5 2	 od pst10 1	 od pst10 2	 od pst15 1	 od pst15 2

  1	 5.44	 4.59	 4.34	 5.31	 4.81	 6.53	 6.00	 4.63	 6.47	 7.03
  2	 3.28	 3.00	 10.87	 19.06	 13.34	 12.31	 10.34	 9.71	 5.81	 7.25
  3	 3.18	 2.43	 14.78	 16.28	 12.53	 16.84	 5.53	 6.68	 6.78	 6.43
  4	 2.47	 1.40	 11.12	 6.44	 8.46	 3.84	 1.93	 2.46	 2.62	 3.21
  5	 4.40	 4.90	 12.93	 14.84	 7.43	 9.78	 5.93	 6.81	 6.28	 7.65
  6	 4.93	 4.87	 10.56	 11.71	 4.53	 5.50	 5.37	 3.75	 4.56	 3.31
  7	 7.21	 6.15	 14.34	 15.50	 10.56	 10.87	 10.43	 8.57	 3.15	 2.78
  8	 4.93	 4.15	 15.31	 14.00	 7.51	 6.59	 4.01	 3.59	 3.90	 3.62
  9	 3.18	 2.84	 6.90	 5.75	 8.09	 7.03	 5.31	 6.81	 4.09	 4.06
10	 3.47	 1.37	 6.91	 3.57	 7.06	 5.09	 1.53	 1.06	 2.96	 1.34
11	 9.46	 8.50	 12.03	 10.75	 17.03	 14.93	 12.31	 14.62	 13.06	 15.09
12	 3.03	 3.12	 7.12	 7.19	 5.68	 4.32	 2.41	 3.10	 4.47	 4.25
13	 2.47	 2.62	 18.97	 10.60	 2.06	 2.66	 1.87	 2.91	 2.22	 2.40
14	 2.66	 2.32	 12.97	 14.81	 5.03	 3.03	 2.35	 1.31	 1.32	 1.19

	E quation 12.35	 Two-way ANOVA Model-Balanced Design with One Fixed Effect and One Random  
Effect 

		  yijk	 =	 µ α β αβ+ + + + = =i j ij ijke i r j c( ) , , , ; , , ;. . . . . .1 1 , ,. . .k n= 1

		  where

		  yijk	 =	 kth replicate for subject i at time point j

		  αi	=	 row classification (in this case, subject)

		  β j	 =	 column classification (in this case, time)

		  ( )αβ ij	 =	 interaction effect between row and column classifications

		  eijk	 =	 error term assumed to follow an N( , )0 2σ  distribution

		�  where αi is a random effect distributed as N( , )0 2σA , βj is a fixed effect with 5 levels, 
(αβ)ij is an interaction effect, and eijk is an error term distributed as N( , )0 2σ .

The results can be displayed in an ANOVA table as follows. 

	Table 12.25 � Analysis of two-way ANOVA table with one fixed effect and one random effect

Effect	 SS	 df	 MS	 F Stat	 df

Row 	 RSS y nc y nrc
i

r

i. . . . .
2= −

=
∑

1

2 ( ) ( ) 	 r −1  	 RMS RSS r= −/ ( 1) 	 RMS / EMS	 r rc n− −1 1, ( )
(random)

Column 	 CSS y nr y nrc
j

c

.j. . . .
2= −

=
∑

1

2 ( ) ( ) 	 c −1 	 CMS CSS c= −/( 1) 	 CMS / IMS	 c r c− − −1 1 1, ( )( )
(fixed)

Interaction	 ISS y nij.
j

c

i

r

=
==

∑∑ 2

11

	 ( 1)( 1)r c− − 	 IMS ISS r c= − −/[( 1)( 1)] 	 IMS / EMS 	 ( )( ), ( )r c rc n− − −1 1 1

	 − − −RSS CSS y nrc2
... ( )				  

Error 	 ESS y yijk ij.
j

c

i

r

= −
==

∑∑ ( )2

11
	 rc n( 1)− 	 EMS ESS rc n= −/ [ ( )]1
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In general, with two-way ANOVA we might have designs where 

(a)	 both factors are fixed (Model I) 

(b)	 both factors are random (Model II) 

(c)	 one factor is fixed and one is random (Model III)

Methods for computation of F statistics for significance tests for these three designs 
are given in Table 12.26.

	T able 12.26	 Computation of the F statistics for tests of significance in a two-factor  
ANOVA with replication

	 Model I 	 Model II 	 Model III  
	 (factors A and B	 (factors A and B	 (factor A random; 
Hypothesized effect 	 both fixed) 	 both random) 	 factor B fixed) 

Factor A	
factor MS

error
A
MS

	
factor MS

MS
A

A B×
 	

factor MS
error MS

A

Factor B	
factor MS

error MS
B

	
factor MS

MS
B

A B×
 	

factor MS
MS

B
A B×

 

A B×  interaction	 A B× MS
error MS

 	
A B× MS
error MS

 	
A B× MS
error MS

 

	 Example 12.41 	 Ophthalmology  Analyze the dry-eye data in Table 12.24 using mixed-model methods.

	 	 Solution:  We use the general linear model procedure of MINITAB treating id as 
random and time as fixed with results given in Table 12.27. 

	T able 12.27	 Use of the general linear model to analyze the dry-eye data in Table 12.24

General Linear Model: tbut vs. id, time

Factor	 Type	 Levels	 Values

id	 random	 14	 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
time	 fixed	   5	 1=bas, 2=im, 3=5 min pst, 4=10 min pst, 5=15 min pst

Analysis of Variance for tbut, using adjusted SS for tests 

Source 	 DF	 Seq SS	   Adj SS	 Adj MS	 F	 P

id 	 13	 897.582	 897.582	 69.045	 5.48	 0.000
time 	 4	 964.637	 964.637	 241.159	 19.13	 0.000
id*time	 52	 655.523	 655.523	 12.606	 5.89	 0.000
Error 	 70	 149.769	 149.769	 2.140
Total 	 139	 2667.511

S = 1.46272  R-sq = 94.39%  R-Sq(adj) = 88.85%

	 Least Squares Means for tbut
time 	 Mean

1=bas 	 4.013
2=im 	 11.249
3=5 min pst 	 7.980
4=10 min pst	 5.405

5=15 min pst	 4.904

We see that TBUT increases immediately after drop instillation but then drops towards 
baseline over the next 15 minutes. We see that there are significant effects of both 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



	 12.10      Mixed Models              617

subject and time ( . )p < 001 . Note that MINITAB computes the F  statistic for the ran-
dom effect (id) differently than in Table 12.26. The appropriate F  statistic for id should 
be 69 045 2 140 32 26 13 70. / . . ~ ,= F  under H0 with p-value =Pr( . ) .,F13 70 32 26 001> < . In 
addition, we can compare means of groups corresponding to specific levels of the fixed 
effect (time) using the Tukey approach. To compare mean TBUT at time j1 with mean 
TBUT at time j2, we compute the studentized range statistic q, where

		
q

y y

s rn
q

j j
c r c=

−
− −

. .

/ ( )
~

. .
,( )( )

1 2
2 1 1
INT

where for a mixed model sINT
2  is estimated from the Interaction Mean Square 

(IMS) rather than the Error Mean Square (EMS). The q statistic is compared with 
qc r c, ( )( ),.− −1 1 05 for significance. Percentiles of the studentized range statistic are given 
in Appendix Table 15. Finally, 95% confidence limits are obtained from 

		
y y q s rnj j c r c. . / ( ). . ,( )( ),.1 2 1 1 05

2− ± − − INT

The results for the TBUT data in Table 12.24 are shown in Table 12.28. 

	T able 12.28	 Comparison of specific groups using the Tukey approach in the dry-eye data

Tukey Simultaneous Tests
Response Variable tbut
All Pairwise Comparisons among Levels of time
time = 1 = bas subtracted from:

	 Difference	 SE	 	 Adjusted
time 	 of Means	 Difference	 t-value	 p-value

1=im 	 7.2354	 0.9489	 7.6249	 0.0000
3=5 min pst 	 3.9668	 0.9489	 4.1803	 0.0010
4=10 min pst	 1.3914	 0.9489	 1.4663	 0.5885
5=15 min pst	 0.8904	 0.9489	 0.9383	 0.8806

time = 2=im subtracted from:

	 Difference	 SE	 	 Adjusted
time 	 of Means	 Difference	 t-value	 p-value

3=5 min pst 	 –3.269	 0.9489	 –3.445	 0.0096
4=10 min pst	 –5.844	 0.9489	 –6.159	 0.0000
5=15 min pst	 –6.345	 0.9489	 –6.687	 0.0000

time = 3=5 min pst subtracted from:

	 Difference	 SE	 	 Adjusted
time 	 of Means	 Difference	 t-value	 p-value

4=10 min pst	 –2.575	 0.9489	 –2.714	 0.0654
5=15 min pst	 –3.076	 0.9489	 –3.242	 0.0170

time = 4=10 min pst subtracted from:

	 Difference	 SE	 	 Adjusted
time 	 of Means	 Difference	 t-value	 p-value

5=15 min pst	 –0.5011	 0.9489	 –0.5280	 0.9841
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We see that there are significant effects on TBUT after drop instillation despite the 
fact that a placebo drop was used. Compared with baseline, there is a significant 
increase (i.e., improvement) in TBUT immediately after drop instillation (p < .001)  
and 5 minutes post drop instillation (p = .001), which wears off after 10 minutes. In 
addition, mean TBUT is significantly lower 5, 10, and 15 minutes post drop instilla-
tion compared with immediately after drop instillation ( .p < 01). Furthermore, mean 
TBUT 5 minutes post drop instillation is significantly different from mean TBUT 
15 minutes post drop instillation (p = .017) and nearly significantly different from 
mean TBUT 10 minutes post drop instillation (p = .065). Clearly, if an active eye 
drop is to be tested vs. a placebo eye drop, patients must be followed for longer than 
5 minutes to have the potential to show significant differences vs. placebo. Finally, 
95% CI for differences between pairs of means using the Tukey approach are given in 
Figure 12.15.

We can also use ANOVA to assess more than two factors at the same time (includ-
ing both fixed and random effects) (i.e., multi-way ANOVA) using the mixed-model 
approach, but this is beyond the scope of this text. In addition, we can use mixed-model 
methods if there are an unequal number of replicates per subject at each time point.

	Fi gure 12.15	 95% Confidence intervals comparing pairs of groups using the dry-eye data in  
Table 12.24

		  Tukey 95% Simultaneous Confidence Intervals
Response Variable tbut
All Pairwise Comparisons among Levels of time
time = 1 = bas subtracted from:

time 	 Lower	 Center	 Upper	 -----+---------+---------+---------+-
2 = im 	 4.551	 7.2354	 9.919	 (---*----)
3 = 5 min pst 	 1.283	 3.9668	 6.651	 (----*---)
4 = 10 min pst	 -1.293	 1.3914	 4.075	 (---*----)
5 = 15 min pst	 -1.794	 0.8904	 3.574	 (---*----)
				    -----+---------+---------+---------+-
				    -6.0	 0.0	 6.0	 12.0 

time = 2 = im subtracted from:

time 	 Lower	 Center	 Upper	 -----+---------+---------+---------+-
3 = 5 min pst 	 -5.953	 -3.269	 -0.585	 (----*---) 
4 = 10 min pst	 -8.528	 -5.844	 -3.160	 (---*----) 
5 = 15 min pst	 -9.029	 -6.345	 -3.661	 (---*----) 
				    -----+---------+---------+---------+-
				    –6.0	 0.0	 6.0	 12.0 

time = 3 = 5 min pst subtracted from:

time 	 Lower	 Center	 Upper	 -----+---------+---------+---------+-
4 = 10 min pst	 -5.259	 -2.575	 0.1086	 (----*---) 
5 = 15 min pst	 -5.760	 -3.076	 -0.3925	 (----*---) 
				    -----+---------+---------+---------+-
				    –6.0	 0.0	 6.0	 12.0

time = 4 = 10 min pst subtracted from:

time 	 Lower	 Center	 Upper	 -----+---------+---------+---------+-
5 = 15 min pst	 -3.185	 -0.5011	 2.183	 (---*----)
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	 12.11	 D e r iv  at i o n  o f  E q u at i o n  1 2 . 3 0  ( p.  6 0 5 )

It can be shown under either hypothesis that:

	E quation 12.36	 E(Within MS) = σ2

In the balanced case, where there are an equal number of replicates per subject, it 
can be shown that under either hypothesis

	E quation 12.37	 E(Between MS) = σ2 + nσA
2

where n1 = n2 = . . . = nk = n = number of replicates per subject

In the unbalanced case, where there may be an unequal number of replicates per 
subject, it can be shown that under either hypothesis

	E quation 12.38	 E(Between MS) = σ2 + n0σA
2

where

		    
n n n n ki

i

k

i
i

k

i
i
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0
1

2

1 1
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If the number of replicates is the same for each subject, then n1 = n2 = . . . = nk = n and
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Thus, the two formulas in Equations 12.37 and 12.38 agree in the balanced case. In 
general, in the unbalanced case, n0 is always less than the average number of repli-

cates per subject n n ki
i

k

=





=
∑

1

, but the difference between n0 and n is usually small.

We use the same test statistic (F = Between MS/Within MS) as was used for the 
fixed-effects model one-way ANOVA. Under the random-effects model, if H1 is true 
(σA

2 > 0), then F will be large, whereas if H0 is true (σA
2 = 0), then F will be small. It 

can be shown that under H0, F will follow an F distribution with k − 1 and N − k df, 

where N ni
i

k

=
=
∑

1

. To estimate the variance components σA
2 and σ2, we use Equations 

12.36–12.38.
From Equation 12.36, an unbiased estimate of σ2 is given by Within MS. From 

Equation 12.37, if we estimate σ2 by Within MS, then in the balanced case
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Thus, an unbiased estimate of σA
2 is given by σ̂A

2  = (Between MS – Within MS)/n. From 
Equation 12.38, an analogous result holds in the unbalanced case, where we replace 
n by n0 in the estimation of σA

2.

	 12.12	 S u m m a r y

One-way ANOVA methods enable us to relate a normally distributed outcome vari-
able to the levels of a single categorical independent variable. Two different ANOVA 
models based on a fixed- or random-effects model, respectively, were considered. 
In a fixed-effects model, the levels of the categorical variable are determined in ad-
vance. A major objective of this design is to test the hypothesis that the mean level 
of the dependent variable is different for different groups defined by the categorical 
variable. The specific groups that are different can also be identified, using t tests 
based on the LSD procedure if the comparisons have been planned in advance or 
using multiple-comparisons methods if they have not. More complex comparisons 
such as testing for dose–response relationships involving more than two levels of 
the categorical variable can also be accomplished using linear-contrast methods. 
Fixed-effects ANOVA methods can be thought of as a generalization of two-sample 
inference based on t tests presented in Chapter 8.

In addition, nonparametric methods for fixed-effects ANOVA based on the Krus-
kal-Wallis test were also discussed for situations when the assumption of normality 
is questionable. This test can be thought of as a generalization of the Wilcoxon rank-
sum test presented in Chapter 9 if more than two groups are being compared.

Under a random-effects model, the levels of the categorical variable are de-
termined at random, with the levels being drawn from an underlying normal 
distribution whose variance characterizes between-subject variation in the study 
population. For a given subject, there is, in addition, within-subject variation 
around the underlying mean for that subject. A major objective of a random-
effects design is to estimate the between- and within-subject variance components. 
Random-effects models are also useful in computing coefficients of variation in 
reproducibility studies.

We also discussed the two-way ANOVA, in  which we are interested in jointly 
comparing the mean levels of an outcome variable according to the levels of two 
categorical variables (e.g., mean level of blood pressure by both sex and ethnic 
group). With two-way ANOVA, we can simultaneously estimate the main effects of 
sex (e.g., the effect of sex on blood pressure after controlling for ethnic group), the 
main effects of ethnic group (e.g., the effect of ethnic group on blood pressure after 
controlling for sex), and the interaction effects between sex and ethnic group (e.g., 
estimates of differences of ethnic-group effects on blood pressure between males and 
females). We also saw that both one-way and two-way fixed-effects ANOVA models 
can be considered as special cases of multiple-regression models by using dummy-
variable coding for the effects of the categorical variable(s).

Furthermore, we examined both one-way and two-way ANCOVA. In one-way 
ANCOVA, we are interested primarily in relating a continuous outcome variable to 
a categorical variable but want to control for other covariates. Similarly, in two-way 
ANCOVA we are interested primarily in relating a continuous outcome variable simul-
taneously to two categorical variables but want to control for other covariates. We also 
saw that both one-way and two-way ANCOVA models can be represented as special 
cases of multiple-regression models. Finally, we investigated mixed-effects models 
where one or more factors is fixed by design and one or more factors is random. 
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Nutrition
Researchers compared protein intake among three 
groups of postmenopausal women: (1) women eating a 
standard American diet (STD), (2) women eating a lacto-
ovo-vegetarian diet (LAC), and (3) women eating a strict 
vegetarian diet (VEG). The mean ± 1 sd for protein intake 
(mg) is presented in Table 12.29.

*12.1  Perform a statistical procedure to compare 
the means of the three groups using the critical-value 
method.

*12.2  What is the p-value from the test performed in  
Problem 12.1?

*12.3  Compare the means of each specific pair of groups 
using the LSD methodology.

*12.4  Suppose that in the general population, 70% of veg-
etarians are lacto-ovo-vegetarians, whereas 30% are strict 
vegetarians. Perform a statistical procedure to test whether 
the contrast L y y y= + −0 7 0 32 3 1. .  is significantly different 
from 0. What does the contrast mean?

12.5  Using the data in Table 12.29, perform a multiple-
comparisons procedure to identify which specific underlying 
means are different.

Pulmonary Disease
Twenty-two young asthmatic volunteers were studied to 
assess the short-term effects of sulfur dioxide (SO2) expo-
sure under various conditions [12]. The baseline data in 
Table 12.30 were presented regarding bronchial reactiv-
ity to SO2 stratified by lung function (as defined by forced 
expiratory volume / forced vital capacity [FEV1/FVC]) at 
screening.

*12.6  Test the hypothesis that there is an overall mean dif-
ference in bronchial reactivity among the three lung-function 
groups.
*12.7  Compare the means of each pair of groups using the 
LSD method.
*12.8  Compare the means of each pair of groups using the 
Bonferroni method.

P r o b lems  

�Table 12.30 � �Relationship of bronchial reactivity 
to SO2 (cm H2O/s) grouped by lung 
function at screening among 	
22 asthmatic volunteers

Lung-function group

Group A  
FEV1/FVC  
≤ 74%

Group B  
FEV1/FVC  
75–84%

Group C  
FEV1/FVC  

≥ 85%

20.8 7.5 9.2
  4.1 7.5 2.0
30.0 11.9 2.5
24.7 4.5 6.1
13.8 3.1 7.5

8.0
4.7

28.1
10.3
10.0

5.1
2.2

Source: Based on the American Review of Respiratory Disease, 131(2), 
221−225, 1985.

�Table 12.29 �� Protein intake (mg) among three 
dietary groups of postmenopausal 
women

Group Mean sd n

STD 75 9 10
LAC 57 13 10
VEG 47 17 6

Hypertension
Automated blood-pressure measuring devices have ap-
peared in many banks, drugstores, and other public places. 
A study was conducted to assess the comparability of 
machine readings vs. readings using the standard cuff [13]. 
Readings were taken using both the machine and the stan-
dard cuff at four separate locations. The results are given in 
Table 12.31. Suppose we want to test whether the mean 
difference between machine and standard cuff readings is 
consistent over the four locations (i.e., if the bias is compa-
rable over all four locations).
12.9  Is a fixed-effects or a random-effects ANOVA appro-
priate here?
12.10  Test whether the mean difference is consistent over 
all four locations.
12.11  Estimate the proportion of the variance attributable 
to between-machine vs. within-machine variability.

Mental Health
For the purpose of identifying older nondemented people 
with early signs of senile dementia, a Mental Function Index 
was constructed based on three short tests of cognitive 
function. In Table 12.32, data relating the Mental Function 
Index at baseline to clinical status determined independently 
at baseline and follow-up, with a median follow-up period of 
959 days, are presented [14].
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12.12  What test procedure can be used to test for signifi-
cant differences among the groups?

12.13  Perform the test mentioned in Problem 12.12, and 
report appropriate p-values identifying differences between 
specific groups.

Hypertension
Some common strategies for treating hypertensive patients 
by nonpharmacologic methods include (1) weight reduction 
and (2) trying to get the patient to relax more by meditational 
or other techniques. Suppose these strategies are evaluated 
by randomizing hypertensive patients to four groups who 
receive the following types of nonpharmacologic therapy:

Group 1: �Patients receive counseling for both weight  
reduction and meditation.

Group 2: �Patients receive counseling for weight reduction 
but not for meditation.

Group 3: �Patients receive counseling for meditation but not 
for weight reduction.

Group 4: �Patients receive no counseling at all.

�Table 12.31 �� Mean SBP and difference between machine and human readings at four locations

SBP machine  
(mm Hg)

SBP standard cuff  
(mm Hg)

SBP machine -  
SBP standard cuff 

(mm Hg)

Location Mean sd n Mean sd n Mean sd n

A 142.5 21.0 98 142.0 18.1 98 0.5 11.2 98
B 134.1 22.5 84 133.6 23.2 84 0.5 12.1 84
C 147.9 20.3 98 133.9 18.3 98 14.0 11.7 98
D 135.4 16.7 62 128.5 19.0 62 6.9 13.6 62

Source: Adapted from the American Heart Association, Hypertension, 2(2), 221–227, 1980.

�Table 12.32 � �Relationship between clinical status 
at baseline and follow-up (median 
follow-up period of 959 days) to mean 
Mental Function Index at baseline

Clinical Status

Baseline Follow-up Mean sd n

Normal Unchanged 0.04 0.11 27
Normal Questionably or 0.22 0.17 9

  mildly affected
Questionably Progressed 0.43 0.35 7
  affected
Definitely Progressed 0.76 0.58 10
  affected

Source: Based on the American Journal of Epidemiology, 120(6), 922–935, 
1984.

Suppose 20 hypertensive patients are assigned at 
random to each of the four groups, and the change 
in diastolic blood pressure (DBP) is noted in these 
patients after a 1-month period. The results are given in 
Table 12.33.

12.14  Test the hypothesis that mean change in DBP is the 
same among the four groups.

12.15  Analyze whether counseling for weight reduction has 
a significant effect on reducing blood pressure.

12.16  Analyze whether meditation instruction has a signifi-
cant effect on reducing blood pressure.

12.17  Is there any relationship between the effects of 
weight-reduction counseling and meditation counseling on 
blood-pressure reduction? That is, does weight-reduction 
counseling work better for people who receive meditational 
counseling or for people who do not receive meditatio
nal counseling, or is there no difference in effect between 
these two subgroups?

Hypertension
An instructor in health education wants to familiarize her 
students with the measurement of blood pressure. Each 
student is given a portable blood-pressure machine to 
take home and is told to take two readings on each of 
10 consecutive days. The data for one student are given in 
Table 12.34.

�Table 12.33 � �Change in DBP among hypertensive 
patients who receive different kinds 
of nonpharmacologic therapy

Group

Mean change in DBP 
(baseline – follow-up) 

(mm Hg) sd change n

1 8.6 6.2 20
2 5.3 5.4 20
3 4.9 7.0 20
4 1.1 6.5 20
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�Table 12.34 � �Systolic blood-pressure 
(SBP) recordings on 
one participant for 10 
consecutive days with 
two readings per day

Reading

Day 1 2

1 98 99
2 102 93
3 100 98
4 99 100
5 96 100
6 95 100
7 90 98
8 102 93
9 91 92

10 90 94

*12.18  Estimate the between-day and within-day compo-
nents of variance for this participant.

*12.19  Is there a difference in underlying mean blood pres-
sure by day for this participant?

Bioavailability
Intake of high doses of beta-carotene in food has been 
associated in some observational studies with a decreased 
incidence of cancer. A clinical trial was planned comparing 
the incidence of cancer in a group taking beta-carotene in 
capsule form compared with a group taking beta-carotene 
placebo capsules. One issue in planning such a study is 
which preparation to use for the beta-carotene capsules. 
Four preparations were considered: (1) Solatene (30-mg 
capsules), (2) Roche (60-mg capsules), (3) Badische 

 Data set available

Anilin und Soda Fabrik (BASF) (30-mg capsules), and 
(4) BASF (60-mg capsules). To test efficacy of the four 
agents in raising plasma-carotene levels, a small bioavail-
ability study was conducted. After two consecutive-day 
fasting blood samples, 23 volunteers were randomized to 
one of the four preparations, taking 1 pill every other day 
for 12 weeks. The primary endpoint was level of plasma 
carotene attained after moderately prolonged steady 
ingestion. For this purpose, blood samples were drawn 
at 6, 8, 10, and 12 weeks, with results given in Data Set 
BETACAR.DAT at www.cengagebrain.com. The format of 
the data is given in Table 12.35.

12.20  Use ANOVA methods to estimate the CV for plasma 
beta-carotene for the 23 participants, based on the two 
baseline measurements.

12.21  Is there a significant difference in bioavailability of 
the four different preparations? Use ANOVA methods to 
assess this based on the 6-week data in comparison with 
baseline.

12.22  Use the methods in Problem 12.21 to compare 
the bioavailability of the four preparations at 8 weeks vs. 
baseline.

12.23  Use the methods in Problem 12.21 to compare 
the bioavailability of the four preparations at 10 weeks vs. 
baseline.

12.24  Use the methods in Problem 12.21 to compare 
the bioavailability of the four preparations at 12 weeks vs. 
baseline.

12.25  Use the methods in Problem 12.21 to compare the 
bioavailability of the four preparations based on the aver-
age plasma beta-carotene at (6, 8, 10, and 12 weeks) vs. 
baseline.

12.26  Perform a two-way ANOVA to jointly assess the ef-
fects of preparation and follow-up time on plasma-carotene 
levels. Is there any evidence that the effect of preparation 
differs by time period?

�Table 12.35 � Format of BETACAR.DAT

Variable Column Code

Preparation 1 1 = SOL; 2 = ROCHE; 3 = BASF-30; 4 = BASF-60
Subject number 3–4

First baseline level 6–8

Second baseline level 10–12

Week 6 level 14–16

Week 8 level 18–20

Week 10 level 22–24

Week 12 level 26–28
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Hepatic Disease
Refer to Data Set HORMONE.DAT at www.cengagebrain 
.com (see p. 326 for a description of the data set).

12.27  Use ANOVA methods to test whether the change in 
biliary-secretion levels is comparable for the five hormone 
groups. Identify and test for any specific group differences.

12.28  Answer Problem 12.27 for changes in pancreatic-
secretion levels.

12.29  Answer Problem 12.27 for changes in biliary-pH 
levels.

12.30  Answer Problem 12.27 for changes in pancreatic-
pH levels.

Endocrinology
A study was conducted [15] concerning the effect of cal-
cium supplementation on bone loss among postmenopausal 
women. Women were randomized to (1) estrogen cream and 
calcium placebo (n = 15), (2) placebo estrogen cream and 
2000 mg/day of calcium (n = 15), or (3) placebo estrogen 
cream and calcium placebo (n = 13). Subjects were seen 
every 3 months for a 2-year period. The rate of bone loss was 
computed for each woman and expressed as a percentage of 
the initial bone mass. The results are shown in Table 12.36.

12.31  What test can be used to compare the mean rate of 
bone loss in the three groups?

12.32  Implement the test in Problem 12.31, and report a 
p-value.

12.33  Identify which pairs of groups are different from each 
other, using both t tests and the method of multiple compar-
isons. Report a p-value for each pair of treatment groups.

12.34  Which methodology do you think is more appropriate 
in Problem 12.33?

Endocrinology
Refer to Data Set ENDOCRIN.DAT at www.cengagebrain 
.com. The data set consists of split-sample plasma deter-
minations of four hormones for each of 5 subjects from one 
laboratory. The format of the data is given in Table 12.37.

�Table 12.36 � �Mean (±1 sd) slope of total-body 
bone mass (percentage per year) in 
the three treatment groups

Treatment group

(1) Estrogen  
(n =15)

(2) Calcium  
  (n = 15)

(3) Placebo  
  (n = 13)

−0.43 ± 1.60 −2.62 ± 2.68 −3.98 ± 1.63

Source: Based on The New England Journal of Medicine, 316(4), 
173−177, 1987.

 Data set available

�Table 12.37 � Format of ENDOCRIN.DAT

Column Units

Subject number 1
Replicate number 3
Plasma estrone 5−8 pg/mL
Plasma estradiol 10−14 pg/mL
Plasma androstenedione 16−19 ng/dL
Plasma testosterone 21−24 ng/dL

12.35  Estimate the between-subject and within-subject 
variation for plasma estrone, plasma androstenedione, and 
plasma testosterone.

12.36  Estimate the CV for each of the hormones in Prob-
lem 12.35.

Environmental Health
A student wants to find out whether specific locations within 
a house show heat loss. To assess this she records temper-
atures at 20 sites within her house for each of 30 days. In 
addition, she records the outside temperature. The data are 
given in Data Set TEMPERAT.DAT at www.cengagebrain 
.com. The format of the data is given in Table 12.38.

12.37  Assume a random-effects model. Estimate 
the between-day vs. within-day variation in temperature 
within this house.

12.38  Are there significant differences in temperature be-
tween different locations in the house?

12.39  Assume a fixed-effects model. Use the method of 
multiple comparisons to assess which specific locations in 
the house are different in mean temperature.

Environmental Health, Pediatrics
Refer to Data Set LEAD.DAT at www.cengagebrain.com.

12.40  Use ANOVA methods to assess whether there are 
any overall differences between the control group, the cur-
rently exposed group, and the previously exposed group in 
mean full-scale IQ. Also, compare each pair of groups and 
report a p-value.

�Table 12.38 � Format of TEMPERAT.DAT

Column Comment

1. Date 1−6 (mo/da/yr)
2. Outside temperature 8−9 (°F)
3. Location within house 11−12 (1−20)
4. Inside temperature 14−17 (°F)

Note: The data were collected by Sarah Rosner.
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12.41  Determine a 95% CI for the underlying mean differ-
ence in full-scale IQ for each pair of groups considered.

Gastroenterology
In Table 12.39, we present data relating protein concentra-
tion to pancreatic function as measured by trypsin secretion 
among patients with cystic fibrosis [16].

12.42  If we do not want to assume normality for these dis-
tributions, then what statistical procedure can be used to 
compare the three groups?

12.43  Perform the test mentioned in Problem 12.42, and 
report a p-value. How do your results compare with a para-
metric analysis of the data?

Environmental Health, Pediatrics
Refer to Data Set LEAD.DAT at www.cengagebrain.com.

12.44  Use nonparametric methods to compare MAXFWT 
among the three exposure groups defined by the variable 
LEAD_GRP.

12.45  Answer Problem 12.44 for IQF (full-scale IQ).

12.46  Compare your results in Problems 12.44 and 12.45 
with the corresponding results in Table 12.9 (on page 582) 
for MAXFWT and Problem 12.40 for IQF where parametric 
methods were used.

Renal Disease
Refer to Data Set SWISS.DAT at www.cengagebrain.com.

12.47  Use ANOVA methods to compare the mean change 
in serum-creatinine values from the baseline visit to the 

1978 visit among women in the high-NAPAP group, low-
NAPAP group, and the control group.

One issue in Problem 12.47 is that only the first and 
last visits are used to assess change in serum creatinine 
over time.

12.48  Fit a regression line relating serum creatinine to time 
for each person in each of the high-NAPAP group, the low-
NAPAP group, and the control group. How do you interpret 
the slope and intercept for each person?

12.49  Use regression analysis or ANOVA methods to com-
pare the slopes of the three groups.

12.50  Answer the question in Problem 12.49 for the inter-
cepts in the three groups.

12.51  What are your overall conclusions regarding the 
comparison of serum creatinine among the three groups?

(Note: One issue in the preceding analyses is that we have 
considered all subjects as yielding identical information 
regardless of the number and timing of visits available for 
analysis. A more precise approach would be to use meth-
ods of longitudinal data analysis to weight subjects accord-
ing to the number and spacing of their visits. We discuss 
this in Chapter 13.)

Bioavailability
Refer to Table 12.35.

12.52  Compute the intraclass correlation coefficient 
between replicate plasma beta-carotene blood samples at 
baseline. Provide a 95% CI about this estimate. Perform the 
analysis based on the entire data set.

 Data set available

�Table 12.39 � �Relationship between protein concentration (mg/mL) of duodenal secretions to pancreatic 
function as measured by trypsin secretion [U/(kg/hr)]

≤ 50
Trypsin secretion [U/(kg/hr)] 

51−1000 >1000

Subject  
number

Protein 
concentration

Subject  
number

Protein  
concentration

Subject  
number

Protein  
concentration

1 1.7 1 1.4 1 2.9
2 2.0 2 2.4 2 3.8
3 2.0 3 2.4 3 4.4
4 2.2 4 3.3 4 4.7
5 4.0 5 4.4 5 5.0
6 4.0 6 4.7 6 5.6
7 5.0 7 6.7 7 7.4
8 6.7 8 7.6 8 9.4
9 7.8 9 9.5 9 10.3

10 11.7

Source: Based on The New England Journal of Medicine, 312(6), 329−334, 1985.
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12.53  Use linear-regression methods to assess whether 
plasma-carotene levels increase over the 12-week period. 
Use appropriate data transformations if necessary. Perform 
separate analyses for each of the four preparations.

12.54  Do you have any recommendations as to which 
preparation should be used in the main clinical trial?

Endocrinology
Refer to Table 12.37.

12.55  Estimate the intraclass correlation for each of plasma 
estrone, plasma androstenedione, and plasma testosterone, 
and provide associated 95% confidence limits. Is the repro-
ducibility of these plasma-hormone levels excellent, good, 
or poor?

Cardiovascular Disease
A study was conducted to assess the effect of atorvastatin 
with or without an antibody to serum protein convertase 
subtilisin/kexin (PSCSK9) in reducing cholesterol among 
patients with high cholesterol (Roth, et al. [17]). The anti-
body will be referred to below as SAR236553. There were 
three treatment groups:

Group A: atorvastatin 80 mg + placebo,

Group B: atorvastatin 10 mg + SAR236553,

Group C: atorvastatin 80 mg + SAR 236553.

Although the patients were randomly assigned to treatment 
groups, there still may be some baseline imbalance among 
important covariates. One of the most important covariates 
is baseline HDL cholesterol. The data in Table 12.40 were 
presented.

12.56  What test can be used to assess whether there are 
overall differences in mean HDL cholesterol among the 
three treatment groups?

12.57  State the hypotheses to be tested.

12.58  What is your best estimate of the variance of  
HDL cholesterol within a treatment group?

12.59  What is the test statistic to perform the test in  
Problem 12.56 based on the data in Table 12.40?

�Table 12.40 � �Mean HDL cholesterol by treatment group

Group
Mean 

(mg/dl) sd n

A 53.9 17.2 31
B 52.8 14.8 31
C 59.0 14.4 30

Overall 55.2 15.6 92

 Data set available

12.60  What is the two-sided p-value associated with the 
test statistic in Problem 12.59?

Ophthalmology
The term retinitis pigmentosa (RP) refers to a group of 
hereditary, retinal pigmentary degenerations in which 
patients report night blindness and loss of visual field, usu-
ally between the ages of 10 and 40 years. Some patients 
lose all useful vision (i.e., become legally blind) by the age 
of 30 years, while others retain central vision even beyond 
the age of 60 years. A specific gene has been linked to 
some types of RP where the mode of genetic transmis-
sion is autosomal dominant. The most reliable methods 
of following the course of RP in humans is by using the 
electroretinogram (ERG), which is a measure of the elec-
trical activity in the retina. As the disease progresses, the 
patient’s ERG amplitude declines. The ERG amplitude 
has been strongly related to the patient’s ability to perform 
routine activities, such as driving or walking unaided, espe-
cially at night.

One hypothesis is that direct exposure of the retina to 
sunlight is harmful to RP patients, so many patients wear 
sunglasses. To test the sunlight hypothesis, researchers 
introduced this gene into a group of mice and mated them 
over many generations to produce a group of “RP mice.” 
Then they randomly assigned the mice to lighting conditions 
from birth that were either (1) light, (2) dim, or (3) dark. A 
control group of normal mice was also randomized to similar 
lighting conditions. The mice had their ERG amplitudes (la-
beled BAMP and AAMP for B-wave amplitude and A-wave 
amplitude, respectively), which correspond to different fre-
quencies of light, measured at 15, 20, and 35 days of life. In 
addition, the same protocol was used for a group of normal 
mice except that only BAMP was measured. The data for 
both RP mice and normal mice are available in the Data Set 
MICE.DAT and the documentation in MICE.DOC (both at 
www.cengagebrain.com).

12.61  Analyze the data regarding the sunlight hypothesis, 
and summarize your findings. (Hint: Estimate a slope for 
each ERG amplitude for each lighting-condition group, and 
compare the slopes among the light, dim, and dark groups 
using either ANOVA or regression methods. Do separate 
analyses for AAMP and BAMP. Consider appropriate data 
transformations to ensure approximate normality for the out-
come measures.)

Hypertension
Refer to Table 12.15 (on page 593). A similar two-way 
ANOVA was run using PROC GLM of SAS comparing 
mean diastolic blood pressure (DBP) by study group and 
sex. The results are given in Table 12.41.

12.62  Summarize the findings in a few sentences.
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Hypertension
Refer to Table 12.16 (on page 595). A similar ANCOVA 
was performed using PROC GLM of SAS comparing mean 
DBP by study group and sex after controlling for effects of 
age and weight. The results are given in Table 12.42.

12.63  Summarize the findings in a few sentences, and 
compare them with the results in Problem 12.62.

Cardiovascular Disease
A randomized trial examined the effects of lipid-modifying 
therapy (simvastatin plus niacin) and antioxidants (vitamins 
E and C, beta-carotene, and selenium) on cardiovascular 
protection in patients with clinical coronary disease, low 
HDL cholesterol, and normal LDL cholesterol [18]. A total 
of 160 patients were randomized into four groups: placebo 
lipid-lowering and placebo antioxidants, active lipid-lowering 
and placebo antioxidants, placebo lipid-lowering and active 
antioxidants, or active lipid-lowering and active antioxidants. 

All participants had substantial stenoses (blockages) of the 
coronary arteries quantified by catheterization at baseline, 
and the primary endpoint was the percent change in a 
person’s stenoses after 3 years of treatment, with a posi-
tive change indicating an increased amount of stenosis, as 
shown in Table 12.43. Because some patients did not 
complete the study, the primary endpoint was assessed in 
146 participants.

12.64  Perform a one-way ANOVA to assess whether there 
are significant differences in mean change in percent steno-
sis among the four groups.

12.65  Using the LSD method, identify which pairs of 
groups are significantly different.

12.66  Are there significant interaction effects between 
simvastatin-niacin and antioxidants? What does an interac-
tion effect mean in the context of this trial? (Hint: Use the 
linear contrasty y y y y4 2 3 1− − + , where the group numbers 
are in the same order as in Table 12.43.)

�Table 12.41 � �SAS GLM procedure output illustrating the effects of study group and sex on DBP using the 
data set in Example 12.23 (on page 589)

SAS

GENERAL LINEAR MODELS PROCEDURE

DEPENDENT VARIABLE: MDIAS

SOURCE DF SUM OF SQUARES MEAN SQUARE F VALUE PR > F R-SQUARE C.V.

MODEL 3 48186.99270094 16062.33090031 134.15 0.0001 0.350741 15.0906

ERROR 745 89199.44205496 119.73079470 ROOT MSE MDIAS MEAN

CORRECTED TOTAL 748 137386.43475590 10.94215677 72.50972853

SOURCE DF TYPE I SS F VALUE PR > F DF TYPE III SS F VALUE PR > F

STUDY 2 45269.88509153 189.05 0.0001 2 46573.92818903 194.49 0.0001

SEX 1 2917.10760942 24.36 0.0001 1 2917.10760942 24.36 0.0001

STUDY PROB > |T|

SV LV NOR

SV  . 0.0001 0.0001

LV 0.0001 . 0.0001

NOR 0.0001 0.0001 .

SEX PROB > |T|

MALE FEMALE

MALE . 0.0001

FEMALE 0.0001 .

PARAMETER ESTIMATE
  T FOR H0: 
PARAMETER=0 PR > |T|

STD ERROR OF  
ESTIMATE

INTERCEPT 76.47708914 115.61 0.0001 0.66152912

STUDY SV −17.30065001 −19.40 0.0001 0.89174716

LV −10.65302392 −7.23 0.0001 1.47258921

NOR 0.00000000 . . .

SEX MALE 3.98399582 4.94 0.0001 0.80713389

FEMALE 0.00000000 . . .
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Ophthalmology
Refer to Data Set TEAR.DAT at www.cengagebrain.com. 
(See p. 276 for a description of the data set.)

�Table 12.42 � �SAS GLM procedure output illustrating the effects of study group and sex on DBP after 
controlling for age and weight using the data set in Example 12.23 (on page 589)

SAS

GENERAL LINEAR MODELS PROCEDURE

DEPENDENT VARIABLE: MDIAS

SOURCE DF SUM OF SQUARES MEAN SQUARE F VALUE     PR > F   R-SQUARE C.V.

MODEL 5 57521.19225928 11504.23845186 107.08     0.0001   0.419457 14.2973

ERROR 741 79611.39165542 107.43777551 ROOT MSE MDIAS MEAN

CORRECTED TOTAL 746 137132.58391470 10.36521951 72.49770638

SOURCE DF TYPE I SS F VALUE PR > F DF TYPE III SS F VALUE PR > F

STUDY 2 45234.31356527 210.51 0.0001 2 12349.74237359 57.47 0.0001

SEX 1 2912.79699312 27.11 0.0001 1 624.47946004 5.81 0.0162

AGE 1 5237.52247659 48.75 0.0001 1 4245.67574526 39.52 0.0001

WGT 1 4136.55922429 38.50 0.0001 1 4136.55922429 38.50 0.0001

STUDY PROB > |T|

SV LV NOR

SV . 0.0186 0.0001

LV 0.0186 . 0.0001

NOR 0.0001 0.0001 .

SEX PROB > |T|

MALE FEMALE

MALE        . 0.0162

FEMALE     0.0162  .

PARAMETER ESTIMATE
T FOR H0: 

PARAMETER=0
PR > |T| STD ERROR OF  

ESTIMATE

INTERCEPT 52.96724415 20.41 0.0001 2.59544038

STUDY SV −11.18295628 −10.45 0.0001 1.06990647

LV −7.58825363 −5.29 0.0001 1.43486888

NOR 0.00000000 . . .

SEX MALE 2.10948458 2.41 0.0162 0.87497527

FEMALE 0.00000000 . . .

AGE 0.30162065 6.29 0.0001 0.04798065

WGT 0.08278540 6.20 0.0001 0.01334174

�Table 12.43 � Mean changes (± sd ), per patient, in the percentage of stenosis by treatment group

Placebo  
(n = 34)

Simvastatin-niacin  
(n = 33)

Antioxidants  
(n = 39)

Simvastatin-niacin  
plus antioxidants  

(n = 40)

Mean change in stenosis 
(percentage of diameter)

3.9 (± 5.2) −0.4 (± 2.8) 1.8 (± 4.2) 0.7 (± 3.2)

 Data set available

12.67  Use mixed effects methods to compare the mean 
change in TBUT immediately post-instillation against 
baseline according to participant (1, 2, . . . , 14) and 
nonblink time period (3 sec vs. 6 sec vs. 10 sec). For this 
analysis, average the first and second replicates and right 
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and left eyes for each participant. Thus, each participant is  
represented by an average of four values. (Hint: Represent  
the participant effect as a random effect and the nonblink 
time-period effect as a fixed effect represented by a set 
of 2 dummy variables. If there are overall significant dif-
ferences for the nonblink time period, then identify which 
nonblink time periods are significantly different.

12.68  Repeat the analyses in Problem 12.67 for the 
mean change in TBUT at 5 minutes post-instillation vs. 
baseline.

12.69  Repeat the analyses in Problem 12.67 for the 
mean change in TBUT at 10 minutes post-instillation vs. 
baseline.

12.70  Repeat the analyses in Problem 12.67 for the 
mean change in TBUT at 15 minutes post-instillation vs. 
baseline.

12.71  What are your overall conclusions concerning the 
effects of nonblink time period on change in TBUT?

Genetics, Diabetes
Suppose we have separately analyzed the effects of 10 
SNPs comparing people with type I diabetes vs. controls. 
The p-values from these separate analyses are given in 
Table 12.44.

12.72  Use the Bonferroni method to correct for multiple 
comparisons. Which SNPs show statistically significant 
effects?

12.73  Use the FDR method to correct for multiple compari-
sons using an FDR = .05. Which SNPs show statistically 
significant effects? How do the results compare with those 
in Problem 12.72?

Ophthalmology
Data were collected on TBUT, a measure of how long it 
takes for tears to form. This is a commonly used measure 
to assess dry-eye patients, with a smaller number indicating 
more severe disease. One issue is how reproducible this 
measure is. For this purpose, replicate values of this mea-
sure were obtained from the right eye of 14 dry-eye patients 
5 minutes after instillation of a placebo drop. The data for 
the first 7 patients are given in Table 12.45.

�Table 12.44 � Effects of 10 SNPs on type I diabetes

SNP p-value SNP p-value

1 .04 6 .62
2 .10 7 .001
3 .40 8 .01
4 .55 9 .80
5 .34 10 .005

�Table 12.45 � �loge (TBUT) obtained 5 minutes 
after instillation of a placebo drop 
(seconds)

Replicate 1 Replicate 2 Mean ( )y
i

1.57 1.87 1.72
2.59 2.51 2.55
2.53 2.82 2.675
2.14 1.34 1.74
2.00 2.28 2.14
1.50 1.70 1.60
2.36 2.39 2.365
overall mean ( )y 2.113

Assume overall that the lne (TBUT) is approximately normally 
distributed. The sd [lne (TBUT)] over the 14 observations) is 
0.459.

12.74  What is a reasonable type of model to fit these data? 
Write out the model, and explain what the terms mean.

12.75  Fit this model to the above data and report the 
p-value for the overall F test.

12.76  What is the intraclass correlation coefficient for 
(TBUT) for these data? What does it mean?

12.77  What is the coefficient of variation for TBUT as esti-
mated from these data?

Nutrition, Endocrinology
A study was performed to relate aspects of childhood diet 
to measurements of bone density in middle age (50- to 
70-year-old) women [19]. The data in Table 12.46 were 
reported from a Norwegian study relating cod liver oil sup-
plementation in childhood to bone mineral density (BMD) in 
the distal forearm.

12.78  We wish to use a one-way ANOVA model to com-
pare the means of the four groups. Should we use a fixed-
effects or random-effects model, and why?

12.79  Table 12.47 is the ANOVA table.

�Table 12.46 � �Mean BMD by cod liver oil intake 
during childhood

Cod liver oil intake 
during childhood

Mean distal forearm 
BMD (g/cm2)

( )y
i sd N

Never 0.435 0.058 267
Irregularly 0.424 0.061 695
Fall and winter 0.428 0.062 1655
Whole year 0.420 0.067 237

Overall mean ( )y 0.427 2854
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Assess whether the mean BMD varies significantly among 
the four groups at the 5% level.

12.80  Suppose we specifically wish to compare women 
who used cod liver oil for the entire year during childhood 
vs. women who never used it.

	  (i)  �Perform this comparison using the LSD method, 
and report a p-value.

	 (ii)  �Perform this comparison using the Bonferroni 
method. Are the results significant at the 5% level 
after Bonferroni correction? Why or why not?

(Hint: Assume that a td distribution is the same as an N(0,1) 
distribution if d ≥ 200.)

12.81  A reasonable summary of the data might be provided 
by relating the score Si given by Si = 1 if never, Si = 2 if ir-
regular, Si = 3 if fall and winter, and Si = 4 if whole year. 
What method can be used to relate mean BMD to this 
score variable? Perform a test of significance using this 
method.

Ornithology
Data are available from four source populations of stonechat 
birds:

	 (1)  �An African group that resides year-round in equa-
torial Africa

	 (2)  �A European group from Austria that migrates a 
comparatively short distance to Northern Africa

	 (3)  �An Irish group that winters along the coast of Britain 
and Ireland

	 (4)  �A Siberian group from Kazakhstan that migrates a 
long distance to India, China, and Northern Africa

The data for this problem were supplied by Maude Baldwin, 
a graduate student in the Biology Department at Harvard 
University. The data in Table 12.48 on wing length were 
presented from male birds of four different populations.

�Table 12.47 � �ANOVA table of effect of cod liver oil 
intake during childhood on BMD

SS df MS

Between   0.0366 3 0.0122
Within 10.8946 2850 0.0038

�Table 12.48 � �Wing length (cm) from males of four 
different populations of stonechat birds

Mean sd N

African 72.73 1.42 22
European 66.26 1.33 43
Irish 68.45 1.15 30
Siberian 69.11 1.22 12

Overall 68.52 107

Suppose we assume within each subspecies that wing 
length is normally distributed and that the underlying stan-
dard deviation is the same.

12.82  What test can be used to compare the mean wing 
length in the four groups?

12.83  Perform the test, and report a p-value (two-tailed).

12.84  Identify which pairs of subspecies are significantly 
different in mean wing length using a two-sided Bonferroni-
adjusted α level of 0.05. (Hint: t103,.9958 ≈ 2.68.)

The full data set consists of both male and female birds with 
results as shown in Table 12.49.

12.85  Write down a model to assess the effects of species 
and gender in the same model, allowing for the possibility 
that differences between mean wing lengths of different 
species vary by gender. What is the name of the type of 
model you specify? Explain what each of the terms in the 
model mean.

Ophthalmology, Infectious Disease
Fluoroquinolones are antibiotics used for treating certain 
types of bacterial infections. These drugs are FDA approved 
to be taken systemically. However, some phase IV (post-
approval) studies have shown that use of these drugs can 
be a risk factor for the development of peripheral neuropa-
thy (i.e., neurologic symptoms), and the safety labeling has 
been changed accordingly.

A small clinical trial was set up to study the safety and ef-
fectiveness of two ophthalmic solutions (i.e., eye drops) in 
this drug class that are intended to be used to treat bacte-
rial ocular infections. Two active drugs in this class (drug M 
and drug G) together with a placebo (drug P) were studied 
according to the following design. Ninety three normal sub-
jects were randomized to one of three groups in approxi-
mately equal numbers, as shown in Table 12.50.

Thus, for each subject in group A, drug G was administered 
to a randomly selected eye and drug P to the fellow eye. 
Groups B and C are defined similarly. Each person was told 
to administer the two assigned drugs four times per day for 
10 days. The principal outcome (or response) measure in the 
study was corneal sensitivity, measured in millimeters, which 
has values in the range of 40–60 mm. High values of corneal 

�Table 12.49 � �Wing length (cm) from four different 
species of stonechats, by gender

Male Female

Mean sd N Mean sd N

African 72.73 1.42 22 70.64 1.27 23
European 66.26 1.33 43 64.25 1.93 45
Irish 68.45 1.15 30 66.52 1.57 31
Siberian 69.11 1.22 12 66.49 0.62 7
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sensitivity indicate greater sensitivity (i.e., normal), whereas 
low values indicate poor sensitivity (i.e., abnormal).

Corneal sensitivity was measured at baseline, at 7 days, 
and at 14 days. Note that each person was still taking study 
drug at day 7 but not at day 14.

The sensitivity of the central cornea as well as each corneal 
quadrant (superior, inferior, temporal, and nasal) was mea-
sured for each eye at day 0, 7, and 14. We will refer to these 
as the five regions of the cornea. The data are available in 

�Table 12.50 � �Treatment assignments in ocular 
infection clinical trial

Group Eye 1 Eye 2

A G P
B M P
C G M

CORNEAL.DAT with documentation in CORNEAL.DOC at 
www.cengagebrain.com.

12.86  For each region, assess whether the change in cor-
neal sensitivity varies by treatment received comparing day 
7 vs. day 0 and day 14 vs. day 0, respectively. Use all avail-
able data from all 93 subjects in your analysis. Of primary 
interest is whether either active medication is different from 
a placebo. Give a 95% confidence interval of each treat-
ment’s effect.

12.87  Is the treatment effect the same in different regions 
of the cornea?

It may be inefficient to consider each region separately. A 
simple way to summarize the treatment effect over all five 
regions is to use an average.

12.88  Based on this overall measure of sensitivity, per-
form a global analysis of the data, as opposed to the 
region-specific analysis you were asked to perform in 
Problem 12.86.

 Data set available
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Probability

13
	 13.1	 I n t r o d u c t i o n

In Chapter 10 we discussed methods of analysis for categori-
cal data. The data were displayed in a single 2 × 2 contingency 
table or more generally in a single R × C contingency table. 
In epidemiologic applications, the rows of the table refer to 
disease categories and the columns to exposure categories 
(or vice versa). It is natural in such applications to define a 
measure of effect based on the counts in the contingency 
table (such as the relative risk) and to obtain confidence 
limits for such measures. An important issue is whether a dis-
ease–exposure relationship is influenced by other variables 
(called confounders). In this chapter, we discuss

(1)	 Some common study designs used in epidemiologic work

(2)	 Several measures of effect that are commonly used for 
categorical data

(3)	 Techniques for assessing a primary disease–exposure re-
lationship while controlling for confounding variable(s), 
including

	 (a)  Mantel-Haenszel methodology

	 (b)  Logistic regression

(4)	Sample size estimation for logistic regression

(5)	 Meta-analysis, a popular methodology for combining re-
sults over more than one study

(6)	 Several alternative study designs, including

	 (a)  Active-control designs

	 (b)  Cross-over designs

Design and Analysis 
Techniques for 
Epidemiologic 
Studies
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(7)	 Some newer data-analysis techniques in epidemiology 
when the assumptions of standard methods are not satis-
fied, including

	 (a)  Methods for clustered binary data

	 (b)  �Methods for handling data with substantial measure-
ment error

(8)	 Methods for handling missing data

(9)	 Introduction to longitudinal data analysis

	 13.2	 S t u d y  D e si  g n

Let’s look at Table 10.2 (on page 378). In this table, we examined the association 
between use of oral contraceptives (OC) at baseline and development of myocardial 
infarction (MI) over a 3-year follow-up period. In this setting, OC use is sometimes 
called an exposure variable, and the occurrence of MI, a disease variable. Researchers 
often are interested in exposure–disease relationships, as shown in Table 13.1.

	 Table 13.1 	 Hypothetical exposure–disease relationship

	 Disease

		  Yes	 No

Exposure
	 Yes	 a	 b	 a + b = n1

	 No	 c	 d	 c + d = n2

		  a + c = m1	 b + d = m2

There are a total of n1 = a + b exposed subjects, of whom a have disease, and a total of 
n2 = c + d unexposed subjects, of whom c have disease. Three main study designs are 
used to explore such relationships: a prospective study design, a retrospective study 
design, and a cross-sectional study design.

	 Definition 13.1 	 A prospective study is a study in which a group of disease-free individuals is identi-
fied at one point in time and  are followed over a period of time until some of them 
develop the disease. The development of disease over time is then related to other 
variables measured at baseline, generally called exposure variables. The study popula-
tion in a prospective study is often called a cohort. Thus, another name for this type 
of study is a cohort study.

	 Definition 13.2 	 A retrospective study is a study in which two groups of individuals are initially 
identified: (1) a group that has the disease under study (the cases) and (2) a group 
that does not have the disease under study (the controls). An attempt is then made 
to relate their prior health habits to their current disease status. This type of study is 
also sometimes called a case–control study.
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	 Definition 13.3 	 A cross-sectional study is one in which a study population is ascertained at a single 
point in time. All participants in the study population are asked about their current 
disease status and their current or past exposure status. This type of study is some-
times called a prevalence study because the prevalence of disease at one point in 
time is compared between exposed and unexposed individuals. This contrasts with a 
prospective study, in which one is interested in the incidence rather than the preva-
lence of disease.

	 Example 13.1 	 Cardiovascular Disease  What type of study design was used in Table 10.2 (on page 378)?

	 	 Solution:  The study presented in Table 10.2 is an example of a prospective design. 
All participants were disease free at baseline and had their exposure (OC use) mea-
sured at that time. They were followed for 3 years, during which some developed 
disease while others remained disease free.

	 Example 13.2 	 Cancer  What type of study design was used in the international breast-cancer study 
in Example 10.4 (on page 373)?

	 	 Solution:  This is an example of a retrospective study. Breast-cancer cases were identified  
together with controls who were of comparable age and in the hospital at the same 
time as the cases but who did not have breast cancer. Pregnancy history (age at first 
birth) of cases and controls was compared.

What are the advantages of the two types of studies? A prospective study is usu-
ally more definitive because the patients’ knowledge of their current health habits 
is more precise than their (or related individuals’) recall of their past health habits. 
Second, a retrospective study has a greater chance of bias for two reasons. First, it is 
much more difficult to obtain a representative sample of people who already have 
the disease in question. For example, some of the diseased individuals may have al-
ready died and only the mildest cases (or if it is a study of deceased people, the most 
severe cases) may be included. This type of bias is called selection bias. Second, the 
diseased individuals, if still alive, or their surrogates may tend to give biased answers 
about prior health habits if they believe there is a relationship between these prior 
health habits and the disease; this type of bias is called recall bias. However, a ret-
rospective study is much less expensive to perform and can be completed in much 
less time than a prospective study. For example, if the study in Example 10.4 were 
done as a prospective study, it would require a very large study population followed 
for many years before 3000 cases of breast cancer would occur. Thus, an inexpensive 
retrospective study may be done initially as a justification for doing the ultimate, 
definitive prospective study.

	 Example 13.3 	 Hypertension  Suppose a study is performed concerning infant blood pressure. All 
infants born in a specific hospital are ascertained within the first week of life while 
in the hospital and have their blood pressure measured in the newborn nursery. 
The infants are divided into two groups: a high-blood-pressure group, if their blood 
pressure is in the top 10% of infant blood pressure based on national norms; and a 
normal-blood-pressure group otherwise. The infants’ blood-pressure group is then 
related to their birthweight (low if ≤88 oz and normal otherwise). This is an example 
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of a cross-sectional study because the blood pressures and birthweights are measured 
at approximately the same point in time.

Not all studies fit neatly into the characterizations given in Definitions 13.1–13.3. 
Indeed, some case–control studies are based on exposure variables that are collected 
prospectively.

	 Example 13.4 	 Cardiovascular Disease  The Physicians’ Health Study was a large, randomized clini-
cal trial. Participants were approximately 22,000 male physicians ages 40−84 who 
were initially (in 1982) free of coronary heart disease (CHD) and cancer (except for 
nonmelanoma skin cancer). The principal aims of the study were to investigate the 
effect of aspirin use on CHD and the effect of beta-carotene use on cancer incidence. 
Accordingly, participants were randomized to one of four treatment groups (group 1 
received aspirin placebo and beta-carotene placebo capsules, group 2 received active 
aspirin and beta-carotene placebo capsules, group 3 received aspirin placebo and  
active beta-carotene capsules, and group 4 received active aspirin and active beta- 
carotene capsules). The aspirin arm of the study was stopped in 1990 when it be-
came clear aspirin had an important protective effect in preventing the develop-
ment of CHD. The beta-carotene arm of the study was discontinued in 1997 when 
it became clear that beta-carotene had no effect on cancer incidence. As a secondary 
aim of the study, blood samples were collected at baseline from all physicians in the 
cohort. The goal of this part of the study was to relate lipid abnormalities identified 
in the blood samples to the occurrence of CHD. However, it would have been pro-
hibitively expensive to analyze all the blood samples that were collected. Instead, all 
men who developed CHD (the case group) (n ≈ 300) and a random sample of physi-
cians who did not develop CHD, but who had approximately the same age distribu-
tion as the case group (the control group) (n ≈ 600), were identified and their blood 
samples analyzed. The type of study is a case–control study nested within a prospec-
tive study that does not fit neatly into the characterizations in Definitions 13.1 and 
13.2. Specifically, the issue of biased ascertainment of exposure in retrospective and 
case–control studies is not an issue here because blood samples were obtained at 
baseline. However, the methods of analysis described hereafter for case–control stud-
ies are also applicable to this type of study.

In this section, we have discussed the principal designs used in observational 
epidemiologic studies. In a prospective study, a cohort of disease-free participants 
is ascertained at baseline and followed over time until some members of the co-
hort develop disease. It is generally considered the gold standard of designs for 
observational studies. However, it is relatively expensive because for a meaningful 
number of events to occur over time, a large number of participants must often 
be followed for a long time. In a case–control design, a group of participants with 
disease (the cases) and a group of participants without disease (the controls) are 
recruited. Usually a retrospective history of health habits prior to getting disease is 
obtained. This design is relatively inexpensive because we don’t have to wait until 
participants develop disease, which for rare diseases can often take a long time. 
However, the results from using this study design are sometimes problematic to 
interpret because of

(1)	 Recall bias of previous exposures by people who already have disease

(2)	 Potential selection bias of

	 (a)   �The case group if, for example, a milder series of case participants who are 
still alive is used

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



	 13.3      Measures of Effect for Categorical Data              637

	 (b)   �The control group if, for example, control selection is related, often unex-
pectedly, to the exposure

Thus, case–control studies are often used as preliminary steps to justify the ultimate, 
definitive prospective study. Cross-sectional studies are conducted at one point in 
time and have many of the same problems as case–control studies, except that the 
relative number of cases and controls is not fixed in advance.

	 13.3	 M e a s u r e s  o f  E f f e c t  f o r  C at e g o r i c a l  D ata

We would like to compare the frequency of disease between exposed and unexposed 
subjects. Doing so is most straightforward in the context of prospective studies in 
which we compare incidence rates, or in cross-sectional studies in which we compare 
prevalence rates between exposed and unexposed individuals. We will discuss these is-
sues for prospective studies in terms of comparing incidence rates, but the same 
measures of effect can be used for cross-sectional studies in terms of prevalence.

	 Definition 13.4 	 Let

		  p1 = probability of developing disease for exposed individuals

		  p2 = probability of developing disease for unexposed individuals

The risk difference (RD) is defined as p1 − p2. The risk ratio (RR) or relative risk is 
defined as p1 /p2.

The Risk Difference
Suppose that p̂1 and p̂2 are the sample proportions with disease for exposed and un-
exposed subjects based on sample sizes of n1 and n2, respectively. An unbiased point 
estimate of p1 − p2 is given by ˆ ˆp p1 2− . To obtain an interval estimate, we assume the 
normal approximation to the binomial distribution holds whereby from Chapter 6, 
ˆ ~ ( , / ), ˆ ~ ( , / )p N p p q n p N p p q n1 1 1 1 1 2 2 2 2 2 . It can then be shown that an approximate 
100% × (1 − α) CI for the risk difference is given in Equation 13.1. 

This leads to the following method for point and interval estimation of the risk difference:

	 Equation 13.1 	 �Point and Interval Estimation for the Risk Difference

	 	 �Let ˆ , ˆp p1 2 represent the sample proportion who develop disease in a prospective 
study, based on sample sizes of n1 exposed subjects and n2 unexposed subjects, 
respectively. A point estimate of the risk difference is given by ˆ ˆp p1 2− . A 100% × 
(1 − α) CI for the risk difference is given by

			   p p z p q n p q n p pˆ ˆ ˆ ˆ / ˆ ˆ / if ˆ ˆ1 2 1 /2 1 1 1 2 2 2 1 2− ± + >−α

			   p p z p q n p q n p pˆ ˆ ˆ ˆ / ˆ ˆ / if ˆ ˆ1 2 1 /2 1 1 1 2 2 2 1 2− ± + ≤−α

		  Use these expressions for the CI only if n p q1 1 1 5ˆ ˆ ≥  and n p q2 2 2 5ˆ ˆ ≥ .

This equation is derived in Section 13.17(a) (p. 758).
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	 Example 13.5 	 Cardiovascular Disease  Referring to the OC−MI data in Table 10.2 (on page 378), pro-
vide a point estimate and a 95% CI for the difference between the proportion of women 
who develop MI among OC users and the comparable proportion among non-OC users.

	 	 Solution:  We have that n1 = 5000, ˆ / .p1 13 5000 0026= = , n2 = 10,000, p̂ 7/10,0002 = = 
.0007 . Thus, a point estimate of the risk difference (p1 − p2) is given by ˆ ˆp p1 2−  = 

.0019. Because n p q1 1 1ˆ ˆ  = 5000(.0026)(.9974) = 13.0 ≥ 5, n p q2 2 2ˆ ˆ  = 10,000(.0007)(.9993) = 

7.0 ≥ 5, the large-sample CI in Equation 13.1 can be used. The 95% CI is given by

		

− ± +

= ±
= ± =

.0026 .0007 1.96
.0026(.9974)

5000
.0007(.9993)

10,000

.00190 1.96(.00077)

.00190 .00150 (.0004,.0034)

Thus, the true risk difference is significantly greater than zero.

The Risk Ratio
A point estimate of the risk ratio (RR = p1 /p2) is given by

	 Equation 13.2 	 RR
^ 

   = ˆ /ˆp p1 2

To obtain an interval estimate, we assume the normal approximation to the bi-
nomial distribution is valid. Under this assumption, it can be shown that the 
sampling distribution of ln(RR

^
 ) more closely follows a normal distribution than 

RR
^

  itself. 
We note that

		

Var Var p p

Var p

[ln( )] [ln( ˆ ) ln( ˆ )]

[ln( ˆ )]

= −

=
1 2

1 ++ Var p[ln( ˆ )]2

To obtain Var p[ln( ˆ )]1 , we employ a principle known as the delta method.

	 Equation 13.3 	 �Delta Method

	 	 The variance of a function of a random variable f(X) is approximated by

		    Var f X f X Var X[ ( )] [ ( )] ( )≅ ′ 2

	 Example 13.6 	 Use the delta method to find the variance of ln( p̂1), ln( p̂2), and ln(RR
^ 

).

	 	 Solution:  In this case f(X) = ln(X). Because f ‘(X) = 
1
X

, we obtain

		
Var p

p
Var p

p
p q
n

[ln( ˆ )]
ˆ

( ˆ )
ˆ

ˆ ˆ
1

1
2 1

1
2

1 1

1

1 1≅ =






=
ˆ

ˆ
q

p n
1

1 1

RR
^ 
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However, from Table 13.1 (on page 634), ˆ /p a n1 1= , ˆ /q b n1 1= . Therefore,

		
Var p

b
an

[ln( ˆ )]1
1

=

Also, using similar methods,

		
Var p

q
p n

d
cn

[ln( ˆ )]
ˆ

ˆ2
2

2 2 2
= =

It follows that

		  Var[ln(RR
^  

)] = +b
an

d
cn1 2

or se[ln(RR
^  

)] = +b
an

d
cn1 2

Therefore, an approximate two-sided 100% × (1 − α) CI for ln(RR) is given by

	 Equation 13.4 	 ln( ) /− +



 −z

b
an

d
cn1 2

1 2
α ,  ln( ) /+ +




−z

b
an

d
cn1 2

1 2
α

The antilog of each end of the interval in Equation 13.4 then provides a two-sided 
100% × (1 − α) CI for RR itself, given by

	 Equation 13.5 	 e ez b an d cn z bln( ) /( ) /( ) ln( ) /(/ /,− + +− −1 2 1 2 1 2α α aan d cn1 2) /( )+





The estimation procedures for the RR are summarized as follows.

	 Equation 13.6 	 �Point and Interval Estimation for the Risk Ratio (RR)

	 	 �Let ˆ , ˆp p1 2  represent the sample proportions of exposed and unexposed individu-
als who develop disease in a prospective study, based on samples of size n1 and 
n2, respectively. A point estimate of the RR (or relative risk) is given by ˆ /ˆp p1 2 .  
A 100% × (1 − α) CI for the RR is given by [exp(c1), exp(c2)], where

			 
c z

b
an

d
cn1 1 2

1 2
= − +−ln( ) /α

		

c z
b

an
d

cn2 1 2
1 2

= + +−ln( ) /α

where a, b = number of exposed subjects who do and do not develop disease, 
respectively, and c, d = number of unexposed subjects who do and do not de-
velop disease, respectively. This method of interval estimation is valid only if 
n p q1 1 1 5ˆ ˆ ≥  and n p q2 2 2 5ˆ ˆ ≥ .

RR
^ 

RR
^ 

RR̂  RR̂ 

RR
^ 

RR
^ 
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	 Example 13.7 	 Cardiovascular Disease  Referring to Table 10.2, provide a point estimate and a 95% 
CI for the relative risk of MI among OC users compared with non-OC users.

	 	 Solution:  We have from Example 13.5 that ˆ / .p1 13 5000 0026= = , n1 = 5000, 
ˆ / ,p2 7 10 000= = .0007, n2 = 10,000. Thus, our point estimate of RR  is RR

^
  

= = =ˆ /ˆ . /. .p p1 2 0026 0007 3 71. To compute a 95% CI, we obtain c1, c2 in Equation 13.6. 
We have a = 13, b = 4987, c = 7, and d = 9993. Thus,

		

c1
0026
0007

1 96
4987

13 5000
9993= 



 − +ln

.

.
.

( ) 77 10 000

1 312 1 96 0 4685
1 312 0 918 0

( , )

. . ( . )

. .
= −
= − = ..

. . .
394

1 312 0 918 2 2302c = + =

Therefore, our 95% CI for RR e e= =( , ) ( . , . ),. .0 394 2 230 1 5 9 3 which implies that the true 
RR is significantly greater than 1.

The Odds Ratio
In the previous section, the RR (or relative risk) was introduced. The relative risk can 
be expressed as the ratio of the probability of disease among exposed subjects (p1) 
divided by the probability of disease among unexposed subjects (p2). Although easily 
understood, the RR has the disadvantage of being constrained by the denominator 
probability (p2). For example, if p2 = .5, then the RR can be no larger than 1/.5 = 2; 
if p2 = .8, then the RR can be no larger than 1/.8 = 1.25. To avoid this restriction, 
another comparative measure relating two proportions is sometimes used, called the 
odds ratio (OR). The odds in favor of a success are defined as follows.

	 Definition 13.5 	 If the probability of a success = p, then the odds in favor of success = p/(1 −p).

If two proportions p1, p2 are considered and the odds in favor of success are com-
puted for each proportion, then the ratio of odds, or OR, becomes a useful measure 
for relating the two proportions.

	 Definition 13.6 	 Let p1, p2 be the underlying probability of success for two groups. The OR is defined as

		  OR
p q
p q

p q
p q

= =1 1

2 2

1 2

2 1

/
/

  and estimated by  OR
^   =

ˆ ˆ
ˆ ˆ
p q
p q

1 2

2 1

Equivalently, if the four cells of the 2 × 2 contingency table are labeled by a, b, c, d, 
as they are in Table 13.1 (p. 634), then

		  OR
^  

= + × +
+ × +

=[ / ( )] [ / ( )]
[ / ( )] [ / ( )]
a a b d c d
c c d b a b

ad
bcc

In the context of a prospective study, the OR can be interpreted as the odds in favor 
of disease for exposed subjects divided by the odds in favor of disease for unexposed 
subjects. This is sometimes referred to as the disease-odds ratio.
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	 Definition 13.7 	 The disease-odds ratio is the odds in favor of disease for the exposed group divided 
by the odds in favor of disease for the unexposed group.

	 Example 13.8 	 Cardiovascular Disease  Using the OC−MI data in Table 10.2 (on page 378), esti-
mate the OR in favor of MI for an OC user compared with a non-OC user (i.e., the 
disease-odds ratio).

	 	 Solution:  We have ˆ .p1 0026= , ˆ .q1 9974= , ˆ .p2 0007= , ˆ .q2 9993= . Thus,

		
OR = =. (. )

. (. )
.

0026 9993
0007 9974

3 72

Thus, the odds in favor of an MI for an OC user is 3.7 times the odds in favor of an 
MI for a non-OC user. OR

^    
could also have been computed from the contingency 

table in Table 10.2, whereby

		  OR
^   = ×

×
=13 9993

7 4987
3 72.

If the probability of disease is the same for exposed and unexposed subjects, then 
OR = 1. Conversely, OR’s greater than 1 indicate a greater likelihood of disease 
among the exposed than among the unexposed, whereas OR’s less than 1 indicate 
a greater likelihood of disease among the unexposed than among the exposed. 
Notice that there is no restriction on the OR as there was for the RR. Specifically, as 
the probability of disease among the exposed (p1) approaches 0, OR approaches 0, 
whereas as p1 approaches 1, OR approaches ∞, regardless of the value of the prob-
ability of disease among the unexposed (p2). This property is particularly advanta-
geous when combining results over several 2 × 2 tables, as discussed in Section 13.6. 
Finally, if the probabilities of success are low (i.e., p1, p2 are small), then 1 − p1 and 
1 − p2 will each be close to 1, and the OR will be approximately the same as the rela-
tive risk. Thus, the OR is often used as an approximation to the RR for rare diseases.

In Example 13.8, we computed the OR as a disease-odds ratio. However, another 
way to express the OR is as an exposure-odds ratio.

	 Definition 13.8 	 The exposure-odds ratio is the odds in favor of being exposed for diseased sub-
jects divided by the odds in favor of being exposed for nondiseased subjects.

From Table 13.1 (on page 634), this is given by

	 Equation 13.7 	 Exposure-odds ratio = + +[ / ( )]/[ / ( )]
[ / (

a a c c a c
b bb d d b d

ad
bc

+ +

= =

)]/[ / ( )]

disease-odds ratio

Therefore, the exposure-odds ratio is the same as the disease-odds ratio. This relation-
ship is particularly useful for case–control studies. For prospective studies, we have 
seen that we can estimate the risk difference, the RR, or the OR. For case–control 
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studies, we cannot directly estimate either the risk difference or the RR. To see why, let 
A, B, C, and D represent the true number of subjects in the reference population, cor-
responding to cells a, b, c, and d in our sample as shown in Table 13.2.

	 Table 13.2 	 Hypothetical exposure−disease relationships in a sample and a reference population

Sample Population

Disease Disease

Yes No Yes No

Exposed
Yes a b

Exposed
Yes A B

No c d No C D

In a case–control study, we assume that a random fraction f1 of subjects with disease 
and a random fraction f2 of subjects without disease in the reference population 
are included in our study sample. We also assume there is no sampling bias, so f1 
is the sampling fraction for both exposed and unexposed subjects with disease and 
f2 is the sampling fraction for both exposed and unexposed subjects without dis-
ease. Therefore a = f1A, c = f1C, b = f2B, d = f2D. If we estimate the RR from our study 
sample, we obtain

	 Equation 13.8 	 RR
^  

= +
+

= +
+

=

a a b
c c d
f A f A f B
f C f C f D

/ ( )
/ ( )

/ ( )
/ ( )

1 1 2

1 1 2

AA f A f B
C f C f D

/ ( )
/ ( )

1 2

1 2

+
+

However, from Table 13.2, the true RR in the reference population is

	 Equation 13.9 	 RR
A A B
C C D

= +
+

/ ( )
/ ( )

The expressions on the right-hand side of Equations 13.8 and 13.9 are only the same 
if f1 = f2—that is, if the sampling fraction of subjects with disease and without disease 
are the same. However, this is very unlikely in a case–control study because the usual 
sampling strategy is to oversample subjects with disease.

	 Example 13.9 	 Cancer  Consider a case–control study of the relationship between dietary factors 
and colon cancer. Suppose 100 colon-cancer cases are selected from a tumor regis-
try, and 100 controls are chosen who live in the same census tract as the cases and 
have approximately the same age and sex distribution. Thus, an equal number of 
cases and controls are in the sample, even though the fraction of people with colon 
cancer in the census tract may be very low. Therefore, f1 will be much larger than f2. 
Thus, RR

^
  will provide a biased estimate of RR in most case–control studies. This is 
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also true for the risk difference. However, we can estimate the OR from our sample in 
Table 13.2 given by

		  OR
^  =

=

= =

ad
bc
f A f D
f B f C

AD
BC

OR

1 2

2 1

( )
( )

Thus, the OR estimated from our sample provides an unbiased estimate of the OR 
from our reference population. We saw in Equation 13.7 that the exposure- and 
disease-odds ratios are the same for any 2 × 2 table relating exposure to disease, re-
gardless of sampling strategy. Therefore, the OR from a case–control study provides 
an unbiased estimate of the true disease-odds ratio. However, if the disease under 
study is rare, then the disease-odds ratio is approximately the same as the RR. This 
lets us indirectly estimate the RR for case–control studies.

The general method of estimation of the RR in case–control studies is summa-
rized as follows.

	 Equation 13.10 	 �Estimation of the Risk Ratio for Case–Control Studies

	 	 �Suppose we have a 2 × 2 table relating exposure to disease, as in Table 13.1 (on 
page 634). If the data are collected using a case–control study design, and the dis-
ease under study is rare (i.e., disease incidence <.10), then we can estimate the RR 
approximately by

		  RR
^   ≅ = ad

bc

	 Example 13.10 	 Cancer  Estimate the RR for breast cancer for women with a late age at first birth 
(≥30) compared with women with an early age at first birth (≤29) based on the data 
in Table 10.1 (on page 377).

	 	 Solution:  The estimated OR is given by

		  OR
^  

=

= =

ad
bc

683 8747
2537 1498

1 57
( )
( )

.

This is an estimate of the RR because, although breast cancer is one of the most 
common cancers in women, its incidence in the general population of women is 
relatively low, unless very old women are considered.

Interval Estimation for the Odds Ratio
In the previous section, we discussed how to estimate the OR. We saw that, in a 
case–control study with a rare disease outcome, the OR provides an approximate 
estimate of the RR. The issue remains as to how to obtain interval estimates for the 

OR
^ 
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OR. Several methods exist for this purpose. One of the most popular approaches is 
the Woolf method [1]. Woolf showed that, approximately,

		
Var

a b c d
[ln( )] ≅ + + +1 1 1 1

where a, b, c, and d are the four cells of our 2 × 2 contingency table.
If we assume approximate normality of ln(OR

^ 
), then a 100% × (1 − α) CI for 

ln(OR) is given by

		  ln(OR
^ 

) ± + + +−z
a b c d1 2
1 1 1 1

α/

If we take the antilog of each end of the CI, then it follows that a 100% × (1 − α) CI 
for OR is given by

		
e ez a b c d z aln( ) / / / / / // /± + + + − +− −=1 2 1 21 1 1 1 1 1α α bb c d z a b c de+ + + + +−( )1 1 1 1 1 11 2/ / / / / /, /α

This approach is summarized as follows.

	 Equation 13.11 	 	 �Point and Interval Estimation for the Odds Ratio (Woolf Procedure)
	 	 	� Suppose we have a 2 × 2 contingency table relating exposure to disease, with cell 

counts a, b, c, d as given in Table 13.1 (on page 634).

(1)	 A point estimate of the true OR is given by OR
^

  = ad/bc.

(2)	 An approximate two-sided 100% × (1 − α) CI for OR
^

  is given by ( , )e ec c1 2 , where

			 

c z
a b c d

c z
a

1 1 2

2 1 2

1 1 1 1

1

= − + + +

= +

−

−

ln( )

ln( )

/

/

α

α ++ + +1 1 1
b c d

(3)	 In a prospective or a cross-sectional study, the CI in (2) should only be used  

if n p q1 1 1 5ˆ ˆ ≥  and n p q2 2 2 5ˆ ˆ ≥  where

		  n1 = the number of exposed individuals

		  p̂1 = �the sample proportion with disease among exposed individuals, and 
ˆ ˆq p1 11= −

		  n2 = the number of unexposed individuals

		  p̂2 = �the sample proportion with disease among unexposed individuals, and 
ˆ ˆq p2 21= −

(4)	 In a case–control study, the CI should only be used if m p q1 1 1 5ˆ ˆ* * ≥  and 
m p q2 2 2 5ˆ ˆ* * ≥  where

		  m1 = the number of cases

		   ˆ ˆ* *q p1 11= −  = the proportion of cases that are exposed, and ˆ ˆ* *q p1 11= −

		  m2 = the number of controls

		   ˆ ˆ* *q p2 21= −  = the proportion of controls that are exposed, and ˆ ˆ* *q p2 21= −

(5)	 If the disease under study is rare, then OR
^ 

 and its associated 100% × (1 − α) 
CI can be interpreted as approximate point and interval estimates of the 
RR. This is particularly important in case–control studies in which no direct 
estimate of the RR is available.

The derivation of the Woolf Formula for Var[ln(OR
^ 

)] is given in Section 13.17(b) (p. 758).

OR
^ 

OR
^

OR
^OR

^

OR
^

OR
^
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	 Example 13.11 	 Cancer  Compute a point estimate and a 95% CI for the OR relating age at first birth 
to breast-cancer incidence based on the data in Table 10.1 (on page 377).

	 	 Solution:  From Example 13.10 we see that the point estimate of the OR = 1.57. To 
obtain an interval estimate, we first compute a 95% CI for ln(OR) as follows:

		  = ± + + +

= ± +

ln( )

ln( . ) .

.z
a b c d975
1 1 1 1

1 572 1 96
1

683
1

22537
1

1498
1

8747

0 452 1 96 0 0514

0 452

+ +

= ±

= ±

. . ( . )

. 00 101 0 352 0 553. ( . , . )=

A 95% CI for OR is thus given by

		  ( , ) ( . , . ). .e e0 352 0 553 1 42 1 74=

Because the 95% CI excludes 1, we can conclude that the true OR is significantly 
greater than 1. Also, this is a relatively rare disease, so we can also interpret this in-
terval as an approximate 95% CI for the RR.

Using the Computer to Estimate the Risk Difference,  
Risk Ratio, and Odds Ratio
For a prospective study, we can use the Stata csi command to estimate the risk dif-
ference (RD), the risk ratio (RR), and the odds ratio (OR). The syntax is as follows:

csi a c b d, or woolf

where a and c are the number of exposed and unexposed individuals among the sub-
jects with disease and b and d are the number of exposed and unexposed individuals 
among the subjects without disease as shown in Table 13.1 (on page 634).

	 Example 13.12 	 Cardiovascular Disease  Use the computer to estimate RD, RR, and OR for the  
OC-MI data in Table 10.2 (on page 378).

	 	 Solution:  We use the following syntax:

.csi 13 7 4987 9993, or woolf

The results are as follows:

	 │        Exposed 	 Unexposed 	 Total

----------------+-----------------------+----------

          Cases    │	 13 	          7 │	 20

       Noncases    │	 4987 	       9993 │	 14980

----------------+-----------------------+----------

          Total    │	 5000 	      10000 │	 15000

           Risk    │	 .0026 	      .0007 │	 .0013333

                   │                       │

OR
^
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                   │	 Point estimate        │	 [95% Conf. Interval]

                   │-----------------------+-----------------------

Risk difference    │	          .0019        │	 .0003963 	 .0034037

     Risk ratio    │	       3.714286        │	 1.482854 	 9.303627

 Attr. frac. ex.    │	       .7307692           │

Attr. frac. pop    │	           .475        │	 .3256247 	 .892515

     Odds ratio    │	       3.721361        │	 1.483814 	 9.33306

 (Woolf)

                +----------------------------------------------

chi2(1) =  9.04  Pr>chi2 = 0.0026

The point estimate and 95% Cl for RD and RR agree with the results in Examples 
13.5 and 13.7 (on pages 638 and 640, respectively).

For a case-control study we can use the Stata cci command  to estimate the odds 
ratio. The syntax is as follows:

cci a c b d, woolf

where a, b, c, and d are defined  in the description of csi above.

	 Example 13.13 	 Cancer  Use the computer to estimate the OR relating age at first birth to breast 
cancer incidence based on the data in Table 10.1 (on page 377).

	 	 Solution:  We use the syntax

.cci 683 2537 1498 8747, woolf

The results are as follows:

				    Proportion

	 │ Exposed 	 Unexposed 	 Total 	 Exposed

----------------+-----------------------+----------------------

          Cases │	 683 	           2537  │	 3220	 0.2121

       Controls │	 1498 	           8747  │	 10245	 0.1462

----------------+-----------------------+----------------------

          Total │	 2181 	          11284  │	 13465	 0.1620

                     │                             │

                     │	 Point estimate        │	 [95% Conf. Interval]

│-----------------------+----------------------

     Odds ratio │	        1.571982       │	 1.421381 	 1.738539

(Woolf) 

 Attr. frac. ex. │	        .3638604         │	 .296459 	 .4248045

(Woolf)

Attr. frac. pop │	        .0771791          │

+----------------------------------------------

                                  chi2(1) =    78.37  Pr>chi2 = 0.0000

The odds ratio and 95% Cl match the results in Example 13.11.
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In this section, we have examined the RD, RR, and OR, the main effect measures 
used in epidemiologic studies. The RD and RR can be estimated directly from pro-
spective studies but not from case–control studies. The OR is estimable from both 
prospective and case–control studies. In case–control studies with a rare disease out-
come, the OR provides an indirect estimate of the RR. We also discussed large-sample 
methods for obtaining confidence limits for the preceding effect measures. To obtain 
confidence limits for the RR and OR, we introduced a general technique called the 
delta method to obtain the variance of a function of a random variable, such as ln(X), 
if the variance of the random variable (X) is already known.

RE  V I E W  QUE   S T I ON  S  1 3 A

1	 Suppose 200 obese children and 500 normal-weight children are identified in a 
school-based screening for hypertension. Eighteen of the obese children and 10 of 
the normal-weight children are hypertensive.

	 (a)	 What is the estimated risk of hypertension in each group?

	 (b)	 Provide an estimate of the risk difference and risk ratio and a 95% CI about 
these estimates.

2	 Suppose 100 lung-cancer cases and 200 age- and gender-matched controls are 
identified and a smoking history is obtained. Fifty of the lung-cancer cases and 20 
of the controls are current smokers.

	 (a)	 Is it possible to estimate the difference in lung-cancer incidence between cur-
rent smokers vs. noncurrent smokers from these data? If so, estimate it and 
provide a 95% CI.

	 (b)	 Is it possible to approximately estimate the RR between current smokers and 
noncurrent smokers for lung cancer from these data? If so, then estimate it and 
provide a 95% CI.

	 13.4	 At t r i b u ta b l e  Ris   k

In some cases, a risk factor may have a large RR. However, if the risk factor is rela-
tively rare, only a small proportion of cases may be attributable to this risk factor. 
Conversely, if a risk factor is common, then even a moderate RR may translate to a 
large number of cases attributable to this risk factor. The concept of attributable risk 
(AR) is useful in these circumstances. 

	 Definition 13.9  	 Suppose a risk factor is dichotomous with probability of occurrence = p and the rela-
tive risk of disease for persons with the risk factor compared with persons without 
the risk factor = RR. The AR percent for this risk factor is: 

	 AR RR p RR p= − − +100 1 1 1%( ) /[( ) ].

Suppose the probability of disease = d for persons without the risk factor and RRd for 
persons with the risk factor. The overall probability of disease ( )pD  is then 

		  p RRdp d pD = + −( ).1

If all persons with the risk factor become risk factor free, then ( )RR pd− 1  cases of dis-
ease could be prevented. If we express the number of cases prevented as a proportion 
of the total number of cases and multiply by 100%, we obtain the definition of AR 
given in Definition 13.9. 

R
 E

 V
 I 

E 
W
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	 Example 13.14	 Cancer  A group of 10,000 current smoking women and 40,000 never-smoking wom-
en ages 50−69 are followed for 5 years. Fifty of the current smokers and 10 of the never 
smokers develop lung cancer over 5 years. What is the RR of current smoking vs. never 
smoking for lung cancer? Suppose that 20% of the general population of women in 
this age group are current smokers and 80% are never smokers (we ignore ex-smokers 
for simplicity). What proportion of lung cancer is attributable to current smoking? 

	 	 Solution:  From the study results, the RR for lung cancer = =( / , )/( / , )50 10 000 10 40 000 20. 
In this case, p = .2 and RR = 20. From Definition 13.9, we have 

		  AR = × +100 19 2 19 2 1% (. )/[ (. ) ]

			   = × =100 3 8 4 8 79 2% . / . . %.

We now will consider interval estimation for AR. The results are summarized in 
Equation 13.12. 

	 Equation 13.12 	 Interval Estimation for the Attributable Risk

	 	 	 Suppose we have a dichotomous risk factor with known prevalence = p and  
estimated relative risk = RR

^ 
. 

(1)	 A point estimate of the AR is given by 

		        AR
^ 

 = 100% × (RR
^  

− 1)p /[(RR
^  

− 1)p + 1]

(2)	 An approximate two-sided 100 1% ( )× − α  CI for AR is given by [ /%100 1× ec  
( ), % ( )/ ]1 100 11 2 2+ × +e e ec c c , where ( , ) / | | ( ) ( )/c c y z RR RR b an d cn1 2 1 2 1 2

11= ± −( ) +[ ]−α
//2 

( , ) / | | ( ) ( )/c c y z RR RR b an d cn1 2 1 2 1 2
11= ± −( ) +[ ]−α

//2, a b c d n, , , , 1, and n2 are defined in Table 13.1 (p. 634) and y = 

ln[AR
^  

/(100 − AR
^ 

)].

A derivation of this equation is given in Section 13.17(c), p. 759.

	 Example 13.15 	 Cancer  Provide a 95% CI for the AR of current smoking for lung cancer using the 
data in Example 13.14. 

	 	 Solution:  We refer to Equation 13.12. We have the following 2 2×  table relating cur-
rent smoking to lung cancer in this study. The results are shown in Table 13.3.

	 Table 13.3 	 Association between current smoking status and lung cancer risk 

	 Lung cancer

		  Yes	 No	 Total

	 Current	 50	 9950	 10,000

	 Never	 10	 39,990	 40,000

		  60	 49,940	 50,000

Hence, a = 50, b = 9950, c = 10, d = 39 990, , n1 10 000= , , n2 40 000= , . Referring to 
Equation 13.12, the 95% CI for AR is given by 

		  [ % / ( ), % / ( )]100 1 100 11 1 2 2× + × +e e e ec c c c

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



	 13.4      Attributable Risk              649

where 

		  = ± − +c c y z RR RR b an d cn( , ) ( / | 1 |)[ /( ) /( )]1 2 .975 1 2
1/2

		  y = ln[AR
^ 

/(100 - AR
^ 

)].

In this case, from Example 13.14, we have y = − =ln[ . / ( . )] .79 2 100 79 2 1 335 and RR = 20.

Hence,

		  ( , ) . . ( / ){ /[ ( , )]c c1 2 1 335 1 96 20 19 9950 50 10 000= ± ++ 39 990 10 40 000 1 2, /[ ( , )]} /

		  = ± +1 335 2 063 0 0199 0 0998 1 2. . ( . . ) /

		  = ±1 335 0 714. .

		  = ( . , . )0 621 2 049

Thus, 

		  e e e ec c1 11 1 0 6500 621 0 621/ ( ) / ( ) .. .+ = + =

		  e e e ec c2 21 1 0 8862 049 2 049/ ( ) / ( ) .. .+ = + =
and the 95% CI for AR is (65.0%, 88.6%).

Using the Computer to Estimate Attributable Risk 
1.	 We assume that we have a prospective study with an exposed group of a+b sub-

jects of whom a develop disease and b do not.

2.	 We assume that we have an unexposed group of c+d subjects of whom c develop 
disease and d do not.

3.	 We assume that the prevalence of exposure in the reference population = p.

	 Example 13.16 	 Cancer  Use the computer to estimate AR and an associated 95% CI  using the lung 
cancer – smoking data in Table 13.3 (on page 648).

	 	 Solution:  We use the following R program to implement Equation 13.12 (on page 648).

1.	 First we enter a, b, c, d and the prevalence (p) and compute the RR as follows:
> a<- 50

> b<- 9950

> c<- 10

> d<- 39990

> p<- 0.20

> n1<- a+b

> n2<- c+d

> RR<- (a/n1)/(c/n2)

> RR

[1] 20

Thus, RR = 20.

2.	 We now compute AR based on RR and p.
> AR<- 100 *(RR-1)*p/((RR-1)*p+1)

> AR

[1] 79.16667
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The point estimate of AR = 79.2%, which agrees with the solution to Example 13.14 
(on page 648).

3.	 We now compute 95% confidence limits for AR using Equation 13.12 as follows:
> y<- log(AR/(100-AR))

> y

[1] 1.335001

> se<- RR/(abs(RR-1))*sqrt(b/(a*n1)+d/(c*n2))

> se

[1] 0.3644523

> c1<- y - qnorm(0.975) * se

> c2<- y + qnorm(0.975) * se

> c1

[1] 0.6206877

> c2

[1] 2.049314

Thus, (c1, c2) = (0.621, 2.049) which agrees with the solution to Example 13.15 (on 
page 648).

> AR1<- 100*exp(c1)/(1+exp(c1))

> AR1

[1] 65.03749

> AR2<- 100*exp(c2)/(1+exp(c2))

> AR2

[1] 88.58783

Thus, the 95% CI for AR = (65.0%, 88.6%), which agrees with the solution to 
Example 13.15.

In Definition 13.9, we considered AR for the case of a categorical exposure with 
two categories. This definition can be extended to the case of a categorical exposure 
with more than two categories.

	 Example 13.17 	 Cancer  Consider the data set in Example 13.14. Suppose in addition to the 10,000 
current smoking women and 40,000 never-smoking women we have 50,000 ex-
smoking women who previously smoked but do not currently smoke, of whom 25 
developed lung cancer over a 5-year period. What percent of lung cancer is attribut-
able to smoking (i.e., either current or past smoking)? 

	 	 Solution:  In this case, we have two smoking groups and one group of never smok-
ers. We wish to determine the percent of lung cancer cases that could be prevented if 
none of the women had ever started smoking (i.e., were never smokers). In general, 
suppose we have k groups where group 1 is an unexposed group and group 2, . . . , k 
are exposed groups with possibly different levels of exposure. Let pi be the probability 
of being in the ith exposure group, i = 1, . . . , k, and let RRi = relative risk of disease for 
persons in the ith exposure group, compared with the unexposed group (group 1),  
i = 1, . . . , k. Let the probability of disease among the unexposed group = d. It follows 
that the overall probability of disease ( )pD  is 

		
p p dRR d p RRD i

i

k

i i
i

k

i= = + −










= =
∑ ∑

1 2

1 1( )
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If all persons in the ith exposure group were unexposed, then ( )RR p di i− 1  cases of 
disease could be prevented, i = 2, . . . , k. If we express the number of cases prevented 
as a proportion of the total number of cases and multiply by 100%, we obtain the 
following definition of AR for an exposure with multiple categories: 

		
AR RR p RR pi

i

k

i i
i

k

i= − + −
= =
∑ ∑100 1 1 1

2 2

% ( ) /[ ( ) ]

To obtain confidence limits for AR in this setting, one can use a multivariate exten-
sion of the delta method. The result is given as follows. 

	 Equation 13.13 	 Estimation of AR with Multiple Exposed Groups

	 	 	 Suppose we have a prospective study with one unexposed group (denoted by 
group 1) and k − 1 exposed groups denoted by group 2, . . . , k. Suppose we have a 
2 × k table relating exposure to disease of the form: 

			   Exposure group

		  1	 2		  k

	 +	 a1	 a2	 . . .	 ak
Disease

	 −	 n1 − a1	 n2 − a2	 . . .	 nk − ak

		  n1	 n2	 	 nk

and let the RR in exposure group i be denoted by RRi and estimated by 
RR
^ 

i = ( / ) / ( / )a n a ni i 1 1 , i = 2, . . . , k. Assume the proportion of subjects in the ith 
exposure group in the reference population is given by pi and is assumed to be 
known without error. The AR if all persons in exposure group 2, 3, . . . , k were 
unexposed is given by 

		
AR RR p RR pi

i

k

i i
i

k

i= × − + −
= =
∑ ∑100 1 1 1

2 2

% ( ) /[ ( ) ]

If RRi is estimated by RR
^ 

i, then 

(1)	 Compute a point estimate of AR given by

		
RR
^

iRR
^

iAR
^

= ×
=
∑100

2

%
i

k

( ) /[ ( ) ]− + −
=
∑1 1 1

2

p pi
i

k

i( ) /[ ( ) ]− + −
=
∑1 1 1

2

p pi
i

k

i .

(2)	 To obtain a 100 1% ( )× − α  CI for AR, compute AR
^

AR
^

y = −ln[( / ) / ( / )]100 1 100 .

(3)	 Compute RR
^

ivar y p
n a
a n

n a
a ni

i

k
i i

i i
( ) ( ) /= − + −



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1 1
[[ ( ) ]
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]2
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∑
RR
^

iRR
^

i
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^

i

(4)	 Compute ( , ) [ ( )]/
/c c y z y1 2 1 2

1 2= ± −α var

(5)	 A 100 1% ( )× − α  CI for AR is 100 1 11 1 2 2% [ / ( ), / ( )]× + +e e e ec c c c .

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



652              C H A P T E R  13      Design and Analysis Techniques for Epidemiologic Studies

	 Example 13.18 	 Cancer  Obtain the estimated AR of smoking for lung cancer with the associated 
95% CI based on the data in Examples 13.14 and 13.17. 

	 	 Solution:  Table 13.4 is a 2 3×  table relating lung cancer incidence to smoking status.

	 Table 13.4 	 Association between smoking status and lung cancer risk

	 Smoking

		  Never	 Ex	 Current	 Total

Lung cancer
	 Yes	 10	 25	 50	 85

	 No	 39,990	 49,975	 9950	 99,915

		  40,000	 50,000	 10,000 	 100,000

We assume the proportion of never, ex, and current smoking women in the gen-
eral population is the same as in the study population, that is, 40%, 50%,  

and 10%, respectively. From Table 13.4, RR
^ 

2 = =( / , ) / ( / , ) .25 50 000 10 40 000 2 0,  

RR
^  

3 = =( / , ) / ( / , ) .50 10 000 10 40 000 20 0. Hence, we estimate the AR from Equation 13.13, 
Step 1 as follows: 

		  AR
^  

 = × − + − + −100 2 1 50 20 1 10 1 2 1 50% [( )(. ) ( )(. )]/[ ( )(. )) ( )(. )]+ −20 1 10

		      = × =100 2 4 3 4 70 6% . / . . %.

Thus, about 71% of lung cancer is attributable to smoking. 
	 To obtain a 95% CI for AR, we compute y from Equation 13.13, Step 2 as follows: 

	 y = =ln(. /. ) . .706 294 0 875

To obtain the variance of y we follow Equation 13.13, Step 3, where: 
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We have: 
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Hence, 
		

var( ) . . ( . ) .y = + − =0 0243 0 0832 2 0 0347 0 0381

		     se y( ) . . ./= =0 0381 0 19521 2

A 95% CI for ln[AR/(100 - AR)] is given in Equation 13.13, Step 4, by: 

		  ( , ) . . ( . ) ( . , . )c c1 2 0 875 1 96 0 1952 0 493 1 258= ± =

The corresponding 95% CI for AR is given in Equation 13.13, Step 5, by: 

		  [ ( )/( ), ( )/(. . . .100 1 100 10 493 0 493 1 258 1e e e e+ + 2258)]

		  = [ ( . / . ), ( . )/ . ]100 1 637 2 637 100 3 519 4 519
		

= ( . %, . %)62 1 77 9

	 13.5	 C o n f o u n d i n g  a n d  S ta n d a r d i z at i o n

Confounding
When looking at the relationship between a disease and an exposure variable, it is 
often important to control for the effect of some other variable that is associated 
with both the disease and the exposure variable.

	 Definition 13.10 	 A confounding variable is a variable that is associated with both the disease and the 
exposure variable. Such a variable must usually be controlled for before looking at a 
disease–exposure relationship.

	 Example 13.19 	 Cancer  Suppose we are interested in the relationship between lung-cancer inci-
dence and heavy drinking (defined as ≥2 drinks per day). We conduct a prospective 
study in which drinking status is determined at baseline and the cohort is followed 
for 10 years to determine cancer endpoints. Table 13.5 is a 2 × 2 table relating lung-
cancer incidence to initial drinking status, in which we compare heavy drinkers  
(≥2 drinks per day) with nondrinkers. 

	 Table 13.5 	 Crude relationship between lung-cancer incidence and drinking status

	 Lung cancer

		  Yes 	 No	

Drinking status
	 Heavy drinker 	 33	 1667	 1700	

 Nondrinker	 27	 2273	 2300

		  60	 3940	 4000

Because lung cancer is relatively rare, we estimate the RR by the OR = (33 × 2273)/
(27 × 1667) = 1.67. Thus, it appears heavy drinking is a risk factor for lung cancer.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



654              C H A P T E R  13      Design and Analysis Techniques for Epidemiologic Studies

We refer to Table 13.5 as expressing the “crude” relationship between lung-
cancer incidence and drinking status. The adjective “crude” means the relationship 
is presented without any adjustment for possible confounding variables. One such 
confounding variable is smoking because smoking is related to both drinking and 
lung-cancer incidence. Specifically, one explanation for the crude association found 
in Table 13.5 between lung-cancer incidence and drinking may be that heavy drink-
ers are more likely than nondrinkers to be smokers, and smokers are more likely to 
develop lung cancer than nonsmokers. To investigate this hypothesis, we look at the 
relationship between lung-cancer incidence and drinking status after controlling for 
smoking (i.e., separately for smokers and nonsmokers at baseline). These data are 
given in Table 13.6.

We see that smoking is related to drinking status. Specifically, 800 of the 1000 
smokers (80%) vs. 900 of the 3000 nonsmokers (30%) are heavy drinkers. Also, 
smoking is related to lung cancer. Specifically, 30 of the 1000 smokers (3%) vs. 30 of 
the 3000 nonsmokers (1%) developed lung cancer.

	 Example 13.20 	 Cancer  Investigate the relationship between lung-cancer incidence and drinking 
status, while controlling for smoking.

	 	 Solution:  To investigate the relationship between lung-cancer incidence and drink-
ing status, while controlling for smoking status, we can compute separate ORs for 
Table 13.6a and b. The OR relating lung cancer to drinking status among smokers is 

	 	 OR = (24 × 194)/(6 × 776) = 1.0, whereas the comparable OR among nonsmokers is 
OR = (9 × 2079)/(21 × 891) = 1.0. Thus, after controlling for the confounding 
variable smoking, we find no relationship between lung cancer and drinking 
status.

Table 13.6   Relationship between lung-cancer incidence and drinking status while controlling for 	
smoking status at baseline

	 (a) Smokers at baseline	 (b) Nonsmokers at baseline

	 Lung cancer	 Lung cancer

	 Yes 	 No	 Yes 	 No

Drinking status
	 Heavy drinker 	 24	 776	   800	

Drinking status
	 Heavy drinker 	 9	   891	   900

	 Nondrinker	   6	 194	   200		  Nondrinker	 21	 2079	 2100

	 30	 970	 1000		  30	 2970	 3000

	 Definition 13.11 	 The analysis of disease–exposure relationships in separate subgroups of the data, in 
which the subgroups are defined by one or more potential confounders, is called 
stratification. The subgroups themselves are called strata.

We refer to smoking as a positive confounder because it is related in the same  
direction to both lung-cancer incidence and heavy drinking.
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	 Definition 13.12 	 A positive confounder is a variable that either

(1)	 is positively associated with both exposure and disease, or

(2)	 is negatively associated with both exposure and disease

After adjusting for a positive confounder, an adjusted RR or OR is lower than the 
crude RR or OR.

	 Definition 13.13 	 A negative confounder is a variable that either

(1)	 is positively associated with disease and negatively associated with exposure, or

(2)	 is negatively associated with disease and positively associated with exposure

After adjusting for a negative confounder, an adjusted RR or OR is greater than the 
crude RR or OR.

	 Example 13.21 	 Cancer  In Table 13.6, what type of confounder is smoking?

	 	 Solution:  Smoking is a positive confounder because it is positively associated with 
both heavy drinking (the exposure) and lung cancer (the disease). Indeed, the crude 
positive association between lung cancer and drinking status (OR = 1.67) was re-
duced to no association at all (OR = 1.0) once smoking was controlled for.

	 Table 13.7 	 Association between MI and OC use by age

Age	 Recent OC use	 Cases (MI)	 Controls	 	 Proportion OC user	 Proportion MI

25−29	 Yes	 4	 62	 7.2	 23	 2
	 No	 2	 224			 
30−34	 Yes	 9	 33	 8.9	 9	 5
	 No	 12	 390			 
35−39	 Yes	 4	 26	 1.5	 8	 9
	 No	 33	 330			 
40−44	 Yes	 6	 9	 3.7	 3	 16
	 No	 65	 362			 
45−49	 Yes	 6	 5	 3.9	 3	 24
	 No	 93	 301			 

Total	 Yes	 29	 135	 1.7		
	 No	 205	 1607			 

	 Example 13.22 	 Cardiovascular Disease  The relationship between OC use and MI after stratification 
by age was considered by Shapiro et al. [2]. The data are given in Table 13.7.

We see that the age-specific ORs tend to be higher than the crude OR (1.7) when age 
was not controlled for. Age is an example of a negative confounder here because it is nega-
tively associated with OC use (older women use OCs less frequently than younger women 
do) and positively associated with disease (older women are more likely to be cases than 
are younger women). Thus, the age-specific ORs tend to be higher than the crude OR.

An often asked question is, When is it reasonable to control for a confounder when 
exploring the relationship between an exposure and disease? This depends on whether 
or not the confounder is in the “causal pathway” between exposure and disease.

OR
^
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	 Definition 13.14 	 A confounder is said to be in the causal pathway between exposure and disease if 
(1) the exposure is causally related to the confounder and (2) the confounder is caus-
ally related to disease.

	 Example 13.23 	 Cardiovascular Disease  Suppose we are interested in the possible association be-
tween obesity and the development of coronary heart disease (CHD). If we examine 
the crude relationship between obesity and CHD, we usually find that obese people 
have higher rates of CHD than do people of normal weight. However, obesity is posi-
tively related to both hypertension and diabetes. In some studies, once hypertension 
and/or diabetes are controlled for as confounders, there is a much weaker relation-
ship or even no relationship between obesity and the development of CHD. Does 
this mean there is no real association between obesity and CHD?

	 	 Solution:  No, it does not. If obesity is an important cause of both hypertension and 
diabetes and both are causally related to the development of CHD, then hyperten-
sion and diabetes are in the causal pathway between obesity and the development of 
CHD. It is inappropriate to include hypertension or diabetes as confounders of the 
relationship between obesity and CHD because they are in the causal pathway.

In other words, the decision as to which confounders are in the causal pathway 
should be made on the basis of biological rather than purely statistical considerations.

Standardization
Age is often an important confounder influencing both exposure and disease 
rates. For this reason, it is often routine to control for age when assessing disease–
exposure relationships. A first step is sometimes to compute rates for the exposed 
and unexposed groups that have been “age standardized.” The term “age standard-
ized” means the expected disease rates in the exposed and unexposed groups are 
each based on an age distribution from a standard reference population. If the same 
standard is used for both the exposed and unexposed groups, then a comparison can 
be made between the two standardized rates that is not confounded by possible age 
differences between the two populations.

	 Example 13.24 	 Infectious Disease  The presence of bacteria in the urine (bacteriuria) has been associ-
ated with kidney disease. Conflicting results have been reported from several studies 
concerning the possible role of OCs in bacteriuria. The following data were collected 
in a population-based study of nonpregnant premenopausal women younger than age 
50 [3]. The data are presented on an age-specific basis in Table 13.8.

	 Table 13.8 	 Risk of bacteriuria among OC users and nonusers

	 % with bacteriuria

	 OC users	 Non-OC users

Age group	 %	 n	 %	 n

16–19	 1.2	 84	 3.2	 281
20–29	 5.6	 284	 4.0	 552
30–39	 6.3	 96	 5.5	 623
40–49	 22.2	 18	 2.7	 482

Source: Based on The New England Journal of Medicine, 299, 536–537, 1978.
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The prevalence of bacteriuria generally increases with age. In addition, the age 
distribution of OC users and non-OC users differs considerably, with OC use more 
common among younger women. Thus, for descriptive purposes we would like to 
compute age-standardized rates of bacteriuria separately for OC users and non-OC 
users and compare them using an RR.

	 Definition 13.15 	 Suppose people in a study population are stratified into k age groups. Let the risk of 
disease among the exposed in the ith age group = =ˆ /p x ni i i1 1 1 where xi1 = number of 
exposed subjects with disease in the ith age group and ni1 = total number of exposed 
subjects in the ith age group, i = 1, . . . , k. Let the risk of disease among the unexposed 
in the ith age group = =ˆ /p x ni i i2 2 2, where xi2  = number of unexposed subjects with 
disease in the ith age group and ni2 = total number of unexposed subjects in the ith 
age group, i = 1, . . . , k. Let ni = number of subjects in the ith age group in a standard 
population, i = 1, . . . , k.

	 Age-standardized risk of disease among the exposed = =
= =
∑ ∑ˆ ˆ*p n p ni i
i

k

i
i

k

1 1
1 1

	 Age-standardized risk of disease among the unexposed = =
= =
∑ ∑ˆ ˆ*p n p ni i
i

k

i
i

k

2 2
1 1

	 Standardized RR = ˆ / ˆ* *p p1 2

	 Example 13.25 	 Infectious Disease  Using the data in Table 13.8, compute the age-standardized risk 
of bacteriuria separately for OC users and non-OC users, using the total study popu-
lation as the standard, and compute the age-standardized RR for bacteriuria for OC 
users vs. non-OC users.

	 	 Solution:  The age distribution of the total study population is shown in Table 13.9.

	 Table 13.9 	 Age distribution of total study population

Age group	 n

16–19	 365
20–29	 836
30–39	 719
40–49	 500

Total	 2420

The age-standardized risk of bacteriuria for OC users (the exposed) is

		
ˆ (. ) (. ) (. ) (.*p1

365 012 836 056 719 063 500 222= + + + ))

.
.

2420
207 493

2420
086= =
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The age-standardized risk of bacteriuria for non-OC users (the unexposed) is

		
ˆ (. ) (. ) (. ) (.*p2

365 032 836 040 719 055 500 027= + + + ))

.
.

2420
98 165
2420

041= =

The age-standardized RR = .086/.041 = 2.1.

This method of standardization is sometimes referred to as direct standardization. 
Using age-standardized risks is somewhat controversial because results may differ 
depending on which standard is used. However, space limitations often make it 
impossible to present age-specific results in a paper, and the reader can get a quick 
summary of the overall results from the age-standardized risks.

Using standardized risks is a good descriptive tool for controlling for confounding. 
In the next section, we discuss how to control for confounding in assessing disease–
exposure relationships in a hypothesis-testing framework using the Mantel-Haenszel 
test. Finally, standardization can be based on stratification by factors other than age. For 
example, standardization by both age and sex is common. Similar methods can be used 
to obtain age–sex standardized risks and standardized RRs as given in Definition 13.15.

In this section, we have introduced the concept of a confounding variable (C), 
a variable associated with both the disease (D) and exposure (E) variables. Further-
more, we classified confounding variables as positive confounders if the associations 
between C and D and C and E, respectively, are in the same direction and as negative 
confounders if the associations between C and D and C and E are in opposite direc-
tions. We also discussed when it is or is not appropriate to control for a confounder, 
according to whether C is or is not in the causal pathway between E and D. Finally, 
because age is often an important confounding variable, it is reasonable to consider 
descriptive measures of proportions and relative risk that control for age. Age-
standardized proportions and RRs are such measures.

RE  V I E W  QUE   S T I ON  S  1 3 B

1	 Suppose we are interested in the association between smoking and bone density in 
women.

	 (a)	 If body-mass index (BMI) is inversely associated with smoking and positively 
associated with bone density, then is BMI a positive confounder, a negative 
confounder, or neither?

	 (b)	 If alcohol intake is positively associated with smoking and is unrelated to bone den-
sity, then is alcohol intake a positive confounder, a negative confounder, or neither?

2	 Suppose the age-specific risks of hypertension in adults with left ventricular hyper-
trophy (LVH) and controls are as shown in Table 13.10.

	 Table 13.10 	 Age-specific hypertension risks among patients with LVH and controls

	 LVH	 Control

	 Risk	 N	 Risk	 N

40–49	 .16	 20	 .14	 50
50–59	 .20	 40	 .18	 40
60–69	 .28	 30	 .20	 36
70–79	 .36	 35	 .25	 29

R
 E

 V
 I 

E 
W
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	 (a)	 Calculate the age-standardized risk of hypertension in each group using the 
total population in the two groups as the standard.

	 (b)	 Calculate the age-standardized RR of hypertension for LVH patients vs. controls.

	 13.6	 M e t h o d s  o f  I n f e r e n c e  f o r  S t r at i f i e d 

C at e g o r i c a l  D ata —T h e  M a n t e l - H a e n s z e l  T e s t

	 Example 13.26 	 Cancer  A 1985 study identified a group of 518 cancer cases ages 15−59 and a group 
of 518 age- and sex-matched controls by mail questionnaire [4]. The main purpose 
of the study was to look at the effect of passive smoking on cancer risk. The study 
defined passive smoking as exposure to the cigarette smoke of a spouse who smoked 
at least one cigarette per day for at least 6 months. One potential confounding vari-
able was smoking by the participants themselves (i.e., personal smoking) because 
personal smoking is related to both cancer risk and spouse smoking. Therefore, it 
was important to control for personal smoking before looking at the relationship 
between passive smoking and cancer risk.

To display the data, a 2 × 2 table relating case–control status to passive smoking 
can be constructed for both nonsmokers and smokers. The data are given in Table 13.11 
for nonsmokers and Table 13.12 for smokers.

Table 13.11   Relationship of passive smoking to 
cancer risk among nonsmokers

	 Passive smoker

Case–control status	 Yes	 No	 Total

Case	 120	 111	 231

Control	 80	 155	 235

Total	 200	 266	 466

Source: From Sandler et al., “Passive Smoking in Adulthood and Cancer 
Risk,” American Journal of Epidemiology, 1985 121: 37–48. 

Table 13.12   Relationship of passive smoking to 
cancer risk among smokers

	 Passive smoker

Case–control status	 Yes	 No	 Total

Case	 161	 117	 278

Control	 130	 124	 254

Total	 291	 241	 532

Source: From Sandler et al., “Passive Smoking in Adulthood and Cancer 
Risk,” American Journal of Epidemiology, 1985 121: 37–48.

The passive-smoking effect can be assessed separately for nonsmokers and smokers. 
Indeed, we notice from Tables 13.11 and 13.12 that the OR in favor of a case being 
exposed to cigarette smoke from a spouse who smokes vs. a control is (120 × 155)/
(80 × 111) = 2.1 for nonsmokers, whereas the corresponding OR for smokers is (161 ×  
124)/(130 × 117) = 1.3. Thus, for both subgroups the trend is in the direction of 
more passive smoking among cases than among controls. The key question is how 
to combine the results from the two tables to obtain an overall estimated OR and test 
of significance for the passive-smoking effect.

In general, the data are stratified into k subgroups according to one or more con-
founding variables to make the units within a stratum as homogeneous as possible. 
The data for each stratum consist of a 2 × 2 contingency table relating exposure to 
disease, as shown in Table 13.13 for the ith stratum.
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	 Table 13.13 	 Relationship of disease to exposure in the ith stratum

		  Exposure		

  Yes	 No	 Total

Disease
	 Yes	 ai	 bi	 ai + bi	

	 No	 ci	 di	 ci + di

		  ai + ci	 bi + di	 ni

Based on our work on Fisher’s exact test, the distribution of ai follows a hypergeo-
metric distribution. The test procedure is based on a comparison of the observed 
number of units in the (1, 1) cell of each stratum (denoted by Oi = ai) with the 
expected number of units in that cell (denoted by Ei). The test procedure is the 
same regardless of order of the rows and columns; that is, which row (or column) 
is designated as the first row (or column) is arbitrary. Based on the hypergeometric 
distribution (Equation 10.8), the expected number of units in the (1, 1) cell of the 
ith stratum is given by

	 Equation 13.14 	 E
a b a c

ni
i i i i

i
= + +( )( )

The observed and expected numbers of units in the (1, 1) cell are then summed 

over all strata, yielding O Oii

k=
=∑ 1

, E Eii

k=
=∑ 1

, and the test is based on O − E. 

Based on the hypergeometric distribution (Equation 10.8), the variance of Oi is 

given by

	 Equation 13.15 	 V
a b c d a c b d

n ni
i i i i i i i i

i i
= + + + +

−
( )( )( )( )

( )2 1

Furthermore, the variance of O is denoted by V Vii

k=
=∑ 1

. The test statistic is given by

X O E VMH
2 25= − −(| | . ) / , which should follow a chi-square distribution with 1 de-

gree of freedom (df) under the null hypothesis of no association between disease 
and exposure. H0 is rejected if XMH

2  is large. The abbreviation MH refers to Mantel-
Haenszel; this procedure is known as the Mantel-Haenszel test and is summarized 
as follows.

	 Equation 13.16 	 Mantel-Haenszel Test 

	 	 	 To assess the association between a dichotomous disease and a dichotomous 
exposure variable after controlling for one or more confounding variables, use 
the following procedure:

(1)	 Form k strata, based on the level of the confounding variable(s), and con-
struct a 2 × 2 table relating disease and exposure within each stratum, as 
shown in Table 13.13.

See page 390 for  
Equation 10.8
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(2)	 Compute the total observed number of units (O) in the (1, 1) cell over all 
strata, where

		       
O O ai

i

k

i
i

k

= =
= =
∑ ∑

1 1

(3)	 Compute the total expected number of units (E) in the (1, 1) cell over all 
strata, where

		      
E E

a b a c
ni

i

k
i i i i

ii

k

= = + +

= =
∑ ∑

1 1

( )( )

(4)	 Compute the variance (V) of O under H0, where

		      
V V

a b c d a c b d
n ni

i

k
i i i i i i i i

i
= = + + + +

=
∑

1
2

( )( )( )( )
( iii

k

−=
∑ 11 )

(5)	 The test statistic is then given by

		      
X

O E
VMH

2
25= − −(| | . )

		  which under H0 follows a chi-square distribution with 1 df.

(6)	 For a two-sided test with significance level α,

		  if  XMH
2

1 1
2> −χ α,   then reject H0.

		  if  XMH
2

1 1
2≤ −χ α,   then accept H0.

(7)	 The exact p-value for this test is given by

		      p Pr XMH= >( )χ1
2 2

(8)	 Use this test only if the variance V is ≥ 5.

(9)	 Which row or column is designated as first is arbitrary. The test statistic XMH
2  

and the assessment of significance are the same regardless of the order of 
the rows and columns.

The acceptance and rejection regions for the Mantel-Haenszel test are 
shown in Figure 13.1. The computation of the p-value for the Mantel-Haenszel 
test is illustrated in Figure 13.2.

2

2

2

2

XMH ≤ χ1, 1 – α
Acceptance region

0

Value

Fr
eq

u
en

cy

XMH =2 (|O – E| – .5)2

V

XMH > χ1, 1 – α
Rejection region

2χ1, 1 – α

χ1 distribution2

	 Figure 13.1 	 Acceptance and rejection regions for the Mantel-Haenszel test
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	 Example 13.27 	 Cancer  Assess the relationship between passive smoking and cancer risk using the 
data stratified by personal smoking status in Tables 13.11 and 13.12 (on page 659).

	 	 Solution:  Denote the nonsmokers as stratum 1 and the smokers as stratum 2.

O1 = observed number of nonsmoking cases who are passive smokers = 120

O2 = observed number of smoking cases who are passive smokers = 161

Furthermore,

		     

E

E

1

2

231 200
466

99 1

278 291
532

152 1

= × =

= × =

.

.

Thus, the total observed and expected numbers of cases who are passive smokers are, 
respectively,

		  O O O
E E E

= + = + =
= + = + =

1 2

1 2

120 161 281
99 1 152 1 251 2. . .

Therefore, more cases are passive smokers than would be expected based on their 
personal smoking habits. Now compute the variance to assess whether this differ-
ence is statistically significant.

		    

V

V

1 2

2

231 235 200 266
466 465

28 60

278 254

= × × ×
×

=

= × ×

.

2291 241
532 531

32 952
×

×
= .

Therefore,   V V V= + = + =1 2 28 60 32 95 61 55. . .

Thus, the test statistic XMH
2  is given by

		  XMH
2

2281 251 2 5
61 55

858 17
61 55

13=
− −( )

= =
| . | .

.
.
.

.994 1
2~ χ  under H0

0

Value

Fr
eq

u
en

cy

XMH =2 (|O – E| – .5)2

V

p

2XMH

χ1 distribution2

	 Figure 13.2 	 Computation of the p-value for the Mantel-Haenszel test
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Because χ1 999
2 210 83 13 94,. . .= < = XMH , it follows that p < .001. Thus, there is a highly 

significant positive association between case–control status and passive-smoking 
exposure, even after controlling for personal cigarette-smoking habit.

Estimation of the Odds Ratio for Stratified Data
The Mantel-Haenszel method tests significance of the relationship between disease 
and exposure. However, it does not measure the strength of the association. Ideally, 
we would like a measure similar to the OR presented for a single 2 × 2 contingency 
table in Definition 13.6 (on page 640). Assuming that the underlying OR is the same 
for each stratum, an estimate of the common underlying OR is provided by the 
Mantel-Haenszel estimator as follows.

	 Equation 13.17 	 Mantel-Haenszel Estimator of the Common Odds Ratio for Stratified Data

	 	 	 In a collection of k 2 × 2 contingency tables, where the table corresponding to 
the ith stratum is denoted as in Table 13.13 (on page 660), the Mantel-Haenszel 
estimator of the common OR is given by

		      

MH

i i i
i

k

i i i
i

k

a d n

b c n
= =

=

∑

∑

/

/

1

1

OR
^

	 Example 13.28 	 Cancer  Estimate the OR in favor of being a passive smoker for cancer cases vs. con-
trols after controlling for personal smoking habit.

	 	 Solution:  From Equation 13.17, Table 13.11, and Table 13.12 (p. 659),

		
MH = × + ×

× +
( / ) ( / )
( / )
120 155 466 161 124 532
80 111 466 (( / )

.

.
.

130 117 532
77 44
47 65

1 63
×

= =OR
^

Thus, the odds in favor of being a passive smoker for a cancer case is 1.6 times as 
large as that for a control. Because cancer is relatively rare, we can also interpret 
these results as indicating that risk of cancer for a passive smoker is 1.6 times as great 
as for a nonpassive smoker, even after controlling for personal smoking habit.

We are also interested in estimating confidence limits for the OR in Equation 
13.17. A variance estimate of ln( )MHOR

^
 has been provided by Robins et al. [5], which 

is accurate under a wide range of conditions, particularly if there are many strata 
with small numbers of subjects in each stratum. This variance estimate can be used 
to obtain confidence limits for ln(OR). We can then take the antilog of each of the 
confidence limits for ln(OR) to obtain confidence limits for OR. This procedure is 
summarized as follows.

	 Equation 13.18 	 Interval Estimate for the Common Odds Ratio from a Collection of k 2 × 2 	
Contingency Tables 

	 	 	 A two-sided 100% × (1 − α) CI for the common OR from a collection of k 2 × 2 tables  
is given by
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exp ln (ln )/MH MH

z Var± −1 2αOR
^

OR
^

where

		  

Var
P R

R

PS Q R
MH

i ii

k

ii

k

i i i i(ln )
( )

=
( )

+
+

=

=

∑
∑

1

1

2
2

ii

k

ii

k
ii

k
i ii

k

ii

kR S

Q S

S

=

= =

=

=

∑
∑ ∑

∑
∑( )( ) +1

1 1

1

1
2 2 (( )

≡ + +2 A B COR
^

where A, B, and C correspond to the first, second, and third terms on the right-
hand side of Var MH(ln )OR

^
, and

		  
P

a d
ni

i i

i
= +

,
 
Q

b c
ni

i i

i
= +

,
 
R

a d
ni
i i

i
= ,

 
S

b c
ni
i i

i
=

	 Example 13.29 	 Cancer  Estimate 95% confidence limits for the common OR using the data in Tables 
13.11 and 13.12 (on page 659).

	 	 Solution:  Note from Example 13.28 that the point estimate of the OR = OR
^

MH = 1.63. 
To obtain confidence limits, we first compute Pi, Qi, Ri, and Si as follows:

		

P Q P

R

1 1 1

1

120 155
466

590 1 410

120 15

= + = = − =

=

. , .

( 55
466

39 91
80 111

466
19 061

)
. ,

( )
.= = =S

		

P Q P

R

2 2

2

161 124
532

536 1 464

161 124

= + = = − =

= (

. , .2

)) = = ( ) =
532

37 53
130 117

532
28 592. , .S

Thus,

		  Var A B CMHln( ) = + +OR
^

where

		
A = ( ) + ( )

+( )
=

. . . .

. .
.

590 39 91 536 37 53

2 39 91 37 53
02 000364

		  B = ( ) + ( ) + ( ) +. . . . . . .590 19 06 410 39 91 536 28 59 464 377 53
2 39 91 37 53 19 06 28 59

0 00818
.

. . . .
.

( )
+( ) +( ) =

		  C = ( ) + ( )
+( )

=
. . . .

. .
.

410 19 06 464 28 59

2 19 06 28 59
02 000464

Thus, OR
^

Var MHln( ) = + + =0 00364 0 00818 0 00464 0 01646. . . . . The 95% CI for ln(OR) is

	 ln 1.63( ) ± = ( )1 96 0 01646 0 234 0 737. . . , .

 The 95% CI for OR is

		    e e0 234 0 737 1 26 2 09. ., . , .( ) = ( )
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Effect Modification
One assumption made in the estimation of a common OR in Equation 13.17  
is that the strength of association is the same in each stratum. If the underlying OR 
is different in the various strata, then it makes little sense to estimate a common OR.

	 Definition 13.16 	 Suppose we are interested in studying the association between a disease variable D 
and an exposure variable E but are concerned about the possible confounding effect 
of another variable C. We stratify the study population into g strata according to  
the variable C and compute the OR relating disease to exposure in each stratum.  
If the underlying (true) OR is different across the g strata, then there is said to be 
interaction or effect modification between E and C, and the variable C is called an 
effect modifier.

In other words, if C is an effect modifier, then the relationship between disease 
and exposure differs for different levels of C.

	 Example 13.30 	 Cancer  Consider the data in Tables 13.11 and 13.12 (on page 659). We estimated that 
the OR relating cancer and passive smoking is 2.1 for nonsmokers and 1.3 for smok-
ers. If these were the underlying ORs in these strata, then personal smoking would be 
an effect modifier. Specifically, the relationship between passive smoking and cancer 
is much stronger for nonsmokers than for smokers. The rationale for this is that the 
home environment of active smokers already contains cigarette smoke and the extra 
degradation of the environment by spousal smoking may not be that meaningful.

The issue remains, how can we detect whether another variable C is an effect mod-
ifier? We use a generalization of the Woolf procedure for obtaining confidence limits 
for a single OR given in Equation 13.11 (on page 644). Specifically, we want to test the 
hypothesis H OR OR Hk0 1 1: vs.= =. . . : at least two of the ORi differ from each other.  

We base our test on the test statistic X w ORii

k2
1

2
= −( )=∑ ln lnOR

^

i  where ln OR
^

i = the 

estimated log OR relating disease to exposure in the ith stratum of the potential ef-
fect modifier, C, ln OR = the estimated “weighted average” log OR over all strata, and 
w is a weight that is inversely proportional to the variance of ln OR

^

i. The purpose of 
the weighting is to weight strata with lower variance (which usually correspond to 
strata with more subjects) more heavily. If H0 is true, then X2 will be small because 
each of the stratum-specific log ORs will be relatively close to each other and to the 
“average” log OR. Conversely, if H1 is true, then X2 will be large. Under H0, it can be 
shown that X2 follows a chi-square distribution with k − 1 df. Thus we will reject H0  
if X k

2
1 1

2> − −χ α,  and accept H0 otherwise. This procedure is summarized as follows.

	 Equation 13.19 	 Chi-Square Test for Homogeneity of ORs over Different Strata (Woolf Method)

	 	 	 Suppose we have a dichotomous disease variable D and exposure variable E. We 
stratify our study population into k strata according to a confounding variable C. 
Let ORi = underlying OR in the ith stratum. To test the hypothesis H0: OR1 = . . . =  
ORk vs. H1: at least two of the ORi’s are different with a significance level α, use 
the following procedure:

(1)	 Compute the test statistic X w ORi
i

k

kHOM ln ln2 2

1
1

2= −( )
=

−∑ ∼ χOR
^

i  under H0 
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where ln OR
^

i = estimated ln OR in the ith stratum = ln a d b ci i i i( )  and 
a b c di i i i, , ,  are the cells of the 2 × 2 table relating disease to exposure in 
the ith stratum as shown in Table 13.13.

		        

w
a b c di

i i i i
= + + +







−
1 1 1 1

1

(1a)	An alternative computational form of the test statistic is

		        
X w w wi

i

k

i
i

k

i
i

HOM ln ln2 2

1 1

2

1

= ( ) −





= = =
∑ ∑

kk

∑OR
^

i OR
^

i

(2)	 If then reject

If

HOM

HOM

X H

X

k
2

1 1
2

0

2

> − −χ α, , ,

≤≤ − −χ αk H1 1
2

0, , .then accept

(3)	 The exact p-value = Pr χk X− >( )1
2 2

	 Example 13.31 	 Cancer  Assess whether the ORs relating passive smoking to cancer are different for 
smokers vs. nonsmokers, using the data in Tables 13.11 and 13.12 (on page 659).

	 	 Solution:  Let stratum 1 refer to nonsmokers and stratum 2 to smokers. Referring to 
Tables 13.11 and 13.12, we see that

		

OR
^

1

OR
^

2

ln ln
120 155

ln 2.095= ×
×







= ( ) =
80 111

0 739.

w1

1
11

120
1

111
1
80

1
155

0 036= + + +





= ( )
−

−
. ==

= ×
×







= ( )

27 55

130 117

.

ln ln
161 124

ln 1.313 ==

= + + +





=
−

0 272

1
161

1
117

1
130

1
1242

1

.

w 00 031 32 77
1

. .( ) =−

Thus, based on step 1a in Equation 13.19, the test statistic is given by

XHOM
2 2 2

27 55 0 739 32 77 0 272 27 55 0 73= ( ) + ( ) −. . . . . . 99 32 77 0 272 27 55 32 77
2( ) + ( )  +( ). . . .

= − ( )
= −

17 486 29 284 60 32

17 486

2
. . .

. 114 216 3 27 1
2

0. .= ∼ χ under H

Referring to Table 6 in the Appendix, we note that χ χ1 90
2

1 95
2 3 84,. ,. .= 2.71, = . Because 

2.71 < 3.27 < 3.84, it follows that .05 < p < .10. Using R, the exact p-value = 1−pchisq 
(3.27,1) = 0.071. Thus, there is no significant effect modification; that is, the ORs in 
the two strata are not significantly different.

In general, it is important to test for homogeneity of the stratum-specific ORs. If 
the true ORs are significantly different, then it makes no sense to obtain a pooled-OR 
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estimate such as given by the Mantel-Haenszel estimator in Equation 13.17 (p. 663). 
Instead, separate ORs should be reported.

Estimation of the OR in Matched-Pair Studies
There is a close connection between McNemar’s test for matched-pair data in Equa-
tion 10.11 and the Mantel-Haenszel test procedure for stratified categorical data 
in Equation 13.16. Matched pairs are a special case of stratification in which each 
matched pair corresponds to a separate stratum of size 2. It can be shown that 
McNemar’s test is a special case of the Mantel-Haenszel test for strata of size 2. Fur-

thermore, the Mantel-Haenszel OR estimator in Equation 13.17 reduces to = n
n

A

B
OR
^

for matched-pair data, where nA = number of discordant pairs of type A and nB =  
number of discordant pairs of type B. Also, it can be shown that the variance of 

ln(OR) for a matched-pair study is given by Var
npq

[ln( )]
ˆˆ

= 1
OR
^

, where n = total number 

of discordant pairs = + =n n pA B, ˆ  proportion of discordant pairs of type A = nA/(nA + 
nB), ˆ ˆq p= −1 . This leads to the following technique for estimating the disease–expo-
sure OR in matched-pair studies.

	 Equation 13.20 	 Estimation of the OR in Matched-Pair Studies

	 	 	 Suppose we want to study the relationship between a dichotomous disease and 
exposure variable, in a case–control design. We control for confounding by 
forming matched pairs of subjects with disease (cases) and subjects without dis-
ease (controls), where the two subjects in a matched pair are the same or similar 
on one or more confounding variables.

(1)	 The OR relating disease to exposure is estimated by

		      OR
^

  = nA /nB

		  where

nA = �number of matched pairs in which the case is exposed and the control 
is not exposed

nB = �number of matched pairs in which the case is not exposed and the 
control is exposed

(2)	 A two-sided 100% × (1 − α) CI for OR is given by ( , )e ec c1 2 , where

		          

c z
npq

c z
npq

n

1 1 2

2 1 2

1

1

= −

= +

=

−

−

ln( )
ˆˆ

ln( )
ˆˆ

/

/

α

α

nn n

p
n

n n
q p

A B

A

A B

+

=
+

= −ˆ , ˆ ˆ1

OR
^

OR
^

(3)	 The same methodology can be used for prospective or cross-sectional stud-
ies in which exposed and unexposed individuals are matched on one or 

See page 410 for  
Equation 10.17

See page 397 for  
Equation 10.11

See page 660 for  
Equation 13.16
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more confounding variables and disease outcomes are compared between 
exposed and unexposed individuals. In this setting,

nA = �number of matched pairs in which the exposed subject has disease 
and the unexposed subject does not

nB = �number of matched pairs in which the exposed subject does not 
have disease and the unexposed subject does and steps 1 and 2 are 
as just indicated

(4)	 This method should only be used if n = number of discordant pairs is ≥20.

	 Example 13.32 	 Cancer  Estimate the OR relating type of treatment to 5-year mortality using the 
matched-pair data in Table 10.13 (on page 396).

	 	 Solution:  We have from Table 10.13 that

		  nA = �number of matched pairs in which the treatment A patient dies within  
5 years and the treatment B patient survives for 5 years = 5

		  nB = �number of matched pairs in which the treatment B patient dies within  
5 years and the treatment A patient survives for 5 years = 16

Thus, 5 /16 0.31= =OR
^

. To obtain a 95% CI, we see that n = 21, ˆ / .p = =5 21 238, 
ˆ .q = 762, and npqˆˆ .= 3 81. Thus, ln( ) .= −1 163OR

^
, Var[ln( )] / . .= =1 3 81 0 263OR

^
, and a 

95% CI for ln(OR) is ( . . . , . . . ) ( .− − − + = −1 163 1 96 0 263 1 163 1 96 0 263 2 167,, . )− 0 159 . 

The corresponding 95% CI for OR is (e−2.167, e−0.159) = (0.11, 0.85).

Using the Computer to Perform the Mantel-Haenszel Test  
and Estimate the Mantel-Haenszel Odds Ratio
We can use the mantelhaen.test command of R for this purpose.

1.	 We first enter the data into a 2 × 2 × k array labeled table.

2.	 We then specify

	 mantelhaen.test(table)

	 Example 13.33 	 Cancer  Use the computer to perform the Mantel-Haenszel test and estimate the 
Mantel-Haenszel odds ratio for the lung cancer-passive smoking data in Tables 13.11 
and 13.12 (on page 659).

	 	 Solution:  We use the mantelhaen.test command of R for this purpose. First, we form 
the array of cell counts for each of the tables, where the counts are entered column-
wise as follows:

> table<- array(c(120,80,111,155,161,130,117,124),  
dim = c(2,2,2), dimnames = list(status = c(“case”, “control”), 
passive.smoker = c(“yes”, “no”), active.smoker = c(“no”, “yes”)))

> table

, , active.smoker = no

         passive.smoker
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status      yes    no

  case    120  111

  control  80  155

, , active.smoker = yes

         passive.smoker

status    yes      no

  case     161  117

  control 130  124

We then specify:
> mantelhaen.test(table)

      Mantel-Haenszel chi-squared test with continuity correction

data:  table

Mantel-Haenszel X-squared = 13.9423, df = 1, p-value = 0.0001885

alternative hypothesis: true common odds ratio is not equal to 1

95 percent confidence interval:

      1.263955 2.090024

sample estimates:

common odds ratio 

      1.625329

The test statistic agrees with the solution to Example 13.27 (on page 662). The Mantel-
Haenszel odds ratio and confidence limits agree with the solutions to Examples 13.28 
and 13.29 (on pages 663 and 664, respectively).

Testing for Trend in the Presence of Confounding— 
Mantel-Extension Test

	 Example 13.34 	 Sleep Disorders  Sleep-disordered breathing is very common among adults. To 
estimate the prevalence of this disorder, a questionnaire concerning sleep habits 
was mailed to 3513 individuals 30–60 years of age who worked for three large state 
agencies in Wisconsin [6]. Subjects were classified as habitual snorers if they reported 
either (1) snoring, snorting, or breathing pauses every night or almost every night or 
(2) extremely loud snoring. The results are given by age and sex group in Table 13.14.

	 Table 13.14 	 Prevalence of habitual snoring by age and sex group

	 Women	 Men

Age	 Yes	 No	 Total	 Yes	 No	 Total

30–39	 196	 603	 799	 188	 348	 536
40–49	 223	 486	 709	 313	 383	 696
50–60	 103	 232	 335	 232	 206	 438

Total	 522	 1321	 1843	 733	 937	 1670

We would like to assess whether the prevalence of habitual snoring increases with age.
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In this study, we want to assess whether there is a trend in the prevalence rates 
with age after controlling for sex. To address this issue, we need to generalize the 
chi-square test for trend given in Equation 10.20 to allow for stratification of our 
study sample by relevant confounding variables. We can also describe this problem 
as a generalization of the Mantel-Haenszel test given in Equation 13.16 in which we 
are combining results from several 2 × k tables (rather than just 2 × 2 tables). Suppose 
we have s strata and k ordered categories for the exposure variable. Consider the 2 × k 
table relating the dichotomous disease variable D to the ordered categorical expo-
sure variable E for subjects in the ith stratum (see Table 13.15). We assume there is a 
score for the jth exposure category denoted by xj, j = 1, . . . , k.

	 Table 13.15 	 Relationship of disease to exposure in the i th stratum, 	
i = 1, . . . , s

	 Exposure

	 1	 2	 . . .	 k

Disease
	 +	 ni1	 ni2	 . . .	 nik	 ni

	 –	 mi1	 mi2	 . . .	 mik	 mi

	 	 Ni1	 Ni2	 . . .	 Nik	 Ni

Score		  x1	 x2	 . . .	 xk

The total observed score among subjects with disease in the ith stratum = Oi = n xij j
j

k

=
∑

1

. The 

expected score among diseased subjects in the ith stratum under the null hypothesis 
that the average score for subjects with and without disease in a stratum is the 

same E N x
n
Ni ij j

j

k
i

i1
∑= =











=
. If diseased subjects tend to have higher exposure scores on aver-

age than nondiseased subjects, then Oi will be greater than Ei for most strata. If dis-
eased subjects tend to have lower exposure scores than nondiseased subjects, then 
Oi will be less than Ei for most strata. Therefore, we will base our test on O – E where

∑=
=

O Oi
i

s

1
, ∑=

=
E Ei

i

s

1
. The test procedure is given as follows.

	 Equation 13.21 	 Chi-Square Test for Trend-Multiple Strata (Mantel Extension Test)

(1)	 Suppose we have s strata. In each stratum, we have a 2 × k table relating 
disease (2 categories) to exposure (k ordered categories) with score for the 
jth category = xj as shown in Table 13.15.

(2)	 Let pij = proportion of subjects with disease among subjects in the ith stra-
tum and jth exposure category

		  To test the hypothesis H0: β = 0 vs. H1: β ≠ 0, where

		        p xij i j= +α β

		  We compute the test statistic

		        X O E V HTR
2 2

1
2

00 5= − −( ). ∼ χ under

See page 418 for  
Equation 10.20

See page 660 for  
Equation 13.16
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		  where

		      

∑ ∑∑

∑ ∑∑

∑ ∑

∑

∑

( )
( )

= =

= =













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







= =
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= , = ,…,

= , = ,…,

= ==

= ==

= =

=

=
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1

1
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s
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s
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1 11

1 11

1

2 1
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2
1

1
1

2
1

2

(3)	 If  XTR
2

1 1
2> −χ α, ,  we reject H0.

		  If  XTR
2

1 1
2≤ −χ α, ,  we accept H0.

(4)	 The exact p-value = Pr XTR( ).χ1
2 2>

(5)	 This test should only be used if V ≥ 5.

	 Example 13.35 	 Use the data in Table 13.14 to assess whether the prevalence of habitual snoring 
increases with age, after controlling for sex.

	 	 Solution:  In this example, we have two strata, corresponding to women (i = 1) and men 
(i = 2), respectively. We will use scores of 1, 2, and 3 for the three age groups. We have

	

O
O

1

2

196 1 223 2 103 3 951
188 1 313 2

= + + =
= +

( ) ( ) ( )
( ) ( ) ++ =

= + =
= +

232 3 1510
951 1510 2461
799 1 7091

( )

[ ( ) (
O
E 22 335 3 522 1843 912 6

536 1 696 2 432

) ( )] .

( ) ( )

+ =
= + +E 88 3 733 1670 1423 0

912 6 1423 0 2335 6

( ) .

. . .
[ ] =

= + =E
s111

21
2

799 1 709 2 335 3 3222

799 1 70

= + + =

= +

( ) ( ) ( )

( )s 99 2 335 3 6650
536 1 696 2 438 3

2 2

12

( ) ( )
( ) ( ) ( )

+ =
= + +s ==

= + + =

=

3242

536 1 696 2 438 3 7262

52

22
2 2 2

1

s

V

( ) ( ) ( )

22 1321 1843 6650 3222

1843 1842
206

2

2

( ) ( )

( )

−  = ..

( )[ ( ) ]
(

61

733 937 1670 7262 3242
1670 16692

2

2V = −
))

.

. . .

=

= + =

238 59

206 61 238 59 445 21V

Thus, the test statistic is given by

		  XTR
2

2 22461 2335 6 5
445 21

124 9
445 21

3=
− −( )

= =
. .

.
.
.

55 06 1
2. ∼ χ
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Because χ1 999
2 10 83,. .=  and XTR

2 35 06 10 83= >. . , it follows that p < .001. Therefore, 
there is a significant association between the prevalence of habitual snoring and 
age, with older subjects snoring more frequently. This analysis was performed while 
controlling for the possible confounding effects of sex.

In this section, we have learned about analytic techniques for controlling for 
confounding in epidemiologic studies. If we have a dichotomous disease variable 
(D), a dichotomous exposure variable (E), and a categorical confounder (C), then 
we can use the Mantel-Haenszel test to assess the association between D and E 
while controlling for C. On the master flowchart in the back of the book (p. 900), 
starting at  6 , we answer yes to (1) 2 × 2 contingency table? and at  A  arrive at the 
box labeled “Use two-sample test for binomial proportions, or 2 × 2 contingency-
table methods if no confounding is present, or the Mantel-Haenszel test if con-
founding is present.”

If E is categorical but has more than two categories, then we can use the Mantel 
Extension test for this purpose. Referring to the master flowchart again, we answer 
no to (1) 2 × 2 contingency table? yes to (2) 2 × k contingency table? and yes to  
(3) interested in trend over k proportions? This leads us to the box labeled “Use  
chi-square test for trend if no confounding is present, or the Mantel Extension test 
if confounding is present.”

RE  V I E W  QUE   S T I ON  S  1 3 C

1	 What is the purpose of the Mantel-Haenszel test? How does it differ from the ordi-
nary chi-square test for 2 × 2 tables?

2	 A case–control study was performed relating environmental arsenic exposure 
to nonmelanoma skin cancer. Distance of a residence from a power station was 
considered as an indirect measure of arsenic exposure [7]). The data, presented by 
gender, are shown in Table 13.16.

	 (a)	 Use the Mantel-Haenszel test to assess the association between case–control 
status and distance to the power station.

	 (b)	 Estimate the OR between case–control status and distance to the power sta-
tion, and provide a 95% CI around this estimate.

	 (c)	 Assess the homogeneity of the preceding ORs for males vs. females.

3	 What is the difference between the Mantel Extension test and the Mantel-Haenszel 
test?

	 Table 13.16 	 Association between nonmelanoma skin cancer and distance 	
of residence from a power station

Males Females

Distance to power station Distance to power station

< 5 km > 10 km < 5 km > 10 km

Cases 15 30 21 50

Controls 23 38 19 52

4	 The complete distribution of distance to the power station × case–control status for 
the study mentioned in Review Question 13C.2 is given in Table 13.17.

R
 E

 V
 I 

E 
W
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	 Table 13.17	 Association between nonmelanoma skin cancer and distance of residence from a 
power station

Males Females

Distance to power station Distance to power station

< 5 km 5−10 km > 10 km < 5 km 5−10 km > 10 km

Cases 15 84 30 21 64 50

Controls 23 81 38 19 73 52

Use the Mantel Extension test to assess whether distance to the power station is  
associated with case–control status after controlling for gender.

	 13.7	 M u lt i p l e  L o g is  t i c  R e g r e ssi   o n

Introduction
In Section 13.6, we learned about the Mantel-Haenszel test and the Mantel Exten-
sion test, which are techniques for controlling for a single categorical covariate C 
while assessing the association between a dichotomous disease variable D and a 
categorical exposure variable E. If

(1)	 E is continuous

(2)	 or C is continuous

(3)	 or there are several confounding variables C1, C2, . . . , each of which may be either 
categorical or continuous

then it is either difficult or impossible to use the preceding methods to control for 
confounding. In this section, we will learn about the technique of multiple logistic 
regression, which can handle all the situations in Section 13.6 as well as those in 
(1), (2), and (3) above. Multiple logistic regression can be thought of as an analog to 
multiple linear regression, discussed in Chapter 11, where the outcome (or depen-
dent) variable is binary as opposed to normally distributed.

General Model
	 Example 13.36 	 Infectious Disease  Chlamydia trachomatis is a microorganism that has been es-

tablished as an important cause of nongonococcal urethritis, pelvic inflammatory 
disease, and other infectious diseases. A study of risk factors for C. trachomatis was 
conducted in a population of 431 female college students [8]. Because multiple risk 
factors may be involved, several risk factors must be controlled for simultaneously in 
analyzing variables associated with C. trachomatis.

A model of the following form might be considered.

	 Equation 13.22 	 p x xk k= + + +α β β1 1
. . .

where p = probability of disease. However, because the right-hand side of Equation 13.22 
could be less than 0 or greater than 1 for some values of x1, . . . , xk, predicted probabili-
ties that are either less than 0 or greater than 1 could be obtained, which is impossible. 
Instead, the logit (logistic) transformation of p is often used as the dependent variable.
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	 Definition 13.17 	 The logit transformation logit(p) is defined as

		  logit( ) ln / ( )p p p= −[ ]1

Unlike p, the logit transformation can take on any value from −∞ to +∞.

	 Example 13.37 	 �Compute logit(.1), logit(.95).

	 	 Solution:  logit

log

(. ) ln . / . ln( / ) ln( ) .1 1 9 1 9 9 2 20= ( ) = = − = −
iit(. ) ln . / . ln( ) .95 95 05 19 2 94= ( ) = =

If logit(p) is modeled as a linear function of the independent variables xl, . . . , xk, 
then the following multiple logistic-regression model is obtained.

	 Equation 13.23 	 �Multiple Logistic-Regression Model

	 	 �If xl, . . . , xk are a collection of independent variables and y is a binary-outcome 
variable with probability of success = p, then the multiple logistic-regression 
model is given by

		  logit( ) ln . . .p
p

p
x xk k=

−






= + + +
1 1 1α β β

  or, equivalently, if we solve for p, then the model can be expressed in the form

		
p

e
e

x x

x x

k k

k k
=

+

+ + +

+ + +

α β β

α β β

1 1

1 11

. . .

. . .

In the second form of the model, we see that p must always lie between 0 and 
1 regardless of the values of xl, . . . , xk. Complex numeric algorithms are generally 
required to fit the parameters of the model in Equation 13.23. The best-fitting model 
relating the prevalence of C. trachomatis to the risk factors (1) race and (2) the life-
time number of sexual partners is presented in Table 13.18.

Interpretation of Regression Parameters
How can the regression coefficients in Table 13.18 be interpreted? The regression 
coefficients in Table 13.18 play a role similar to that played by partial-regression 
coefficients in multiple linear regression (see Definition 11.18, on page 504). This 
relationship is summarized in Equation 13.24. 

	 Equation 13.24 	 �Estimation of ORs in Multiple Logistic Regression for Dichotomous Independent 
Variables

	 	 �Suppose there is a dichotomous exposure variable (xj), which is coded as 1 if pres-
ent and 0 if absent. For the multiple logistic-regression model in Equation 13.23, 
the OR relating this exposure variable to the dependent variable is estimated by

		       = e jβ̂
OR
^
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 � This relationship expresses the odds in favor of success if xj = 1 divided by the 
odds in favor of success if xj = 0 (i.e., the disease–exposure OR) after controlling for 
all other variables in the logistic-regression model. Furthermore, a two-sided 100% × 
(1 − α) CI for the true OR is given by

		
e ej j j jz se z seˆ (ˆ ) ˆ (ˆ )/ /,

β β β βα α− +− −





1 2 1 2

To derive this, suppose we consider two individuals with different values of the in-
dependent variables as shown in Table 13.19, where the jth independent variable 
is a binary variable.

If we refer to the independent variables as exposure variables, then individuals 
A and B are the same on all risk factors in the model except for the jth exposure 
variable, where individual A is exposed (coded as 1) and individual B is not exposed 
(coded as 0). According to Equation 13.23, the logit of the probability of success for 
individuals A and B, denoted by logit(pA), and logit(pB), are given by

	 Equation 13.25 	 logit( ) . . . ( )p x x xA j j j j j= + + + + +− − + +α β β β β1 1 1 1 11 11

1 1 1 1

+ +

= + + + +− −

. . .

( ) . . .
β

α β β β
k k

B j j j

x

p x xlogit (( ) . . .0 1 1+ + ++ +β βj j k kx x

	 Table 13.18 	 Multiple logistic-regression model relating prevalence of C. trachomatis to race and 
number of lifetime sexual partners

	 Regression coefficient 	 Standard error	 z 

Risk factor	 β̂ j( )	 se jβ̂( )	 ˆ / ˆβ βj jse ( )





Constant	 −1.637		
Black race	 +2.242	 0.529	 +4.24
Lifetime number of sexual partners	 +0.102	 0.040	 +2.55 
among users of nonbarriera	 		   
methods of contraceptionb	 		

aBarrier methods of contraception include diaphragm, diaphragm and foam, and condom; nonbarrier methods include 
all other forms of contraception or no contraception.
bThis variable is defined as 0 for users of barrier methods of contraception.

Source: From McCormack, et al., “Infection with Chlamydia Trachomatis in Female College Students,” American 
Journal of Epidemiology, 1985 121: 107–115. 

	 Table 13.19 	 Two hypothetical subjects with different values for a binary independent variable (xj) 
and the same values for all other variables in a multiple logistic-regression model

	 Independent variable

Individual	 1	 2	 . . .	 j − 1	 j	 j + 1 . . . k

A	 x1	 x2	 . . .	 xj−1	 1	 xj+1 . . . xk

B	 x1	 x2	 . . .	 xj−1	 0	 xj+1 . . . xk

If we subtract logit(pB) from logit(pA) in Equation 13.25, we obtain
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	 Equation 13.26 	 logit logit( ) ( )p pA B j− = β

However, from Definition 13.17, logit(pA) = ln[pA/(1 − pA)], logit(pB) = ln[pB/(1 − pB)]. 
Therefore, on substituting into Equation 13.26, we obtain

		
ln / ( ) ln / ( )p p p pA A B B j1 1−[ ] − −[ ] = β

or

	 Equation 13.27 	 ln
/ ( )
/ ( )

p p
p p

A A

B B
j

1
1

−
−









 = β

If we take the antilog of each side of Equation 13.27, then we have

	 Equation 13.28 	 p p
p p

eA A

B B

j/ ( )
/ ( )

1
1

−
−

= β

However, from the definition of an OR (Definition 13.6, p. 640), we know the odds 
in favor of success for subject A (denoted by OddsA) is given by OddsA = pA/(1 − pA).  
Similarly, OddsB = pB /(1 − pB). Therefore, we can rewrite Equation 13.28 as  
follows.

	 Equation 13.29 	 Odds
Odds

A

B
e j= β

Thus, in words, the odds in favor of disease for subject A divided by the odds in fa-
vor of disease for subject B = e jβ

. However, we can also think of OddsA/OddsB as the 
OR relating disease to the jth exposure variable for two hypothetical individuals, one 
of whom is exposed for the jth exposure variable (subject A) and the other of whom 
is not exposed for the jth exposure variable (subject B), where the individuals are 
the same for all other risk factors considered in the model. Thus, this OR is an OR 
relating disease to the jth exposure variable, adjusted for the levels of all other risk 
factors in our model.

	 Example 13.38 	 Infectious Disease  Estimate the odds in favor of infection with C. trachomatis for 
African American women compared with Caucasian women after controlling for 
previous sexual experience, and provide a 95% CI about this estimate.

	 	 Solution:  From Table 13.18,

		    = =e2 242 9 4. .OR
^

Thus, the odds in favor of infection for African American women are nine times as 
great as those for Caucasian women after controlling for previous sexual experience. 
Furthermore, because z1−α/2 = z.975 = 1.96 and se j(ˆ ) .β = 0 529, a 95% CI for OR is given by

		  e e2 242 1 96 0 529 2 242 1 96 0 529. . ( . ) . . ( . ), (− +  = ee e1 205 3 279 3 3 26 5. ., ) ( . , . )=
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We can also use Equation 13.24 to make a connection between logistic regres-
sion and contingency-table analysis for 2 × 2 tables given in Chapter 10. Specifically, 
suppose there is only one risk factor in the model, which we denote by E and which 
takes the value 1 if exposed and 0 if unexposed, and we have a dichotomous disease 
variable D. We can relate D to E using the logistic-regression model.

	 Equation 13.30 	 log / ( )p p E1 −[ ] = +α β

where p = probability of disease given a specific exposure status E. Therefore, the 
probability of disease among the unexposed = eα/(1 + eα) and among the exposed = 
eα+β/(1 + eα+β). Also, from Equation 13.24, eβ represents the OR relating D to E and is 
the same OR [ad/(bc)] obtained from the 2 × 2 table in Table 10.7 (on page 385) relat-
ing D to E. We have formulated the models in Equations 13.23 and 13.30 under the 
assumption that we have conducted either a prospective study or a cross-sectional 
study (i.e., that our study population is representative of the general population and 
we have not oversampled cases in our study population, as would be true in a case–
control study). However, logistic regression is applicable to data from case–control 
studies as well. Suppose we have a case–control study in which there is a disease 
variable D and an exposure variable E and no other covariates. If we use the logistic-
regression model in Equation 13.30—that is, D as the outcome variable and E as 
the independent (or predictor) variable—then the probability of disease among the 
unexposed [eα/(1 + eα)] and the exposed [eα+β/(1 + eα+β)] will not be generalizable to the 
reference population because they are derived from a selected sample with a greater 
proportion of cases than in the reference population. However, the OR eβ will be gen-
eralizable to the reference population. Thus, we can estimate ORs from case–control 
studies, but we cannot estimate probabilities of disease. This statement is also true 
if there are multiple exposure variables in a logistic-regression model derived from 
data from a case–control study. The relationships between logistic-regression analy-
sis and contingency-table analysis are summarized as follows.

	 Equation 13.31 	 �Relationship Between Logistic-Regression Analysis and Contingency-Table Analysis

	 	 �Suppose we have a dichotomous disease variable D and a single dichotomous 
exposure variable E, derived from either a prospective, cross-sectional, or case–
control study design, and that the 2 × 2 table relating disease to exposure is 
given by

E

+ −

D
+ a b
− c d

(1)	 We can estimate the OR relating D to E in either of two equivalent ways:

		  (a)  We can compute the OR directly from the 2 × 2 table = ad/bc

		  (b)  We can set up a logistic-regression model of the form

ln ( )p p E1 −[ ] = +α β

		�  where p = probability of disease D given exposure status E and where 
we estimate the OR by eβ.

See page 674 for  
Equation 13.24

See page 674 for  
Equation 13.23
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(2)	 For prospective or cross-sectional studies, we can estimate the probability of 
disease among exposed (pE) subjects and unexposed ( )pE  subjects in either 
of two equivalent ways:

		  (a)  From the 2 × 2 table, we have

        p a a c p b b dE E= + = +/ ( ), / ( )

		  (b)  From the logistic-regression model,
				      

p e e p e eE E= + = +( )+ +ˆ ˆ ˆ ˆ ˆ ˆ( ),α β α β α α1 1

		�  where α̂, β̂ are the estimated parameters from the logistic-regression 
model.

(3)	 For case–control studies, it is impossible to estimate absolute probabilities 
of disease unless the sampling fraction of cases and controls from the refer-
ence population is known, which is almost always not the case.

	 Example 13.39 	 �Assess the relationship between mother’s age at first birth and breast-cancer inci-
dence based on the data in Table 10.1 using logistic-regression analysis.

	 	 Solution:  We will use the logistic-regression model
			 

ln[ / ( )]p p1 30− = + ×α β AGEGE

where

p =

=

probability of breast cancer

AGEGE if age at30 1 ffirst birth

otherwise

≥

=

30

0

The results using the SAS PROC LOGISTIC program are given in Table 13.20. 
We see that the estimated OR relating breast-cancer incidence to AGEGE30 = e0.4526 =  
1.57. This is identical to the OR estimated using contingency-table methods 
given in Example 13.10 (on page 643). Notice that although there are actually 
13,465 subjects in the study, PROC LOGISTIC tells us there are two observa-
tions. The reason is that the program allows us to enter data in grouped form 
with all observations with the same combination of independent variables en-
tered as one record. In this case, there is only one covariate (AGEGE30), which 
has only two possible values (0 or 1); thus, there are two “observations.” For 
each level of AGEGE30, we need to provide the number of cases (i.e., successes) 
and the number of trials (i.e., observations).

We are also interested in expressing the strength of association between a 
continuous independent variable and the dependent variable in terms of an OR 
after controlling for the other independent variables in the model. This is sum-
marized in Equation 13.32

	 Equation 13.32 	 �Estimation of ORs in Multiple Logistic Regression for Continuous Independent 
Variables 

	 	 �Suppose there is a continuous independent variable (xj). Consider two individu-
als who have values of x + ∆ and x for xj, respectively, and have the same values 
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Table 13.20 Association between age at first birth and breast-cancer incidence based on 
the data in Table 10.1 using the SAS PROC LOGISTIC procedure

Case/Trials Model (recommended instead of freq) 
Logistic Regression

The LOGISTIC Procedure

Model Information

Data Set W0RK.AFB1
Response Variable (Events) cases
Response Variable (Trials) trials
Model binary logit
Optimization Technique Fisher’s scoring

Number of Observations Read 2
Number of Observations Used 2
Sum of Frequencies Read 13465
Sum of Frequencies Used 13465

Response Profile

Ordered Binary Total
Value Outcome Frequency

1 Event 3220
2 Nonevent 10245

Model Convergence Status
Convergence criterion (GC0NV=1E-8) satisfied.

Model Fit Statistics
Intercept

Intercept and
Criterion Only Covariates

AIC 14815.785 14743.181
SC 14823.293 14758.197
-2 Log L 14813.785 14739.181

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 74.6042 1 <.0001
Score 78.3698 1 <.0001
Wald 77.5782 1 <.0001

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -1.2377 0.0225 3012.7767 <.0001
agege30 1 0.4526 0.0514 77.5782 <.0001

Odds Ratio Estimates

Point 95% Wald
Effect Estimate Confidence Limits

agege30 1.572 1.422 1.739

Association of Predicted Probabilities and Observed Responses

Percent Concordant 18.1 Somers' D 0.066
Percent Discordant 11.5 Gamma 0.222
Percent Tied 70.4 Tau-a 0.024
Pairs 32988900 c 0.533
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for all other independent variables in the model. The OR in favor of success for 
the first individual vs. the second individual is estimated by

OR
^  

= ∆
e jβ̂

	  Furthermore, a two-sided 100% × (1 − α) CI for OR is given by

e ej j j jz se z se[ ˆ (ˆ )] [ˆ (ˆ )]/ /,
β β β βα α− ∆ + ∆− −1 2 1 2{{ }

 �   Thus, OR represents the odds in favor of success for an individual with level  
x + ∆ for xj vs. an individual with level x for xj, after controlling for all other 
variables in the model. The value ∆ is usually chosen to represent a meaningful 
increment in the continuous variable x.

To derive this, suppose we have two individuals A and B who are the same for 
all independent variables in the model except for a single continuous risk factor xj, 
where they differ by an amount ∆ (see Table 13.21).

Table 13.21 Two hypothetical subjects with different values for a continuous independent variable 
(xj) in a multiple logistic-regression model and the same values for all other variables

Independent variable

Individual 1 2 . . . j − 1 j j + 1 . . . k

A x1 x2 . . . xj−1
xj + ∆ xj+1 . . . xk

B x1 x2 . . . xj−1
xj xj+1 . . . xk

Following the same argument as in Equation 13.25 (p. 675), we have

	 Equation 13.33 	 = α + β + …+ β + β + ∆ + β + …+ β

= α + β + …+ β + β + β + …+ β
− − + +

− − + +

p x x x x x

p x x x x x

logit( ) ( )

logit( )
A j j j j j j k k

B j j j j j j k k

1 1 1 1 1 1

1 1 1 1 1 1

If we subtract logit(pB) from logit(pA) in Equation 13.33, we obtain
        

logit logit( ) ( )p pA B j− = ∆β

or    ln ln
p

p
p

p
A

A

B

B
j1 1−







−
−







= ∆β

or    ln
/ ( )
/ ( )

p p
p p

A A

B B
j

1
1

−
−









 = ∆β

or    OR
p p
p p

eA A

B B

j= −
−

= ∆/ ( )
/ ( )

1
1

β

Thus, the odds in favor of disease for subject A vs. subject B = ∆
e jβ

. 

	 Example 13.40 	 Infectious Disease  Given the data in Table 13.18 (on page 675), what is the extra risk 
of infection for each additional sexual partner for women of a particular race who use 
nonbarrier methods of contraception? Provide a 95% CI associated with this estimate.
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	 	 Solution:  We have that ∆ = 1. From Table 13.18, ˆ .β j = 0 102, se j(ˆ ) .β = 0 040. Thus,

OR
^  

= = =×e e0 102 1 0 102 1 11. . .

Thus, the odds in favor of infection increase an estimated 11% for each additional 
sexual partner for women of a particular race who use nonbarrier methods of contra-
ception. A 95% CI for OR is given by

e e[ . . ( . )] [ . . ( . )],0 102 1 96 0 040 0 102 1 96 0 040− +{ } == =( , ) ( . , . ). .e e0 0236 0 1804 1 02 1 20

Hypothesis Testing
How can the statistical significance of the risk factors in Table 13.18 be evaluated? 
The statistical significance of each of the independent variables after controlling for 
all other independent variables in the model should be assessed. This task can be ac-
complished by first computing the test statistic z sej j= ˆ (ˆ )β β , which should follow an 
N(0, 1) distribution under the null hypothesis that the jth independent variable has 
no association with the dependent variable after controlling for the other variables. 
H0 will be rejected for either large positive or large negative values of z. This proce-
dure is summarized as follows.

	 Equation 13.34 	 �Hypothesis Testing in Multiple Logistic Regression 
	 	 �To test the hypothesis H0: βj = 0, all other βl ≠ 0, vs. H1: all βj ≠ 0 for the multiple 

logistic-regression model in Equation 13.23, use the following procedure:

(1)	 Compute the test statistic z se Nj j= ˆ / (ˆ ) ( , )β β ∼ 0 1  under H0.

(2)	 To conduct a two-sided test with significance level α,
		  if  z < zα/2    or    z > z1−α/2 then reject H0

		  if  zα/2 ≤ z ≤ z1−α/2  then accept H0

(3)	 The exact p-value is given by

		            
2 1 0
2 0

× − ≥
× <

[ ( )]
( )

Φ
Φ

z z
z z

if
if

(4)	 This large-sample procedure should be used only if there are at least 20 suc-
cesses and 20 failures, respectively, in the data set.

The acceptance and rejection regions for this test are shown in Figure 13.3. 
Computation of the exact p-value is illustrated in Figure 13.4.

	 Example 13.41 	 Infectious Disease  Assess the significance of the independent variables in the mul-
tiple logistic-regression model presented in Table 13.18 (on page 675).

	 	 Solution:  First compute the test statistic z sej j= ˆ / (ˆ )β β  for each of the independent 
variables, as shown in Table 13.18. For an α level of .05, compare |z| with z.975 = 1.96 
to assess statistical significance. Because both independent variables satisfy this cri-
terion, they are both significant at the 5% level. The exact p-values are given by

		
p

p
( ) [ ( . )] .

(
race

number of sexual p
= × − <2 1 4 24 001Φ

aartners) [ ( . )] .= × − =2 1 2 55 011Φ

See page 674 for  
Equation 13.23
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Thus, both variables are significantly associated with C. trachomatis. Specifically, 
after controlling for the other variable in the model, there is an increased probability 
of infection for African American women vs. Caucasian women and for women with 
more previous sexual experience vs. women with less previous sexual experience.

We also can quantify the magnitude of the association. From Example 13.38 (on 
page 676), the odds in favor of C. trachomatis are 9.4 times as high for black women 
than for Caucasian women where both women either used barrier methods of contra-
ception (in which case x2 = 0) or used nonbarrier methods of contraception and had 
the same lifetime number of sexual partners (x2 > 0). From Example 13.40 (on page 
680), for women of the same race who used nonbarrier methods of contraception, 
the odds in favor of C. trachomatis increase by a factor of 1.11 for each added sexual 
partner during her lifetime.

Finally, the 95% CIs in Equations 13.24 and 13.32 will contain 1 if and only 
if there is a nonsignificant association between xj and the dependent variable. 

See pages 674 and 678, 
respectively for  
Equation 13.24 
and 13.32

0 z1 �  � /2z� /2

z > z1 �  � /2
Rejection region

z < z� /2
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|z|  z1 �  � /2
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u
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z = test statistic in
Equation 13.34

	 Figure 13.3 	 Acceptance and rejection regions for the test of the hypothesis H0: βj = 0, 	
all other βl ≠ 0, vs. H1: all βj ≠ 0 in multiple logistic regression
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0
0
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N(0, 1) distribution N(0, 1) distribution

z = test statistic in
Equation 13.34

(b) If z = j /se( j)   ≥ 0, then p = 2 × (area to the right of z< 0, then p = 2 × (area to the right of z
under an N(0, 1) distribution).

(a) If z = j /se( j) 
under an N(0, 1) distribution).

Figure 13.4    Computation of the p-value for the test of the hypothesis H0: βj = 0, 	
all other βl ≠ 0, vs. H1: all βj ≠ 0 in multiple logistic regression
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Similarly, these intervals will not contain 1 if and only if there is a significant 
association between xj and the dependent variable. Thus, because both indepen-
dent variables in Table 13.18 (on page 675) are statistically significant, the CIs in 
Examples 13.38 and 13.40 (on pages 676 and 680, respectively) both exclude 1.

	 Example 13.42 	 Cardiovascular Disease  The Framingham Heart Study began in 1950 by enroll-
ing 2282 men and 2845 women ages 30–59 years, who have been followed up to 
the present [9]. Coronary risk-factor information about cohort members has been 
obtained at biannual examinations. The relationship between the incidence of 
CHD and selected risk factors, including age, sex, serum cholesterol, serum glucose, 
BMI, systolic blood pressure (SBP), and cigarette smoking, was assessed [10]. For the 
analysis, men were chosen who were free of CHD (either nonfatal MI or fatal CHD) 
at examination 4 and for whom all risk-factor information from examination 4 was 
available. In this analysis, the cohort was assessed for the development of CHD over 
the next 10 years (examinations 5–9). There were 1731 men who satisfied these cri-
teria and constituted the study population, of whom 163 developed CHD over the 
10-year study period. The baseline characteristics of the study population are pre-
sented in Table 13.22. Subjects were 50 years of age on average and showed a wide 
range for each of the CHD risk factors.

In Equation 13.24, we studied how to assess logistic-regression coefficients for di-
chotomous exposure variables. In Equation 13.32, we studied how to assess logistic-
regression coefficients for continuous exposure variables. In some instances, we wish 
to use categorical variables in a multiple logistic-regression model that have more 
than two categories. In this case, we can represent such variables by a collection of 
k − 1 dummy variables in a similar manner to that used for multiple regression in 
Equation 12.18.

See pages 674 and 678, 
respectively for  
Equation 13.24 
and 13.32

See page 583 for  
Equation 12.18

Table 13.22 Baseline characteristics of study population, Framingham Heart Study

Risk factor Mean
Standard  
deviation No. %

Serum cholesterol (mg/dL)a 234.8 40.6
Serum glucose (mg/dL)b 81.8 27.4
BMI  (kg/m2) 26.5 3.4
SBP (mm Hg)c 132.1 20.1
Age (years) 49.6 8.5
  35–44 228 13
  45–54 670 39
  55–64 542 31
  65–69 291 17
Current smoking (cigarettes/day)d 13.1 13.5
  0 697 40
  1–10 183 11
  11–20 510 29
  ≥21 341 20

Note: The subjects were 1731 men who were seen at examination 4 and were free of CHD at or before examination 4.
aBased on the Abell-Kendall method.
bBased on a casual specimen of the subject’s whole blood, using the Nelson method.
cAverage of two replicate measurements at examination 4, using a standard mercury sphygmomanometer.
dA current smoker is defined as a person who smoked within the past year.
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In the analysis of the data in this example, age was treated as a categorical vari-
able (with categories 35–44, 45–54, 55–64, and 65–69), whereas all other risk factors 
were treated as continuous variables. The reason for treating age as a categorical vari-
able is that in other studies, the increase in incidence of CHD with age was reported 
to be nonlinear with age; for example, the OR relating incidence for 50- to 54-year-
olds vs. incidence for 45- to 49-year-olds is different from that for 60- to 64-year-olds 
vs. 55- to 59-year-olds. If age is entered as a continuous variable, then the increase 
in risk for every 5-year increase in age (as measured by the OR) is assumed to be the 
same. Therefore, we choose one category (35–44) to be the reference category and 
create three dummy variables to represent group membership in age groups 45–54, 
55–64, and 65–69, respectively. Which category is assigned to be the reference cat-
egory is determined arbitrarily. In some instances, a particular category is a natural 
reference category based on scientific considerations. Also, all other risk factors ex-
cept number of cigarettes currently smoked were converted to the ln scale to reduce 
the positive skewness. The resulting model is 

		

p
p

ln
1

AGE4554 AGE5564 AGE6569 LCHLD235

LSUGRD82 SMOKEM13 LBMID26 LMSYD132

1 2 3 4

5 6 7 8

−






= α + β + β + β + β

+ β + β + β + β

where

                    p = probability of developing CHD over a 10-year period

     AGE4554 = 1 if a subject is age 45–54, = 0 otherwise

     AGE5564 = 1 if a subject is age 55–64, = 0 otherwise

      AGE6569 = 1 if a subject is age 65–69, = 0 otherwise

  LCHLD235 = ln(serum cholesterol/235)

  LSUGRD82 = ln(serum glucose/82)

SMOKEM13 = number of cigarettes currently smoked – 13

    LBMID26 = ln(BMI/26)

  LMSYD132 = ln(SBP/132)

Each of the risk factors (except for the age variables) have been mean-centered; that 
is, the approximate mean has either been subtracted from each value (for cigarettes 
per day, which is in the original scale) or each value has been divided by the approx-
imate mean (for all other risk factors, which are in the ln scale). The reason for doing 
this is to make the constant (α) more meaningful. In this analysis, the constant α  
represents logit(p) for an “average” subject in the reference group (35–44 years of 
age); that is, where all other risk factors are 0, which means that serum cholesterol =  
235, serum glucose = 82, number of cigarettes per day = 13, BMI = 26, SBP = 132. 
The model was fitted using SAS PROC LOGISTIC, and the results are given in  
Table 13.23.

We see that each of the risk factors is significantly related to the incidence of 
CHD, with the exception of serum glucose. The OR gives us information as to the 
magnitude of the associations. The OR for each of the age variables gives an estimate 
of the odds in favor of CHD for that age group as compared with the reference group 
(ages 35–44). The odds in favor of CHD for 45- to 54-year-olds are 2.1 (e0.7199) times 
as great as for the reference group, holding all other variables constant. Similarly, 
the odds in favor of CHD are 3.2 and 4.3 times as great for 55- to 64-year-olds and 
65- to 69-year-olds vs. the reference group. The OR for cholesterol (e1.8303 = 6.2) in-
dicates that for two men who are 1 ln unit apart on ln serum cholesterol and are 

See page 572 for  
Equation 12.15
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Table 13.23 Multiple logistic-regression model for predicting the cumulative incidence of 
CHD over 10 years based on 1731 men in the Framingham Heart Study who 
were disease free at baseline using SAS PROC LOGISTIC

Logistic Regression

The LOGISTIC Procedure

Model Information

Data Set WORK.FRAM
Response Variable cmbmichd
Number of Response Levels 2
Model binary logit
Optimization Technique Fisher’s scoring

Number of Observations Read 1731
Number of Observations Used 1731

Response Profile

Ordered Total
Value cmbmichd Frequency

1 1 163
2 1 1568

Probability modeled is cmbmichd=1

Model Convergence Status
Convergence criterion (GCONV=1E-8) satisfied

Model Fit Statistics
Intercept

Intercept and
Criterion Only Covariates

AIC 1082.387 994.458
SC 1087.843 1043.566
-2 Log L 1080.387 976.458

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 103.9293 8 <.0001
Score 104.3489 8 <.0001
Wald 91.4205 8 <.0001

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -3.1232 0.2090 223.2970 <.0001
agege4554 1 0.7199 0.2474 8.4684 0.0036
agege5564 1 1.1661 0.2551 20.9034 <.0001
agege6569 1 1.4582 0.3762 15.0242 0.0001
lchld235 1 1.8303 0.5085 12.9537 0.0003
lsugrd82 1 0.5728 0.3262 3.0847 0.0790
smokeml3 1 0.0177 0.00637 7.6909 0.0055
lbmid26 1 1.4818 0.7012 4.4662 0.0346
lmsyd132 1 2.7968 0.5737 23.7665 <.0001

(continued )
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comparable on all other risk factors, the odds in favor of CHD for the man with the 
higher cholesterol is 6.2 times as great as for the man with the lower cholesterol. 
Recall that 1 ln unit apart is equivalent to a cholesterol ratio of e1 = 2.7. If we want 
to compare men with a different cholesterol ratio (e.g., twice as great), we convert 2 
to the ln scale and compute the OR as e1.8303 ln2 = e1.8303 × 0.6931 = e1.27 = 3.6. Thus, if man 
A has a cholesterol level twice as great as man B and is the same on all other risk 
factors, then the odds in favor of CHD over a 10-year period are 3.6 times as great 
for man A vs. man B. The other continuous variables that were converted to the ln 
scale (glucose, BMI, and SBP) are interpreted similarly. Cigarette smoking was left in 
the original scale, so the OR of 1.018 provides a comparison of two men 1 cigarette 
per day apart. Because this is a trivial difference, a more meaningful comparison is 
obtained if we compare a smoker of 1 pack per day (i.e., 20 cigarettes per day—man 
A) vs. a nonsmoker (i.e., 0 cigarettes per day—man B). The odds in favor of CHD for 
man A vs. man B = e20(0.0177) = e0.354 = 1.42. Thus, the smoker of 1 pack per day is 1.4 
times as likely to develop CHD over a 10-year period as is the nonsmoker, given that 
they are the same for all other risk factors. Because we mean-centered all risk factors 
except for age, the intercept allows us to estimate the 10-year cumulative incidence 
of CHD for an “average” man in the reference group (ages 35–44). Specifically, the 
10-year cumulative incidence of CHD for a 35- to 44-year-old man with cholesterol = 
235, glucose = 82, number of cigarettes per day = 13, BMI = 26, and SBP = 132 is 
e−3.1232/(l + e−3.1232) = 0.0440/1.0440 = .042, or 4.2%.

Prediction with Multiple Logistic Regression
We can use a multiple logistic-regression model to predict the probability of disease for 
an individual subject with covariate values xl, . . ., xk. If the regression parameters were 
known, then the probability of disease would be estimated using Equation 13.23 by

		  p
e

e

L

L=
+1

See page 674 for  
Equation 13.23

Table 13.23 Multiple logistic-regression model for predicting the cumulative incidence of 
CHD over 10 years based on 1731 men in the Framingham Heart Study who 
were disease free at baseline using SAS PROC LOGISTIC (Continued )

Odds Ratio Estimates

Point 95% Wald
Effect Estimate Confidence Limits

age4554 2.054 1.265  3.336
age5564 3.210 1.947  5.291
age6569 4.298 2.056  8.985
lchld235 6.236 2.302 16.896
lsugrd82 1.773 0.936  3.360
smokem13 1.018 1.005  1.031
lbmid26 4.401 1.114 17.394
lmsyd132 16.392 5.325 50.461

Association of Predicted Probabilities and Observed Responses

Percent Concordant 72.6 Somers' D 0.459
Percent Discordant 26.7 Gamma 0.462
Percent Tied 0.7 Tau-a 0.078
Pairs 255584 c 0.729
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where L x xk k= + + +α β β1 1 L . L is sometimes called a linear predictor. Because the 
parameters are unknown, we substitute estimates of them to obtain the predicted 
probability

	 Equation 13.35 	 ˆ
ˆ

ˆp
e

e

L

L
=

+1

		  where  ˆ ˆ ˆ ˆL x xk k= + + +α β β1 1 L

To obtain two-sided 100% × (1 − α) confidence limits for the true probability p, 
we must first obtain confidence limits for the linear predictor L given by

		  ˆ ( ˆ) ( , )/L z se L L L± =−1 2 1 2α

and then transform back to the probability scale to obtain the CI = (p1, p2) where

		  p e e p e eL L L L
1 2

1 1 2 21 1= + = +( ), ( )

The actual expression for se L( ˆ) is complex, requiring matrix algebra, and is beyond 
the scope of this text, although it can be easily evaluated on the computer. This ap-
proach is summarized as follows.

	 Equation 13.36 	 	 Point and Interval Estimation of Predicted Probabilities Using Logistic Regression  	
Suppose we wish to estimate the predicted probability of disease (p) for a subject 
with covariate values xl, . . ., xk and obtain confidence limits about this prediction.

(1)	 We compute the linear predictor

		        ˆ ˆ ˆ ˆL x xk k= + + +α β β1 1 L

where α̂, ˆ , . . ., ˆβ β1 k are the estimated regression coefficients from the logistic-
regression model.

(2)	 The point estimate of p is given by e eL Lˆ ˆ
( )1+

(3)	 A two-sided 100% × (1 − α) CI for p is given by (p1,p2), where

		        p e e p e eL L L L
1 2

1 1 2 21 1= + = +( ), ( )

and

		      

L L z se L

L L z se L

1 1 2

2 1 2

= − ( )
= + ( )

−

−

ˆ ˆ

ˆ ˆ

/

/

α

α

To obtain se L( ˆ) requires matrix algebra and is always done by computer. 
Also, se L( ˆ) will vary, depending on the covariate values xl, . . ., xk.

(4)	 These estimates are valid only for prospective or cross-sectional studies.

	 Example 13.43 	 Cardiovascular Disease  Obtain a point estimate and 95% confidence limits for the 
predicted probability of CHD for participants in the Framingham Heart Study data 
set in Example 13.42 (page 683).

	 	 Solution:  We refer to Table 13.24, which provides the raw data, the predicted proba-
bility of CHD (labeled phat), and the lower and upper 95% confidence limits about the  
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point estimates (labeled lcl and ucl, respectively) for subjects 945–1002. For example, 
for subject 969 the outcome variable is given in the tenth column (cmbmichd) and 
= 2 (which indicates no event). The values of the independent variables are given in 
columns 2−9. For example, we know that the subject is 35−44 years old because all 
the age dummy variables (columns 2−4) are 0. Also, the subject is a nonsmoker be-
cause SMOKEM13 = −13. His serum cholesterol = 235 × e −0.00855 = 233, etc. From Table 
13.23, the linear predictor is

		

L̂ 3.1232 0.7199(0) 1.1661(0) 1.4582(0) 1.8303 0.00855
. . . 2.7968 0.04445 3.1192

( )
( )

= − + + + + −
+ + = −

The predicted probability is

		  ( )= + =− −p e eˆ (1 ) .0423 see phat columni
3.1192 3.1192

The lower and upper 95% confidence limits are lcl = .0269 and ucl = .0660.

Assessing Goodness of Fit of Logistic-Regression Models
We can use the predicted probabilities for individual subjects to define residuals and 
assess goodness of fit of logistic-regression models.

	 Equation 13.37 	 	 Residuals in Logistic Regression
	 	 	 If our data are in ungrouped form—that is, each subject has a unique set of co-

variate values (as in Table 13.24)—then we can define the Pearson residual for 
the ith observation by

		     
r

y p
se pi

i i

i
= −

( )
ˆ

ˆ

where

yi = 1 if the ith observation is a success and = 0 if it is a failure
		    

ˆ
ˆ

ˆp
e

e
i

L

L

i

i
=

+1

		      L̂i = linear predictor for the ith subject = α + β + …+ βx xˆ ˆ ˆ
k k1 1

		    se p p pi i iˆ ˆ ˆ( ) = −( )1

If our data are in grouped form—that is, if the subjects with the same covariate 
values have been grouped together (as in Table 13.20, p. 679)—then the Pearson 
residual for the ith group of observations is defined by

		    r
y p
se pi

i i

i
= −

( )
ˆ

ˆ

where
	     yi = proportion of successes among the ith group of observations

		      ˆ
ˆ

ˆp
e

e
i

L

L

i

i
=

+1
 as defined for ungrouped data

		  
se p

p p

ni
i i

i

ˆ
ˆ ˆ

( ) =
−( )1

		    ni = number of observations in the ith group
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Thus, the Pearson residual is similar to the Studentized residual in linear regression 
as defined in Equation 11.14. As was the case in linear regression, the residuals do 
not have the same standard error. The standard error is computed based on the 
binomial distribution, where the probability of success is estimated by p̂i. Thus, for 

ungrouped data, se p p pi i iˆ ˆ ˆ( ) = −( )1  because each observation constitutes a sample 

size of 1. For grouped data, se p p p ni i i iˆ ˆ ˆ( ) = −( )1  where ni = number of observations 

in the ith group. The standard error decreases as p̂i approaches either 0 or 1; for 

grouped data, the standard error decreases as ni increases.

	 Example 13.44 	 Cardiovascular Disease  Compute the Pearson residual for the 969th observation 
in the Framingham Heart Study data set for the logistic-regression model fitted in 
Table 13.23 (on pages 685–686).

	 	 Solution:  From Example 13.43 (on page 687) we have the predicted probability 

p̂i = .0423. The standard error of p̂i is se piˆ . . .( ) = ( ) =0423 9577 2013. Also, from 

Table 13.24 we saw that the subject did not have an event; thus, yi = 0. Therefore, 

the Pearson residual is

		
ri = − = −0 0423

2013
2102

.
.

.

In Table 13.25, we display the Pearson residuals for a subset of the subjects in the 
Framingham Heart Study data set (listed under the column labeled Value). Thus, for 
observation 969, Value = −0.2102. The Pearson residuals are also displayed in graphic 
form at the right in Table 13.25.

We can use the Pearson residuals to identify outlying values. However, the utility 
of individual residuals is more limited for logistic regression than for linear regres-
sion, particularly if the data are in ungrouped form. Nevertheless, Pearson residuals 
with large absolute values are worth further checking to be certain that the values 
of the dependent and independent variables are correctly entered and possibly to 
identify patterns in covariate values that consistently lead to outlying values. For 
ease of observation, the square of the Pearson residuals (referred to as DIFCHISQ) 
are displayed in Figure 13.5 for a subset of the data. The largest Pearson residual in 
this data set is for observation 646, which corresponds to a young smoker with no 
other risk factors who had a predicted probability of CHD of approximately 2% and 
developed CHD during the 10 years. He had a Pearson residual of 7.1, corresponding 
to a DIFCHISQ of 7.12 ≈ 50. If there are several other young smokers with no other 
risk factors who had events, we may want to modify our model to indicate interac-
tion effects between smoking and age, that is, to allow the effect of smoking to be 
different for younger vs. older men.

As in linear regression, another aspect of assessing goodness of fit is to de-
termine how influential particular observations are in estimating the regression 
coefficients. Suppose the jth regression coefficient when estimated from the full 
data set is denoted by β̂ j and from the reduced data set obtained by deleting the ith 
individual by ˆ( )β j

i . A measure of influence of the ith observation on the estimation 
of β̂ j is given by

See page 482 for  
Equation 11.14
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	 Equation 13.38 	 ∆β
β β

β
j
i j j

i

jse
( )

( )ˆ

ˆ
=

−

( )
			    = �influence of the ith observation on estimation of the jth regression  

coefficient

	� where se jβ̂( ) is the standard error of β̂ j from the full data set. If ∆β j
i( )  is large, the 

ith observation will have a great influence on the estimation of βj.

	 Example 13.45 	 Cardiovascular Disease  Assess the influence of individual observations on the estima-
tion of the regression coefficient for SBP for the model in Table 13.23 (on pgs. 685–686).

	 	 Solution:  SBP is represented as ln(SBP/132) and is denoted by LMSYD132 in 
Table 13.23. The influence measure in Equation 13.38 is displayed in Figure 13.6 for 
a subset of the data and is denoted by DFBETA8 (because this is the eighth regression 
coefficient in the model, other than the intercept). We see that none of the observa-

tions has a great influence in this subset of the data. The maximum value of ∆β j
i( ) .≈ 0 2, 

which is an actual difference of 0 2 0 2 0 5737 0 118. ˆ . . .× ( ) = × ≈se β  (see Table 13.23). Be-

cause the actual value of β̂ j in the full model = 2.80, this is a relatively minor change 

(≈ 4%). This is also true for the remaining observations in the data set as well as for the 
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	Fi gure 13.5 	 �Display of DIFCHISQ (the square of the Pearson residual) for a subset 	
of the Framingham Heart Study data
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other regression coefficients. However, influential observations are more likely to appear 
in smaller data sets, particularly for individual subjects with predictor variables that are 
far from the mean value.

In this section, we have learned about multiple logistic regression. This is an ex-
tremely important technique used to control for one or more continuous or categorical 
covariates (independent variables) when the outcome (dependent) variable is binary. It 
can be viewed as an extension of Mantel-Haenszel techniques and usually enables more 
complete control of confounding effects of several risk factors simultaneously. Also, it 
is analogous to multiple linear regression for normally distributed outcome variables.

On the master flowchart (p. 898), we start at  4  and generally answer no to  
(1) interested in relationships between two variables? This leads us to the box labeled 
“more than two variables of interest.” We then answer “binary” to (2) outcome vari-
able continuous or binary? We then answer no to (3) time of events important? 
which leads us to the box labeled “multiple logistic-regression methods.”

It is, of course, also possible to use multiple logistic regression if only two vari-
ables are of interest, where the dependent variable is binary and the single indepen-
dent variable is continuous. If the dependent variable is binary and we have a single 
independent variable that is categorical, then we can use either multiple logistic-
regression or contingency-table methods, which should give identical results. The 
latter are probably preferable, for simplicity.
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	 Figure 13.6 	 �Influence of individual observations on the estimation of the regression coefficient 
for SBP for the Framingham Heart Study data fitted in Table 13.23 (on pgs. 685–686)
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RE  V I E W  QUE   S T I ON  S  1 3 d

1	 What is the principal difference between multiple logistic regression and multiple 
linear regression?

2	 A study was performed relating incidence of the common cold to intake of differ-
ent alcoholic beverages in people employed at five Spanish universities [11]. One 
analysis included users of red wine only or nondrinkers. A logistic regression was 
performed of incidence of the common cold related to red-wine consumption, which 
was categorized as follows in drinks per week (0, 1 to 7, 8 to 14, and >14). Other 
covariates controlled for in the analysis were age (continuous), sex, and faculty/staff 
status. The results were as shown in Table 13.26.

Table 13.26 Common cold vs. average red-wine consumption (data)

Red-wine consumption  
(drinks per week) Beta se

0 (ref.a)

1−7 −0.416 0.132
8−14 −0.527 0.238
>14 −0.892 0.341

a Reference group.

	 (a)	 What is the OR for red-wine consumption of 1−7 drinks per week vs. 0 drinks 
per week?

	 (b)	 What does it mean?

	 (c)	 Provide a 95% CI for this OR.

	 13.8	 E x t e n si  o n s  t o  L o g is  t i c  R e g r e ssi   o n 

Conditional Logistic Regression 
In some instances, we have a categorical outcome, but the units of analysis have 
been selected using a matched design, and thus are not independent. Ordinary logis-
tic regression methods are not appropriate here, but an extension of logistic regres-
sion called conditional logistic regression can be employed. 

	 Example 13.46 	 Cancer  In 1989−1990, 32,826 NHS participants provided a blood sample for research 
purposes. The blood was frozen and stored for future analyses. In general, it is too ex-
pensive to analyze the blood for all participants. Instead, a nested case–control design is 
typically used. For example, estradiol is a hormone that has been related to breast cancer 
in several other studies. To study this question using NHS data, 235 women with breast 
cancer occurring between 1990 and 2000 and after blood collection were identified. One 
or two controls were selected per case who had not had breast cancer at the time of diag-
nosis of the case, yielding a total of 346 controls. The controls were matched on age, time 
of day of blood draw, fasting status of blood draw, and previous use of postmenopausal 
hormones. All cases and controls were postmenopausal at the time of the blood draw 
(1989−1990). Because of possible lab drift, the matched sets (case and 1 or 2 controls) 
were analyzed at the same time for a number of analytes, including plasma estradiol. 
How should the association between plasma estradiol and breast cancer be assessed? 

R
 E

 V
 I 

E 
W
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Ideally we would like to use logistic regression to relate breast cancer incidence 
to plasma estradiol while controlling for other breast cancer risk factors. However, 
we need to account for the dependence between women in the same matched set. 
Conditional logistic regression can be used for this purpose. 

	 Equation 13.39 	 Conditional Logistic Regression
	 	 Suppose we wish to assess the association between the incidence of breast cancer 

( )D  and plasma estradiol ( )x  but wish to control for other covariates ( , , . . ., )z z zk1 2 ,  
denoted in summary by z~. Examples of other covariates include age, parity (i.e., 
number of children), family history of breast cancer, and other variables. Suppose we 
subdivide the data into S matched sets ( , , )i S= …1 . The ith matched set consists of a 
single case and ni controls, where  ni ≥ 1 and ni may vary among matched sets. Let Dij = 
case status of the jth subject in the ith matched set. We use a logistic model of the form 

		  = = α + β + γ + …+ γ ≡ α + β + γ, ,Pr D x z z x zlogit[ ( 1)]ij i ij ij k k ij i ij ij1 1 ~ ~

where αi = indicator variable for being in the ith matched set, which = 1 if a subject 
is in the ith matched set and = 0 otherwise. 

The problem is that we cannot determine αi because the matched sets are 
small and purposely selected in such a way as to have 1 case and 1 or more con-
trols. Thus, we cannot use logistic regression to determine the absolute probability 
of disease because of the way the samples are selected. However, we can determine 
the conditional probability that the jth member of a matched set is a case given 
that there is exactly one case in the matched set, denoted by pij, or 
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If the jth subject of the ith matched set is the case, then the expression in Equa-
tion 13.39 is referred to as the contribution to the conditional likelihood for the ith 
matched set. We can use maximum likelihood methods to find estimates of β and γ

∼
which maximize L pij

i

S

i=
=

∏
1

, where ji = case in the ith matched set. These are called

conditional likelihood methods, and the model is referred to as a conditional logistic 
regression model. 

	E quation 13.40  	 �Interpretation of Parameters in a Conditional Logistic Regression Model 

	 	 	� To interpret the parameters of the conditional logistic regression model in Equa-
tion 13.39, we consider two subjects j and l in the ith matched set, one of whom is 
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a case and the other a control. We assume these subjects have the same value for 
all other covariates, that is, z zij il~ ~= , but differ by one unit on the primary exposure

	 	 	 variable, that is, x xij il= + 1. 

		  	 The relative risk that the subject with the higher exposure is the case is given by 

			   RR D Dij il= = = =Pr Pr( ) / ( ) exp( )1 1 β

	 A similar interpretation holds for the other regression coefficients. 

	 Example 13.47 	 Cancer  Estimate the association between breast cancer incidence and plasma estra-
diol using the matched design in Example 13.46. 

	 	 Solution:  For this example, we had a total of 235 breast cancer cases and 346 con-
trols. A conditional logistic regression model was fit to the data with a single primary 
exposure variable ln estradiol (x) and several other breast cancer risk predictors using 
the SAS procedure PROC PHREG. This is the same algorithm used to fit proportional 
hazards survival models in SAS, a topic we will discuss in Chapter 14. The results are 
given in Table 13.27. 

	 Table 13.27 	 Use of SAS PROC PHREG to perform conditional logistic regression on the breast 
cancer data 

		  proc phreg;
		�  model cscn*case(0)=tmtl b4a b4b x5 tmtbm bbd b21 b22 b23 

dur3 dur4 dur8 curpmh pstpmh sumbmi2a sumbmi3a sumhgt2a 
sumhgt3a sumalcl sumalc2 sumalc3 famhx lestradl;  
strata matchid;

	


Convergence Status
Convergence criterion (GCONV=lE-8) satisfied.

Model Fit Statistics
		  Without	 With
	 Criterion	 Covariates	 Covariates

	 -2 LOG L	 407.529	 361.237
	 AIC	 407.529	 407.237
	 SBC	 407.529	 486.808

Testing Global Null Hypothesis: BETA=0
	 Test	 Chi-Square	 DF	 Pr > ChiSq

	 Likelihood Ratio	 46.2917	 23	 0.0028
	 Score	 43.2239	 23	 0.0065
	 Wald	 36.6232	 23	 0.0356

(continued )
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The actual model fitted was as follows. 

		
ln

p

p
x zij

ij
i ij

k
k ijk1 1

22

−








 = + +

=
∑α β γ

where i = �matched pair, j = subject within the matched pair, and the variables are 
defined as follows:

xij = ln(estradiol) −2 36. ( )ln pg mL  = lestradl
zij1 = tmt1 = age at menopause − age at menarche ≡ premenopausal time
zij2 = b4a = age − age at menopause if natural menopause, = 0 otherwise
zij3 = b4b = age − age at menopause if bilateral oophorectomy, = 0 otherwise
zij4 = x5 = age at first birth − age at menarche if parous, = 0 if nulliparous

zij5 = tmtbm = birth index =
=
∑
i

b

1

 (age at menopause − age at ith birth) if

parous, = 0 if nulliparous,
where b =  parity (number of children) 

zij6 = bbd = 1 if benign breast disease, = 0 otherwise
zij7 = b21 = bbd × age at menarche

	 Table 13.27 	 Use of SAS PROC PHREG to perform conditional logistic regression on the breast 
cancer data (Continued )

Analysis of Maximum Likelihood Estimates

		  Parameter	 Standard			   Hazard
Variable	 DF	 Estimate	 Error	 Chi-Square	 Pr > ChiSq	 Ratio

tmtl	 1	 0.00617	 0.08160	 0.0057	 0.9398	 1.006
b4a	 1	 -0.00661	 0.08770	 0.0057	 0.9399	 0.993
b4b	 1	 -0.03637	 0.08894	 0.1672	 0.6826	 0.964
x5	 1	 -0.0006087	 0.02125	 0.0008	 0.9771	 0.999
tmtbm	 1	 0.0007292	 0.00281	 0.0672	 0.7954	 1.001
bbd	 1	 -0.07291	 3.28786	 0.0005	 0.9823	 0.930
b21	 1	 0.09160	 0.13953	 0.4310	 0.5115	 1.096
b22	 1	 -0.01387	 0.05787	 0.0575	 0.8105	 0.986
b23	 1	 0.0006671	 0.04040	 0.0003	 0.9868	 1.001

The PHREG Procedure
Analysis of Maximum Likelihood Estimates

		  Parameter	 Standard			   Hazard
Variable	 DF	 Estimate	 Error	 Chi-Square	 Pr > ChiSq	 Ratio

dur3	 1	 -0.01543	 0.06945	 0.0494	 0.8242	 0.985
dur4	 1	 0.20479	 0.11699	 3.0640	 0.0800	 1.227
dur8	 1	 0.08135	 0.07618	 1.1403	 0.2856	 1.085
curpmh	 l	 -0.15969	 0.38707	 0.1702	 0.6799	 0.852
pstpmh	 l	 -0.06442	 0.25656	 0.0630	 0.8017	 0.938
sumbmi2a	 1	 -0.00105	 0.00129	 0.6628	 0.4156	 0.999
sumbmi3a	 1	 0.0009756	 0.00215	 0.2065	 0.6495	 1.001
sumhgt2a	 1	 -0.00325	 0.00232	 1.9627	 0.1612	 0.997
sumhgt3a	 1	 0.00212	 0.00638	 0.1105	 0.7396	 1.002
sumalcl	 1	 0.0006666	 0.0004087	 2.6600	 0.1029	 1.001
sumalc2	 1	 0.00676	 0.00380	 3.1621	 0.0754	 1.007
sumalc3	 1	 -0.00130	 0.0008548	 2.3242	 0.1274	 0.999
famhx	 1	 0.60465	 0.25490	 5.6270	 0.0177	 1.831
lestradl	 1	 0.73944	 0.21913	 11.3866	 0.0007	 2.095
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zij8 = b22 = bbd × tmt1
zij9 = b23 = bbd × (age − age at menopause)
zij10 = dur3 = duration of estrogen use (yrs)
zij11 = dur4 = duration of estrogen + progesterone use (yrs)
zij12 = dur8 = duration of use of other postmenopausal hormones (PMH) (yrs)
zij13 = curpmh = current use of PMH = 1 if yes/= 0 if no
zij14 = pstpmh = past use of PMH = 1 if yes/= 0 if no
zij15 = sumbmi2a = average BMI premenopause × tmt1
zij16 = sumbmi3a = average BMI postmenopause × (age − age at menopause)
zij17 = sumhgt2a = height × tmt1
zij18 = sumhgt3a = height × (age − age at menopause)
zij19 = sumalc1 = average alcohol intake premenopause (g) × tmt1
zij20 = sumalc2 = average alcohol intake postmenopause while on PMH × dura-

tion PMH use
zij21 = sumalc3 = average alcohol intake postmenopause while not on PMH × 

(age − age at menopause − duration PMH use)
zij22 = famhx = family history of breast cancer (1 = yes/0 = no)

We see that there is a significant association between breast cancer incidence 
and ln(estradiol) (Beta = ± <0 739 0 219 001. . , . )p . The relative risk (listed under 

the Hazard Ratio column) is 2 1 0 73944. ( ).= e . This implies that if we have two 

women in a matched pair, one with breast cancer and the other without breast 
cancer, whose ln(estradiol) levels differ by 1 ln unit and who are the same 
for all other breast cancer risk factors, the woman with the higher estradiol 
is 2.1 times as likely to be the case than the woman with the lower estradiol. 
Note that a difference of 1 ln unit is equivalent to a ratio of e1 2 7= . . Thus, the 
woman with higher estradiol has a plasma estradiol level that is 2.7 times as 

high as that of the lower estradiol woman. To obtain 95% confidence limits 

for β, we compute ( , )e ec c1 2 , where ( , ) ˆ . (ˆ)c c se1 2 1 96= ±β β . In this case, we have 

( , ) . . ( . ) ( . , . )c c1 2 0 739 1 96 0 219 0 310 1 168= ± =  and the 95% CI =( , ) ( . , . ).. .e e0 310 1 168 1 4 3 2=  

We will discuss hazard ratios in more detail when we study proportional hazards 

regression models in Chapter 14. In the context of conditional logistic regres-
sion, we can consider the hazard ratio as a ratio of incidence rates for the higher 
vs. lower estradiol woman. 

Note that there is only one other predictor that is a significant risk factor for breast 
cancer in this example, that is, family history of breast cancer (famHx), with an RR of 
1.8 and a p-value of .018. Several other breast cancer risk factors (dur4 = duration of 
estrogen + progesterone use, p = .08 and sumalc2 = total alcohol consumption while 
using PMH, p = .075) show a trend toward statistical significance. Actually, all the risk 
factors in the model have been shown to be significant risk factors for breast cancer 
in larger data sets (see Colditz et al. [12] for more details about the variables used for 
breast cancer modeling). Conditional logistic regression can also be extended to allow 
for more than one case and/or more than one control in a matched pair (see Breslow 
and Day [13] for more details about conditional logistic regression). 

Polychotomous Logistic Regression 
In some cases, we have a categorical outcome variable with more than two catego-
ries. Often we might have a single control group to be compared with multiple case 
groups, or a single case group to be compared with multiple control groups. 
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	 Example 13.48 	 Cancer  Breast tumors are commonly typed using a biochemical assay to determine 
estrogen receptor (ER) and progesterone receptor (PR) status. Tumors can be jointly clas-
sified as having ER positive (ER+) vs. ER negative (ER−) status and PR positive (PR+) vs. 
PR negative (PR−) status. This distinction is important because different treatments are 
used according to ER/PR status. A study was performed within the NHS to determine 
risk factor profiles for specific types of breast cancer according to ER/PR status [12]. 
There were 2096 incident cases of breast cancer from 1980−2000, of which 1281 were 
ER+/PR+, 417 were ER−/PR−, 318 were ER+/PR−, and 80 were ER−/PR+. There was a com-
mon control group for all types of breast cancers. How should the data be analyzed? 

It is tempting to perform separate logistic regression analyses of each case group vs. 
the control group. This is a valid approach but will not allow us to compare regression 
coefficients for the same risk factor between different types of breast cancer. Instead, 
we analyze all the data simultaneously using polychotomous logistic regression (PLR). 
We can generalize logistic regression in this setting as follows. Suppose there are Q  
outcome categories, where group 1 is a control group and groups 2, . . . ,Q are different 
case groups. Suppose also that there are k exposure variables. The PLR model is given 
as follows. 

	E quation 13.41  	 	 Polychotomous Logistic Regression

		      

Pr( )

exp

1st outcome category =
+ +

=
∑

1

1
2r

Q

r rk
k

α β
==

∑



1

K

kx

		    

Pr( )

exp

q

xq qk
k

K

k

th outcome category =
+


 =

∑α β
1





+ +






=

= =
∑ ∑1

2

2 1

exp

, , . . .

r

Q

r rk
k

K

kx

q

α β
,,Q

	 Equation 13.42  	 	 Interpretation of Parameters in PLR 
	 	 	 Suppose we have 2 individuals who differ by 1 unit on the kth exposure variable 

and are the same on all other exposure variables. We will call the individual with 
the higher exposure ( )xk + 1  subject A and the subject with the lower exposure 
( )xk  subject B. Based on Equation 13.41, 

		  
odds

(subject A is in the th outcome
q A

q
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Hence, 
  the OR for being in category q vs. category 1 for subject A vs. subject B 

		
= = ≡
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qk qkOR,

,
exp( )β
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A 100 1% ( )× − α  CI for ORqk is given by ( , )e ec c1 2 , where 

		    ( , ) ˆ (ˆ ), / ,c c z seq k q k1 2 1 2= ± −β βα

Note that a special case of PLR is when Q = 2, in which case there is one control 
group and one case group and PLR is the same as ordinary logistic regression. 

Another capability of PLR is to compare the strength of association of the same vari-
able for 2 different case categories. For example, we might be interested in whether 
a breast cancer risk factor had the same OR for two different types of breast cancer. 

In general, the OR for being in outcome category q1 vs. outcome category q2 for 
subject A compared with subject B is given by exp( ), ,β βq k q k1 2−  with 95% confidence 

limits given by ( , )e ec c1 2 , where ( , ) ˆ ˆ (ˆ ˆ
, , / ,c c z seq k q k q k q1 2 1 21 2 1 2= − ± −−β β β βα ,, )k . In gen-

eral, ˆ ,βq k1  and ˆ ,βq k2  will be correlated because a common control group is used to 

estimate each OR. Hence, it can be shown that

		  se q k q k q k q k(ˆ ˆ ) (ˆ ) (ˆ ), , , ,β β β β1 2 1 2 2− = + −var var ccov(ˆ ,ˆ ), ,

/
β βq k q k1 2

1 2





The covariance between estimated regression parameters is available in most com-
puter packages that implement PLR. 

	 Example 13.49 	 Assess the effect of alcohol use before menopause on different types of breast cancer 
based on the data set described in Example 13.48. 

	 	 Solution:  We have fitted the PLR model in Equation 13.41 to the breast cancer 
data described in Example 13.48. There were a total of 5 groups (one control group 
and 4 case groups). There were a total of 22 variables in the model. Hence, if the 
control group is the reference group, there are a total of 88 regression parameters to 
be estimated plus 4 separate intercept terms. The results for alcohol consumption 
before menopause (adjusted for the other 21 variables in the model) are given in 
Table 13.28. 

Table 13.28 Effect of alcohol consumption before menopausea on different 	
types of breast cancer, NHS data, 1980−2000 

Group Beta se p-value
ORb 

(95% CI)
Number of 

cases 

no breast cancer (ref) 1.0 
ER+/PR+ 0.00029 0.00009 0.001 1.12 1281 

(1.04−1.20) 
ER+/PR− 0.00022 0.00017 0.20 1.09 318 

(0.96−1.24) 
ER−/PR+ 0.00015 0.00037 0.68 1.06 80 

(0.80−1.40) 
ER−/PR− −0.00003 0.00017 0.86 0.99 417 

(0.87−1.12) 

aCumulative grams of alcohol before menopause (g/day × years). 
b The odds ratio for 1 drink per day of alcohol from age 18 to age 50 ≅ 12 grams alcohol/drink ×  32 years = 
384 gram-years × Beta after controlling for 21 other breast cancer risk factors.
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We see that there is a significant effect of alcohol for ER+/PR+ breast cancer but not  for 
any other type of   breast cancer. The RR for 1 g/day = 384 g-years/day = exp[ . ( )] .0 00029 384 1 12=  

exp[ . ( )] .0 00029 384 1 12= . The 95%  CI = ( , )e ec c1 2 , where ( , ) [ . . ( . )]c c1 2 384 0 00029 1 96 0 00009= ± . Thus, the 
95% CI = (1.04 − 1.20). In addition, results for ER−/PR− breast cancer are almost 
completely null. 

The model in Equation 13.41 forces the regression parameters for all variables 
for different case groups to be different (i.e., a total of 92 parameters to be estimated 
in Example 13.49). It is possible to extend PLR to allow for parameter estimates for 
some variables to be the same over all case groups and parameter estimates for other 
variables to be different. This allows one to test whether the effects of a risk factor 
are significantly heterogeneous among all case groups. Details for this approach are 
given in Marshall and Chisholm [14]. 

Ordinal Logistic Regression 
	E xample 13.50 	 Sports Medicine  In Data Set TENNIS1.DAT (at www.cengagebrain.com) we have 

data from an observational study among about 400 members of several tennis clubs 
in the Boston area. The objective of the study was to examine risk factors for tennis 
elbow. Subjects were asked how many current or previous episodes of tennis elbow 
they had. The distribution ranged from 0 to 8 and was very skewed. Hence, we elect-
ed to categorize the number of episodes into 3 categories (0/1/2+). We could treat 
these 3 categories as nominal categorical data and use PLR, but this type of analysis 
would lose the ordering of the categories in the above scale. Instead, we used a tech-
nique called ordinal logistic regression to relate the number of episodes of tennis elbow 
to age, sex, and the material of the racquet. 

	E quation 13.43 	 	 Ordinal Logistic Regression 
	 	 	 Suppose an outcome variable y has c ordered categories (c ≥ 2), which we arbitrarily 

refer to as 1, . . . ,c. Suppose also there are k covariates x1, . . . , xk. An ordinal 
logistic regression model is defined by 		  

lN[Pr( ) / ( )] . . . ,Pry j y j x x jj k k≤ ≥ + = + + + =1 11 1α β β ,, . . ., .c − 1

The regression coefficients βq have a similar interpretation as for ordinary logis-
tic regression. Specifically, 

		    e y j x x y j xq
q q

β
= ≤ = ≤ =( | ) / ( |odds that odds that xx −1),

		         
= ,…,
= ,…, −

q k
j c

1 ;
1 1

		         ≡ ≤ = = −odds ratio for given vs.y j x x x xq q 1

		           holding all other variables constant

Note that if c = 2, then the ordinal logistic regression model reduces to ordinary 
logistic regression. 

Note also that in ordinal regression, e qβ
 is assumed to be the same for each 

value of j. This type of ordinal regression model is called a cumulative odds or 
proportional odds ordinal logistic regression model. 

 Data set available

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



702              C H A P T E R  13      Design and Analysis Techniques for Epidemiologic Studies

	 Example 13.51 	 Sports Medicine  Apply the ordinal logistic regression model in Equation 13.43 to 
the tennis elbow data in Example 13.50.

	 	 Solution:  We applied the ordinal regression model to the tennis elbow data. For this 
purpose we categorized the outcome variable ( )y  in terms of the number of episodes 
of tennis elbow (0/1/2+), which was coded as (0/1/2). Note that the program will 
work equally well with any numeric values for y; the computer will identify the 
number of unique values of y and will order these values into ordered categories 
before performing the analysis. The predictor variables were age, sex (1 2= =M F/ ), 
and the material of the racquet [1 = wood (reference)/2 = metal (i.e., either alumi-
num or steel)/3 = fiberglass, graphite, or composite]. 

The results are given in Table 13.29. 

Table 13.29 Application of the MINITAB ordinal logistic regression program to the tennis 	
elbow data 

Ordinal Logistic Regression: num_epis (0/ versus Age, Sex, material_cur 
Link Function: Logit
Response Information

Variable Value Count

num_epis (0/1/2+) 0 167 

1 151 

2 117 
Total 435 

* NOTE * 435 cases were used  
* NOTE * 9 cases contained missing values 

Logistic Regression Table

Odds 95% CI

Predictor Coef SE Coef Z P Ratio Lower Upper 

Const(1) 2.63164 0.573860 4.59 0.000

Const(2) 4.20682 0.595516 7.06 0.000
Age −0.0530380 0.0102739 −5.16 0.000 0.95 0.93 0.97 
Sex* −0.369998 0.185171 −2.00 0.046 0.69 0.48 0.99 
material_current 
  2† −0.348416 0.227432 −1.53 0.126 0.71 0.45 1.10 
  3† −0.619845 0.245527 −2.52 0.012 0.54 0.33 0.87 

Log-Likelihood =
 
−454.388

 

Test that all slopes are zero: G = 37.798, DF = 4, p-value = 0.000
*1 = M/2 = F.
†category 1 = wood (reference)/category 2 = metal (aluminum or steel)/category 3 = fiberglass, graphite, or  
composite.

We see that there are significant effects of age (OR 0.95= , p < .001) and gender  
(1 2= =M F/ ), (females vs. males) (OR 0.69= , =p .046). Thus, older players and 
females are more likely to have episodes of tennis elbow. 
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In addition, we categorized the material of the current racquet into 3 categories 
(1 = wood = reference/2 = metal = aluminum or steel/3 = composite, fiberglass, or 
graphite). 

We see that the OR comparing metal to wood is 0.71 (95% CI 0.45, 1.10= ) but is 
not statistically significant p( .13)= . 

However, the OR comparing fiberglass, graphite, or composite with wood is 
0.54 (95% CI = 0.33, 0.87), which is statistically significant p( .012)=  even after 
controlling for age and sex. Furthermore, exp[const(1)] is an estimate of the odds of 
0 episodes vs. 1+ episodes and exp[const(2)] is an estimate of the odds of ≤1 episode 
vs. 2+ episodes, both for subjects with all x’s equal to zero.

In general, users of wood racquets have the least number of episodes of tennis 
elbow, and users of composite racquets have the greatest; users of metal racquets are 
in between. 

	 13.9	 S a m p l e  S i z e  Es  t i m at i o n  f o r  L o g is  t i c 

R e g r e ssi   o n

Let us consider the Framingham Heart Study example in Example 13.42 (on page 683). 
We would like to perform another study to replicate some of the findings in Table 13.23 
(on pgs. 685–686). Specifically, the OR estimate for ln(SBP/132) = 16.392. How many 
subjects do we need to have 80% power to detect an association between SBP and 
incident cardiovascular disease if we perform a logistic regression analysis and control 
for the same covariates as in Table 13.23? We will use the method of Hsieh, et al. [15].

	E quation 13.44 	 	 �Sample Size Estimation for Logistic Regression 

	 	 	 Suppose we have the logistic regression model

		  In[ p  /(1 − p)] = α + β1x1 + ... + βkxk

		  We wish to test the hypothesis:

		  H0 : β1 = 0, β2 , . . . βk ≠ 0 vs.

		  H1 : β1 = β *, β2, . . . ,βk ≠ 0,β* ≠ 0

		  with a two-sided type I error = α and power = 1 – β, where β* = projected effect 
for a 1 sd increase in x1.

		  The sample size needed depends on whether X1 is continuous or binary and 
whether there are other covariates in the model.

(1)	 X1 continuous and normally distributed 

		  (a)  No other covariates in the model

		          β

( )
( )

=
+

− 
,

α β
,
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z z
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1 /2 1
2

1 1
*2

		          where p1 = event rate at the mean of X1.
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		  (b)  Other covariates in model

		      n
n
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continuous,no covariates

2=
−

,

		          where

		          R2 = proportion of variance of x1 explained by x2, . . . , xk

		          as obtained from a linear regression of x1 on x2, . . . , xk-

(2)	 X1 binary

		  (a)  No other covariates in the model
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		          where
		          p1, p2 = event rates at x1 = 0 and x1 = 1, respectively
		          B = proportion of sample where x1 = 1, and
		          p = (1−B)p1 + Bp2.

		  (b)  Other covariates in the model

			       =
−

,,
,n

n

R1binary covariates
binary no covariates

2

		          where

		          R2 = proportion of variance of x1 explained by x2, . . . , xk

		          as obtained from a linear regression of x1 on x2, . . . , xk.

	 Example 13.52 	 Cardiovascular Disease  Suppose we wish to perform a study investigating the as-
sociation between systolic blood pressure (SBP) and the incidence of cardiovascular 
disease. We will study a group of men and follow the men for 10 years and control 
for the same covariates as in Table 13.23 (on pages 685–686). How many subjects do 
we need to study to achieve 80% power?

	 	 Solution:  We will use the approach in Equation 13.44 for continuous variables with 
other covariates in the model. For simplicity, we assume that the event rate at mean 
[ln(SBP/132)] = overall event rate = 163/1731 = 0.094. We will relabel ln(SBP/132) as 
x1 for simplicity. Furthermore, β* = effect for a 1 sd increase in x1 = [ln(SBP/132)] = 
2.7968 * sd(x1) = 2.7968 × 0.145 = 0.406. Finally, to control for confounding, we re-
gressed x1 on the other covariates in Table 13.23 and obtained an R2 = 0.136. Hence, 
from Equation 13.44 case 1(b), we have:

		  n = (z975 + z.80)
2 /{[.094(.906)(0.406)2](1 − 0.136)}

		     = (1.96 + 0.84)2 /[0.085(0.165)(1 − 0.136)]

		     = 7.84/0.0121 = 646.3.
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	 	 Thus, we need to enroll 647 men in the new study to achieve 80% power. We would 
expect .094(647) = 61 events over 10 years among these men.

	 13.10	 M e ta - A n a ly sis 

In the previous sections of this chapter, and in all previous chapters, we have examined 
methods of analysis for a single study. However, often more than one investigation 
is performed to study a particular research question, often by different research groups. 
In some instances, results are seemingly contradictory, with some research groups  
reporting significant differences for a particular finding and other research  
groups reporting no significant differences.

	 Example 13.53 	 Renal Disease  In Data Set NEPHRO.DAT (at www.cengagebrain.com), we present 
data from a literature search comparing the nephrotoxicity (development of ab-
normal kidney function) of several different aminoglycosides [16]. In Table 13.30, 
we focus on a subset of eight studies that compared two of the aminoglycosides—
gentamicin and tobramycin. In seven of eight studies, the OR for tobramycin in com-
parison with gentamicin is less than 1, implying that there are fewer nephrotoxic side 
effects for tobramycin than for gentamicin. However, many of the studies are small 
and individually are likely to yield nonsignificant results. The question is, What is the 
appropriate way to combine evidence across all the studies so as to reduce sampling 
error and increase the power of the investigation and, in some instances, to resolve 
the inconsistencies among the study results? The technique for accomplishing this is 
called meta-analysis. In this section, we will present the methods of DerSimonian and 
Laird [17] for addressing this problem.

 Data set available

	T able 13.30 	Comparison of nephrotoxicity of gentamicin vs. tobramycin in NEPHRO.DAT

Study (i)

     Gentamicin      Tobramycin

yi 
c wi 

d wi* 
e

No. of 
subjects

No. of  
positivesa

No. of  
subjects

No. of  
positivesa

Odds  
ratiob

1. Walker 40 7 40 2 0.25 −1.394 1.430 1.191
2. Wade 43 13 47 11 0.71 −0.349 4.367 2.709
3. Greene 11 2 15 2 0.69 −0.368 0.842 0.753
4. Smith 72 19 74 9 0.39 −0.951 5.051 2.957
5. Fong 102 18 103 15 0.80 −0.229 6.873 3.500
6. Brown 103 5 96 2 0.42 −0.875 1.387 1.161
7. Feig 25 10 29 8 0.57 −0.560 2.947 2.086
8. Matzke 99 9 97 17 2.13 +0.754 5.167 2.996

aNumber who developed nephrotoxicity.
bOdds in favor of nephrotoxicity for tobramycin patients / odds in favor of nephrotoxicity for gentamicin patients.
cyi = ln(ORi ).
dwi = (1/ai + 1/bi + 1/ci + 1/di )

–1

ewi* = [(1/wi + ∆̂2  )–1] .
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Suppose there is an underlying log odds ratio θi for the ith study, which is esti-
mated by y ORi i= ln( ˆ ) i = 1, . . ., 8, where the estimated ORi are given in Table 13.30 in 
the Odds ratio column. We assume there is within-study variation of yi about θi, where 
the variance of yi is

		  s
a b c d wi

i i i i i

2 1 1 1 1 1= + + + ≡

and ai, bi, ci, and di are the cell counts in the 2 × 2 table for the ith study. We also as-
sume that there is between-study variation of Δ about an average true log OR (µ) over 
all studies so that

		  θi  = µ + Δi

and Var(Δi) = Δ2

This is similar to the random-effects analysis of variance (ANOVA) model presented 
in Section 12.8. To estimate µ, we calculate a weighted average of the study-specific 
log ORs given by

		  ˆ * *µ =
= =
∑ ∑w y wi
i

k

i i
i

k

1 1

where
		

w si i
* ( ˆ )= + −2 2 1∆

i.e., the weight for the ith study is inversely proportional to the total variance for 
that study (which equals si

2 + Δ2), and

		  se wi
i

k

(ˆ) *
/

µ =





=
∑1

1

1 2

It can be shown that the best estimate of Δ2 is given by
		

ˆ max ,[ ( )]∆2

1

2

1 1

0 1= − − −


= = =
∑ ∑ ∑Q k w w ww i
i

k

i
i

k

i
i

k





























where
		

Q w y yw i
i

k

i w= −
=
∑

1

2( )

and

		
y w y ww i

i

k

i i
i

k

=
= =
∑ ∑

1 1

This procedure is summarized as follows.

	E quation 13.45 	 	 �Meta-Analysis, Random-Effects Model 
	 	 	 Suppose we have k studies, each with the goal of estimating an OR = exp(µ) de-

fined as the odds of disease in a treated group compared with the odds of disease 
in a control group.

(1)	 The best estimate of the average study-specific log OR from the k studies is 
given by

		      
ˆ * *µ =

= =
∑ ∑w y wi
i

k

i i
i

k

1 1
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		  where yi = estimated log OR for the ith study

		        w si i
* ˆ= +( )−2 2 1

∆

	  		        1
1 1 1 12/ w s
a b c di i

i i i i
= = + + +  = within-study variance

and ai, bi, ci, and di are the cell counts for the 2 × 2 table for the ith study.

		      
ˆ max , [ ( )]∆2

1

2

1 1

0 1= − − −


= = =
∑ ∑ ∑Q k w w ww i
i

k

i
i
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i
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
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


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 =

∑
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1
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i

k
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		        y w y ww i i i
i

k

i

k

=
==
∑∑

11

The corresponding point estimate of the OR = exp (µ̂).

(2)	 The standard error of µ̂ = is given by se wi
i

k

(ˆ) *
/

µ =





=
∑1

1

1 2

(3)	 A 100% × (1 − α) CI for µ is given by 

	         ˆ (ˆ) ( , )/µ µ µ µα± =−z se1 2 1 2

The corresponding 100% × (1 − α) CI for OR is [exp(µ1), exp(µ2)].

(4)	 To test the hypothesis H0: µ = 0 vs. H1: µ ≠ 0 (or equivalently to test H0: OR = 
1 vs. H1: OR ≠ 1), we use the test statistic

		        
z se= ˆ / (ˆ)µ µ

�which under H0 follows an N(0,1) distribution. The two-sided p-value is 
given by 2 × [1 – Φ(|z|)].

	E xample 13.54 	 Renal Disease  Estimate the nephrotoxicity OR comparing tobramycin with genta-
micin based on the data in Table 13.30. Obtain a 95% CI, and provide a two-sided  
p-value for the hypothesis that the two treatments have equal rates of nephrotoxicity.

	 	 Solution:  We first compute the study-specific log OR (yi) and weight wi = (1/ai + 1/bi + 
1/ci + 1/di)

−1, which are shown in Table 13.30.
Next we compute the estimated between-study variance ∆̂2 . We have

		

w

w y

i
i

i
i

i

=

=

∑

∑

= + + =

=

1

8

1

8

1 430 5 167 28 0646

1

. . .

.

. . .

4430 1 394 5 167 0 754 9 1740

2

( . ) . ( . ) .. . .− + + = −

w yi i
i==
∑ = − + + =

1

8
2 21 430 1 394 5 167 0 754 13 2. ( . ) . ( . ) .. . . 7750

Hence,
		

Qw = − − =13 2750 9 1740 28 0646 10 2762. ( . ) / . .
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Furthermore,

		  wi
i

2

1

8
2 2

2

1 430 5 167 131 889

10 2

=
∑ = + + =

=

. . .

ˆ ( .

. . .

∆ 776 7 28 0646 131 889 28 0646
0 140

− −
= =

) / ( . . / . )
. betweeen study variance-

Hence,
		

w wi i
* ( / ˆ )= + −1 2 1∆

as shown in Table 13.30. Finally,

		

w yi i
* . ( . ) . . . . ( . ) .= − + + = −1 191 1 394 2 996 0 754 6 421

ii

i
i

w

=

=

∑

∑ = + + =

1

8

1

8

1 191 2 996 17 3526* . . . . . .

and

		  ˆ . / . .µ = − = −6 421 17 3526 0 370

with standard error given by

		  se(ˆ) ( / . ) ./µ = =1 17 3526 0 2401 2

Hence, the point estimate of the overall OR = exp(µ) is given by exp(−0.370) = 0.69. 
A 95% CI for exp(µ) is given by exp[−0.370 ± 1.96(0.240)] = (0.43, 1.11).

To test the hypothesis H0: µ = 0 vs. H1: µ ≠ 0, we use the test statistic

		
z se=

= − = −
ˆ / (ˆ)

. / . .
µ µ

0 370 0 240 1 542

with corresponding two-sided p-value given by p = 2 × [1 − Φ(1.542)] = .123. Hence, 
the OR, although less than 1, does not differ significantly from 1.

Test of Homogeneity of Odds Ratios
Some investigators feel the procedure in Equation 13.45 should only be used if there 
is no significant heterogeneity among the k study-specific ORs. To test the hypoth-
esis H k0 1: . . .θ θ= =  vs. H1: at least two θi’s are different, we use Equation 13.46.

	E quation 13.46 	 	� Test of Homogeneity of Study-Specific ORs in Meta-Analysis 
	 	 	 To test the hypothesis H k0 1: . . .θ θ= =  vs. H1: at least two θi’s are different, 

where θi = estimated log OR in the ith study, we use the test statistic
		

Q w y yw i
i

k

i w= −
=
∑

1

2( )

as defined in Equation 13.45. It can be shown under H0 that Qw ~ χ2
k-1. Hence, to 

obtain the p-value, we compute

		  p Pr Qk w-value = >( )−χ 1
2
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	 Example 13.55 	 Renal Disease  Test for the homogeneity of the ORs in Table 13.30 (on page 705).

	 	 Solution:  From the solution to Example 13.54, we have Qw = 10.276 ~ χ2
7  under H0. Be-

cause χ2
7 ,.75 = 9.04 and χ2

7 ,.90 = 12.02 and 9.04 < 10.276 < 12.02, it follows that 1 − .90 < p <  
1 − .75 or .10 < p < .25. The exact p-value = 1 − pchisq (10.276,7) = 0.174. Hence, 
there is no significant heterogeneity among the study-specific ORs.

It is controversial among research workers whether a fixed- or random-effects 
model should be used when performing a meta-analysis. Under a fixed-effects model, 
the between-study variance (Δ2) is ignored in computing the study weights and 
only the within-study variance is considered. Hence one uses wi for the weights in 
Equation 13.45 instead of wi*. Some statisticians argue that if there is substantial 
variation among the study-specific ORs, then one should investigate the source of 
the heterogeneity (different study designs, etc.) and not report an overall pooled 
estimate of the OR as given in Equation 13.45. Others feel that between-study  
variation should always be considered in meta-analyses. Generally speaking,  
using a fixed-effects model results in tighter confidence limits and more significant 
results. However, note that the fixed-effects model and the random-effects model 
give different relative weights to the individual studies. A fixed-effects model only 
considers within-study variation. A random-effects model considers both between- 
and within-study variation. If the between-study variation is substantial relative to 
the within-study variation (as is sometimes the case), then larger studies will get 
proportionally more weight under a fixed-effects model than under a random-effects 
model. Hence, the summary ORs under these two models may also differ. This is 
indeed the case in Table 13.30, where the relative weight of larger studies compared 
with smaller studies is greater for the fixed-effects model weights (wi) than for the 
random-effects model weights (wi*). For example, for the data in Table 13.30, if one 
uses a weight of wi for the ith study instead of wi*, one obtains a point estimate 
for the overall OR [exp(µ̂)] of 0.72 with 95% confidence limits of (0.50, 1.04) with  
p-value = .083 for testing H0: OR = 1 vs. H1: OR ≠ 1, compared with an OR of 0.69 with 
95% confidence limits of (0.43, 1.11) for the random-effects model.

One drawback to the random-effects approach is that one cannot use studies 
with zero events in either treatment group. Under a fixed-effects model such stud-
ies get 0 weight. However, under a random-effects model such studies get nonzero 
weight if the between-study variance is greater than 0. This is problematic because 
the log OR is either +∞ or −∞ unless both groups have no events. We excluded one 
small study in our survey in Table 13.30 for this reason [18], where there were 11 
gentamicin patients who experienced 0 events and 11 tobramycin patients who 
experienced two events. A reasonable compromise might be to check for signifi-
cant heterogeneity among the study-specific ORs using Equation 13.46 and use the 
decision rule in Table 13.31.

See page 706 for  
Equation 13.45

Table 13.31 Models used for meta-analysis

p-Value for heterogeneity Type of model used

≥.5 Use fixed-effects model
.05 ≤ p < .5 Use random-effects model
<.05 Do not report pooled OR;

assess sources of heterogeneity
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Meta-analysis methods can also be performed based on other effect measures (e.g., 
mean differences between treatment groups instead of ORs). However, this is beyond 
the scope of this text. For a complete description of meta-analysis, see Hedges and 
Olkin [19].

In this section, we have studied meta-analysis, a technique for formally combin-
ing results over more than one study to maximize precision in estimating param-
eters and to maximize power for testing hypotheses for particular research questions. 
We studied both a fixed-effects model, where the weight received by individual 
studies is determined only by within-study variation, and a random-effects model, 
where both between- and within-study variation determine the weight. We also dis-
cussed a possible strategy for determining which of the two models, if either, to use 
in specific situations.

RE  V I E W  QUE   S T I ON  S  1 3 E

1	 What is the purpose of meta-analysis?

2	 What is the difference between a fixed-effects model and a random-effects model 
for meta-analysis?

	 (a)	 How do the weights compare under these two models?

	 13.11	 E q u iv  a l e n c e  S t u d i e s

Introduction
In Chapter 10, we considered the estimation of sample size for studies in which the 
null hypothesis is that two treatments are equally effective vs. the alternative hypoth-
esis that the effects of the two treatments are different from each other and effective-
ness in each treatment group is expressed as a binomial proportion. These types of 
studies, which constitute the majority of clinical trials, are referred to as superiority 
studies. However, a different type of study design has emerged in recent years in which 
the major goal is to show that two treatments are equivalent rather than that one 
is superior to the other. Consider the following example, presented by Makuch and 
Simon [20].

	 Example 13.56 	 Cancer  Suppose we want to design a clinical trial to compare two surgical treat-
ments for early-stage breast cancer. The treatments are simple mastectomy and a 
more conservative tumor resection. In this setting, it would be unethical to com-
pare the experimental treatment with a placebo. Instead, two active treatments are 
compared with each other. The former treatment is the standard and yields a 5-year 
survival rate of 80%. The latter is an experimental treatment that is less debilitating 
than the standard. However, it will only be considered acceptable if it can be shown 
in some statistical sense to be no more than 10% inferior to the standard treatment 
in terms of 5-year survival. How can we test whether the experimental treatment is 
acceptable, and how can we estimate sample size for such a study?

	 Definition 13.18 	 The type of study in Example 13.56, where the goal is to show approximate equiva-
lence of two experimental treatments, is called an equivalence study.

R
 E
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 I 

E 
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Inference Based on Confidence-Interval Estimation
Suppose p1 is the survival rate for the standard treatment and p2 is the survival rate 
for the experimental treatment. The approach we will take is to determine a lower 
one-sided 100% × (1 − α) CI for p1 − p2. In Equation 13.1, we provide a two-sided CI 
for p1 − p2. The corresponding lower one-sided interval is given by

	E quation 13.47 	 p p p p z p q n p q n1 2 1 2 1 1 1 1 2 2 2− < − + +−ˆ ˆ ˆ ˆ / ˆ ˆ /α

We will consider the treatments as equivalent if the upper bound of this one-
sided CI does not exceed δ, where δ is a prespecified threshold.

	 Example 13.57 	 Cancer  Suppose we have a clinical trial with 100 patients on each of the standard 
treatment and the experimental treatment. We find that 80% of patients on the stan-
dard treatment and 75% of the patients on the experimental treatment survive for  
5 years. Can the treatments be considered equivalent if the threshold for equiva-
lence is that the underlying survival rate for the experimental treatment is no more 
than 10% worse than for the standard treatment based on a one-sided 95% CI  
approach?

	 	 Solution:  We construct a lower one-sided 95% CI for p1 − p2. From Equation 13.47, 
this is given by

		
p p z1 2 9580 75 80 20 100 75 25 100− < − + +. . . (. ) / . (. ) /. == +

= + =
. . (. )
. . .
05 1 645 0589
05 097 147

The upper bound of the lower 95% CI exceeds 10%, so the treatments cannot be con-
sidered equivalent. Thus, although the observed survival rates are only 5% apart, the 
underlying rates may differ by as much as 15%, which implies the treatments cannot 
be considered equivalent.

Sample-Size Estimation for Equivalence Studies
It seems clear from Example 13.57 that large sample sizes are needed to demonstrate 
equivalence. In some cases, depending on the threshold δ specified for equivalence, 
the sample size needed may be considerably larger than for typical superiority stud-
ies. The approach we will take is to require a sample size large enough so that with 
high probability (1 − β) the upper confidence limit in Equation 13.47 does not ex-
ceed δ. The results are summarized in Equation 13.48.

	E quation 13.48 	 	 Sample-Size Estimation for Equivalence Studies
	 	 	 Suppose we want to establish equivalence between a standard treatment (treat-

ment 1) and an experimental treatment (treatment 2), where p1 and p2 are 
treatment success rates in groups 1 and 2, respectively. The treatments are con-
sidered equivalent (in the sense that the experimental treatment is not substan-
tially worse than the standard treatment) if the upper bound of a lower 100% × 
(1 − α) CI for p1 − p2 is ≤ δ. If we want to establish equivalence with a probability 
of 1 − β, we require

See page 637 for  
Equation 13.1
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		    n
p q p q k z z

p p1
1 1 2 2 1 1

2

1 2
2=

+ +
− −

− −( / )( )

[ ( )]
α β

δ
 subjects in group 1

	 n2 = kn1 subjects in group 2 where k is specified in advance

The derivation of Equation 13.48 is given in Section 13.17(d) (p. 760).

	 Example 13.58 	 Cancer  Estimate the required sample size for the study described in Example 13.57 
if (1) we want a probability of 80% for establishing equivalence, (2) the sample 
sizes are the same in the two groups, (3) the underlying 5-year survival rate in both 
groups is 80%, (4) the threshold for equivalence is 10%, and (5) we establish equiva-
lence based on an upper bound of a lower 95% CI.

	 	 Solution:  We have p1 = p2 = .80, q1 = q2 = .20, k = 1, α = .05, β = .20, δ = .10. Therefore,

		

n
z z

1
95 80

2

2
80 20 2

10

32 1 645

= +

= +

. (. )( )( )
(. )

. ( .

. .

.. )
.

.
84

01
197 6

2

2= = n

Therefore, we require 198 subjects in each group to have an 80% probability of estab-
lishing equivalence under this design. This is larger than the sample size in Example 
13.57 (100 patients per group), where we were unable to demonstrate equivalence.

In this section, we have considered methods of analysis and methods of sample-
size estimation for equivalence studies (sometimes called active-control studies). An 
equivalence study is one in which we want to establish with high probability that 
the difference in effect between two treatment groups does not exceed some pre-
specified threshold with high probability (1 − β). The threshold δ, the probability 1 
− β, and the underlying success rates in each group need to be specified in advance.

When is it reasonable to consider an equivalence vs. a superiority study? Some 
people feel that a superiority study based on placebo control is always the design of 
choice [21]. Others feel that if a standard  therapy has already proven its effective-
ness, then it would be unethical to withhold treatment from patients (e.g., by using 
a placebo as one of the treatment groups in a clinical trial to establish the efficacy 
of a new treatment for schizophrenia). These issues are discussed in more detail by 
Rothman and Michels [22].

RE  V I E W  QUE   S T I ON  S  1 3 F

1	 What is the difference between an equivalence study and a superiority study?

2	 The drug ibuprofen is often used by patients with osteoarthritis to reduce inflamma-
tion and pain. Suppose ibuprofen is effective in 90% of patients. One possible side 
effect of the drug when taken for a long period of time is gastric bleeding. A new 
drug is proposed for patients with osteoarthritis. The goal is that the drug will be 
equivalent to ibuprofen in efficacy but with fewer side effects.

	 (a)	 To assess equivalence, a study is performed with 100 patients receiving each 
drug. Ninety of the ibuprofen patients and 86 of the new drug patients show 
efficacy from the treatment. Can the new drug be considered equivalent to 
ibuprofen if the criterion for equivalence is that ibuprofen is no more than 5% 
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higher in efficacy than the new drug and a one-sided 90% CI is used to estab-
lish equivalence?

	 (b)	 Suppose a larger equivalence study is planned. How many patients need to be 
enrolled in each group if the assumptions in Review Question 13F.2a hold and 
we want a 90% chance of demonstrating equivalence?

	 13.12	 T h e  C r o ss  - Ov  e r  D e si  g n

	E xample 13.59 	 Sports Medicine  In Problem 8.81 (on page 327) we were introduced to Data Set TEN-
NIS2.DAT at www.cengagebrain.com. This was a clinical trial comparing Motrin vs. 
placebo for the treatment of tennis elbow. Each participant was randomized to receive 
either Motrin (group A) or placebo (group B) for a 3-week period. All participants then 
had a 2-week washout period during which they received no study medication. All par-
ticipants were then “crossed-over” for a second 3-week period to receive the opposite  
study medication from that initially received. Participants in group A received  
3 weeks of placebo while participants in group B received 3 weeks of Motrin. This 
type of design is called a cross-over design. How should we compare the efficacy of 
Motrin vs. placebo using this design?

	 Definition 13.19 	 A cross-over design is a type of randomized clinical trial. In this design, each 
participant is randomized to either group A or group B. All participants in group A 
receive drug 1 in the first treatment period and drug 2 in the second treatment pe-
riod. All participants in group B receive drug 2 in the first treatment period and drug 
1 in the second treatment period. Often there is a washout period between the two 
active drug periods during which they receive no study medication. The purpose of 
the washout period is to reduce the likelihood that study medication taken in the 
first period will have an effect that carries over to the next period.

	 Definition 13.20 	 A washout period in a cross-over design is a period between active drug periods, 
during which subjects receive no study medication.

	 Definition 13.21 	 A carry-over effect in a cross-over design is when the effects of one or both study 
medications taken during the first active drug period have a residual biological effect 
during the second active drug period. 

The cross-over design described in Definition 13.19 is actually a two-period 
cross-over design. There are also cross-over designs with more than two periods 
and/or more than two treatments being compared. These latter designs are beyond 
the scope of this text. See Fleiss [23] for a discussion of these designs.

Assessment of Treatment Effects
A 6-point scale for pain relief was used in the study. At the end of each active treat-
ment period, the participants were asked to rate their degree of pain relative to 
baseline—that is, the beginning of the study before either active treatment period. 

 Data set available
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The rating scale was 1 if worse, 2 if unchanged, 3 if slightly improved (25%), 4 
if moderately improved (50%), 5 if mostly improved (75%), and 6 if completely 
improved (100%). We want to compare the degree of pain relief for participants 
while on Motrin with the degree of pain relief while on placebo. Let xijk = the 
pain relief rating for the jth subject in the ith group during the kth period, where  
i = group (1 = group A, 2 = group B), j = subject (j = 1, . . ., n1 if subject is in group 
A, j = 1, . . ., n2 if subject is in group B), k = period (1 = first period, 2 = second pe-
riod). For the jth patient in group A, the measure of drug efficacy is d1j = x1j1 − x1j2, 
whereas for the jth patient in group B, the measure of drug efficacy is d2j = x2j2 − x2j1. 
In each case, a large number indicates that the patient experiences less pain while 
on Motrin than on placebo. The summary measure of efficacy for patients in 
group A is therefore

		  d d nj
j

n

1 1 1
1

1
=

=
∑

and for patients in group B it is

		  d d nj
j

n

2 2 2
1

2
=

=
∑

The overall measure of drug efficacy is

	E quation 13.49 	 d d d= +( )1
2 1 2

To compute the standard error of d , we assume that the underlying variance of the 
within-subject differences in group A and group B are the same and estimate this 
variance (σd

2) by the pooled estimate

	E quation 13.50 	 s
d d d d

nd
jj

n
jj

n

,pooled
2 1 1

2

1 2 2
2

1
1 2

=
−( ) + −( )= =∑ ∑
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1
2

2
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2
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+ −
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Therefore,
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1
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



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
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
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σ

d d

d
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which is estimated by

		

s

n n
d ,pooled
2

1 24
1 1+





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with n1 + n2 − 2 df. The standard error of d  is thus
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		  se d
s

n n
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
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
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1 1
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This leads to the following test procedure for assessing the overall treatment effect 
in cross-over designs.

	E quation 13.51 	 	 The Cross-Over Design—Assessment of Overall Treatment Effects
	 	 	 Let xijk represent the score for the jth patient in the ith group during the kth 

period for patients entered into a study using a cross-over design, i = 1, 2; j =  
1, . . ., ni; k = 1, 2. Suppose patients in group A receive treatment 1 in period 1 
and treatment 2 in period 2, and patients in group B receive treatment 2 in pe-
riod 1 and treatment 1 in period 2. If we assume that no carry-over effect is pres-
ent, then we use the following procedure to assess overall treatment efficacy:

(1)	 We compute

		          d  = overall estimate of treatment efficacy = 
1
2 1 2( )d d+  

		  where d d n

d d n

d x x j
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(2)	 The standard error of d is estimated by
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(3)	 If Δ = underlying mean treatment efficacy, then to test the hypothesis H0:  
Δ = 0 vs. H1: Δ ≠ 0 using a two-sided level α significance test, compute the 
test statistic

		      

t
d

s

n n
d

=

+




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,pooled
2

1 24
1 1

(4)	 If t tn n> + − −1 2 2 1 2, /α  or t tn n< + −1 2 2 2, /α , then reject H0.

		  If t t tn n n n1 2 1 22 2 2 1 2+ − + − −≤ ≤, / , /α α , then accept H0.
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(5)	 The exact p-value is given by

		        2 × area to the left of t under a tn n1 2 2+ −  distribution if t ≤ 0

		  or

		        2 × area to the right of t under a tn n1 2 2+ −  distribution if t > 0

(6)	 A 100% × (1 − α) CI for the underlying treatment effect Δ is given by

		      
d t

s

n nn n
d± +





+ − −1 2 2 1 2

2

1 24
1 1

, /
,

α
pooled

	 Example 13.60 	 Sports Medicine  Test for whether the overall degree of pain as compared with base-
line is different for patients while on Motrin than while on placebo. Estimate a 95% 
CI for improvement in degree of pain while on Motrin vs. placebo.

	 	 Solution:  There are 88 participants in the data set, 44 in group A and 44 in group B. 
However, 2 participants in each group had missing pain scores in one or both peri-
ods. Hence, 42 participants are available for analysis in each group. We first present 
the mean pain score vs. baseline for patients in each group during each period as 
well as the mean difference in pain scores (Motrin – placebo) and the average pain 
relief score over the two periods (see Table 13.32).

The overall measure of drug efficacy is

d = + =0 071 1 357
2

0 714
. .

.

	T able 13.32 	 Summary statistics of overall impression of drug efficacy compared with baseline 	
(n = 84)

	 Group

	 A	 B

	 Motrin	 Placebo	 Differencea
	 Averageb	 Motrin	 Placebo	 Differencea	 Averageb

Mean	 3.833	 3.762	 0.071	 3.798	 4.214	 2.857	 1.357	 3.536
sd	 1.188	 1.574	 1.813	 1.060	 1.353	 1.160	 1.376	 1.056
n	 42	 42	 42	 42	 42	 42	 42	 42

Note: The data are obtained from Data Set TENNIS2.DAT (at www.cengagebrain.com) using variable 22 for overall impression of drug efficacy 
during period 1 and variable 43 for overall impression of drug efficacy during period 2.
aPain score on Motrin – pain score on placebo
bAverage of (pain score on Motrin, and pain score on placebo)

 Data set available

		  To compute the standard error of d , we first compute the pooled variance esti-
mate given by

		

s n s n s n nd d d,pooled
2

1
2

2
2

1 21 1 21 2= −( ) + −( )  + −(( )

= ( ) + ( ) =
41 1 813 41 1 376

82
2 590

2 2. .
.
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The standard error of d  is

		
se d( )

.
.= +



 =2 590

4
1

42
1

42
0 176

The test statistic is

	 t t= =0 714
0 176

4 07 82
.
.

. ~  under H0 

The exact p-value = 2 × Pr(t82 > 4.07). Because 4.07 > t60,.9995 = 3.460 > t82,.9995, it follows 
that p < 2 × (1 − .9995) or p < .001. The exact p-value = 2 × [1 − pt(4.07,82)] = 1.08 × 10-4. 
Thus, there is a highly significant difference in the mean pain score on Motrin vs. 
the mean pain score on placebo, with patients experiencing less pain when on 
Motrin.

A 95% CI for the treatment benefit Δ is

		
d t se d

t

n n±

= ± ( )
+ −1 2 2 975

82 9750 714 0 176

,.

,.

( )

. .

Using R, we estimate t82,.975 = qt (0.975, 82) = 1.989. Therefore, the 95% CI for Δ = 
0.714 ± 1.989(0.176) = (0.365, 1.063). Thus, the treatment benefit is likely to be be-
tween 1/3 of a unit and 1 unit on the pain scale.

Assessment of Carry-Over Effects
In the preceding section, when we computed the overall estimate of the treatment 
effect in Equation 13.51, we assumed there was no carry-over effect. A carry-over  
effect is present when the true treatment effect is different for subjects in group A 
than for subjects in group B.

	E xample 13.61 	 Sports Medicine  Suppose Motrin is very effective in relieving pain from tennis el-
bow and the pain relief is long-lasting (relief continues even after the patients stop 
taking the medication, whereas placebo has no effect on pain). In this case, the dif-
ference between Motrin- and placebo-treated patients would be greater during the 
first treatment period than during the second treatment period. Another way of 
stating this is that the difference between Motrin and placebo is smaller for patients 
in group A than for patients in group B. This is because of the carry-over effect of 
Motrin taken in the first period into the second period. How can we identify such 
carry-over effects?

Notice that in Example 13.61, if there is a carry-over effect, then the average res-
ponse for patients in group A over the two periods will be greater than for patients in 
group B. This forms the basis for our test for identifying carry-over effects.

	E quation 13.52 	 Assessment of Carry-Over Effects in Cross-Over Studies

	 	 Let xijk represent the score for the jth patient in the ith group during the kth 
period. Define x x xij ij ij= +( )1 2 2 = average response over both periods for the jth 

patient in the ith group and x x ni ij i
j

ni
=

=
∑

1

 = average response over all patients in 

the ith group over both treatment periods. We assume that x Nij i~ ( , )µ σ2 , i = 1, 

2; j = 1, . . ., ni. To test the hypothesis H0: µ1 = µ2 vs. H1: µ1 ≠ µ2:
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(1)	 We compute the test statistic
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	 Example 13.62 	 Assess whether there are any carry-over effects, using the tennis-elbow data in  
Example 13.61.

	 	 Solution:  We refer to Table 13.32 and note that

		

x s n
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1 1 1

2 2 2

3 798 1 060 42
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= = =
= =
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Therefore, the test statistic is given by
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.
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The p-value is given by 2 × [1 − pt(1.135,82)] = 0.260.
Therefore, there is no significant carry-over effect. We can also gain some in-
sight into possible carry-over effects by referring to Table 13.32. We see the treat-
ment benefit during period 1 is 3.833 − 2.857 = 0.976, whereas the treatment 
benefit during period 2 is 4.214 − 3.762 = 0.452. Thus, there is some treatment 
benefit during each period. The degree of benefit is larger in period 1 but is 
not significantly larger. In general, the power of the test to detect carry-over 
effects is not great. Also, the effect of possible carry-over effects on the abil-
ity to identify overall treatment benefit can be large. Therefore, some authors 
[24] recommend that the p-value for declaring significant carry-over effects be 
set at .10 rather than the usual .05. Even with this more relaxed criterion for 
achieving statistical significance, we still don’t declare a significant carry-over  
effect with the tennis-elbow data.
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Another important insight into the data is revealed by looking for period effects. 
For example, in Table 13.32 the effect of period 2 vs. period 1 is 4.214 − 3.833 = 
0.381 while subjects were on Motrin and 3.762 − 2.857 = 0.905 while subjects were 
on placebo. Thus, subjects are experiencing less pain in period 2 compared with pe-
riod 1 regardless of which medication they are taking.

What can we do if we identify a significant carry-over effect using Equation 
13.52? In this case, the second-period data are not useful to us because they provide 
a biased estimate of treatment effects, particularly for subjects who were on active 
drug in the first period and on placebo in the second period, and we must base our 
comparison of treatment efficacy on first-period data only. We can use an ordinary 
two-sample t test for independent samples based on the first-period data. This test 
usually has less power than the cross-over efficacy test in Equation 13.51, or requires 
a greater sample size to achieve a given level of power (see Example 13.63).

Sample-Size Estimation for Cross-Over Studies
A major advantage of cross-over studies is that they usually require many fewer 
subjects than the usual randomized clinical trials (which have only 1 period), if no 
carry-over effect is present. The sample-size formula is as follows.

	E quation 13.53 	 	 Sample-Size Estimation for Cross-Over Studies
	 	 	 Suppose we want to test the hypothesis H0: ∆ = 0 vs. H1: ∆ ≠ 0 using a 

two-sided test with significance level α, where ∆ = underlying treatment 
benefit for treatment 1 vs. treatment 2 using a cross-over study. If we re-
quire a power of 1 − β, and we expect to randomize an equal number of 
subjects to each group (group A receives treatment 1 in period 1 and treat-
ment 2 in period 2; group B receives treatment 2 in period 1 and treat-
ment 1 in period 2), then the appropriate sample size per group = n, where

		  
n

z zd=
+( )

∆
− −σ α β

2
1 2 1

2

22
/

and σd
2 = variance of difference scores = variance of (response on treatment  

1 – response on treatment 2).

This sample-size formula is only applicable if no carry-over effects (as defined in 
Definition 13.21) are present.

	 Example 13.63 	 Hypertension  Suppose we want to study the effect of postmenopausal hormone 
(PMH) use on level of diastolic blood pressure (DBP). We intend to enroll n post-
menopausal women per group. Women in group A will get PMH pills in period 1 
(4 weeks) and placebo pills in period 2 (4 weeks). Women in group B will get placebo 
pills in period 1 and PMH pills in period 2. There will be a 2-week washout period 
between each 4-week active-treatment period. Women will have their blood pressure 
measured at the end of each active-treatment period based on a mean of 3 readings 
at a single visit. If we anticipate a 2-mm Hg treatment benefit and the within-subject 
variance of the difference in mean DBP between the two periods is estimated to be 
31, based on pilot-study results, and we require 80% power, then how many partici-
pants need to be enrolled in each group?

See page 715 for  
Equation 13.51
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	 	 Solution:  We have σd
2 = 31, α = .05, β = .20, Δ = 2. Thus, from Equation 13.53, we 

have z1−α/2 = z.975 = 1.96, z1−β = z.80 = 0.84 and

		

n =
+( )

= =

31 1 96 0 84
2 4

31 7 84
8

30 4

2. .
( )

( . )
.

Thus, we need to enroll 31 participants per group, or 62 participants overall, to 
achieve an 80% power using this design, if no carry-over effect is present.

An alternative design for such a study is the so-called parallel-group design, in 
which we randomize participants to either PMH or placebo, measure their DBP at 
baseline and at the end of 4 weeks of follow-up, and base the measure of efficacy 
for an individual patient on (mean DBP at follow-up – mean DBP at baseline). The 
sample size needed for such a study is given in Equation 8.25 by

		

n
z zd= =

+
∆

=

− −sample size per group
2

4

2
1 2 1

2

2

σ α β( )/

××
=

sample size per group for cross-over study
4 30( .. ) .4 121 5 122 244= = participants per group or partiicipants overall

σd
2 is the within-subject variance of the difference in mean DBP (i.e., mean DBP 

follow-up – mean DBP baseline) = 31. Clearly, the cross-over design is much more 
efficient, if the assumption of no carry-over effects is viable. It is important in plan-
ning cross-over studies to include a baseline measurement prior to the active-
treatment period. Although the baseline measurement is usually not useful in 
analyzing cross-over studies, it can be very useful if it is subsequently found that 
a carry-over effect is present. In this case, one could use a parallel-group design 
based on the difference between period 1 scores and baseline scores as the outcome 
measure, rather than simply the period 1 scores. The difference score generally has 
less variability than the period 1 score because it represents within-person variabil-
ity rather than both between-person and within-person variability as represented 
by the period 1 score.

In this section, we have examined cross-over designs. Under a cross-over de-
sign, each subject receives both treatments but at different times. Randomization 
determines treatment order for individual subjects. A cross-over design can be more 
efficient (i.e., require fewer subjects) than a traditional parallel-group design if no 
carry-over effects are present but will be underpowered if unanticipated carry-over 
effects are present because the second-period data cannot be validly used. In the lat-
ter case, the power can be somewhat improved if a baseline score is obtained before 
subjects receive either treatment.

It is useful to consider the types of studies in which a cross-over design may be 
appropriate. In particular, studies based on objective endpoints such as blood pres-
sure, in which the anticipated period of drug efficacy occurs over a short time (i.e., 
weeks rather than years) and is not long-lasting after the drug is withdrawn, are best 
suited for a cross-over design. However, most phase III clinical trials (i.e., definitive 
studies used by the FDA as a basis for establishing drug efficacy for new pharmaceu-
tical products or existing products being tested for a new indication) are long-term 
studies that violate one or more of the preceding principles. Thus, in general, phase 
III clinical trials usually use the more traditional parallel-group design.

See page 308 for  
Equation 8.25
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RE  V I E W  QUE   S T I ON  S  1 3 G

1	 What is the difference between a cross-over design and a parallel-group design?

2	 What is a carry-over effect?

3	 Suppose there is no carry-over effect. Which design requires a larger sample size, 
a cross-over design or a parallel-group design?

	 13.13	 C l u s t e r e d  Bi  n a r y  D ata

Introduction
The two-sample test for the comparison of binomial proportions, discussed in 
Section 10.2, is one of the most frequently cited statistical procedures in applied 
research. An important assumption underlying this methodology is that the obser-
vations within the respective samples are statistically independent.

	 Example 13.64 	 Infectious Disease, Dermatology  Rowe et al. [25] reported on a clinical trial of topi-
cally applied 3% vidarbine vs. placebo in treating recurrent herpes labialis. During 
the medication phase of the trial, the characteristics of 53 lesions observed on 31 
patients receiving vidarbine were compared with the characteristics of 69 lesions 
observed on 39 patients receiving placebo. A question of interest is whether the pro-
portion of lesions showing significant shrinkage in the two groups is the same after 
7 days. This requires development of a test procedure that adjusts for dependencies 
in response among lesions observed on the same patient.

Hypothesis Testing
We assume the sample data arise from two groups of individuals, n1 individuals in 
group 1 and n2 individuals in group 2. Suppose that individual j in group i (i = 1, 2) 
contributes mij observations to the analysis, j = 1, 2, . . ., ni and M mi ijj

ni=
=∑ 1

 denotes 

the total number of observations in group i, each classified as either a success or a 
failure. Let aij denote the observed number of successes for individual j in group i, 

and define A ai ijj

ni=
=∑ 1

. Then the overall proportion of successes in group i may be 

denoted by ˆ / ˆ /p A M m p Mi i i ij ij ij

ni= =
=∑ 1

, where ˆ /p a mij ij ij=  denotes the observed 

success rate for individual j in group i. We further denote the total number of indi-
viduals as N = n1 + n2 and the total number of observations as M = M1 + M2.

Let pi denote the underlying success rate among observations in group i, i = 1, 2. 
Then we want to test the hypothesis H0: p1 = p2 vs. H1: p1 ≠ p2, assuming the samples 
are large enough that the normal approximation to the binomial distribution is valid.

An estimate of the degree of clustering within individuals is given by the intra
class correlation for clustered binary data. This is computed in a similar manner as 
for normally distributed data as given in Section 12.9. The mean square errors be-
tween and within individuals, respectively, are given in this case by
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The resulting estimate of intraclass correlation is given by
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where
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The clustering correction factor in group i may now be defined as C m C Mi ij ij i
j

ni
=

=
∑ /

1

, 
where C mij ij= + −( )1 1 ρ̂.

The clustering correction factor is sometimes called the design effect. Notice that 
if the intraclass correlation coefficient is 0, then no clustering is present and the 
design effects in the two samples are each 1. If the intraclass correlation coefficient 
is > 0, then the design effects are > 1. The design effects in the two samples (C1, C2) 
are used as correction factors to modify the standard test statistic comparing two 
binomial proportions (Equation 10.3) for clustering effects. We have the following 
test procedure.

	E quation 13.54 	 	 Two-Sample Test for Binomial Proportions (Clustered Data Case)
	 	 	 Suppose we have two samples consisting of n1 and n2 individuals, respectively, 

where the jth individual in the ith group contributes mij observations to the 
analysis, of which aij are successes. To test the hypothesis H0: p1 = p2 vs. H1: p1 ≠ p2,

(1)	 We compute the test statistic
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See page 374 for  
Equation 10.3
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(2)	 To test for significance, we reject H0 if |z| > z1−α/2, where z1−α/2 is the upper α/2 
percentile of a standard normal distribution.

(3)	 An approximate 100% × (1 − α) CI for p1 − p2 is given by

		      

ˆ ˆ ( ) ( ) ˆ ˆ ˆp p C M C M z p q C M1 2 1 1 2 2 1 2 1 1 1 12 2− − +[ ] ± +−α pp q C M p p

p p C M C M

2 2 2 2 1 2

1 2 1 1 2 22 2

ˆ ˆ ˆ

ˆ ˆ ( ) ( )

if >

− + +[ ]] ± + ≤−z p q C M p q C M p p1 2 1 1 1 1 2 2 2 2 1 2α ˆ ˆ ˆ ˆ ˆ ˆif

(4)	 This test should only be used if M pq C1 1 5ˆˆ / ≥  and M pq C2 2 5ˆˆ / ≥ .

	 Example 13.65 	 Dentistry  A longitudinal study of caries lesions on the exposed roots of teeth was 
reported in the literature [26]. Forty chronically ill subjects were followed for devel-
opment of root lesions over a 1-year period. The data are given in Table 13.33. Assess 
whether the male patients had a higher incidence of surfaces with root lesions than 
did female patients over this time period.

	 	 Solution:  We note that 6 of 27 (22.2%) surfaces among 11 male patients developed 
root lesions compared with 6 of 99 (6.1%) surfaces among 29 female patients. The 
standard normal deviate test statistic (Equation 10.3) for comparing these two pro-
portions is given by
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which yields a p-value of 2 × [1 − Φ(2.166)] = .030. However, application of this 
test procedure ignores the dependency of responses on different surfaces within 
the same patient. To incorporate this dependency, we use the test procedure in 
Equation 13.54. We must compute the intraclass correlation ρ̂, which is given as 
follows:
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See page 374 for  
Equation 10.3
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	 Table 13.33 	 Longitudinal data on development of caries lesions over a 1-year period

	 ID	 Age	 Sex	 Lesions	 Surfaces

Males	 1	 71	 M	 0	 4
	 5	 70	 M	 1	 1
	 6	 65	 M	 2	 2
	 7	 53	 M	 0	 2
	 8	 71	 M	 2	 4
	 11	 74	 M	 0	 3
	 15	 81	 M	 0	 3
	 18	 64	 M	 0	 3
	 30	 40	 M	 0	 1
	 32	 78	 M	 1	 2
	 35	 79	 M	 0	 2

Total	 11			   6	 27
					   
Females	 2	 80	 F	 1	 2
	 3	 83	 F	 1	 6
	 4	 86	 F	 0	 8
	 9	 69	 F	 1	 5
	 10	 59	 F	 0	 4
	 12	 88	 F	 0	 4
	 13	 36	 F	 1	 2
	 14	 60	 F	 0	 4
	 16	 71	 F	 0	 4
	 17	 80	 F	 0	 4
	 19	 59	 F	 0	 6
	 20	 65	 F	 0	 2
	 21	 85	 F	 0	 4
	 22	 72	 F	 0	 4
	 23	 58	 F	 0	 2
	 24	 65	 F	 0	 3
	 25	 59	 F	 0	 2
	 26	 45	 F	 0	 2
	 27	 71	 F	 0	 4
	 28	 82	 F	 2	 2
	 29	 48	 F	 0	 2
	 31	 67	 F	 0	 2
	 33	 80	 F	 0	 2
	 34	 69	 F	 0	 4
	 36	 85	 F	 0	 4
	 37	 77	 F	 0	 4
	 38	 71	 F	 0	 3
	 39	 85	 F	 0	 2
	 40	 52	 F	 0	 2

Total	 29			   6	 99
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To compute the adjusted test statistic, we need to estimate C1, C2, where
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Thus, we have the adjusted test statistic
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This yields a two-tailed p-value of 2 × [1 − Φ(1.323)] = 2 × (.0930) = .186, which is not 
statistically significant. Thus, the significance level attained from an analysis that 
ignores the dependency among surfaces within the same patient (p = .030) is consid-
erably lower than the true significance level attained from the procedure in Equation 
13.54, which accounts for the dependence. The existence of such dependence is bio-
logically sensible, given the common factors that affect the surfaces within a mouth, 
such as nutrition, saliva production, and dietary habits [27].

Using Equation 13.54, we can also develop a 95% CI for p1 − p2 = true difference in 
1-year incidence of root caries between males and females, which is given as follows:
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Note that the inference procedure in Equation 13.54 reduces to the standard two-
sample inference procedure when ρ̂ = 0 (i.e., Equation 10.3), or when mij = 1, j = 1,  
2, . . . , ni; i = 1, 2. Finally, note that if all individuals in each group contribute exactly the 
same number of sites (m), then the test procedure in Equation 13.54 reduces as follows:

	 Equation 13.55 	 	 Two-Sample Test for Binomial Proportions (Clustered Data Case—Equal Number 
of Sites per Individual)
If each individual in each of two groups contributes m observations, then to test 
the hypothesis H0: p1 = p2 vs. H1: p1 ≠ p2, perform the following procedure:

(1)	 Let
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See page 374 for  
Equation 10.3
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		  where Mi = ni m, i = 1, 2, and p̂i, i = 1, 2, and ρ̂ are defined in Equation 13.54.

(2)	 To test for significance, we reject H0 if |z| > z1− α/2, where z1− α/2 is the upper  
α/2 percentile of a standard normal distribution.

(3)	 An approximate 100% × (1 − α) CI for p1 − p2 is given by
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(4)	 This test should only be used if M pq m1 1 1 5ˆˆ ˆ+ −( )[ ] ≥ρ  and
M pq m2 1 1 5ˆˆ ˆ+ −( )[ ] ≥ρ .

Power and Sample Size Estimation for Clustered Binary Data
Suppose we want to test the hypothesis H0: p1 = p2 vs. H1: p1 ≠ p2. If we assume there 
is independence among the observations within an individual and there are n1 

observations in group 1 and n2 observations in group 2, then the power is given by 
Φ(z1 − β ), where

	 Equation 13.56 	 z p p p q n p q n z pq n n1 1 2 1 1 1 2 2 2 1 2 1 21 1− −= − + − +( )β α p q n p q n1 1 1 2 2 2+

(Also see Equation 10.14.) In the case of clustered binary data, we replace n1 and n2 
by the effective number of independent observations per group, or

	E quation 13.57 	 n M C ii i i= =, ,1 2

where Ci is defined in Equation 13.54. To compute sample size, we specify 1 − β and 
solve for n1 and n2 as a function of 1 − β. The results are summarized as follows.

	E quation 13.58 	 	 Power and Sample Size Estimation for Comparing Binomial Proportions Obtained 
from Clustered Binary Data 

	 	 	 Suppose we wish to test the hypothesis H0: p1 = p2 vs. H1: p1 ≠ p2. If we intend to use 
a two-sided test with significance level α and have available ni individuals from 
the ith group, i = 1, 2, where each individual contributes m observations with 
intraclass correlation = ρ, then the power of the study given by Φ(z1 − β), where
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where C = 1 + (m − 1) ρ, Mi = ni m and p = (n1 p1 + n2  p2)/(n1 + n2).

See page 722 for  
Equation 13.54

See page 405 for  
Equation 10.14
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If we require a given level of power = 1 − β and it is anticipated that n2 = kn1, 
then the required sample size in each group is given by

		  
( )= + + +  − , =−α −βn C z pq k z p q p q k m p p n kn(1 1 )1 1 /2 1 1 1 2 2

2
1 2

2
2 1

	 Example 13.66 	 Dentistry  A clinical trial is planned of a new therapeutic modality for the treatment 
of periodontal disease. The unit of observation is the surface within the patient’s 
mouth. Two groups of patients, one randomly assigned to the new modality and the 
other randomly assigned to a standard treatment, will be monitored at 6 months 
after therapy to compare the percentage of surfaces over all patients that lose at-
tachment of teeth to the gum surface. It is anticipated from previous studies that 
approximately two-thirds of teeth from surfaces treated with the standard modality 
will lose attachment, and a reduction of this proportion to half would be considered 
clinically significant. Suppose each patient is required to contribute an average of 
25 surfaces to the analysis. How many participants are required for each treatment 
group in order to have 80% power to detect this magnitude of effect if a two-sided 
test is to be used with significance level = .05?

	 	 Solution:  Because surfaces within one patient cannot be regarded as independent, an 
estimate of required sample size depends on level of intrapatient correlation (ρ) with 
respect to occurrence of attachment loss. Referring to Fleiss et al. [28], a reasonable es-
timate of ρ is given by .50. Also, p1 = .667, q1 = .333, p2 = .500, q2 = .500, p = (.667 + .500)/2 =  
.584, q = .416, k = 1, and C = 1 + (25 − 1)0.5 = 13. The required number of partici-
pants per group is then obtained from Equation 13.58 as follows:

		

( )[ ]
( )

( )
= =

+ − + +

−
n n

z p q z p q p q

p p

1 25 1 .50 2

25
1 2

.975 .80 1 1 2 2
2

1 2
2

		          

=
( )( ) + ( ) + (13 1 96 2 584 416 0 84 667 333 50 50. . . . . . . . ))





−( )

=
+( )

2

2

2

25 667 500

13 1 3665 0 5772
0 6

. .

. .
. 9944

49 1137
0 6944

70 7 71= =.
.

. or participants per grroup

	E xample 13.67 	 Dentistry  Suppose the investigators feel they can recruit 100 participants per group 
for the study mentioned in Example 13.66. How much power would such a study 
have with the parameters given in Example 13.66, if a two-sided test is to be used 
with α = .05?

	 	 Solution:  Because there are 25 surfaces per participant, we have M1 = M2 = 25(100) = 
2500. Thus, from Equation 13.58 we have power = Φ(z1 − β  ), where
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Thus, the power = Φ(1.375) = .915 if 100 participants per group were recruited.
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Regression Models for Clustered Binary Data
In the preceding examples, we have considered a comparison of two binomial pro-
portions where the units of observation are not independent. However, we often 
would like to consider one or more additional covariates in our modeling. For this 
purpose, we wish to extend logistic regression methods to allow for correlation be-
tween subunits within the same cluster. A technique called generalized estimating 
equations (GEE) can perform this type of analysis [29]. 

	E quation 13.59 	 GEE Model 
	 	 Suppose we have n clusters and mi observations (subunits) within the ith cluster, 

i n= 1, . . . , . 

Let yij = outcome for the jth subunit in the ith cluster, i n j mi= =1 1, . . . , ; , . . . , . 
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Let x xij ijk1, . . .,  be a set of covariates for the jth subunit in the ith cluster. A GEE 
model is a logistic regression model that allows for the correlation between out-
comes for multiple subunits in the same cluster, which is specified by 

		      
ln[ / ( )]p p xij ij k

k

K

ijk1
1

− = +
=

∑α β

where corr( , )p pij ij1 2 = ρ . 

This is called a compound symmetry or exchangeable correlation structure because the 
correlation between outcomes for any two subunits in the same cluster is assumed 
to be the same. 

	E xample 13.68 	 Dentistry  Reanalyze the dental data in Example 13.65 (on page 723) using GEE 
methodology. 

	 	 Solution:  We have fit the model 

		  ln[ / ( )]p pij ij1 1− = +α β gender

where gender = 1 if male, = 0 if female, and pij = probability that the jth sur-
face from the ith person developed caries lesions over a 1-year period where 
i j mi= = =1 40 1, . . ., , , . . .,  number of surfaces available for the ith person. In addition, 
the correlation between any two subunits (surfaces) in the same cluster (subject) is 
specified by corr( , )p pij ij1 2 = ρ. 

This is referred to as an exchangeable correlation structure since any two surfaces 
within the same subject are assumed to have the same correlation. We used PROC 
GENMOD of SAS to fit this model specifying a binomial model for the distribu-
tion of the outcome variable and a logit link which is the function of the outcome 
variables whose expected value is assumed to be a linear function of the covariates 
(hence, the term logistic link). The results are given in Table 13.34. 
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Table 13.34   Use of PROC GENMOD of SAS to analyze the effect of gender on the development of caries 
lesions 

The SAS System

The GENMOD Procedure

Model Information

Data Set	 WORK.DENTAL

Distribution	 Binomial	

Link Function	 Logit	

Dependent Variable	 Lesion

Number of Observations Read	 126

Number of Observations Used	 126

Number of Events	 12

Number of Trials	 126

Class Level Information

Class	 Levels	 Values

ID	 40	 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

		  21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

		  38 39 40

Response Profile

	 Ordered		  Total

	 Value	 Lesion	 Frequency

	 1	 1 	 12

	 2	 0 	 114

PROC GENMOD is modeling the probability that Lesion = ’1’ 
Parameter Information

Parameter	 Effect

Prm1	 Intercept

Prm2	 Gender

The SAS System

The GENMOD Procedure

Analysis of Initial Parameter Estimates

			   Standard	 Wald 95% Confidence	 Chi-	 Pr > 
Parameter	 DF	 Estimate	 Error	 Limits	 Square	 ChiSq

Intercept 	 1	 2.7408	 0.4212	 −3.5664	 −1.9153	 42.34	 <.0001
Gender 	 1	 1.4881	 0.6259	 0.2614	 2.7147	 5.65	 0.0174

Scale 	 0	 1.0000	 0.0000	 1.0000	 1.0000		

NOTE: The scale parameter was held fixed. 

(continued )
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Table 13.34   Use of PROC GENMOD of SAS to analyze the effect of gender on the development 	
of caries lesions (Continued )

GEE Model Information

Correlation Structure	 Exchangeable

Subject Effect 	 ID (40 levels)

Number of Clusters	 40

Correlation Matrix Dimension	 8

Maximum Cluster Size	 8

Minimum Cluster Size	 1

Algorithm converged. 

Exchangeable Working  

Correlation

Correlation      0.1210160955

Analysis of GEE Parameter Estimates  

Empirical Standard Error Estimates

		  Standard	 95% Confidence	  

Parameter	 Estimate	 Error	 Limits	 Z	 Pr > |Z|

Intercept 	 −2.6496	 0.4947	 −3.6191	 −1.6801	 −5.36	 <.0001
Gender 	 1.4478	 0.7561	 −0.0342	 2.9297	 1.91	 0.0555

Note that PROC GENMOD first fits a model assuming zero correlation among subunits, 
which in this case is simply a logistic model with the single covariate gender. The re-
sults are listed under Analysis of Initial Parameter Estimates. It uses this model as an ini-
tial estimate of the regression parameters. It then refines the estimates by successively 
estimating the correlation ( )ρ  between outcomes from surfaces from the same person 
and then re-estimating the regression parameters conditional on ρ. The final model is 

listed under the Analysis of GEE Parameter Estimates. We see that the test statistic for 

gender = = = =z seˆ / (ˆ ) . / . .β β1 1 1 4478 0 7561 1 91 with p-value = .056.This is actually simi-
lar to the result obtained in Example 13.65 (on page 723) if no continuity correction is 
used, given by 

		  zclustered binomial
. .

.
.
.

= − =2222 0606
0881

1616
00881

1 834 0 1= . ~ ( , ),N

with p-value = × − =2 1 1 834 067[ ( . )] . .Φ  

Note also that the estimate of the correlation between outcomes for two surfaces 
from the same subject is estimated to be 0.121. If we compare the GEE parameter 
estimates with the initial parameter estimates, we see that the standard error of  
β̂1 is larger for the GEE parameter estimates, and the p-value is larger reflecting the 
fact that there is correlation among the subunits that reduces the effective sample 
size and provides for a more appropriate analysis. 

	 Example 13.69 	 Dentistry  Assess the effect of gender on the incidence of caries lesions while con-
trolling for age using the data in Example 13.65. 

	 	 Solution:  We use PROC GENMOD of SAS to fit the following GEE model 

		  ln[ / ( )]p pij ij1 1 2− = + +α β βgender age
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where gender = 1 if male, = 0 if female, and pij = probability that the jth sur-
face from the ith person developed caries lesions over a 1-year period, where 
i j mi= = =1 40 1, . . ., , , . . .,  number of surfaces available for the ith person and 
corr( , ) .p pij ij1 2 = ρ

The results are given in Table 13.35. We note that there is a borderline effect of gen-
der (z  value = 1.94, p-value = .052) after controlling for age. No significant effect of 
age was found ( . ).p = 88  

Table 13.35   Use of PROC GENMOD of SAS to analyze the effect of gender and age on development 	
of caries lesions 

The SAS System

The GENMOD Procedure

Model Information

Data Set	 WORK.DENTAL

Distribution 	 Binomial	

Link Function 	 Logit	

Dependent Variable	 Lesion	

Number of Observations Read	 126

Number of Observations Used	 126

Number of Events	 12

Number of Trials	 126

Class Level Information

Class	 Levels	 Values

ID	 40	 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

		  21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

		  38 39 40

Response Profile

	 Ordered		  Total

	 Value	 Lesion	 Frequency

	 1	 1	 12

	 2	 0	 114

The SAS System

The GENMOD Procedure

PROC GENMOD is modeling the probability that Lesion = ’1’ 

Parameter Information

Parameter	 Effect

Prm1	 Intercept

Prm2	 Gender

Prm3	 Age

Algorithm converged.

(continued )
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Table 13.35   Use of PROC GENMOD of SAS to analyze the effect of gender and age on development 	
of caries lesions (Continued )

Analysis of Initial Parameter Estimates
				     

			   Standard	 Wald 95% Confidence	 Chi-	 Pr > 
Parameter	 DF	 Estimate	 Error	 Limits	 Square	 ChiSq

Intercept	 1	 2.9880	 2.0867	 7.0780	 1.1019	 2.05	 0.1522

Gender	 1	 1.4943	 0.6283	 0.2628	 2.7258	 5.66	 0.0174

Age	 1	 0.0034	 0.0284	 0.0522	 0.0591	 0.01	 0.9034

Scale	 0	 1.0000	 0.0000	 1.0000	 1.0000		

NOTE: The scale parameter was held fixed. 

GEE Model Information

Correlation Structure 	 Exchangeable

Subject Effect 	 ID (40 levels)

Number of Clusters 	 40

Correlation Matrix Dimension	 8

Maximum Cluster Size 	 8

Minimum Cluster Size 	 1

Algorithm converged. 

Exchangeable Working  

Correlation

Correlation      0.1174787811

Analysis of GEE Parameter Estimates  

Empirical Standard Error Estimates

		  Standard	 95% Confidence	  

Parameter	 Estimate	 Error	 Limits	 Z	 Pr > |Z|

Intercept 	 3.0538	 2.5527	 8.0571	 1.9494	 1.20	 0.2316

Gender 	 1.4569	 0.7505	 0.0140	 2.9278	 1.94	 0.0522

Age 	 0.0057	 0.0361	 0.0652	 0.0765	 0.16	 0.8757

We can also interpret this result in terms of ORs using similar methods as for logistic 
regression. From Table 13.35, the odds of dental caries for surfaces from males vs. females 
of the same age = = ≡e1 4569 4 3. .  ORgender. The 95% CI for the OR is given by ( , )e ec c1 2 , where 

		  c se c se1 1 1 2 1 11 96 1 96= − = +ˆ . (ˆ ), ˆ . (ˆ ).β β β β HHence,

	

c c1 21 4569 1 96 0 7505 0 014 1 4569 1= − = − = +. . ( . ) . , . .. ( . ) . ,
%

96 0 7505 2 928
95

=
and the CI for gendeOR rr

		     = ≡−( , ) ( . , . ). .e e0 014 2 928 1 0 18 7

Similarly, the OR for 2 persons of the same sex who differ by 10 years of age is  
given by 

		  e e ec c10 0 0057 1 1 95 1 2( . ) . % ( , )= =with CI wherre
		

c1 0 0057 10 1 96 0 0361 10 0 651= − = −. ( ) . ( . )( ) .

		  c2 0 0057 10 1 96 0 0361 10 2 321= + =. ( ) . ( . )( ) .

Hence, the 95% CI = ( , ) ( . , . ). .e e− =0 651 2 321 0 5 10 2 . 
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We have used GEE to adjust logistic regression models for clustering. GEE can 
also be used to adjust other types of models (e.g., linear regression models) for clus-
tering. This might be appropriate if we have a normally distributed outcome (e.g., 
serum cholesterol) and we have either data collected from family members or lon-
gitudinal data with repeated measures on the same subject over time. In addition, 
different types of correlation structures other than compound symmetry can be 
specified (see PROC GENMOD of SAS version 9.4 [30] for other applications of GEE 
methods and other possible correlation structures). 

In this section, we have examined methods of analysis and sample-size esti-
mation for clustered binary data (sometimes referred to as correlated binary data). 
Clustered binary data occur in clinical trials in which the unit of randomization 
differs from the unit of analysis. For example, in dental clinical trials randomiza-
tion is usually performed at the person level, but the actual unit of analysis is usu-
ally either the tooth or the tooth surface. Similarly, in group randomized studies, 
a large group (such as an entire school) is the unit of randomization. For example, 
five schools may be randomized to an active nutritional intervention whose goal 
is to reduce dietary-fat intake, and five other schools may be randomized to a 
control intervention. Suppose the outcome is reported dietary-fat intake <30% 
of calories after 1 year. The outcome is obtained on individual students within 
the school. In the former example, the outcomes on tooth surfaces represent cor-
related binary data because there is lack of independence of responses from dif-
ferent teeth or surfaces within the same mouth. In the latter example, outcomes 
on students represent correlated binary data because of the expected similarity of 
dietary habits of students from the same school, due to similarity in, for example, 
socioeconomic status. Clustered binary data can also occur in observational stud-
ies, such as virtually any study in the field of ophthalmology where the eye is the 
unit of analysis.

RE  V I E W  QUE   S T I ON  S  1 3 H

1	 What is clustered binary data? How does it differ from ordinary binary data?

2	 Why can’t the chi-square test for 2 × 2 tables (Equation 10.5) be used for clustered 
binary data?

3	 What role does the intraclass correlation play in analyzing correlated binary data?

	 13.14	 L o n g i t u d i n a l  D ata  A n a ly sis   

An important application of clustered data methods is in longitudinal data analysis, 
where each subject provides repeated measures over time and the goal is to assess 
the effect of covariates on the rate of change over time. 

	 Example 13.70 	 Ophthalmology  A clinical trial was performed among subjects with retinitis pig-
mentosa (RP) to compare the rate of decline of ERG (electroretinogram) amplitude 
�over time among 4 treatment groups. The ERG is an objective measure of the 
electrical activity in the retina. In normals, the average ERG is about 350 µV. In RP 
patients, it declines over time and is often <10 µV and sometimes <1 µV, after which 
total blindness often occurs. Subjects were randomized to either group 1 = 15,000 IU 
of vitamin A per day, group 2 = 400 IU of vitamin E per day, group 3 = 15,000 IU of 
vitamin A and 400 IU of vitamin E per day, or group 4 = placebo and were followed 
annually for 4−6 years. The primary analysis was based on the 354 subjects with 

See page 382 for  
Equation 10.5
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baseline ERG amplitude of ≥0.68 µV so as to minimize floor effects. How should we 
compare the rate of decline among the 4 treatment groups? 

One approach is to compute a slope for each subject and then compute an average 
slope over all subjects within a group. However, subjects may not be followed for the 
same length of time and subjects with a longer follow-up should be weighted more 
heavily. A better option is to use longitudinal data analysis. For the above clinical trial 
we consider the following model: 

	E quation 13.60 	 y x x x t x t x tit i i i i i= + + + + + + +α β β β γ δ δ δ1 1 2 2 3 3 1 1 2 2 3xx t ei it3 +

where (ERG amplitude) for the suby iit = ln th jjectat time = 1 354 = 0 .t i t, , . . . , , , . .. 6, .

		  x
i

ij =
1 if the subject is in treatment grth ooup

otherwise
, , ,j j =




1 2 3
0

		  eit = error term which is assumed to be normallly distributed

	 with mean = 0 and variance = σ2

A distinguishing feature of longitudinal data analysis is that the error terms for the 
same subject over time are not assumed to be independent. Longitudinal models 
can be specified with a variety of correlation structures. The simplest correlation 
structure is called an exchangeable or compound symmetry correlation structure, where 
corr( , )e eit it1 2 = ρ for some ρ ≠ 0. In other words, the correlation between the residuals 
at two times t t1 2,  is assumed to be the same regardless of how far apart t1 and t2 are. 
This might be reasonable for the above relatively short-term clinical trial, but not for 
a longer term study. 

Another important issue is the interpretation of the parameters in Equation 13.60. 

	E quation 13.61	 Interpretation of Parameters in Longitudinal Data Analysis 
In Equation 13.60, the parameter β j represents the mean difference in ln(ERG 
amplitude) at baseline ( )t = 0  between subjects in the jth treatment group and 
subjects in the placebo group (group 4) ( , , )j = 1 2 3 . The parameter γ represents 
the rate of decline in ln(ERG amplitude) per year among subjects in the placebo 
group (group 4). 
  The rate of decline per year among subjects in the jth treatment group is given 
by γ δ+ =j j, , ,1 2 3. 
  Hence, δ j represents the difference in the rate of decline between subjects in 
the jth treatment group and subjects in the placebo group, j = 1 2 3, , . The param-
eters δ j are usually of primary interest in a longitudinal study. 

	 Example 13.71 	 Ophthalmology  Analyze the data from the clinical trial mentioned in Exam-
ple 13.70 using longitudinal data methods. 

	 	 Solution:  We have used PROC MIXED of SAS to analyze the data using the repeated 
option with a compound symmetry correlation structure. The results are given in  
Table 13.36. 
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	 Table 13.36 	 Analysis of longitudinal data in RP Clinical Trial (n=354)

The Mixed Procedure

Model Information

Data Set	 WORK.MIXED

Dependent Variable	 erou

Covariance Structure	 Compound Symmetry

Subject Effect	 subj

Estimation Method	 REML

Residual Variance Method	 Profile

Fixed Effects SE Method	 Model-Based

Degrees of Freedom Method	 Between-Within

Class Level Information

Class	 Levels	 Values

timecat	 7	 0 1 2 3 4 5 6

trtgp	 4	 1 2 3 4

Dimensions

Covariance Parameters	 2

Columns in X	 10

Columns in Z	 0

Subjects	 354

Max Obs Per Subject	 7

Number of Observations

Number of Observations Read	 2098

Number of Observations Used	  2098

Number of Observations Not Used	 0

Iteration History

Iteration	 Evaluations	 -2 Res Log Like	 Criterion

	 0	 1	 6688.64082379

	 1	 2	 1937.80338853	 0.00000576

The Mixed Procedure

Convergence criteria met.

Estimated R Matrix for Subject 1

	 Row	 Col1	 Col2	 Col3	 Col4	 Col5	 Col6	 Col7

	 1	 1.4044	 1.3399	 1.3399	 1.3399	 1.3399	 1.3399	 1.3399

	 2	 1.3399	 1.4044	 1.3399	 1.3399	 1.3399	 1.3399	 1.3399

	 3	 1.3399	 1.3399	 1.4044	 1.3399	 1.3399	 1.3399	 1.3399

	 4	 1.3399	 1.3399	 1.3399	 1.4044	 1.3399	 1.3399	 1.3399

	 5	 1.3399	 1.3399	 1.3399	 1.3399	 1.4044	 1.3399	 1.3399

	 6	 1.3399	 1.3399	 1.3399	 1.3399	 1.3399	 1.4044	 1.3399

	 7	 1.3399	 1.3399	 1.3399	 1.3399	 1.3399	 1.3399	 1.4044

(continued )
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Table 13.36 	 Analysis of longitudinal data in RP Clinical Trial (n=354) (Continued )

Estimated R Correlation Matrix for Subject 1

	 Row	 Col1	 Col2	 Col3	 Col4	 Col5	 Col6	 Col7

	 1	 1.0000	 0.9541	 0.9541	 0.9541	 0.9541	 0.9541	 0.9541

	 2	 0.9541	 1.0000	 0.9541	 0.9541	 0.9541	 0.9541	 0.9541

	 3	 0.9541	 0.9541	 1.0000	 0.9541	 0.9541	 0.9541	 0.9541

	 4	 0.9541	 0.9541	 0.9541	 1.0000	 0.9541	 0.9541	 0.9541

	 5	 0.9541	 0.9541	 0.9541	 0.9541	 1.0000	 0.9541	 0.9541

	 6	 0.9541	 0.9541	 0.9541	 0.9541	 0.9541	 1.0000	 0.9541

	 7	 0.9541	 0.9541	 0.9541	 0.9541	 0.9541	 0.9541	 1.0000

Covariance Parameter Estimates

	 Cov Parm	 Subject	 Estimate

	 CS	 subj	 1.3399

	 Residual		  0.06448

Fit Statistics

	 -2 Res Log Likelihood	 1937.8

	 AIC (smaller is better)	 1941.8

	 AICC (smaller is better)	 1941.8

	 BIC (smaller is better)	 1949.5

Null Model Likelihood Ratio Test

	 DF	 Chi-Square	 Pr > ChiSq
	 1	 4750.84	 <.0001

Solution for Fixed Effects

				    Standard

	 Effect	 trtgp	 Estimate	 Error	 DF	 t Value	 Pr > |t|

	 Intercept		  1.1340	 0.1235	 350	 9.18	 <.0001
	 time		  -0.1048	 0.006116	 1740	 -17.14	 <.0001
	 trtgp	 1	 0.06132	 0.1777	 350	 0.34	 0.7303

	 trtgp	 2	 -0.2346	 0.1737	 350	 -1.35	 0.1778

	 trtgp	 3	 -0.00992	 0.1756	 350	 -0.06	 0.9550

	 trtgp	 4	 0	 .	 .	 .	 .    

	 time*trtgp	 1	 0.01846	 0.008852	 1740	 2.09	 0.0371

	 time*trtgp	 2	 -0.02087	 0.008755	 1740	 -2.38	 0.0172

	 time*trtgp	 3	 0.01270	 0.008766	 1740	 1.45	 0.1477

	 time*trtgp	 4	 0	 .	 .	 .	 .    

Covariance Matrix for Fixed Effects

 	Row	 Effect	 trtgp	 Col1	 Col2	 Col3	 Col4	 Col5	 Col6	 Col7

	 1	 Intercept		  0.01525	 -0.00009	 -0.01525	 -0.01525	 -0.01525		  0.000094

(continued )
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Table 13.36 	 Analysis of longitudinal data in RP Clinical Trial (n=354) (Continued )

	 2	 time		  -0.00009	 0.000037	 0.000094	 0.000094	 0.000094		  -0.00004
	 3	 trtgp	 1	 -0.01525	 0.000094	 0.03159	 0.01525	 0.01525		  -0.00020
	 4	 trtgp	 2	 -0.01525	 0.000094	 0.01525	 0.03018	 0.01525		  -0.00009
	 5	 trtgp	 3	 -0.01525	 0.000094	 0.01525	 0.01525	 0.03085		  -0.00009
	 6	 trtgp	 4

	 7	 time*trtgp	 1	 0.000094	 -0.00004	 -0.00020	 -0.00009	 -0.00009		  0.000078

	 8	 time*trtgp	 2	 0.000094	 -0.00004	 -0.00009	 -0.00019	 -0.00009		  0.000037

	 9	 time*trtgp	 3	 0.000094	 -0.00004	 -0.00009	 -0.00009	 -0.00019		  0.000037

	 10	 time*trtgp	 4

Covariance Matrix for Fixed Effects

	 Row	 Col8	 Col9	 Col10

	 1	 0.000094	 0.000094

	 2	 -0.00004	 -0.00004
	 3	 -0.00009	 -0.00009
	 4	 -0.00019	 -0.00009
	 5	 -0.00009	 -0.00019
	 6

	 7	 0.000037	 0.000037

	 8	 0.000077	 0.000037

	 9	 0.000037	 0.000077

	 10	

Correlation Matrix for Fixed Effects

	Row	 Effect	 trtgp	 Col1	 Col2	 Col3	 Col4	 Col5	 Col6	 Col7

	 1	 Intercept		  1.0000	 -0.1249	 -0.6948	 -0.7109	 -0.7031		  0.08629

	 2	 time		  -0.1249	 1.0000	 0.08678	 0.08879	 0.08782		  -0.6909
	 3	 trtgp	 1	 -0.6948	 0.08678	 1.0000	 0.4939	 0.4885		  -0.1254
	 4	 trtgp	 2	 -0.7109	 0.08879	 0.4939	 1.0000	 0.4999		  -0.06135
	 5	 trtgp	 3	 -0.7031	 0.08782	 0.4885	 0.4999	 1.0000		  -0.06067
	 6	 trtgp	 4						      1.0000

	 7	 time*trtgp	 1	 0.08629	 -0.6909	 -0.1254	 -0.06135	 -0.06067		  1.0000

	 8	 time*trtgp	 2	 0.08725	 -0.6986	 -0.06062	 -0.1253	 -0.06135		  0.4827

	 9	 time*trtgp	 3	 0.08714	 -0.6977	 -0.06054	 -0.06195	 -0.1244		  0.4820

	 10	 time*trtgp	 4

The Mixed Procedure

Correlation Matrix for Fixed Effects

	 Row	 Col8	 Col9	 Col10

	 1	 0.08725	 0.08714

	 2	 -0.6986	 -0.6977
	 3	 -0.06062	 -0.06054
	 4	 -0.1253	 -0.06195
	 5	 -0.06135	 -0.1244
	 6

	 7	 0.4827	 0.4820

	 8	 1.0000	 0.4874

	 9	 0.4874	 1.0000

	 10			   1.0000

(continued )
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Table 13.36 	 Analysis of longitudinal data in RP Clinical Trial (n=354) (Continued )

Type 3 Tests of Fixed Effects

		  Num	 Den

	 Effect	 DF	 DF	 F Value	 Pr > F

	 time	 1	 1740	 1064.73	 <.0001
	 trtgp	 3	 350	 1.10	 0.3481

	 time*trtgp	 3	 1740	 7.65	 <.0001

We see that there are 354 subjects in the analysis who were assessed over 2098 visits 
(number of observations used). Note that not all subjects had 6 years of follow-up 
(i.e., 7 visits). Hence, 2098 is less than 354 7 2478× = . 

The program also provides the estimated correlation (ρ) between outcomes for 
repeated visits (see Estimated R correlation matrix for subject 1), which is 0.9541, and 
the estimated covariance between outcomes for repeated visits (see Estimated R matrix 
for subject 1). The regression parameter estimates are given under Solution for Fixed 
Effects. The estimated rate of decline in the ln scale = −0 1048.  per year in the placebo 
group, which is equivalent to a rate of decline of ( ) % . %.1 100 9 90 1048− × =−e  per year 
in the original scale. The estimated rate of decline is ( ) % . %. .1 100 8 30 1048 0 0185− × =− +e  
per year in the vitamin A group (group 1), ( ) % . %. .1 100 11 80 1048 0 0209− × =− −e  per year 
in the vitamin E group (group 2), and − × =− +e(1 ) 100% 8.8%0.1048 0.0127  per year in 
the vitamin A + E group (group 3). 

There are significant differences in the rate of decline between the vitamin A 
group vs. the placebo group ( . , . )t p= =2 09 037  and between the vitamin E group vs.  
the placebo group ( . , . )t p= − =2 38 017 . Hence, vitamin A is beneficial for the patients 
since it reduces the rate of decline, while vitamin E is deleterious since it increases 
the rate of decline. 

We can also adjust for other covariates while performing longitudinal analyses. 

	 Example 13.72 	 Ophthalmology  Adjust for the effects of age and sex while comparing rates of de-
cline in different treatment groups in the RP clinical trial described in Example 13.70 
(on page 733). 

	 	 Solution:  Since this is a randomized clinical trial, we expect age and sex distribu-
tions to be comparable in different treatment groups. However, in a medium-size 
clinical trial, small differences may still exist. To control for age and sex, we enhance 
the model in Equation 13.60 as follows: 

		          y x x x t x t x tit i i i i i= + + + + + + +α β β β γ δ δ δ1 1 2 2 3 3 1 1 2 2 3xx ti3

		            + + + + +θ θ λ λ1 1 2 2 1 1 2 2z z z t z t ei i i i it

		  z iwhere age 35 age of th subject 35 (labeled as age35 in Table 13.37)i i1 = − = −
		    z i iand 1 if the th subject is a male, = 0 if the th subject is a female (labeled as SEX in Table 13.37)i2 =

		              z i iand 1 if the th subject is a male, = 0 if the th subject is a female (labeled as SEX in Table 13.37)i2 =

Note that in longitudinal models to control for another covariate z , we need to in-
clude terms for both z  (to control for baseline differences between groups on z) and 
z t×  (to control for effects of z  on rate of change). The results from fitting this model 
are given in Table 13.37. 

See page 734 for  
Equation 13.60
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Table 13.37 	 �Analysis of differences in rates of decline in RP Treatment Trial controlling for 	
group differences in age and sex 

The Mixed Procedure

Model Information

Data Set	 WORK.MIXED

Dependent Variable	 erou

Covariance Structure	 Compound Symmetry

Subject Effect	 subj

Estimation Method	 REML

Residual Variance Method	 Profile

Fixed Effects SE Method	 Model-Based
Degrees of Freedom Method	 Between-Within

Class Level Information

Class	 Levels	 Values

timecat	 7	 0 1 2 3 4 5 6

trtgp	 4	 1 2 3 4

Dimensions

Covariance Parameters	 2

Columns in X	 14

Columns in Z	 0

Subjects	 354

Max Obs Per Subject	 7

Number of Observations

Number of Observations Read	 2098

Number of Observations Used	 2098

Number of Observations Not Used	 0

Iteration History

Iteration	 Evaluations	 -2 Res Log Like	 Criterion

	 0	 1	 6697.64649393

	 1	 2	 1957.51715086	 0.00013321

	 2	 1	 1957.38799564	 0.00000037

The Mixed Procedure

Convergence criteria met.

Estimated R Matrix for Subject 1

	 Row	 Col1	 Col2	 Col3	 Col4	 Col5	 Col6	 Col7

	 1	 1.4012	 1.3370	 1.3370	 1.3370	 1.3370	 1.3370	 1.3370

	 2	 1.3370	 1.4012	 1.3370	 1.3370	 1.3370	 1.3370	 1.3370

	 3	 1.3370	 1.3370	 1.4012	 1.3370	 1.3370	 1.3370	 1.3370

	 4	 1.3370	 1.3370	 1.3370	 1.4012	 1.3370	 1.3370	 1.3370

	 5	 1.3370	 1.3370	 1.3370	 1.3370	 1.4012	 1.3370	 1.3370

	 6	 1.3370	 1.3370	 1.3370	 1.3370	 1.3370	 1.4012	 1.3370

	 7	 1.3370	 1.3370	 1.3370	 1.3370	 1.3370	 1.3370	 1.4012

(continued )
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Table 13.37	 �Analysis of differences in rates of decline in RP treatment trial controlling for 	
group differences in age and sex (Continued )

Estimated R Correlation Matrix for Subject 1

	 Row	 Col1	 Col2	 Col3	 Col4	 Col5	 Col6	 Col7

	 1	 1.0000	 0.9542	 0.9542	 0.9542	 0.9542	 0.9542	 0.9542

	 2	 0.9542	 1.0000	 0.9542	 0.9542	 0.9542	 0.9542	 0.9542

	 3	 0.9542	 0.9542	 1.0000	 0.9542	 0.9542	 0.9542	 0.9542

	 4	 0.9542	 0.9542	 0.9542	 1.0000	 0.9542	 0.9542	 0.9542

	 5	 0.9542	 0.9542	 0.9542	 0.9542	 1.0000	 0.9542	 0.9542

	 6	 0.9542	 0.9542	 0.9542	 0.9542	 0.9542	 1.0000	 0.9542

	 7	 0.9542	 0.9542	 0.9542	 0.9542	 0.9542	 0.9542	 1.0000

Covariance Parameter Estimates

	 Cov Parm	 Subject	 Estimate

	 CS	 subj	 1.3370

	 Residual		  0.06419

	 Fit Statistics

	 -2 Res Log Likelihood	 1957.4

	 AIC (smaller is better)	 1961.4

	 AICC (smaller is better)	 1961.4

	 BIC (smaller is better)	 1969.1

Null Model Likelihood Ratio Test

	 DF	 Chi-Square	 Pr > ChiSq
	 1	 4740.26	 <.0001

Solution for Fixed Effects

				    Standard

	 Effect	 trtgp	 Estimate	 Error	 DF	 t Value	 Pr > |t|
	 Intercept		  1.2763	 0.1397	 349	 9.14	 <.0001
	 time		  -0.1114	 0.01030	 1737	 -10.82	 <.0001
	 trtgp	 1	 0.08876	 0.1781	 349	 0.50	 0.6186

	 trtgp	 2	 -0.1934	 0.1745	 349	 -1.11	 0.2685

	 trtgp	 3	 0.006696	 0.1756	 349	 0.04	 0.9696

	 trtgp	 4	 0	 .	 .	 .	 .

	 time*trtgp	 1	 0.01725	 0.008906	 1737	 1.94	 0.0529

	 time*trtgp	 2	 -0.02322	 0.008802	 1737	 -2.64	 0.0084

	 time*trtgp	 3	 0.01128	 0.008767	 1737	 1.29	 0.1986

	 time*trtgp	 4	 0	 .	 .	 .	 .

	 age35		  0.005703	 0.007677	 1737	 0.74	 0.4577

	 SEX		  -0.2597	 0.1280	 349	 -2.03	 0.0433

	 time*age35		  -0.00095	 0.000382	 1737	 -2.50	 0.0127

	 time*SEX		  0.008247	 0.006446	 1737	 1.28	 0.2009

(continued )
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Table 13.37	� Analysis of differences in rates of decline in RP treatment trial controlling for 	
group differences in age and sex (Continued )

Covariance Matrix for Fixed Effects

	Row	 Effect	 trtgp	 Col1	 Col2	 Col3	 Col4	 Col5	 Col6	 Col7

	 1	 Intercept		  0.01952	 -0.00019	 -0.01436	 -0.01406	 -0.01474		  0.000087

	 2	 time		  -0.00019	 0.000106	 0.000114	 0.000026	 0.000089		  -0.00003
	 3	 trtgp	 1	 -0.01436	 0.000114	 0.03173	 0.01542	 0.01532		  -0.00020
	 4	 trtgp	 2	 -0.01406	 0.000026	 0.01542	 0.03044	 0.01534		  -0.00010
	 5	 trtgp	 3	 -0.01474	 0.000089	 0.01532	 0.01534	 0.03083		  -0.00010
	 6	 trtgp	 4

	 7	 time*trtgp	 1	 0.000087	 -0.00003	 -0.00020	 -0.00010	 -0.00010		  0.000079

	 8	 time*trtgp	 2	 0.000087	 -0.00003	 -0.00010	 -0.00019	 -0.00010		  0.000038

	 9	 time*trtgp	 3	 0.000090	 -0.00004	 -0.00009	 -0.00010	 -0.00019		  0.000038

	 10	 time*trtgp	 4

	 11	 age35		  0.000075	 -0.00006	 -0.00003	 0.000060	 1.199E-6		  3.714E-7

Covariance Matrix for Fixed Effects

	 Row	 Col8	 Col9	 Col10	 Col11	 Col12	 Col13	 Col14

	 1	 0.000087	 0.000090		  0.000075	 -0.00806	 9.61E-8	 0.000050

	 2	 -0.00003	 -0.00004		  -0.00006	 -0.00008	 -2.57E-7	 -0.00002
	 3	 -0.00010	 -0.00009		  -0.00003	 -0.00181	 1.954E-7	 0.000015

	 4	 -0.00019	 -0.00010		  0.000060	 -0.00197	 -2.58E-7	 0.000015

	 5	 -0.00010	 -0.00019		  1.199E-6	 -0.00092	 -8.36E-8	 7.669E-6
	 6

	 7	 0.000038	 0.000038		  3.714E-7	 0.000016	 -8.14E-8	 -7.38E-6
	 8	 0.000077	 0.000038		  -2.13E-8	 0.000016	 1.073E-7	 -6.48E-6
	 9	 0.000038	 0.000077		  -3.19E-7	 7.162E-6	 7.942E-8	 -3.49E-6
	  10		

	 11	 -2.13E-8	 -3.19E-7		  0.000059	 0.000131	 -3.56E-7	 -7.74E-7

Covariance Matrix for Fixed Effects

	Row	 Effect	 trtgp	 Col1	 Col2	 Col3	 Col4	 Col5	 Col6	 Col7

	 12	 SEX		  -0.00806	 -0.00008	 -0.00181	 -0.00197	 -0.00092		  0.000016

	 13	 time*age35		  9.61E-8	 -2.57E-7	 1.954E-7	 -2.58E-7	 -8.36E-8		  -8.14E-8
	 14	 time*SEX		  0.000050	 -0.00002	 0.000015	 0.000015	 7.669E-6		  -7.38E-6

The Mixed Procedure

Covariance Matrix for Fixed Effects

	 Row	 Col8	 Col9	 Col10	 Col11	 Col12	 Col13	 Col14

	 12	 0.000016	 7.162E-6		  0.000131	 0.01639	 -7.43E-7	 -0.00010
	 13	 1.073E-7	 7.942E-8		  -3.56E-7	 -7.43E-7	 1.459E-7	 3.052E-7
	 14	 -6.48E-6	 -3.49E-6		  -7.74E-7	 -0.00010	 3.052E-7	 0.000042

Correlation Matrix for Fixed Effects

	Row	 Effect	 trtgp	 Col1	 Col2	 Col3	 Col4	 Col5	 Col6	 Col7

	 1	 Intercept		  1.0000	 -0.1355	 -0.5771	 -0.5770	 -0.6010		  0.06981

	 2	 time		  -0.1355	 1.0000	 0.06196	 0.01467	 0.04934		  -0.3689

(continued )
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Table 13.37	 �Analysis of differences in rates of decline in RP treatment trial controlling for 	
group differences in age and sex (Continued )

	 3	 trtgp	 1	 -0.5771	 0.06196	 1.0000	 0.4961	 0.4897		  -0.1253
	 4	 trtgp	 2	 -0.5770	 0.01467	 0.4961	 1.0000	 0.5006		  -0.06174
	 5	 trtgp	 3	 -0.6010	 0.04934	 0.4897	 0.5006	 1.0000		  -0.06078
	 6	 trtgp	 4						      1.0000

	 7	 time*trtgp	 1	 0.06981	 -0.3689	 -0.1253	 -0.06174	 -0.06078		  1.0000

	 8	 time*trtgp	 2	 0.07041	 -0.3804	 -0.06136	 -0.1251	 -0.06159		  0.4893

	 9	 time*trtgp	 3	 0.07345	 -0.3933	 -0.06079	 -0.06238	 -0.1243		  0.4845

	 10	 time*trtgp	 4

	 11	 age35		  0.07036	 -0.7335	 -0.02014	 0.04508	 0.000889		  0.005432

	 12	 SEX		  -0.4506	 -0.05978	 -0.07922	 -0.08813	 -0.04093		  0.01369

	 13	 time*age35	  	 0.001801	 -0.06537	 0.002873	 -0.00387	 -0.00125		  -0.02394

	 Correlation Matrix for Fixed Effects

	 Row	 Col8	 Col9	 Col10	 Col11	 Col12	 Col13	 Col14

	 1	 0.07041	 0.07345		  0.07036	 -0.4506	 0.001801	 0.05556

	 2	 -0.3804	 -0.3933		  -0.7335	 -0.05978	 -0.06537	 -0.3001
	 3	 -0.06136	 -0.06079		  -0.02014	 -0.07922	 0.002873	 0.01327

	 4	 -0.1251	 -0.06238		  0.04508	 -0.08813	 -0.00387	 0.01347

	 5	 -0.06159	 -0.1243		  0.000889	 -0.04093	 -0.00125	 0.006776

	 6

	 7	 0.4893	 0.4845		  0.005432	 0.01369	 -0.02394	 -0.1286
	 8	 1.0000	 0.4910		  -0.00031	 0.01396	 0.03193	 -0.1142
	 9	 0.4910	 1.0000		  -0.00474	 0.006381	 0.02372	 -0.06174
	 10			   1.0000

	 11	 -0.00031	 -0.00474		  1.0000	 0.1329	 -0.1213	 -0.01565
	 12	 0.01396	 0.006381		  0.1329	 1.0000	 -0.01519	 -0.1251
	  13	 0.03193	 0.02372		  -0.1213	 -0.01519	 1.0000	 0.1240

Correlation Matrix for Fixed Effects

	Row	 Effect	 trtgp	 Col1	 Col2	 Col3	 Col4	 Col5	 Col6	 Col7

	 14	 time*SEX		  0.05556	 -0.3001	 0.01327	 0.01347	 0.006776		  -0.1286

The Mixed Procedure

Correlation Matrix for Fixed Effects

	 Row	 Col8	 Col9	 Col10	 Col11	 Col12	 Col13	 Col14

	 14	 -0.1142	 -0.06174		  -0.01565	 -0.1251	 0.1240	 1.0000

	 Type 3 Tests of Fixed Effects

		  Num	 Den

	 Effect	 DF	 DF	 F Value	 Pr > F

	 time	 1	 1737	 145.98	 <.0001
	 trtgp	 3	 349	 0.93	 0.4273

	 time*trtgp	 3	 1737	 8.05	 <.0001
	 age35	 1	 1737	 0.55	 0.4577

	 SEX	 1	 349	 4.11	 0.0433

	 time*age35	 1	 1737	 6.23	 0.0127

	 time*SEX	 1	 1737	 1.64	 0.2009
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We see from Table 13.37 that gender is related to baseline level of ERG, with males 
having significantly lower levels ( . )p = 043 . Also, more importantly, age has a signifi-
cant effect on rate of decline ( . )p = 013 , with older patients declining more rapidly. 
After controlling for age and sex, there remain significant differences in rates of 
decline between the vitamin A group (group 1) and the placebo group (group 4) 
( . )p = 05  as well as between the vitamin E group (group 2) and the placebo group 
( . )p = 008 . In summary, vitamin A diminishes the rate of decline and vitamin E ac-
celerates the rate of decline in ERG amplitude among RP patients. 

In this section, we have considered marginal models for longitudinal data analy-
sis. More complex longitudinal models exist, including random effects models [31] 
and conditional models [32], but these are beyond the scope of this text. 

Note in both Tables 13.36 and 13.37 it is also possible to compare the rates of 
change between any 2 groups. For example, to compare the rates of change between 
groups 1 and 2, we would compute 

		

ˆ ˆ

ˆ ˆ ) var(ˆ ) var(ˆ )

β β

β β β β

1 2

1 2 1 2 2

−

− = + −

with

(se CCov(ˆ ,ˆ ),β β1 2

Where var( ̂β1) is found in the (7,7) element (i.e., row 7 column 7), var( ̂β2) is found 
in the (8,8) element (i.e., row 8 column 8), and Cov( ̂β1,  ̂β2) is found in the (7,8) ele-
ment (i.e., row 7, column 8) of the Covariance Matrix for Fixed Effects part of the 
SAS PROC MIXED output. A 100 % × (1– α) CI for b1 – b2  is then given by:

		
ˆ ˆ ˆ ˆ )./β β β βα1 2 1 2 1 2− ± −−z se(

	 13.15	 M e a s u r e m e n t - E r r o r  M e t h o d s

Introduction
Exposure variables in epidemiology are often measured with error. An interest-
ing question is, How does this measurement error affect the results obtained from 
standard analyses?

	 Example 13.73 	 Cancer, Nutrition  A hypothesis has been proposed linking breast-cancer incidence 
to saturated-fat intake. To test this hypothesis, a group of 89,538 women, ages 
34–59, who were free of breast cancer in 1980, were followed until 1984. During 
this period, 590 cases of breast cancer occurred. A logistic-regression model [33] of 
breast-cancer incidence from 1980 to 1984 on age (using dummy variables based on 
the age groups 34–39, 40–44, 45–49, 50–54, 55–59), saturated-fat intake as a continu-
ous variable as reported on a 1980 food-frequency questionnaire (FFQ), and alcohol 
intake (using dummy variables based on the groups 0, 0.1–1.4, 1.5–4.9, 5.0–14.9,  
15+ grams per day) was fit to the data. The results are given in Table 13.38.

The OR for a 10 g/day increase in calorie-adjusted saturated fat intake (hence-
forth referred to as saturated fat) was 0.92 (95% CI = 0.80−1.05). The instrument 
used to assess diet for the analyses in Table 13.38 was the 1980 FFQ, on which 
participants reported their average consumption of each of 61 foods over the past 
year. This instrument is known to have a large amount of measurement error. It is 
sometimes referred to as a surrogate for the ideal instrument that could always mea-
sure dietary fat without error. What impact does the measurement error have on the 
results obtained?
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	 Table 13.38 	 Association between breast-cancer incidence and calorie-adjusted saturated-fat 
intake, NHS, 1980–1984, 590 events, 89,538 participants

	 	 	 		  OR 
Variable	 β	 se	 z	 p	 (95% CI)

Saturated-fat	 -0.0878	 0.0712	 -1.23	 .22	 0.92
intake (g) (X)					     (0.80–1.05)

Note: Based on a 10-g increase in saturated-fat intake.

Measurement-Error Correction with Gold-Standard Exposure
The model fit in Table 13.38 was of the form

	 Equation 13.62 	 ln ( )p p X j j
j

m

1
1

−[ ] = + +
=
∑α β δ µ

where X is saturated-fat intake from the FFQ that is measured with error and u1, . . . ,  
um are a set of variables measured without error, which in this example represent 
dummy variables for age and alcohol intake. Alcohol intake is actually also mea-
sured with error, but the degree of measurement error is typically much smaller than 
for saturated fat [33]. For simplicity, we assume alcohol intake is measured without 
error.

To assess the impact of measurement error on the estimate of β in Equation 
13.62, we would have to consider how the estimate of β would change if average 
daily saturated fat intake could be ascertained with no error. The diet record (DR) is 
considered a gold standard by some nutritional epidemiologists. With a DR, a person 
records each food eaten and the corresponding portion size on a real-time basis. The 
foods and portion sizes are then entered onto a computer, and a computer program 
is used to calculate nutrients consumed during this period. Ideally, a DR would be 
filled out for each of 365 days in 1980 by each of the 89,538 nurses in the main study. 
However, it is very expensive to collect and process DR data. Instead, a validation 
study was performed among 173 nurses who filled out 4 weeks of DR with individual 
weeks spaced about 3 months apart. They then filled out an additional FFQ in 1981 
to refer to the same time period as the DR. The data from the validation study were 
used to model the relationship between reported DR saturated-fat intake (x) and 
reported FFQ saturated-fat intake (X), using a linear-regression model of the form

	 Equation 13.63 	 x X e= ′ + +α γ

where e is assumed to be N(0, σ2). The results are given in Table 13.39.

	 Table 13.39 	 Relationship between DR saturated-fat intake (x) and FFQ saturated-fat intake (X), 
NHS, 1981, 173 participants

Variable	 γ̂ 	 se	 t	 p-value

Saturated-fat intake FFQ (g) (X)	 0.468	 0.048	 9.75	 <.001

We see, as expected, a highly significant association between x and X. Our goal 
is to estimate the relationship between breast-cancer incidence and DR saturated-fat 
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intake (x) after controlling for age and alcohol intake, assuming a logistic model for 
this relationship of the form

	 Equation 13.64 	 ln * * *p p x j j
j

m

1
1

−( )  = + +
=
∑α β δ µ

where u1, . . . , um are a set of other covariates assumed to be measured without error 
that represent age and alcohol intake. The problem is that we only observe x directly 
on 173 of 89,538 women. Therefore, instead of estimating the logistic regression 
directly from Equation 13.64, we use an indirect approach. Specifically, because we 
know X for each woman in the main study, we can estimate the average DR intake 
for that value of X, which we denote by E x X|( ), and use that as an estimate of x for 
that woman. From the linear regression in Equation 13.63, we have

	 Equation 13.65 	 E x X X|( ) = ′ +α γ

Substituting E x X|( ) from Equation 13.65 for x in Equation 13.64 yields

	 Equation 13.66 	 ln /( ) * * * *p p X uj j
j

m

1
1

−[ ] = + ′( ) + ( ) +
=
∑α β α β γ δ

If we compare Equation 13.66 with Equation 13.62, we see the dependent and in-
dependent variables are the same. Thus we can equate the regression coefficients 
corresponding to X (that is, FFQ saturated fat), yielding

	 Equation 13.67 	 β γ β* =

If we divide both sides of Equation 13.67 by γ, we obtain

	 Equation 13.68 	 β β γ* /=

Therefore, to estimate the logistic-regression coefficient of breast cancer on “true” 
saturated-fat intake, we divide the logistic-regression coefficient (β) of breast cancer 
on the surrogate saturated fat (X) from the main study by the linear-regression coef-
ficient (γ) of true (x) on surrogate (X) saturated fat from the validation study. The 
equating of Equations 13.67 and 13.66 is an approximation because it ignores the 
impact of the error distribution from the validation-study model in Equation 13.63 
on the estimation of x for subjects in the main study. However, it is approximately 
valid if the disease under study is rare and the measurement-error variance (σ2 in 
Equation 13.63) is small [33].

To obtain the standard error of ˆ*β  and associated confidence limits for β*, we 
use a multivariate extension of the delta method introduced in Equation 13.3. 
This approach for estimating β* is called the regression-calibration method [33] and is  
summarized as follows.

See page 638 for  
Equation 13.3
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	 Equation 13.69 	 	 Regression-Calibration Approach for Estimation of Measurement-Error-Corrected 
OR Relating a Dichotomous Disease Variable (D) to a Single Exposure Variable 
(X ) Measured with Error, When a Gold-Standard Exposure (x) Is Available
Suppose we have

(1)	 A dichotomous disease variable (D), where D = 1 if disease is present, 0 if 
disease is absent

(2)	 A single exposure variable (X) measured with error (called the surrogate  
exposure)

(3)	 A corresponding gold-standard exposure variable (x) that represents true ex-
posure (or is at least an unbiased estimate of true exposure with errors that 
are uncorrelated with that of the surrogate)

(4)	 A set of other covariates u1, . . . , um, which are assumed to be measured  
without error and are uncorrelated with X.

We wish to fit the logistic-regression model

		  
ln ( ) * *p p x uj j

j

m

1
1

−[ ] = + +
=
∑α β δ

where p Pr D x u um= =( )1 1| , , . . . ,

We have available

(a)	 A main-study sample of size n (usually large), where D, X, and u1, . . . , um are 
observed

(b)	 A validation-study sample of size n1 (usually small), where x and X are 
observed. Ideally, the validation-study sample should be a representative 
sample from the main-study sample or a comparable external sample.

Our goal is to estimate β*. For this purpose,

(i)	 We use the main-study sample to fit the logistic-regression model of D on X 
and u1, . . . , um of the form

		      
ln p p X uj j

j

m

1
1

−( )  = + +
=
∑α β δ

(ii)	 We use the validation-study sample to fit the linear-regression model of x 
on X of the form

		        x X e= + +α′ γ

		  where e N~ ,0 2σ( )
(iii)	We use (i) and (ii) to obtain the point estimate of β*, given by

		      ˆ ˆ / ˆ*β β γ=

		  The corresponding estimate of the OR of D on x is given by

		      = exp(ˆ )*β

(iv)	We obtain the variance of ˆ*β  by computing

		        Var Var Varˆ / ˆ ˆ ˆ / ˆ ˆ*β γ β β γ γ( ) = ( ) ( ) + ( ) ( )1 2 2 4

OR
^
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		  where β̂ and Var(β̂) are obtained from (i) 

		  and γ̂ and Var(γ̂) are obtained from (ii)

(v)	 We obtain a 100% × (1 – α) CI for β* by computing

		      
ˆ ˆ ˆ ,ˆ*

/
* * *β β β βα± ( ) = ( )−z se1 2 1 2

		  where ˆ*β  is obtained from (iii) and

		        se Varˆ ˆ* *
/

β β( ) = ( )




1 2

is obtained from (iv) 

The corresponding 100% × (1 – α) CI for OR is given by 

		        exp ˆ ,exp ˆ* *β β1 2( ) ( )





This method should only be used if the disease under study is rare (incidence 
<10%) and the measurement-error variance [σ2 in (ii)] is small.

	 Example 13.74 	 Cancer, Nutrition  Estimate the OR relating breast-cancer incidence from 1980−1984 
to DR intake of saturated fat in 1980 using the regression-calibration method based 
on the data in Tables 13.38 and 13.39 (on page 744).

	 	 Solution:  From Table 13.38 we have β̂ = –0.0878, se β̂( ) = 0.0712. From Table 13.39, 
we have that γ̂  = 0.468, se(γ̂ ) = 0.048. Thus, from step (iii) of Equation 13.69, the 
point estimate of β* is ˆ*β = –0.0878/0.468 = –0.1876. The corresponding point 
estimate of the OR relating breast-cancer incidence to an increase of 10 g of “true” 
(DR) saturated-fat intake is exp(–0.1876) = 0.83. To obtain Var( ̂ *β ), we refer to step 
(iv) of Equation 13.69. We have

		

Var(ˆ ) ( / . ) . . .*β = ( ) + −( )1 0 468 0 0712 0 0878 0 462 2 2 88 0 048

0 02315 0 00037 0 02352

4 2( )



 ( )

= + =

.

. . .

se((ˆ ) . .* /β = ( ) =0 02352 0 15331 2

Thus, from step (v) of Equation 13.69, a 95% CI for β* is given by

		  − ± ( ) = − ± = −0 1876 1 96 0 1533 0 1876 0 3006 0 488. . . . . . ,00 113 1 2. ˆ ,ˆ* *( ) = ( )β β

The corresponding 95% CI for OR is given by

		  exp . ,exp . . , .−( ) ( )[ ] = ( )0 488 0 113 0 61 1 12

Notice that the measurement-error-corrected estimate of OR (0.83) is farther away 
from 1 than the crude or uncorrected estimate (0.92) obtained in Table 13.38. 
The uncorrected estimate of 0.92 is attenuated (i.e., incorrectly moved closer to 
1, the null value) under the influence of measurement error. Therefore, the cor-
rected estimate (0.83) is sometimes called a deattenuated OR estimate. Notice also 
that the CI for the corrected OR (0.61, 1.12) is much wider than the corresponding 
CI for the uncorrected OR (0.80, 1.05) in Table 13.38, which often occurs. Finally, 
the two terms in the expression for Var(ˆ*β ) (0.02315 and 0.00037) reflect error 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



748              C H A P T E R  13      Design and Analysis Techniques for Epidemiologic Studies

in the estimated main-study logistic-regression coefficient (β̂) and the estimated 
validation-study linear-regression coefficient (γ̂ ), respectively. Usually the first term 
predominates unless the validation-study sample size is very small.

Measurement-Error Correction Without  
a Gold-Standard Exposure
Example 13.73 (on page 743) assumed a dietary instrument (the DR) that at least some 
nutritionists would regard as a gold standard. Technically, to use the regression-calibra-
tion method, the gold-standard instrument need only provide an unbiased estimate 
of “true” exposure rather than actually be “true” exposure with errors that are uncor-
related with that of the surrogate. Given that the DR in Example 13.73 consisted of 
average intake over 28 days spaced throughout the year, this seemingly would provide 
an unbiased estimate of intake over all 365 days, provided the DR is filled out accurately. 
However, for some exposures even a potential gold-standard instrument doesn’t exist.

	 Example 13.75 	 Cancer, Endocrinology  Among postmenopausal women, a positive association 
has generally been observed between plasma-estrogen levels and breast-cancer risk. 
However, most studies have been small, and many have not evaluated specific estro-
gen fractions. A substudy of the NHS was conducted among 11,169 postmenopausal 
women who provided a blood sample during the period from 1989 to 1990 and were 
not using postmenopausal hormones at the time of the blood collection [34]. How-
ever, it was too expensive to analyze hormone levels for all 11,000 women. Instead, 
hormone levels were assayed from 156 women who developed breast cancer after 
blood collection but before June 1994. Two control women, matched with respect to 
age, menopausal status, and month and time of day of blood collection, were select-
ed for each breast-cancer case. In this example, we consider the relationship between 
ln(plasma estradiol) and the development of breast cancer. The ln transformation 
was used to better satisfy the linearity assumptions of logistic regression. The results 
indicated an RR of breast cancer of 1.77 (95% CI = 1.06–2.93) comparing women in 
the highest quartile of ln(estradiol) (median estradiol level = 14 pg/mL) with women 
in the lowest quartile of ln(estradiol) (median estradiol level = 4 pg/mL) based on the 
distribution of ln(estradiol) among the controls. However, it is known that plasma 
estradiol has some measurement error, and we would like to obtain a measurement-
error-corrected estimate of the RR. How can we accomplish this?

Unlike the dietary study in Example 13.73, there is no gold-standard instrument 
for plasma estradiol similar to the DR for nutrient intake. However, it is reasonable 
to consider the average of a large number of ln(estradiol) measurements (x) as a 
gold standard that can be compared with the single ln(estradiol) measurement (X) 
obtained in the study. Although x is not directly measurable, we can consider a 
random-effects ANOVA model relating X to x, of the form

	 Equation 13.70 	 X x ei i i= +

where Xi = a single ln(estradiol) measurement for the ith woman 

xi = underlying mean ln(estradiol) level for the ith woman 

		  x N e Ni A i~ , , ~ ,µ σ σ2 20( ) ( )
Here σA

2  represents between-person variation, and σ2 represents within-person 
variation for ln(estradiol) levels.
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To implement the regression-calibration method, we need to obtain an estimate 
of γ as in Equation 13.63—that is, the regression coefficient of x [true ln(estradiol 
level)] on X [a single ln(estradiol value)]. We know from Equation 12.34 that

	 Equation 13.71 	 Corr x X I, /( ) = = ( )reliability coefficient ρ 1 2

		  where ρ σ σ σI A A= +( )2 2 2/  = intraclass correlation coefficient

Furthermore, from our work on the relationship between a regression coefficient 
and a correlation coefficient (Equation 11.18), we found that

	 Equation 13.72 	 b x X Corr x X sd x sd Xon( ) = ( ) ( ) ( ), /

Also, from Equation 13.70 we have

	 Equation 13.73 	 sd x A( ) = σ

	 Equation 13.74 	 sd X A( ) = +( )σ σ2 2 1 2/

Therefore, on combining Equations 13.71–13.74 we obtain

	 Equation 13.75 	 b x X I A A

I A

on( ) = ( ) +( )
= ( )

ρ σ σ σ

ρ σ σ

1 2 2 2 1 2

1 2 2

/ /

/

/

/ AA

I I I

2 2

1 2 1 2

1 2

+( )





= ( ) ( ) =

σ

ρ ρ ρ

/

/ /

Thus, we can estimate the regression coefficient of x on X by the sample intraclass 
correlation coefficient rI. To obtain rI, we need to conduct a reproducibility study on 
a subsample of subjects with at least two replicates per subject. The reproducibility 
study plays the same role as a validity study, which is used when a gold standard 
is available. If we substitute rI for γ in Equation 13.63, we obtain the following 
regression-calibration procedure for measurement-error correction when no gold 
standard is available.

	 Equation 13.76 	 	 Regression-Calibration Approach for Estimation of Measurement-Error-Corrected 
OR Relating a Dichotomous Disease Variable (D) to a Single Exposure Variable (X) 
Measured with Error When a Gold Standard Is Not Available
Suppose we have

(1)	 A dichotomous disease variable D (= 1 if disease is present, = 0 if disease is 
absent)

(2)	 A single continuous exposure variable X measured with error

(3)	 (Optionally) a set of other covariates u1, . . . , um measured without error

See page 612 for  
Equation 12.34

See page 488 for  
Equation 11.18

See page 744 for  
Equation 13.63
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We define x as the average of X over many replicates for an individual subject. 
We wish to fit the logistic-regression model

		  
ln / * * *p p x uj j

j

m

1
1

−( )  = + +
=
∑α β δ

where p Pr D x u um= =( )1 1| , , . . . ,

We have available

(a)	 A main-study sample of size n (usually large), where D, X, and u1, . . . , um are 
observed

(b)	 A reproducibility-study sample of size n1 (usually small), where ki replicate 
observations of X are obtained for the ith person, from which the esti-
mated intraclass correlation coefficient rI can be obtained (see Equation 
12.33)

To estimate β*, we

(i)	 Fit the main-study logistic-regression model of D on X and u1, . . . , um of the 
form

		      
ln p p X uj j

j

m

1
1

−( )  = + +
=
∑α β δ

(ii)	 Use the reproducibility study to estimate ρI by rI

(iii)	Obtain the point estimate of ˆ ˆβ β∗ = rI, given by ˆ ˆβ β∗ = rI  with corresponding OR 
estimate = ( )∗exp β̂

(iv)	Obtain the variance of β̂∗, given by

		      
Var r Var r Var r A BI I I

ˆ ˆ ˆβ β β∗( ) = ( ) ( ) + ( ) ( ) = +1 2 2 4

		  where Var(rI) is obtained from [35] as follows:

		        Var r r k r k k nI I I( ) = −( ) + −( )  −( ) −2 1 1 1 1 12
0

2
0 0 1(( ) 

		  and k k k k ni
i

n

i
i

n

i
i

n

0
1

2

1 1
1

1 1 1
1= −







−( )

= = =
∑ ∑ ∑

		  (Note: If all subjects provide the same number of replicates (k), then k0 = k.)

(v)	 Obtain a 100% × (1 − α) CI for ˆ ˆβ β∗ = rI given by

		  
ˆ ˆ ˆ ,ˆβ β β βα

∗
−

∗ ∗ ∗± ( ) = ( )z se1 2 1 2

		  where β̂∗ is obtained from (iii) and se Varˆ ˆβ β∗ ∗( ) = ( )




1 2

 is obtained from (iv).  

		  The corresponding 100% × (1 − α) CI for OR is given by

		  
exp expˆ , ˆβ β1 2

∗( ) ( )





∗

	 Example 13.76 	 Cancer, Endocrinology  Estimate the OR relating breast-cancer incidence to plasma 
estradiol after correcting for measurement error for a woman with true plasma-
estradiol level of 14 pg/mL compared with a woman with a true plasma-estradiol 
level of 4 pg/mL based on the data described in Example 13.75.

See page 610 for  
Equation 12.33
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	 	 Solution:  We use the regression-calibration approach in Equation 13.76. From 
Example 13.75 we have ̂ .β = ( ) =ln 1.77 0 571. Furthermore, the 95% CI for β = [ln(1.06), 
ln(2.93)] = (0.058, 1.075). The width of the 95% CI is

		
and

 

2 1 96 3 92 1 075 0 058 1 01. ˆ . ˆ . . .( ) ( ) = ( ) = − =se seβ β 77

1 017 3 92 0 259se ˆ . . .β( ) = =

Furthermore, a reproducibility study was conducted among a subset of 78 of the 
nurses [36]. The estimated intraclass correlation coefficient for ln(plasma estradiol) 
was 0.68. Sixty-five of the nurses provided 3 replicates, and 13 nurses provided 2 
replicates. Therefore, from step (iii) of Equation 13.76, we have the point estimate, 
ˆ . . .β∗ = =0 571 0 68 0 840, with corresponding OR estimate = exp(0.840) = 2.32. From 
step (iv) of Equation 13.76, we obtain Var(ˆ ˆβ β∗ = rI). We have

		  A = ( ) ( ) =0 259 68 0 14552 2. . .

To obtain B, we need to compute Var(rI). We have

		  Var r k k kI( ) = −( ) + −( )( )  −2 1 68 1 1 68 77 12
0

2
0 0. . (( ) 

To evaluate k0, we have 65(3) + 13(2) = 221 replicates over the entire sample. Thus,

		

= − +
= =

k {221 [65(3) 13(2) ] 221} 77
218.12 77 2.833

0
2 2

Therefore,

		

Var rI( ) = −( ) + ( )[ ] (2 1 68 1 1 833 68 2 833 1 8332 2. . . . . ))[ ]
= =

77
1 033 399 74 0 0026. . .

Thus,

		
B =

=
[( . ) ( . ) ]( . )

.
0 571 0 68 0 0026

0 0039

2 4

It follows that

		

Var

se

ˆ . . .

ˆ ( .

β

β

∗

∗

( ) = + =

( ) =

0 1455 0 0039 0 1494

0 14494 0 3871 2) .=

From (v), a 95% CI for β* is given by

		

± = ±
=

0.840 1.96 (0.387) 0.840 0.758
(0.082, 1.597)

The corresponding 95% CI for OR is [exp(0.082), exp(1.597)] = (1.09, 4.94).
Thus, the measurement-error-corrected estimate of the OR relating a woman 

with a true estradiol level of 14 pg/mL to a woman with a true estradiol level of  
4 pg/mL is 2.32 (95% CI = 1.09, 4.94). The corresponding uncorrected estimate is 
1.77 (95% CI = 1.06 − 2.93). The deattenuated (corrected) point estimate is substan-
tially larger than the uncorrected estimate, with much wider confidence limits.
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Several comments are in order concerning this example. First, the design was a pro-
spective case–control study nested within a cohort study. As discussed in Section 13.3, 
we cannot estimate the absolute risk of breast cancer because by design about one-third 
of the women were cases. However, it is possible to obtain valid estimates of relative risk 
for ln(estradiol). Second, there were several other variables in the model, all of which 
were assumed to be measured with little or no measurement error and also to be approxi-
mately uncorrelated with the variable measured with error. Third, the point estimate and 
95% CI for the relative risk differ slightly from those of [34] because of rounding error 
and slightly different approaches used to estimate the intraclass correlation coefficient.

In this section, we discussed methods for obtaining point and interval estimates 
of relative risk from logistic-regression models that are corrected for measurement 
error in the covariate of interest using the regression-calibration approach. In Equa-
tion 13.69, we assumed a gold-standard exposure measure was available. To imple-
ment the methods in this setting, we need both a main study of size n in which 
the disease and surrogate exposure are measured and a validation study of size n1 
in which both the surrogate exposure and the gold-standard exposure are available 
on the same subjects. The validation-study sample may or may not be a subset of 
the main-study population. In Equation 13.76 (p. 769), we assumed a gold-standard 
exposure was not available. To implement the methodology in this setting, we need 
both a main-study sample, in which both the disease and the surrogate exposure are 
available, and a reproducibility study, in which replicate surrogate measurements are 
available. The reproducibility-study sample may or may not be a subset of the main-
study sample. We have assumed in both Equation 13.69 and Equation 13.76 that 
there is only a single covariate in the main study measured with error; there may be 
several other covariates measured without error, but they are assumed to be approxi-
mately uncorrelated with the variable measured with error. The problem of multiple 
covariates measured with error is complex and beyond the scope of this text. An 
extension of the methods in this section, when more than one exposure variable is 
measured with error and/or when other covariates measured without error are cor-
related with the variable measured with error, is given in [37] when a gold standard 
is available and in [38] when a gold standard is not available. It is important to be 
aware that even if only a single exposure variable is measured with error, after cor-
recting for measurement error the partial-regression coefficients of other covariates 
measured without error (e.g., age) may also be affected (see [38] for an example 
concerning this issue). In this section, we have only focused on the effects of mea-
surement error on the regression coefficient for the covariate measured with error.

Software to implement the measurement-error correction methods in this 
section is available at http://www.hsph.harvard.edu/faculty/spiegelman/blinplus 
.html when a gold standard is available and at http://hsph.harvard.edu/faculty/spie-
gelman/relibpls8.html when a gold standard is not available.

RE  V I E W  QUE   S T I ON  S  1 3 I

1	 What is the purpose of measurement-error correction?

2	 What is the difference between a surrogate exposure and a true exposure?

3	 What is a deattenuated estimate?

4	 (a)  What is the difference between a validation study and a reproducibility study?

	 (b)	 Under what circumstances do we use each kind of study?

	 (c)	 What estimated parameters from each type of study are used in correcting for 
measurement error?

See page 746 for  
Equation 13.69
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	 13.16	 Missi     n g  D ata

Most epidemiologic and clinical studies have missing (or incomplete) data, for 
many different reasons. This presents a quandary for multivariate analyses such as 
multiple regression or multiple logistic regression, where to run the analysis both 
the dependent variable and each of the independent variables must be present. A 
frequent solution, which is the default in most statistical software packages, is to use 
the complete-case method, in which the analysis uses only observations with all vari-
ables present. If the amount of data missing is small, then little bias or imprecision 
is introduced by using this approach. However, if a nontrivial (e.g., >10%) amount 
of data is missing and/or if the subjects with missing data constitute a nonrandom 
subsample of the total study sample, then bias can potentially be introduced by 
using this approach.

	 Example 13.77 	 Aging  The Established Populations for Epidemiologic Studies of the Elderly 
(EPESE) study was a collaborative study performed at four centers in the United 
States among people 65+ years of age from 1982 to 1987. Its goal was to deter-
mine the longitudinal course of aging and to identify risk factors related to the 
aging process. Of particular interest are risk factors that affect subsequent mor-
tality. For this purpose, a multiple logistic-regression analysis was run among 
2341 elderly participants ages 71−103 in 1988−1989 to predict mortality through 
1991. The predictor variables were x1 = age (yrs); x2 = sex (coded as 1 if male and 
2 if female); x3 = physical-performance score, which is a 13-item scale from 0 to 
12 that indicates the number of different activities (e.g., getting up from a chair, 
squatting, etc., that a person can perform); x4 = self-assessed health score, which is 
a scale from 1 to 4 (coded as 1 if excellent, 2 if good, 3 if fair, and 4 if poor). The 
physical-performance scale was obtained at a home visit from 1988 to 1989; the 
self-assessed health scale was obtained either at the home visit or by phone. Data 
for the physical-performance scale were missing for 550 elderly participants who 
were either unwilling or unable to perform the test. No data for any of the other 
variables were missing.

Descriptive statistics for the study population are given in Table 13.40. The 
results of the logistic-regression analyses for the 1791 elderly participants with com-
plete data are given in the first column of numbers in Table 13.41.

Table 13.40 	 Descriptive statistics for 2341 older residents of East Boston interviewed in 1988 and 1989

	 Completed the physical-performance evaluation

	 Yes	 No

Dead by 12/31/1991	 No	 Yes	 No	 Yes
n	 1527	 264	 416	 134
Age, median (IQR)a	 77	(74–81)	 78	(74–84)	 78	(74–83)	 85	(78–90)
Male, %	 32.0	 45.1	 30.3	 47.0
Physical performance median (IQR)	 8	(5–10)	 6	(2–8)	 —		 —
Self-assessed health median (IQR)	 2	(2–3)	 3	(2–3)	 2	(2–3)	 3	(2–3)

Notes: These are the 2341 residents of East Boston who participated in the 6-year follow-up evaluation of the EPESE study (see, for example, Glynn et al. 
[39]). They ranged in age from 71 to 103 years at that time. Participants were asked to rate their health relative to others of their age as 1, excellent; 2, good; 
3, fair; or 4, poor. Those who were able also had objective evaluations of physical performance. This was based on brief tests of balance, gait, strength, and 
endurance, with results summarized in an overall score ranging from 0 to 12, with higher scores indicating better function (Guralnik et al. [40])
aInterquartile range.
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Table 13.41 	 �Comparison of effects of variables on the risk of death from alternative models; 	
shown are logistic-regression parameters (standard errors)

	 Analytic method

	 Complete case	 No physical performance	 Multiple imputation	 Indicator methoda

n (deaths)	 1791 (264)	 2341 (398)	 2341 (398)	 2341 (398)
Age	 0.033 (0.013)	 0.088 (0.009)	 0.057 (0.011)	 0.068 (0.01)
Male	 0.92 (0.15)	 0.82 (0.12)	 1.00 (0.14)	 0.92 (0.12)
Self-assessed health	 0.38 (0.095)	 0.60 (0.073)	 0.39 (0.087)	 0.46 (0.076)
Physical performance	 -0.14 (0.023)	 —	 -0.15 (0.024)	 -0.12(0.022)
Intercept 	 -4.76 (1.17)	 -10.41 (0.79)	 -6.60 (1.04)	 -7.42 (0.92)
Indicator of missing performance 				    -0.47 (0.13)

a The indicator method assigns the average performance score (6.8) to those with missing values and includes an indicator variable for this group.

We see there are significant effects of age and sex on mortality, with older 
people and males more likely to die by 1991. In addition, participants with lower 
levels of physical performance and lower levels of self-assessed health (i.e., higher 
scores) were more likely to die by 1991 after controlling for age and sex. However, 
a large number of people lacked some data on physical performance. The issue is 
whether excluding these people affected the estimates of the regression parameters 
in Table 13.41.

To incorporate participants with missing data into the analysis, we use the tech-
nique of multiple imputation. Imputation is defined roughly as the estimation of a 
missing variable (or variables) as a function of other covariates that are present. To 
use this technique, we predict the value of physical performance as a function of 
other covariates in the model, including the outcome (death by 1991). We base the 
imputation on the subset of 1791 participants with complete data.

	 Example 13.78 	 Aging  Estimate the level of physical performance as a function of the other vari-
ables in Table 13.41.

	 	 Solution:  We ran a multiple-regression analysis of physical performance on age, 
sex, self-assessed health, and death by 1991 (1 = yes, 0 = no), with results shown in 
Table 13.42.

If we look at the first column of Table 13.42, we see that physical-performance 
score decreases with age, is higher for men than women, decreases as one’s self-
assessed health grows worse (i.e., increase in self-assessed health scale), and is lower 
for participants who died by 1991. These variables explain 30% of the variation in 
physical performance (i.e., R2 = .30). The Root mean square error (MSE) (2.88) pro-
vides an estimate of the residual variation of physical-performance score after adjust-
ing for the predictors just given. We now need to examine how to incorporate the 
predicted physical-performance score into the overall analysis for participants who 
are missing data on this variable.

Two issues arise with using the regression parameters in the first column of Table 
13.42 to predict physical performance. One issue is that the underlying regression pa-
rameters are unknown; the values given in Table 13.42 are estimated parameters with 
associated standard errors. The second issue is that even if the regression parameters 
were known perfectly, there would still be residual variation around the regression 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



	 13.16      Missing Data              755

predictions of individual participants as reflected by the Root MSE. For these reasons, 
we have used PROC MI and PROC MIANALYZE of SAS (version 9.0) to provide esti-
mated values of physical performance for each of the 550 participants with missing 
physical-performance data that reflect both uncertainty in the regression-parameter 
estimates as well as residual variation around the predictions. In the second column of 
Table 13.42 are a new set of regression parameters that represent an estimate of the true 
regression parameters that reflect the preceding two sources of variation. They differ 
somewhat from the estimates in the first column, as would be expected. To complete 
the data set for the subjects with missing data, we use the first set of drawn parameters 
in Table 13.42 (second column) to obtain an initial predicted physical-performance 
score, then draw a random N(0,1) deviate, multiply it by Root MSE and add it to the 
initial prediction to obtain a final predicted physical-performance score. This process is 
replicated for each of the 550 subjects with missing data. The completed data set now 
consists of 2341 participants with complete information on all covariates. A multiple-
logistic-regression analysis similar to Table 13.41 was then run based on the completed 
data set. The results are shown in the first column of Table 13.43. The preceding pro-
cess of estimating the missing physical-performance scores and rerunning the logistic 
regression on the completed data set was then repeated four additional times, yielding 
5 separate estimates of the linear-regression parameters (Table 13.42) and 5 separate 
estimates of the logistic-regression parameters (Table 13.43).

The next issue is how to combine the results from the separate imputations in 
Table 13.43. In general, if we have m imputations then a suggestion by Rubin [41] is 

to compute ˆ ˆβ β=
=
∑ i
i

m

m
1

 as an overall estimate of effect over the m imputations. The

variance of b̂ should reflect both between- and within-imputation variance. In gen-
eral, if there are m imputations, then

		
Var Var m mi

i

m

i
i

m
ˆ ˆ ˆ ˆβ β β β( ) = ( ) + +( ) −( )

= =
∑ ∑

1

2

1

1 1 mm W B−( ) ≡ +1

where the first component (W) reflects within-imputation variance and the second 
component (B) reflects between-imputation variance. The test statistic is then given by

		
t Var t Hd= ( )





ˆ ˆ ~β β
1 2

0under

where d m r r m B W= −( ) +( ) = +( )( )1 1 1 1 12 and .

	 Table 13.42 	 Summary of linear-regression model predicting physical-performance score, 	
and 5 draws of these regression parameters

		  5 Drawn values of parameters

Variable	 Estimate (SE)	 1	 2	 3	 4	 5

Age (per year)	 -0.22	 (0.013)	 -0.23	 -0.23	 -0.23	 -0.21	 -0.22
Male gender	 1.18	 (0.15)	 1.21	 1.08	 1.29	 1.25	 1.22
Self-assessed health	 -1.38	 (0.089)	 -1.33	 -1.43	 -1.24	 -1.43	 -1.35
Dead by 1991	 -1.30	 (0.20)	 -1.12	 -1.47	 -1.37	 -1.60	 -1.05
Intercept	 27.2	 (1.1)	 27.6	 27.7	 27.5	 26.3	 27.2

Overall R 2 0.30; Root MSE 2.88
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Rubin [41] recommends m = 5 imputations because additional imputations do 
not yield any more meaningful reductions in bias or increases in precision. The sum-
mary estimates and standard errors over the 5 imputations are provided in the last 
column of Table 13.43. 

	 Table 13.43 	 Summary of 5 fits of the logistic-regression model with imputed performance 	
scores and the average estimates (shown are regression estimates, SE)

	 Imputation number	

 1	 2	 3	 4	 5	 Averagea

Age	 0.059	 0.056	 0.058	 0.055	 0.055	 0.057 
	 (0.010)	 (0.010)	 (0.010)	 (0.010)	 (0.010)	 (0.011)

Male gender	 0.97	 1.01	 1.00	 1.03	 1.00	 1.00 
	 (0.12)	 (0.12)	 (0.12)	 (0.13)	 (0.12)	 (0.14)

Self-assessed health	 0.40	 0.39	 0.40	 0.37	 0.40	 0.39 
	 (0.078)	 (0.079)	 (0.078)	 (0.078)	 (0.078)	 (0.087)

Physical performance	 -0.14	 -0.15	 -0.14	 -0.16	 -0.15	 -0.15 
	 (0.020)	 (0.020)	 (0.020)	 (0.021)	 (0.020)	 (0.024)

Intercept	 -6.86	 -6.54	 -6.77	 -6.32	 -6.49	 -6.60
	 (0.93)	 (0.94)	 (0.93)	 (0.93)	 (0.94)	 (1.04)

aThe average effect is the average of the 5 estimates from the filled-in data. The standard error of the average  
accounts for both the average of the variances of the 5 estimates as well as the variability among the 5 estimates. 

Specifically, SE )( = +average effect average within-imputation variation (6 5) between-imputation variance.

The entire multiple-imputation procedure is summarized as follows.

	 Equation 13.77 	 	 Multiple-Imputation Approach for Incorporating Missing Data into an Overall 
Analysis

(1)	 Suppose there are n subjects with k covariates x1, . . . , xk and a binary outcome 
variable y. We assume y and x1, . . . , xk−l are present for all subjects, whereas 
xk is available for Nobs subjects and is missing for Nmis subjects.

(2)	 We assume for the sake of specificity that xk is continuous.

(3)	 We run a multiple-regression analysis of xk on x1, . . . , xk−1 and y of the form 
= α + γ + …+ γ + δ +− −x x x y ek k k1 1 1 1

		  based on the subjects with complete data.

(4)	 For each of the i = 1, . . . , Nmis subjects with missing data on xk we calculate 
an estimated value for xk denoted by xi,k,1 for the ith subject, which reflects 
error both in the estimates of the regression parameters in step 3 as well as 
the residual variation about the regression line (i.e., ei).

(5)	 We run a logistic regression of the form

		        ln[ / ( )]p p x xk k1 1 1− = + + +α β βL

		�  using the observed data for xk for the Nobs subjects with complete data and 
the estimated xk for the Nmis subjects with missing data on xk based on step 4. 
The resulting estimates of α and β are denoted by α^1 and β

^
1,1, . . . , β

^
k,1 and are 

referred to as the regression coefficients from the first imputed data set.
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(6)	 Steps 4 and 5 are repeated for m – 1 additional imputations, thus yielding a  

set of estimated coefficients α̂q, ˆ , . . . , ˆ, ,β β1 q k q  and associated variances Var qα̂( ),  
Var Varq k q

ˆ , . . . , ˆ
, ,β β1( ) ( ) for the qth imputed data set, q = 1, . . . , m. Note that 

because the regression parameters differ for each imputation in step 4,  

estimates of xk also differ for each imputed data set. However, values for  
x1, . . . , xk–1 that have no missing data remain the same.

(7)	 The estimates from the m separate imputations are then combined into an 
overall estimate for βj, j = 1, . . . , k, given by

		      

ˆ ˆ
,β βj j q

q

m

m=
=

∑
1

		  and an overall variance given by

		      
Var Var m m mj

q

m

j q j q
ˆ ˆ / ˆ ˆ

, ,β β β β( ) = ( ) + +( )[ ] −
=

∑
1

1 jj
q

m

m W B( ) −( ) ≡ +
=

∑
2

1

1

		  A similar procedure is used to obtain an overall estimate of α.

(8)	 The overall test statistic to test the hypothesis H0: βj = 0 vs. H1: βj ≠ 0 is  
given by

		        t se tj j d= ( )ˆ ˆ ~β β under H0

		  where se Varj j
ˆ ˆ /
β β( ) = ( )




1 2

, d m r= −( ) +( )1 1 1 2/ , and r m B W= +( )( )1 1/ /

(9)	 The p-value = 2 × >( )Pr t td .

(10)	 In the usual implementation of multiple imputation (e.g., PROC MI and 
MIANALYZE of SAS), m is set equal to 5.

	 Example 13.79 	 Aging  Implement the multiple-imputation approach for incorporating missing 
data for 550 subjects missing the physical-performance score in the EPESE data set 
described in Example 13.77 (on page 753).

	 	 Solution:  We refer to the third column of Table 13.41 (on page 754). All variables remain 
statistically significant, as they were using the complete-case method. Interestingly, 
the regression coefficients for physical performance, gender, and self-assessed health 
are relatively similar between the complete-case method and the multiple-imputation 
method. However, the effect of age is substantially larger with the multiple-imputation  
approach, possibly because the frailest, oldest EPESE participants were less likely to 
complete the physical-performance test. Furthermore, the standard errors of all vari-
ables that had no missing data are smaller with the multiple-imputation approach 
than with the complete-case method because of the larger sample size. However, the 
standard error of the physical-performance coefficient increased with the multiple-
imputation approach, reflecting uncertainty in estimation of physical-performance 
scores for participants with missing data on this variable.

Another possible approach to the analysis is to exclude physical performance 
from the multiple-logistic model (see second column of Table 13.41). However, 
because of the strong correlation between physical-performance score and many of 
the other covariates, this produces unacceptable biases in the estimates of the other 
regression parameters in the absence of controlling for physical-performance score.
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A second possible approach is to use all participants but include an indicator vari-
able for missing physical-performance data (= 1 if missing; = 0 if present) and to give 
all participants with missing physical-performance data the average value (6.8) for the 
complete cases (see fourth column of Table 13.41). This includes all the participants 
but is known to yield biased estimates (1) because the effect of physical performance 
is underestimated and (2) because the correlation between physical performance and 
other predictor variables biases other parameters as well [42].

The imputation approach described in Equation 13.77 is for a single continuous 
predictor measured with error. An extension to incorporate multiple missing predic-
tors is available [41]. PROC MI and MIANALYZE of SAS (version 9.4) offer several 
options for how to perform imputation in this complex setting. Finally, although 
the multiple-imputation methods in this section have been applied in the context 
of multiple logistic regression, the same approach can be used for multiple linear 
regression with missing covariate values.

	 13.17	 D e r iv  at i o n  o f  S e l e c t e d  F o r m u l a s

(a) Derivation of 100% × (1 – α) CI for the RISK difference 
(Equation 13.1, p. 637)
Because these are two independent samples, from Equation 5.10,

		  ˆ ˆ ~ ,p p N p p
p q
n

p q
n1 2 1 2

1 1

1

2 2

2
− − +







Therefore, if p q n p q n1 1 1 2 2 2/ /+  is approximated by ˆ ˆ / ˆ ˆ /p q n p q n1 1 1 2 2 2+  then

		  Pr p p z
p q
n

p q
n

p p p1 2 1 2
1 1

1

2 2

2
1 2 1− − + ≤ − ≤ −−α/

ˆ ˆ ˆ ˆ ˆ ˆ pp z
p q
n

p q
n2 1 2

1 1

1

2 2

2
1+ +









 = −−α α/

ˆ ˆ ˆ ˆ

This can be rewritten as two inequalities:

		  p p z
p q
n

p q
n

p p1 2 1 2
1 1

1

2 2

2
1 2− − + ≤ −−α/

ˆ ˆ ˆ ˆ ˆ ˆ

and ˆ ˆ
ˆ ˆ ˆ ˆ

/p p p p z
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p q
n1 2 1 2 1 2

1 1

1

2 2

2
− ≤ − + +−α

If z p q n p q n1 2 1 1 1 2 2 2− +α/ ˆ ˆ / ˆ ˆ /  is added to both sides of the first inequality and sub-
tracted from both sides of the second inequality, then we obtain

		
p p p p z

p q
n

p q
n1 2 1 2 1 2

1 1

1

2 2

2
− ≤ − + +−ˆ ˆ

ˆ ˆ ˆ ˆ
/α

and ˆ ˆ
ˆ ˆ ˆ ˆ

/p p z
p q
n

p q
n

p p1 2 1 2
1 1

1

2 2

2
1 2− − + ≤ −−α

This yields the 100% × (1 − α) CI for p1 − p2 in Equation 13.1.

(b) Derivation of Var [ln(O
^
R)] Based on the Woolf Method 

(Equation 13.11, p. 646)
Suppose we have a prospective design. From Definition 13.6 (on page 640) we can 
represent the estimated OR as a disease-odds ratio of the form ( ˆ / ˆ ) / ( ˆ / ˆ )p q p q1 1 2 2

where ˆ / ( ), ˆ / ( ), ˆ ˆ , ˆ ˆp a a b p c c d q p q p1 2 1 1 2 21 1= + = + = − = −

See page 133 for  
Equation 5.10
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Furthermore,

		  Var[ ln(OR
^ 

)] =

=

Var p q p q

Var p q

{ln[( ˆ / ˆ ) / ( ˆ / ˆ )]}

[ln( ˆ / ˆ
1 1 2 2

1 11 2 2

1 1

) ln( ˆ / ˆ )]

[ln( ˆ / ˆ )] [ln( ˆ
−

= +

p q

Var p q Var p22 2/ ˆ )]q

To obtain Var p q[ln( ˆ / ˆ )]1 1 , we use the delta method. We have

		

d p q
dp p q
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ˆ ˆ ˆ
1 1

1 1 1
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Furthermore, Var p p q a b( ˆ ) ˆ ˆ / ( )1 1 1= +
Hence, 
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Similarly, Var p q
c d

[ln( ˆ / ˆ )]2 2
1 1= + . Because p̂1 and p̂2 are independent random vari-

ables, it follows that

		  Var[ln(OR
^ 

)] = + + +1 1 1 1
a b c d

A similar result can be obtained if we have a case–control design instead of a pro-
spective design.

(c) Derivation of Interval Estimate of AR (Equation 13.12, p. 648)
We have:

		  AR RR p RR p/ ( ) /[( ) ]100 1 1 1= − − +

and 

		  1 100 1 1 1− = − +AR RR p/ /[( ) ].

Hence, 

		

AR
AR

RR p
/

/
( ) .

100
1 100

1
−





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= −

If we take logs of both sides of the equation, we obtain: 

		  y
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−


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100
1 100
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We will use the delta method to obtain var( )y . We have 

		
dy d RR

RR
/ ( )

( )
=

−
1

1
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Hence,

		
var var( )

( )
( )y

RR
RR=

−
1

1 2

Also, by the delta method 

		  var var( ) ( )/ln RR RR RR= 2

or 

		  var var( ) ( ).RR RR RR= 2 ln

Thus, 

		  var var( ) ( / | |) ( )y RR RR RR= − 1 2 ln

Referring to Equation 13.6 (p. 639), we have 

		  var( ) /( ) /( )ln RR b an d cn= +1 2

where a b c d n, , , , 1, and n2  are given in Table 13.1. If we assume normality of y, then a  
two-sided 100 1% ( )× − α  CI for AR is given by [ % /( )100 11 1× +e ec c , 100 12 2% /( )]× +e ec c  

100 12 2% /( )]× +e ec c , where ( , ) ( / | |)[ /( ) /( )/c c y z RR RR b an d cn1 2 1 2 1 21= ± − +−α ]] /1 2.

(d) Derivation of Equation 13.48 (on page 711)
We want to determine sample sizes n1, n2 such that

	 Equation 13.78 	 Pr p p z p q n p q nˆ ˆ ˆ ˆ / ˆ ˆ /1 2 1 1 1 1 2 2 2 1− + + ≤



 = −−α δ β

However, if we subtract p1 − p2 from both sides of Equation 13.78, divide by 
ˆ ˆ / ˆ ˆ /p q n p q n1 1 1 2 2 2+ , and then subtract z1- α from both sides, we obtain
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p p p p
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


= −−α β

Under the hypothesis that the true difference in survival rates between treatment 
groups is p1 − p2, the random variable on the left side is approximately a standard 
normal deviate. Therefore, to satisfy this equation we have

	 Equation 13.79 	
δ

α β
− −

+
− =− −

( )
ˆ ˆ / ˆ ˆ /

p p

p q n p q n
z z1 2

1 1 1 2 2 2
1 1

We now add z1−α to both sides of Equation 13.79 and divide by δ − (p1 − p2) to obtain
		

1

1 1 1 2 2 2

1 1
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+
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If we assume the experimental treatment sample size (n2) is k times as large as the 
standard treatment sample size (n1), we obtain

		

n

p q p q k

z z

p p
1

1 1 2 2

1 1

1 2ˆ ˆ ˆ ˆ / ( )+
=

+
− −

− −α β

δ

Solving for n1 yields
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	 Equation 13.80 	 n
p q p q k z z

p p1
1 1 2 2 1 1

2

1 2
=

+ +
− −

− −( ˆ ˆ ˆ ˆ / )( )

[ ( )]
α β

δ 22 2 1,n kn=

	 1 3 . 1 8 	 S u m m a r y

In this chapter, we have examined some of the main design and analysis techniques 
used in epidemiologic studies. In Section 13.2, we looked at the main study designs 
used in epidemiologic studies, including cohort studies, case–control studies, and 
cross-sectional studies. In Sections 13.3 and 13.4, we then explored some common 
measures of effect used in these studies, including the risk difference (RD), the risk 
ratio (RR), the odds ratio (OR), and the attributable risk (AR). For each study design, 
we discussed which of these parameters are estimable and which are not. In Section 
13.5, we introduced the concept of a confounder and examined standardization, 
which is a descriptive technique for obtaining measures of effect that are controlled 
for confounding variables. In Section 13.6, we discussed Mantel-Haenszel-type 
methods, which are analytic procedures used to test hypotheses about effects of 
a primary exposure variable while controlling for other confounding variable(s). 
These techniques become cumbersome when there are many confounding variables 
to be controlled for. Thus, in Section 13.7 we examined multiple logistic regression, 
a technique similar to multiple linear regression when the outcome variable is bi-
nary. Using this technique allows one to control for many confounding variables 
simultaneously. In Section 13.8, we considered several extensions to logistic regres-
sion. We first considered extensions to logistic regression for matched designs. We 
then introduced polychotomous logistic regression (PLR), in which an outcome 
variable is categorical with more than two possible outcomes that are not ordered 
and we wish to control for other covariates. Third, we considered ordinal logistic 
regression, in which our outcome variable is categorical with more than two ordered 
categories and we wish to control for one or more covariates. In Section 13.9, we 
discussed methods of sample size estimation for logistic regression.

The techniques in Sections 13.1–13.9 are standard methods of design and analy-
sis used in epidemiologic studies. In recent years, there has been much interest in 
extensions of these techniques to nonstandard situations, some of which are dis-
cussed in Sections 13.10–13.16. In Section 13.10, we discussed the basic principles 
of meta-analysis. Meta-analysis is a popular methodology for combining results 
obtained from more than one study regarding a particular association of interest. In 
Section 13.11, we considered the emerging field of active-control (or equivalence) 
studies. In standard clinical trials, to demonstrate the efficacy of an agent, the active 
agent is usually compared with a placebo. In active-control studies, a new proposed 
active agent is compared with an existing active agent (which we refer to as stan-
dard therapy). The goal of the study is to show that the two treatments are roughly 
equivalent rather than that the new active treatment is superior to standard therapy. 
The rationale for active-control studies is that in some instances it may be unethical 
to randomize a subject to placebo if a prior efficacious therapy already exists (e.g., in 
clinical trials of drugs used to treat schizophrenia).

Another alternative design used in clinical studies is the cross-over design, as dis-
cussed in Section 13.12. Under the usual parallel design for a clinical trial with two 
treatments, each subject is randomized to only one of two possible treatments. Un-
der a cross-over design, each subject receives both treatments but at different time 
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periods. A washout period when no treatment is given is usually specified between 
the two active-treatment periods. The order of administration of the two treatments 
for an individual subject is randomized. The rationale for this design is that it usu-
ally requires fewer subjects than a parallel design, provided that the effect of treat-
ment given in the first period does not carry over to the second active-treatment 
period. It is most appropriate for short-acting therapies with no carry-over effect.

In Section 13.13, we considered the statistical treatment of clustered binary data. 
Clustered binary data occur in clinical trials or observational studies when the unit of 
randomization is different from the unit of analysis. For example, in some lifestyle in-
terventions (e.g., dietary interventions), the unit of randomization might be a school 
or school district, but the unit of analysis is the individual child. Modifications to ordi-
nary techniques for analyzing 2 × 2 tables (discussed in Section 10.2) were introduced 
to account for the correlation of response from different children in the same school 
or school district. In addition, we considered regression methods for clustered binary 
data based on GEE techniques. We also considered methods for longitudinal data 
analysis in Section 13.14, which are a particular type of clustered data.

In Section 13.15, we considered the emerging field of measurement- 
error-correction methods. These techniques provide generalizations of standard 
techniques, such as logistic regression, that account for the common occurrence 
that a noisy convenient exposure is often used in epidemiologic studies, such as a 
single blood-pressure measurement, when what is really desired is a more accurate 
“gold standard” measurement (e.g., the “true” blood pressure) conceptualized as the 
average of a large number of blood-pressure measurements for an individual subject. 
Using these techniques, we can estimate the logistic regression that would have been 
obtained if the gold-standard exposure had been available for all subjects instead 
of the surrogate exposure. We also introduced the concept of a validity study and a 
reproducibility study, which are ancillary studies that seek to estimate the relation-
ship between the true and surrogate exposure, in the case when the gold standard is 
measurable and when it is not, respectively.

Finally, in Section 13.16, we described approaches for handling missing data in 
epidemiologic studies. Data commonly are missing. The default option in most sta-
tistical packages is the complete-case method, in which only subjects with complete 
data on all predictor variables are included. However, this approach may introduce 
bias if subjects with missing data differ systematically from subjects with complete 
data. A more sophisticated approach based on multiple-imputation methods is in-
troduced as a possible alternative that incorporates data from both subjects with and 
without missing data into the overall analysis.

P r o b l e m s

Gynecology
In a 1985 study of the relationship between contraceptive 
use and infertility, 89 of 283 infertile women, compared with 
640 of 3833 control (fertile) women, had used an intrauter-
ine device (IUD) at some time in their lives [43].

*13.1  Use the normal-theory method to test for significant 
differences in contraceptive-use patterns between the two 
groups.

*13.2  Use the contingency-table method to perform the 
test in Problem 13.1.

*13.3  Compare your results in Problems 13.1 and 13.2.

*13.4  Compute a 95% CI for the difference in the propor-
tion of women who have ever used IUDs between the infer-
tile and fertile women in Problem 13.1.

*13.5  Compute the OR in favor of ever using an IUD for 
infertile women vs. fertile women.

*13.6  Provide a 95% CI for the true OR corresponding to 
your answer to Problem 13.5.

13.7  What is the relationship between your answers to 
Problems 13.2 and 13.6?
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Renal Disease
13.8  Refer to Problem 10.30 (on page 442). Estimate 
the RR for total mortality of the study group vs. the control 
group. Provide 95% confidence limits for the RR.

Infectious Disease
Refer to Table 13.8 (on page 656).

13.9  Perform a significance test to examine the association 
between OC use and bacteriuria after controlling for age.

13.10  Estimate the OR in favor of bacteriuria for OC users 
vs. non-OC users after controlling for age.

13.11  Provide a 95% CI for the OR estimate in Problem 13.10.

13.12  Is the association between bacteriuria and OC use 
comparable among different age groups? Why or why not?

13.13  Suppose you did not control for age in the preced-
ing analyses. Calculate the crude (unadjusted for age) odds 
ratio in favor of bacteriuria for OC users vs. non-OC users.

13.14  How do your answers to Problems 13.10 and 13.13 
relate to each other? Explain any differences found.

Endocrinology
A study was performed looking at the risk of fractures in 
three rural Iowa communities according to whether their 
drinking water was “higher calcium,” “higher fluorides,” or 
“control” as determined by water samples. Table 13.44 
presents data comparing the rate of fractures (over 5 years) 
between the higher-calcium vs. the control communities for 
women ages 20–35 and 55–80, respectively [44].

*13.15  What test can be used to compare the fracture 
rates in these two communities while controlling for age?

*13.16  Implement the test in Problem 13.15, and report a 
p-value (two-sided).

Table 13.44 	 Relationship of calcium content of drinking water to the rate of fractures in rural Iowa

Ages	 Number of women	 Total number	 Ages	 Number of women	 Total number 
20–35	 with fractures	 of women	 55–80	 with fractures	 of women

Control	 3	 37	 Control	 11	 121
Higher calcium	 1	 33	 Higher calcium	 21	 148

*13.17  Estimate the OR relating higher calcium and frac-
tures while controlling for age.

*13.18  Provide a 95% CI for the estimate obtained in Prob-
lem 13.17.

Renal Disease
A study was performed assessing the association between 
lifetime analgesic intake and change in estimated glomerular 
filtration rate (GFR) as measured from two blood samples 
obtained in 1989 and 2000 among 1645 participants in 
the Nurses’ Health Study (Curhan, et al. [45]). GFR is a 
commonly used index of kidney function with lower levels 
indicating worse kidney function. The following data were 
presented relating lifetime intake of acetaminophen (the ac-
tive ingredient in Tylenol) in grams and a decline of ≥ 30% in 
estimated GFR, which is considered a clinically meaningful 
decline in kidney function (denoted as a case). 

13.19  What is the estimated odds ratio for being a case 
comparing Group D to Group A?

13.20  Provide a 95% CI for the OR computed in Problem 
13.19.

A logistic regression analysis was run using Stata relating 
disease status to lifetime acetaminophen intake divided by 
100 (1 unit = 100g) denoted by ace_100. The results are 
given in Table 13.46.

13.21  Estimate the odds ratio for being a case comparing 
a subject with a lifetime acetaminophen intake of 1100g vs. 
a lifetime acetaminophen intake of 100g. Provide a 95% CI 
for this odds ratio. 

13.22  Suppose a cutoff for excessive lifetime acetamino-
phen intake (L) is a level such that the risk of at least a 30% 
decline in GFR over 11 years is ≥ 10%. What is your best 
estimate of L?

Table 13.45 	 �Relationship between change in GFR of ≥ 30% over 11 years vs. 	
lifetime acetaminophen intake among 1645 NHS subjects

	 Acetaminophen (g)	 Median Intake	 	   
Group	 (lifetime intake)	 (unit = 100g)	 # of Subjects	 # of Cases

A	 <100	 0.5	 819	 66
B	 100–499	 3.0	 186	 19
C	 500–2999	 17.5	 288	 34
D	 ≥3000	 40.0	 352	 52
	 Total		  1645	 171
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One assumption in Table 13.46 is that the log odds ratio of 
being a case is a linear function of the lifetime acetamino-
phen intake. To check this assumption, a second logistic re-
gression was run relating disease status to acetaminophen 
intake in categories using the categories in Table 13.45 
with Group A as the reference and Groups B, C, and D de-
noted by .Iacetam ~300, .Iacetam ~1750, .Iacetam ~4000, 
respectively (see Table 13.47).

13.23  Estimate the odds ratio for Group C vs. Group A and 
provide a 95% CI. Are the results consistent with those in 
Problem 13.21? Why or why not?

Mental Health
Refer to Problem 10.32 (on page 442).

*13.24  Estimate the OR relating widowhood to mortality 
based on all the data in Table 10.27 (on page 442).

*13.25  Provide a 95% CI for the OR.

Hypertension
A study was conducted in Wales relating blood-pressure and 
blood-lead levels [46]. It was reported that 4 of 455 men with 
blood-lead levels ≤11 µg/100 mL had elevated SBP (≥160 

Table 13.46 	 �Logistic Regression relating decrease in GFR of ≥ 30% over 11 years vs. 	
lifetime acetaminophen intake/100 (continuous variable)

. logit case ace_100 [fweight=freq]
Iteration 0: log likelihood = -548.9024
Iteration 1: log likelihood = -543.33838
Iteration 2: log likelihood = -543.21443
Iteration 3: log likelihood = -543.21438
Logistic regression	 Number of obs	=	 1645
	 LR chi2(2)	=	 11.38
	 Prob > chi2	=	 0.007
Log likelihood = -543.21438	 Pseudo R2	=	0.0104
------------------------------------------------------------------------------
	 case	 |	 Coef.	 Std. Err.	 z	 P>|z|	 [95% Conf. Interval]
----------+-------------------------------------------------------------------
	ace_100	 |	 .0164116	 .0047713	 3.44	 0.001	 .00706	 .0257633
	 _cons	 |	 -2.381986	 .1101246	 -21.63	 0.000	 -2.597826	 -2.166146
------------------------------------------------------------------------------

Table 13.47 	 �Logistic Regression relating decrease in GFR of ≥ 30% over 11 years vs. 	
lifetime acetaminophen intake (categories)

. xi:logit case i.acetaminophen [fweight = freq]
i.acetaminoph~e  _Iacetamino_50-4000 (naturally coded; _Iacetamino_50 omitted)
Iteration 0: log likelihood = -548.9024  
Iteration 1: log likelihood = -542.90745  
Iteration 2: log likelihood = -542.77438  
Iteration 3: log likelihood = -542.77432  
Iteration 4: log likelihood = -542.77432 
Logistic regression	 Number of obs	 =	 1645
	 LR chi2(3)	 =	 12.26
	 Prob > chi2	 =	 0.0066
Log likelihood = -542.77432	 Pseudo R2	 =	 0.0112
------------------------------------------------------------------------------
	 case	 |	 Coef.	 Std. Err.	 z	 P>|z|	 [95% Conf. Interval]
----------+-------------------------------------------------------------------
	_Iacetam~300	 |	 .2608557	 .2740422	 0.95	 0.341	 -.2762572	 .7979685
	_Iaceta~1750	 |	 .4234367	 .2232226	 1.90	 0.058	 -.0140714	 .8609449
	_Iaceta~4000	 |	 .6818717	 .1975946	 3.45	 0.001	 .2945934	 1.06915
	 _cons	 |	 -2.43441	 .1283726	 -18.96	 0.000	 -2.686016	 -2.182805
------------------------------------------------------------------------------
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mm Hg), whereas 16 of 410 men with blood-lead levels ≥12 
µg/100 mL also had elevated SBP. It was also reported that 
6 of 663 women with blood-lead levels ≤11 µg/100 mL had 
elevated SBP, whereas 1 of 192 women with blood-lead 
levels ≥12 µg/100 mL had elevated SBP.

13.26  What is an appropriate procedure to test the hypoth-
esis that there is an association between blood pressure 
and blood lead, while controlling for sex?

13.27  Implement the procedure in Problem 13.26, and 
report a p-value.

13.28  Estimate the OR relating blood pressure to blood 
lead, and provide a 95% CI about this estimate.

Infectious Disease
Aminoglycoside antibiotics are particularly useful clinically 
in the treatment of serious gram-negative bacterial infec-
tions among hospitalized patients. Despite their potential 
for toxicity, as well as the continued development of newer 
antimicrobial agents of other classes, it seems likely that the 
clinical use of aminoglycosides will continue to be wide-
spread. The choice of a particular aminoglycoside antibiotic 
for a given patient depends on several factors, including the 
specific clinical situation, differences in antimicrobial spec-
trum and cost, and risks of side effects, particularly nephro-
toxicity and auditory toxicity. Many randomized, controlled 
trials have been published that compare the various amino-
glycoside antibiotics with respect to efficacy, nephrotoxicity, 
and, to a lesser extent, auditory toxicity. These individual 
trials have varied widely with respect to their design features 
and their conclusions. A major limitation to their interpret-
ability is that the majority of the individual trials have lacked 
an adequate sample size to detect the small-to-moderate 
differences between treatment groups that are most plau-
sible. As a result, the individual trials published to date have 
generally not permitted firm conclusions, especially con-
cerning the relative potential for toxicity of aminoglycosides.

	 In these circumstances, one method to estimate the 
true effects of these agents more precisely is to conduct an 
overview, or meta-analysis, of the data from all randomized 
trials. In this way, a true increase in risk could emerge that 
otherwise would not be apparent in any single trial due to 
small sample size. Therefore, a quantitative overview of the 
results of all published randomized controlled trials that as-
sessed the efficacy and toxicity of individual aminoglycoside 
antibiotics was undertaken.

	 Forty-five randomized clinical trials, published be-
tween June 1975 and September 1985, were identified that 
compared two or more of five aminoglycoside antibiotics: 
amikacin, gentamicin, netilmicin, sisomicin, and tobramycin. 
Thirty-seven of these trials could provide data suitable for 
comparative purposes.

	 The specific endpoints of interest were efficacy, neph-
rotoxicity, and auditory toxicity (ototoxicity). Efficacy was 
defined as bacterial or clinical response to treatment as 
reported in each individual trial. Nephrotoxicity was defined 
as the percentage of toxic events to the kidney reported, 
regardless of whether the published paper suggested some 
explanation other than the use of the study drug, such as 
use of another potentially nephrotoxic agent, or the pres-
ence of an underlying disease affecting kidney function. Au-
ditory toxicity was defined as reported differences between 
pre- and post-treatment audiograms.

	 The data are organized into three Data Sets: EFF.DAT, 
NEPHRO.DAT, and OTO.DAT, all at www.cengagebrain.com. 
A separate record is presented for each antibiotic studied 
for each endpoint. The format is given in the files EFF.DOC, 
NEPHRO.DOC, and OTO.DOC at www.cengagebrain.com.

Columns 1–8:  Study name

	 10–11:  Study number (number on reference list) 

	 13:  �Endpoint (1 = efficacy; 2 = nephrotoxicity;  
3 = ototoxicity)

	 15:  �antibiotic (1 = amikacin; 2 = gentamicin;  
3 = netilmicin; 4 = sisomicin; 5 = tobramycin) 

	 17–19:  Sample size

	 21–23:  �Number cured (for efficacy) or number with 
side effect (for nephrotoxicity or ototoxicity)

Renal Disease
Refer to Data Set NEPHRO.DAT at www.cengagebrain.com.

13.29  Use methods of meta-analysis to assess whether 
there are differences in nephrotoxicity between each pair of 
antibiotics. Obtain point estimates and 95% CIs for the OR, 
and provide a two-sided p-value.

Otolaryngology
Refer to Data Set OTO.DAT at www.cengagebrain.com.

13.30  Answer the question in Problem 13.29 to assess 
whether there are differences in ototoxicity between each 
pair of antibiotics.

Infectious Disease
Refer to Data Set EFF.DAT at www.cengagebrain.com.

13.31  Answer the question in Problem 13.29 to assess 
whether there are differences in efficacy between each pair 
of antibiotics.

Cardiology
A recent study compared the use of percutaneous transluminal 
coronary angioplasty (PTCA) with medical therapy in the treat-
ment of single-vessel coronary-artery disease. A total of 105 
patients were randomly assigned to PTCA and 107 to medical 
therapy. Over a period of 6 months, MI occurred in 5 patients in 
the PTCA group and 3 patients in the medical-therapy group. Data set available
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*13.32  Estimate the RR of MI for patients assigned to 
PTCA vs. patients assigned to medical therapy, and provide 
a 95% CI for this estimate.

At the 6-month clinic visit, 61 of 96 patients seen in the 
PTCA group and 47 of 102 patients seen in the medical-
therapy group were angina free.

*13.33  Answer Problem 13.32 for the endpoint of being 
angina free at 6 months.

Sports Medicine
Refer to Problem 10.59 (on page 445). In this problem, we 
described Data Set TENNIS1.DAT (at www.cengagebrain 
.com), which is an observational study relating episodes of 
tennis elbow to other risk factors.

13.34  Use logistic-regression methods to compare partici-
pants with 1+ episodes of tennis elbow vs. participants with 
0 episodes of tennis elbow, considering multiple risk factors 
in the same model.

13.35  Use linear-regression methods to predict the number 
of episodes of tennis elbow as a function of several risk fac-
tors in the same model.

Hypertension
A drug company proposes to introduce a new antihyperten-
sive agent that is aimed at elderly hypertensive participants 
with prior heart disease. Because this is a high-risk group, the 
company is hesitant to withhold antihypertensive therapy from 
these patients and instead proposes an equivalence study 
comparing the new agent (drug A) with the current antihyper-
tensive therapy used by those participants. Hence, the partici-
pants will be randomized to either maintenance of their current 
therapy or replacement of their current therapy with drug A. 
Suppose the endpoint is total cardiovascular disease (CVD) 
mortality, and it is assumed that under their current therapy 
15% of participants will die of CVD over the next 5 years.

13.36  Suppose drug A will be considered equivalent to the 
current therapy if the 5-year CVD mortality is not worse than 
20%. How many participants must be enrolled in the study 
to ensure at least an 80% chance of demonstrating equiva-
lence if equivalence will be based on a one-sided 95% CI 
approach, an equal number of subjects are randomized to 
drug A and current therapy, and the underlying mortality 
rates of the two therapies are the same?

13.37  Suppose in the actual study that 200 participants 
are randomized to each group. Forty-four participants who 
receive drug A and 35 participants who receive current 
therapy die of CVD in the next 5 years. Can the treatments 
be considered equivalent? Why or why not?

13.38  How much power did the study described in Prob-
lem 13.37 have of demonstrating equivalence under the 
assumptions in Problem 13.36?

Cardiovascular Disease
Sudden death is an important, lethal cardiovascular end-
point. Most previous studies of risk factors for sudden death 
have focused on men. Looking at this issue for women is 
important as well. For this purpose, data were used from the 
Framingham Heart Study [47]. Several potential risk factors, 
such as age, blood pressure, and cigarette smoking, are of 
interest and need to be controlled for simultaneously. There-
fore, a multiple logistic-regression model was fitted to these 
data, as shown in Table 13.48.

13.39  Assess the statistical significance of the individual 
risk factors.

13.40  What do these statistical tests mean in this instance?

13.41  Compute the OR relating the additional risk of sud-
den death per 100-centiliter (cL) decrease in vital capacity 
after adjustment for the other risk factors.

13.42  Provide a 95% CI for the estimate in Problem 13.41.

Hepatic Disease
Refer to Data Set HORMONE.DAT at www.cengagebrain 
.com.

13.43  Use logistic-regression methods to assess whether 
presence of biliary secretions during the second period (any 
or none) is related to the type of hormone used during the 
second period.

13.44  Answer the same question as in Problem 13.43 for 
the presence of pancreatic secretions.

 Data set available

Table 13.48	� Multiple logistic-regression model 
relating 2-year incidence of sudden 
death in females without prior CHD 
(data taken from the Framingham 
Heart Study) to several risk factors

	 Regression	  
Risk factor	 coefficient, β̂l 	 se lβ̂( )
Constant	 -15.3
Systolic blood pressure	 0.0019	 0.0070
  (mm Hg)
Framingham relative	 -0.0060	 0.0100
  weight (%)
Cholesterol (mg/100 mL)	 0.0056	 0.0029
Glucose (mg/100 mL)	 0.0066	 0.0038
Cigarette smoking	 0.0069	 0.0199
  (cigarettes/day)
Hematocrit (%)	 0.111	 0.049
Vital capacity (cL)	 -0.0098	 0.0036
Age (years)	 0.0686	 0.0225

Source: Arthur Schatzkin et al., “Sudden Death in the Framingham Heart 
Study: Differences in Indidence and Risk Factors by Sex and Coronary 
Disease Status, American Journal of Epidemiology, 1984 120: 888-899. 
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13.45  Use logistic-regression methods to assess whether 
the presence of biliary secretions during the second pe-
riod is related to dose of hormone used during the second 
period (do separate analyses for each active hormone—
hormones 2–5).

13.46  Answer the same question as in Problem 13.45 for 
the presence of pancreatic secretions.

Otolaryngology
Refer to Data Set EAR.DAT (see Table 3.12 (on page 69), 
also www.cengagebrain.com).

13.47  Consider a subject “cured” if (1) the subject is a uni-
lateral case and the ear clears by 14 days or (2) the subject 
is a bilateral case and both ears are clear by 14 days. Run 
a logistic regression with outcome variable = cured and 
independent variables (1) antibiotic, (2) age, and (3) type of 
case (unilateral or bilateral). Assess goodness of fit of the 
model you obtain.

13.48  Use correlated binary data methods to relate clear-
ance of an ear by 14 days to antibiotic type and age. Use the 
ear as the unit of analysis. (Hint: Use generalized estimating 
equation methods.)

Sports Medicine
Refer to Data Set TENNIS2.DAT at www.cengagebrain 
.com.

13.49  Assess whether there are significant treatment  
effects regarding pain during maximum activity.

13.50  Asses whether there are significant treatment effects 
regarding pain 12 hours after maximum activity.

13.51  Assess whether there are significant treatment  
effects regarding pain on an average day.

13.52  Assess whether there are significant carry-over  
effects for the endpoint in Problem 13.49.

13.53  Assess whether there are significant carry-over  
effects for the endpoint in Problem 13.50.

13.54  Assess whether there are significant carry-over  
effects for the endpoint in Problem 13.51.

Hypertension
Refer to Data Set ESTROGEN.DAT at www.cengagebrain 
.com. The format is in Table 13.49.

Three separate two-period cross-over studies were per-
formed, based on different groups of subjects. Study 1 com-
pared 0.625 mg estrogen with placebo. Study 2 compared 
1.25 mg estrogen with placebo. Study 3 compared 1.25 mg 
estrogen with 0.625 mg estrogen. Subjects received treat-
ment for 4 weeks in each active-treatment period; a 2-week 
washout period separated the two active-treatment periods.
13.55  Assess whether there are any significant treatment 
or carry-over effects of SBP or DBP in study 1.
13.56  Answer Problem 13.55 for study 2.
13.57  Answer Problem 13.55 for study 3.
13.58  Suppose we are planning a new study similar in 
design to study 1. How many participants do we need to 
study to detect an underlying 3-mm Hg treatment effect for 
SBP with 80% power assuming there is no carry-over effect 
and we perform a two-sided test with α = .05? (Hint: Use 
the sample standard deviation of the difference scores from 
study 1 as an estimate of the true standard deviation of the 
difference scores in the proposed study.)
13.59  Answer Problem 13.58 for an underlying 2-mm Hg 
treatment effect for DBP.
13.60  Answer Problem 13.58 for a new study similar in 
design to study 2.
13.61  Answer Problem 13.59 for a new study similar in 
design to study 2.

Otolaryngology
A longitudinal study was conducted among children in the 
Greater Boston Otitis Media Study [48]. Based on all doc-
tor visits during the first year of life, children were classified 
as having 1+ episodes vs. 0 episodes of otitis media (OTM). 
A separate classification was performed for the right and left 
ears. Several risk factors were studied as possible predic-
tors of OTM. One such risk factor was a sibling history of 
ear infection, with relevant data displayed in Table 13.50.

Table 13.49 	 Format of Data Set ESTROGEN.DAT

Variable	 Column	 Comments

Subject	 1–2	
Treatment	 4	 1 = placebo, 2 = 0.625 mg estrogen, 3 = 1.25 mg estrogen
Period	 6	
Mean SBP	 8–10	 mm Hg
Mean DBP	 12–14	 mm Hg

 Data set available
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13.62  Assess whether a sibling history of ear infection 
is associated with OTM incidence in the first year of life. 
(Hint: Use clustered binary data methods based on Equation 
13.55, p. 725.)
13.63  Provide a 95% CI for the true difference in incidence 
rates for children with siblings between those with and with-
out a sibling history of ear infection.

13.64  Answer the questions in Problems 13.67 and 13.63 
using generalized estimating equation methods, and com-
pare results with the solution to Problems 13.62–13.63.

Otolaryngology
Consider Data Set EAR.DAT (see Table 3.12 on page 69).

Suppose we use the ear as the unit of analysis, where the 
outcome is a success if an ear clears by 14 days and a 
failure otherwise.

13.65  Compare the percentage of cleared ears between 
the cefaclor-treated and the amoxicillin-treated groups. Re-
port a two-tailed p-value.

13.66  Compare the percentage of cleared ears among 
children 2–5 years of age vs. the percentage of cleared ears 
among children <2 years of age. Report a two-tailed p-value.

13.67  Compare the percentage of cleared ears among 
children 6+ years of age vs. the percentage of cleared ears 
among children <2 years of age. Report a two-tailed p-value.

Cancer, Nutrition
A logistic-regression analysis similar to that presented in 
Example 13.73 (on page 743) was run relating breast-cancer 
incidence in 1980–1984 to calorie-adjusted total fat (here-
tofore referred to as total fat intake) as reported on a 1980 
FFQ. In addition, age in 5-year categories and alcohol in 
categories (0, 0.1–4.9, 5.0–14.9, 15+ g/day) were also con-
trolled for. The regression coefficient for a 10-g/day increase 
in total fat intake was –0.163 with standard error = 0.135.

13.68  Obtain a point estimate and a 95% CI for the rela-
tive risk of breast cancer comparing women whose total fat 
intake differs by 10 g/day.

The validation-study data discussed in Section 13.15 are 
available in Data Set VALID.DAT.

13.69  Use the data for total fat to fit the linear regression 
of DR total fat intake on FFQ total fat intake. Obtain the 
regression coefficient, standard error, and p-value from this 
regression.

13.70  Using the results from Problems 13.68 and 13.69, 
obtain an estimate of the RR of breast cancer, comparing 
women who differ by 10 g/day on total fat intake on the 
DR, assuming age and alcohol intake have no measurement 
error and are not correlated with total fat intake.

13.71  Obtain a 95% CI for the point estimate in Problem 
13.70.

13.72  Compare the measurement-error-corrected RR and 
CI in Problems 13.70 and 13.71 with the uncorrected RR 
and CI in Problem 13.68.

Cancer, Endocrinology
In the study presented in Example 13.75 (p. 748), other 
hormones were considered in addition to plasma estradiol. 
Table 13.51 presents the uncorrected relative-risk esti-
mates and 95% CIs for several other hormones [34].

13.73  Obtain the uncorrected logistic-regression coef-
ficients and standard errors for each of the hormones in 
Table 13.51.

The hormones in Table 13.51 were also included in the 
reproducibility study mentioned in Example 13.75 [36]. The 
intraclass correlation coefficient and sample size used for 
each hormone are given in Table 13.52.

13.74  Obtain the measurement-error-corrected logistic- 
regression coefficient and standard error for each of the 
hormones in Table 13.51.

Table 13.50 	 �Association between sibling history (Hx) of ear infection and number 	
of episodes of OTM in the first year of life

	 Group 1	 Group 2

	 Sibling Hx ear infection = yes	 Sibling Hx ear infection = no

Right ear	 Left ear	 n	 Right ear	 Left ear	 n

−	 −	 76	 −	 −	 115
+	 −	 21	 +	 −	 20
−	 +	 20	 −	 +	 18
+	 +	   77	 +	 +	   91
Total		  194	 Total		  244

Note: + = 1+ episodes of OTM in the first year of life in a specific ear; − = 0 episodes of OTM in the first year of life in a  
specific ear.
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13.75  Using the results from Problem 13.74, obtain a 
measurement-error-corrected OR and 95% CI for each of 
the hormones.

13.76  How do the results from Problem 13.75 compare 
with the results in Table 13.51?

Environmental Health, Pediatrics
Refer to Data Set LEAD.DAT at www.cengagebrain.com. 
One goal of the study was to assess the effect of lead level 
in 1972 (variable name LD72) on neurological and psycho-
logical measures of health, while controlling for age and sex. 
One problem is that lead-level data in 1972 are incomplete 
for some children (coded as 99).

13.77  Use the complete-case method to relate lead levels 
in 1972 to full-scale IQ score (variable name IQF), while 
controlling for age and sex.

13.78  Repeat the analysis in Problem 13.77 using multiple- 
imputation methods.

13.79  Compare your results in Problems 13.77 and 13.78.

Endocrinology
A study of raloxifene and incidence of fractures was con-
ducted among women with evidence of osteoporosis. The 
women were initially divided into two groups: those with 
and those without pre-existing fractures. The women were 
then randomized to raloxifene or placebo and followed for  
3 years to determine the incidence of new vertebral fractures,  
with the results shown in Table 13.53.

13.80  Among those with no pre-existing fractures, test 
whether raloxifene affects the incidence of new fractures.

13.81  Among those with no pre-existing fractures, 
compute the relative risk of new fractures among those 

Table 13.51 	 �Relative-risk estimates and 95% CIs for breast-cancer incidence from 1989 to June 1, 	
1994, in a nested case–control study among 11,169 postmenopausal women in the NHS not 
taking hormone-replacement therapy in 1989, comparing women at the median value of the 	
fourth quartile vs. women at the median value of the first quartile of the hormone distributions

	 Median value	 Median value 
Hormone	 1st quartile	 4th quartile	 RR	 95% CI

Free estradiol (%)	 1.33	 1.82	 1.69	 1.03–2.80
Estrone (pg/mL)	 17	 45	 1.91	 1.15–3.16
Testosterone (ng/dL)	 12	 37	 1.65	 1.00–2.71

Note: Comparing women at the median value of the fourth quartile vs. women at the median value of the first quartile, where the quartiles are determined from 
the distribution of hormones among controls.

Table 13.52 	 �Intraclass correlation coefficients (ICCs) for selected hormones from the 	
NHS reproducibility study, 1989

	 Number of subjects with

Hormone	 ICC	 3 replicates	 2 replicates	 Total number of measurements

Free estradiol (%)	 0.80	 79	 0	 237
Estrone (pg/mL)	 0.74	 72	 6	 228
Testosterone (ng/dL)	 0.88	 79	 0	 237

 Data set available

Table 13.53 	 Comparison of fracture incidence between raloxifene- and placebo-treated women

	 No pre-existing fractures	 Pre-existing fractures

	 New fractures	 No new fractures	 Total		  New fractures	 No new fractures 	 Total

Raloxifene	 34	 1466	 1500	 Raloxifene	 103	 597	 700
Placebo	 68	 1432	 1500	 Placebo	 170	 630	 800

Total	 102	 2898	 3000	 Total	 273	 1227	 1500
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randomized to raloxifene vs. placebo, along with its associ-
ated 95% CI.

13.82  Test the association of study agent with new frac-
tures combining both groups of those with and without 
preexisting fractures.

13.83  Combining both groups, compute the standardized 
RR for raloxifene vs. placebo and new fractures. (Hint: Use 
the total population as the standard.)

13.84  Is pre-existing fracture a confounder in these data?

Hypertension
Suppose that 200 obese (BMI ≥25) children and 500 
normal-weight (BMI <25) children are identified in a 
school-based screening for hypertension. Eighteen of the 
obese children and 10 of the normal-weight children are 
hypertensive.

13.85   What type of study is this?

13.86  What is the RR for hypertension? What is a 95% CI 
associated with this estimate?

13.87  Suppose that 30% of children are obese by the 
above definition. What percent of hypertension is attribut-
able to obesity? Provide a 95% CI associated with this 
estimate.

Hypertension
An important issue is whether there are racial differences 
in hypertension among children. We define hypertension 
as being above the 95th percentile for either systolic 
blood pressure (SBP) or diastolic blood pressure (DBP) 
among children of the same age, height, and sex. Since 
some of the children were observed at multiple visits, 
a GEE model was run of hypertension on ethnic group. 
There were three ethnic groups considered: Caucasian, 
African American, and Hispanic. The results among boys 
are given in Table 13.54.

Table 13.54  � Relationship between hypertension 
and ethnic group among 27,009 boys 
in the Pediatric Task Force Data

Variable	 Regression coefficient	 se

Intercept	 −2.07	 0.026
African American	 0.049	 0.041
Hispanic	 0.328	 0.059

13.88  What is the estimated OR for hypertension compar-
ing Hispanic boys vs. Caucasian boys? (Call this OR1.) 
What is a 95% CI for this estimate?

One issue is that BMI, which may vary among ethnic groups, 
is positively related to hypertension. Hence, a second logis-
tic regression model was run, as shown in Table 13.55.

Table 13.55  � Relationship between hypertension, 
ethnic group, and BMI among 27,009 
boys in the Pediatric Task Force Data

Variable	 Regression coefficient	 se

Intercept	 −4.277	 0.090
African American	 0.009	 0.042
Hispanic	 0.186	 0.060
BMI (kg/m2)	 0.107	 0.004

13.89  What is the estimated OR for hypertension compar-
ing Hispanic boys vs. Caucasian boys based on the results 
in Table 13.55? (Call this OR2.) Provide a 95% CI for this 
estimate. What is the difference in interpretation between 
OR1 and OR2?

13.90  Suppose the average BMI of Hispanic boys is higher 
than that for Caucasian boys. Is BMI a confounder of the 
association between ethnic group and hypertension? If so, 
is it a positive or negative confounder?

One assumption of the model in Table 13.55 is that the as-
sociation between hypertension and ethnic group would be 
the same for all levels of BMI. To test this assumption a third 
logistic model was run as presented in Table 13.56.

Table 13.56  � Possible effect modification of the 
association between hypertension 
and ethnic group by BMI among 
27,009 boys in the Pediatric Task 	
Force Data

Variable	 Regression coefficient	 se

Intercept	 −2.169	 0.028
African American	 0.063	 0.044
Hispanic	 0.231	 0.066
BMI-20*	 0.123	 0.006
African American	 −0.035	 0.009
  × (BMI-20)
Hispanic	 −0.024	 0.012
  × (BMI-20)

* BMI minus 20

13.91  Is BMI an effect modifier of the association between 
hypertension and ethnic group? Why or why not?

13.92  What is the estimated OR for hypertension compar-
ing Hispanic vs. Caucasian boys with BMI = 25 kg/m2 (call 
this OR3.)?

Cardiovascular Disease
A study was performed relating baldness pattern to MI 
(heart attack) among men in the Atherosclerosis Risk in 
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Communities (ARIC) study [49]. Baldness pattern and 
prevalent MI were determined at the same examination dur-
ing the period 1996−1998. Baldness was categorized into 
5 categories (none/frontal/mild vertex/moderate vertex/se-
vere vertex). For this example, we focus on the comparison 
of severe vertex baldness to no baldness. The data in Table 
13.57 were reported by age group.

Table 13.57  � Association between severe vertex 
baldness and MI in the ARIC study

Age group	 Baldness	 MI	 No MI	 Total

≤ 60 years	 Severe vertex	 49	 280	 329
	 None	 71	 639	 710
	 Total	 120	 919	 1039

> 60 years	 Severe vertex	 131	 656	 787
	 None	 144	 782	 926
	 Total	 275	 1438	 1713

13.93  What type of study was this?

13.94  What is the estimated OR for MI comparing men 
with severe vertex baldness vs. no baldness after controlling 
for age?

13.95  Is there a significant association between MI and se-
vere vertex baldness after controlling for age? Please report 
a two-tailed p-value.

13.96  What is the OR between MI and severe vertex bald-
ness in (i) men ≤60 and (ii) men >60? If these are the true 
ORs, is age an effect modifier of the association between 
baldness and MI? Why or why not?

13.97  Use logistic regression methods to assess the as-
sociation between MI and severe vertex baldness while 
controlling for age. Compare your results to those in Prob-
lem 13.95.

13.98  Suppose we wish to perform another study of the 
association between MI and severe vertex baldness while 
controlling for age. We will use a two-sided test with α = 
0.05 and wish a power of 0.80 to detect an OR = 1.5. How 
many subjects do we need?

Hint: Use the methods in Section 13.9 (Equation 13.44, 
p. 703).

Renal Disease
Refer to Data Set SWISS.DAT www.cengagebrain.com.

13.99  Use methods of longitudinal data analysis to com-
pare the rates of change in serum creatinine over time by 
treatment group.

13.100  Compare your results with those obtained using or-
dinary ANOVA methods based on slopes in Problem 12.49 
(on page 625).

Cardiovascular Disease
Refer to Table 13.7 (on page 655).

13.101  Assess the crude association between MI and OC 
use without taking age into account (provide a two-tailed 
p-value).

13.102  Assess the association between MI and OC use 
after controlling for age (provide a two-tailed p-value).

13.103  Estimate the OR between OC use and MI after con-
trolling for age, and provide a 95% CI about this estimate.

13.104  Is there evidence of effect modification of the  
OC−MI relationship by age?

13.105  Suppose we wish to perform another study of 
the association between OC use and MI and will control 
for age. Set up a logistic regression based on the data in 
Table 13.7, and use the results to estimate the sample size 
needed for the new study. Assume that the underlying age-
adjusted OR = 2.0 and we will conduct a two-sided test 
with α = 0.05 and power = 0.80.

Mental Health
Refer to Table 10.27 (on page 442).

13.106  Estimate the OR between widowhood and mortal-
ity, and provide a 95% CI about this estimate.

Cancer
A case–control study was performed early in the Nurses’ 
Health Study (NHS) to assess the possible association 
between oral contraceptive (OC) use and ovarian cancer 
[50]. Forty seven ovarian cancer cases were identified at 
or before baseline (1976). For each case, 10 controls 
matched by year of birth and with intact ovaries at the time 
of the index woman’s diagnosis were randomly chosen 
from questionnaire respondents free from ovarian cancer. 
The data in Table 13.58 were presented.

Table 13.58	� Duration of OC use by age at 
diagnosis among women with 
ovarian cancer and controls

	 Duration OC use

Age at diagnosis		  Never	 <3 years	 3+ years

Under 35	 Case	 9	 2	 0
	 Control	 55	 42	 12
35–44	 Case	 13	 2	 4
	 Control	 127	 27	 30
45+	 Case	 12	 3	 2
	 Control	 129	 18	 23

 Data set available
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13.107  Use logistic regression methods to assess whether 
there is an association between ovarian cancer risk and dura-
tion of OC use while controlling for age. Provide a two-sided 
p-value. Assume that the average duration of use in the < 3 
years group = 1.5 years and in the 3+ years group = 4 years. 
Also, provide an estimate of the OR relating ovarian cancer 
risk per year of use of OCs and a 95% CI.

13.108  Use logistic regression methods to assess whether 
there is an association between ever use of OCs and ovar-
ian cancer risk, while controlling for age. Also, provide an 
estimate of the OR and a 95% CI about this estimate.

Ophthalmology
The data in Table 13.59 were presented relating body mass 
index (BMI) to progression of advanced age-related macular 
degeneration (AMD), a common eye disease in the elderly 
that results in significant visual loss [51].

Table 13.59 	 �Association between BMI and 
progression of AMD

BMI	 Progression	 Nonprogression

<25	 72	 423
≥25	 209	 762

13.109  What is the attributable risk (AR) of high BMI (≥25) 
for progression of AMD?

13.110  Provide a 95% CI about this estimate.

Cardiovascular Disease
The Women’s Health Study randomly assigned 39,876 ini-
tially healthy women ages 45 years or older to receive either 
100 mg of aspirin on alternate days or placebo and monitored 
them for 10 years for a major cardiovascular event [52]. Table 
13.60 shows the results stratified by age at randomization.

Table 13.60 	 �Incidence of CVD by treatment 
group and age in the Women’s 
Health Study

Age	 Treatment group	 CVD=yes	 CVD=no

45–54	 Aspirin	 163	 11,847
	 Placebo 	 161	 11,854
55–64	 Aspirin	 183	 5693
	 Placebo	 186	 5692
≥65	 Aspirin	 131	 1917
	 Placebo	 175	 1874

Use logistic regression methods to characterize the rela-
tionship between aspirin assignment and the odds of CVD, 
by doing the following.

13.111  Obtain the crude OR estimate, and provide a 95% 
CI for the crude OR.

13.112  Test the null hypothesis of no association between 
aspirin assignment and CVD.

13.113  Evaluate whether age confounds the CVD−
aspirin relationship by using dummy variables for age 
categories; calculate the age-adjusted OR estimate and 
95% CI.

13.114  Evaluate whether age is an effect modifier of the 
relationship between aspirin and CVD.

Cancer
The data file BLOOD.DAT (www.cengagebrain.com) con-
tains data from a case–control study assessing several 
plasma risk factors for breast cancer. The women were 
matched approximately by age at the blood draw, fasting 
status and, if possible, current PMH use at the time of the 
blood draw. There was 1 case and either 1 or 2 controls 
per matched set, although some of the matched sets are 
incomplete due to missing data. The matching variable is 
matchid.

Use logistic regression methods to assess the association 
between testosterone and breast cancer risk after control-
ling for age at the blood draw and current PMH use and 
taking the matching into account.

Perform the analysis in two ways:

13.115  Treat testosterone as a continuous variable (suit-
ably transformed if necessary).

13.116  Treat testosterone as a categorical variable in quar-
tiles, with the 1st quartile as the reference group.

13.117  Discuss your results from Problems 13.115 and 
13.116.

Cancer
Results from a population-based case–control study of 
ovarian cancer were recently reported from the North Caro-
lina Case–Control Study based on data collected from 
1999–2008 [53]. Cases were women with ovarian cancer 
who were ages 20–74 from 48 North Carolina counties; 
controls were frequency matched by age and race and were 
recruited from the same geographic regions using random-
digit dialing. Controls could not have a bilateral oophorec-
tomy. The data in Table 13.61 were reported concerning 
the association between age at menarche (age when peri-
ods begin) and ovarian cancer. Data set available
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Table 13.61 	 �Association between age at 
menarche and ovarian cancer

	 Caucasians	 African Americans

Age at menarche	 Cases	 Controls	 Cases	 Controls

<12	 181	 157	 28	 53
≥12	 562	 708	 82	 136

13.118  For both Caucasians and African Americans 
(seperately), estimate the OR between late age at menarche 
(≥12) and ovarian cancer risk and provide a 95% CI about 
these estimate. 

Two logistic models were run with Stata Version 11 using 
these data. For the 1st model (Table 13.62) we fit

Logit(pi) = α +β1x1 + β2x2,

where x1 = age at menarche (1 represents ≥12, 0 repre-
sents <12),

x2 = race (1 = African American, 0 = Caucasian).

For the 2nd model (Table 13.63) we fit

Logit(pi) = α + β1x1 + β2x2+ β3x1x2.

13.119  Estimate the OR for the association between age at 
menarche and ovarian cancer after controlling for race, and 
provide a 95% CI about this estimate.

13.120  What does the variable β1 mean in the 2nd lo-
gistic regression (Table 13.63)? How does it differ from 
the meaning of β1 in the 1st logistic regression (Table 
13.62)?

13.121  Assess whether the effect of age at menarche is 
different for Caucasian vs. African American women. Report 
a p-value (two-tailed).

Table 13.62 	 Logistic regression of ovarian cancer on age at menarche and race

. logit case ageatmenarche race [fweight=freq]

Logistic regression                               Number of obs   =       1907
                                                  LR chi2(2)      =      15.76
                                                  Prob > chi2     =     0.0004
Log likelihood = -1303.3411                       Pseudo R2       =     0.0060

------------------------------------------------------------------------------
        case |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
ageatmenar~e |  -.2860765   .1113846    -2.57   0.010    -.5043864   -.0677666
        race |  -.4082626   .1304354    -3.13   0.002    -.6639112    -.152614
       _cons |   .0735805   .1010801     0.73   0.467    -.1245329     .271694
------------------------------------------------------------------------------
. gen agemenarche_race=ageatmenarche * race

Table 13.63 	 Logistic regression of ovarian cancer on age at menarche, race, and age at menarche × race

. logit case ageatmenarche race agemenarche_race [fweight=freq]

Logistic regression                               Number of obs   =       1907
                                                  LR chi2(3)      =      18.66
                                                  Prob > chi2     =     0.0003
Log likelihood = -1301.8882                       Pseudo R2       =     0.0071

------------------------------------------------------------------------------
        case |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
ageatmenar~e |  -.3731935   .1228254    -3.04   0.002    -.6139268   -.1324601
        race |  -.7803386   .2578292    -3.03   0.002    -1.285675   -.2750027
agemenarche  
      * race |   .5053452     .29869     1.69   0.091    -.0800764    1.090767
       _cons |   .1422512   .1090609     1.30   0.192    -.0715043    .3560067
------------------------------------------------------------------------------
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Hypertension
The data set WALES.DAT contains familial data on blood 
pressure (bp) in two-communities in South Wales (the 
Rhondda Fach and the Vale of Glamorgan). Subjects were 
seen at 4 visits from the mid 1950s to the early 1960s. For 
this problem we will focus on bp among adults (age ≥ 30) at 
the first visit. To standardize bp for age and sex, we will use 
the z-score approach within 10-year age-sex groups (i.e., age 
30–39 males/40–49 males/50–59 males/60+ males/30–39 
females/40–49 females/50–59 females/60+ females) where

=
−

Systolic bp (SBP) z-score

SBP mean SBP within an age-sex group
sd SBP within an age-sex group

.

We then group SBP z-score for ease of interpretation as 
follows:

SBP z-score group = 2 if SBP z-score ≥ 1.0,

		  = 1 if SBP z-score ≥ 0.5 and < 1.0,

		  = 0 if SBP z-score < 0.5 and not missing

13.122  Use polytomous logistic regression with group 
= 0 as the reference group to assess the association 
between SBP z-score group and the following variables: 
(a) BMI, (b) height, (c) region (i.e., Rhondda Fach vs. Vale 
of Glamorgan), (d) occupation (treat occupation codes of 
5–9 as missing for this analysis).

Of particular interest is the comparison of group = 2 vs. 
group = 0.

13.123  Use ordinal logistic regression to assess the 
association between SBP z-score group and the same 
variables in Problem 13.122.

13.124  Compare your results in Problems 13.122 and 
13.123.

13.125  Repeat the analyses in Problems 13.122–13.124 
using diastolic bp (DBP) z score group defined in the 
same manner as SBP z-score group.
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	 14.1	 M e a s u r e  o f  E f f e c t  f o r  P e r s o n - T i m e  D ata

In Chapter 10, we discussed the analysis of categorical data, where the person was 
the unit of analysis. In a prospective-study design, we identified groups of exposed 
and unexposed individuals at baseline and compared the proportion of subjects 
who developed disease over time between the two groups. We referred to these 
proportions as incidence rates, although a more technically appropriate term would 
be cumulative incidence rates (see Definition 3.20, on page 64). Cumulative inci-
dence (CUMI) rates are proportions based on the person as the unit of analysis and 
must range between 0 and 1. In computing cumulative incidence rates, we implicitly 
assume all subjects are followed for the same period of time T. This is not always the 
case, as the following example shows.

	 Example 14.1 	 Cancer  A hypothesis of much recent interest is the possible association between 
the use of oral contraceptives (OC) and the development of breast cancer. To address 
this issue, data were collected in the Nurses’ Health Study (NHS) in which disease-
free women were classified in 1976 according to OC status (current user/past user/
never user). A questionnaire was mailed out every 2 years in which OC status was 
updated, and breast-cancer status was ascertained over the next 2 years. The amount 
of time that each woman was a current user or a never user of OCs (ignoring past 
use) was calculated, and this person-time was accumulated over the entire cohort of 
nurses. Thus, each nurse contributed a different amount of person-time to the analy-
sis. The data are presented in Table 14.1 for current and never users of OCs among 
women 45−49 years of age. How should these data be used to assess any differences 
in the incidence rate of breast cancer by OC-use group?

	 Table 14.1 	 Relationship between breast-cancer incidence and OC use among 	
45- to 49-year-old women in the NHS

OC-use group	 Number of cases	 Number of person-years

Current users	 9	 2935
Never users	 239	 135,130

The first issue to consider is the appropriate unit of analysis for each group. If the 
woman is used as the unit of analysis, then the problem is that different women 
may contribute different amounts of person-time to the analysis, and the assump-
tion of a constant probability of an event for each woman is violated. If the person-
year is used as the unit of analysis (i.e., one person followed for 1 year), then because 
each woman can contribute more than 1 person-year to the analysis, the important 
assumption of independence for the binomial distribution is violated.

14Hypothesis Testing: 
Person-Time Data
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To allow for varying follow-up time for each individual, we define the concept 
of incidence density.

	 Definition 14.1 	 The incidence density in a group is defined as the number of events in that group 
divided by the total person-time accumulated during the study in that group.

The denominator used in computing incidence density is the person-year.  
Unlike cumulative incidence, incidence density may range from 0 to ∞.

	 Example 14.2 	 Cancer  Compute the estimated incidence density among current and never OC  
users in Table 14.1.

	 	 Solution:  The incidence density among current users = 9/2935 = .00307 events per 
person-year = 307 events per 100,000 person-years. The incidence density among 
never users = 239/135,130 = .00177 events per person-year = 177 events per 100,000 
person-years.

In following a subject, the incidence density may remain the same or may vary 
over time (e.g., as a subject ages over time, the incidence density generally in-
creases). How can we relate cumulative incidence over time t to incidence den-
sity? Suppose for simplicity that incidence density remains the same over some time 
period t. If CUMI(t) = cumulative incidence over time t and λ = incidence density, 
then it can be shown using calculus methods that

	 Equation 14.1 	 CUMI(t) = 1 − e−λt

If the cumulative incidence is low (<.1), then we can approximate e−λt by 1 − λt and 
CUMI(t) by

	 Equation 14.2 	 CUMI(t) ≅ 1 − (1 − λt) = λt

This relationship is summarized as follows.

	 Equation 14.3 	 	 Relationship Between Cumulative Incidence and Incidence Density 
	 	 	 Suppose we follow a group of individuals with constant incidence density λ = 

number of events per person-year. The exact cumulative incidence over time 
period t is

		  CUMI(t) = 1 − e−λt

If the cumulative incidence is low (<.1), then the cumulative incidence can be 
approximated by

		  CUMI(t) ≅ λt

Later in this chapter we refer to incidence density by the more common term 
incidence rate (λ) and distinguish it from the cumulative incidence over some 
time period t = CUMI(t). The former can range from 0 to ∞, whereas the latter is a 
proportion and must range between 0 and 1.
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	 Example 14.3 	 Cancer  Suppose the incidence density of breast cancer in 40- to 44-year-old pre-
menopausal women is 200 events per 100,000 person-years. What is the cumulative 
incidence of breast cancer over 5 years among 40-year-old women who are initially 
disease free?

	 	 Solution:  From Equation 14.3, we have λ = 200/105, t = 5 years. Thus, the exact cu-
mulative incidence is given by
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e
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5 1
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= −

= −

= −

−

−

− −22
1 00995 995 1001 5= − = =−e . . /

The approximate cumulative incidence is given by

		  CUMI( ) ( / ) . /5 200 10 5 01 1000 105 5≅ × = =

	 14.2	 O n e - S a mp  l e  I n f e r e n c e  f o r  

I n c i d e n c e - R at e  D ata

Large-Sample Test
	 Example 14.4 	 Cancer, Genetics  A registry is set up during the period 1990−1994 of women with a 

suspected genetic marker for breast cancer but who have not yet had breast cancer. 
Five hundred 60- to 64-year-old women are identified and followed until December 
31, 2000. Thus, the length of follow-up is variable. The total length of follow-up 
is 4000 person-years, during which 28 new cases of breast cancer occurred. Is the 
incidence rate of breast cancer different in this group from that in the general 
population of 60- to 64-year-old women if the expected incidence rate is 400/105 
person-years in this age group?

We want to test the hypothesis H0: ID = ID0 vs. H1: ID ≠ ID0, where ID = the 
unknown incidence density (rate) in the genetic-marker group and ID0 = the 
known incidence density (rate) in the general population. We base our test on 
the observed number of breast cancer cases, which we denote by a. We assume a 
approximately follows a Poisson distribution. Under H0, a has mean = t(ID0) and 
variance = t(ID0), where t = total number of person-years. If we assume the normal 
approximation to the Poisson distribution is valid, then this suggests the following 
test procedure.

	 Equation 14.4 	 	 One-Sample Inference for Incidence-Rate Data (Large-Sample Test) 
	 	 	 Suppose that a events are observed over t person-years of follow-up and that  

ID = underlying incidence density (rate). To test the hypothesis H0: ID = ID0 vs. 
H1: ID ≠ ID0,

(1)	 Compute the test statistic

		        X
a

H2 0
2

0
1
2

0= −( )µ
µ

χ∼ under

		  where

		        µ0 0= t ID( )
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(2)	 For a two-sided test at level α, H0 is rejected if

		        X2
1 1
2> −χ α,

		  and accepted if

		        X2
1 1
2≤ −χ α,

(3)	 The exact p-value = Pr(χ1
2 2> X ).

(4)	 This test should only be used if µ0 0 10= ≥t ID( ) .

	 Example 14.5 	 Cancer, Genetics  Perform a significance test based on the data in Example 14.4.

	 	 Solution:  We have that a = 28, µ0 = (400/105)(4000) = 16. Thus, the test statistic is 
given by

		

X

H

2
2
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2
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16
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= −

= =
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. ~ χ under

Because χ1 995
2 7 88,. .= , χ1 999

2 10 83,. .= , and 7.88 < 9.0 < 10.83, it follows that .001 <  
p < .005. Thus, there is a significant excess of breast cancers in the genetic-marker group.

Exact Test
Suppose the number of events is too small to apply the large-sample test in Equation 
14.4. In this case, an exact test based on the Poisson distribution must be used. If 
µ = t(ID), then we can restate the hypotheses in the form: H0: µ = µ0 vs. H1: µ ≠ µ0 and 
apply the one-sample Poisson test as follows.

	 Equation 14.5 	 	 One-Sample Inference for Incidence-Density (Rate) 	
Data (Small-Sample Test) 

	 	 	 Suppose that a events are observed over t person-years of follow-up and that 
ID = underlying incidence density (rate). We wish to test the hypothesis  
H0: ID = ID0 vs. H1: ID ≠ ID0.

Under H0, the observed number of events (a) follows a Poisson distribution 
with parameter µ0 = t(ID0). Thus, the exact two-sided p-value is given by
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	 Example 14.6 	 Cancer, Genetics  Suppose 125 of the 500 women in Example 14.4 also have a fam-
ily history of breast cancer in addition to having the genetic marker. Eight cases 
of breast cancer are observed in this subgroup over 1000 person-years. Does this 
subgroup have a breast-cancer incidence significantly different from the general 
population?
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	 	 Solution:  The expected number of breast cancers in this subgroup = 1000(400/105) = 4. 
Thus, the expected number of cases is too small to use the large-sample test in 
Equation 14.4. Instead, we use the small-sample test in Equation 14.5. We have 
a = 8, µ0 = 4. Because 8 ≥ 4, we have

		
p

e
k

k

k

-value = × −
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44
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From the Poisson tables (Table 2 in the Appendix), this is given by

		

p-value = × − + + +
= × −

2 1 0183 0733 0595
2 1

[ (. . . . . . )]
( .. )

.
9489

102=

Hence, breast-cancer incidence in this subgroup is not significantly different from 
that in the general population. A larger number of person-years of follow-up are 
needed to obtain more power in this case.

Confidence Limits for Incidence Rates
To obtain confidence limits for ID, we obtain confidence limits for the expected 
number of events (µ) based on the Poisson distribution and then divide each 
confidence limit by t = number of person-years of follow-up. Specifically, we 
have µ̂ = a, Var a(ˆ)µ = . Thus, if the normal approximation to the Poisson distribution 

holds, then a 100% × (1 − α) confidence interval (CI) for µ is given by a z a± −1 2α/ .  

The corresponding 100% × (1 − α) CI for ID a z a t= ± −( ) //1 2α . Otherwise, we obtain 

exact confidence limits for µ from Table 7 in the Appendix and divide each confi-
dence limit by t to obtain the corresponding CI for ID. The procedure is summa-
rized as follows.

	 Equation 14.6 	 	 Point and Interval Estimation for Incidence Rates 
	 	 	 Suppose that a events are observed over t person-years of follow-up.

(1)	 A point estimate of the incidence density rate = ID
^

  = a/t.

(2)	 To obtain a two-sided 100% × (1 − α) CI for µ,

(a)	 If a ≥ 10, then compute a z a c c± =−1 2 1 2α/ ( , );

(b)	 If a < 10, then obtain (c1, c2) from Appendix Table 7 by referring to the 
a row and the 1 − α column.

(3)	 The corresponding two-sided 100% × (1 − α) CI for ID is given by (c1/t, c2/t).

	 Example 14.7 	 Cancer, Genetics  Obtain a point estimate and a two-sided 95% CI for ID based on 
the data in Example 14.4.

	 	 Solution:  We have a = 28, t = 4000. Hence the point estimate of ID = 28/4000 = .007 
= 700/105 person-years = ID

^
 . Because a ≥ 10, to obtain a 95% CI for µ, we refer to 2(a) 

in Equation 14.6 and obtain the confidence limits for µ given by

		  28 1 96 28 28 10 4 17 6 38 4 1 2± = ± = =. . ( . , . ) ( , )c c

The corresponding 95% CI for ID = (17.6/4000, 38.4/4000) = (0.00441, 0.00959) or 
(441/105 person-years, 959/105 person-years). This interval excludes the null rate of 
400/105 person-years given in Example 14.4.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



782              C H A P T E R  14      Hypothesis Testing: Person-Time Data

	 Example 14.8 	 Cancer, Genetics  Obtain a point estimate and a two-sided 95% CI for ID based on 
the data in Example 14.6.

	 	 Solution:  From Example 14.6, the expected number of breast-cancer cases in this 
subgroup (i.e., µ0) = 4. The point estimate of ID = 8/1000 = .008 = 800/105 person-
years. Because a = 8 < 10, we use 2(b) of Equation 14.6 to obtain a 95% CI for ID. 
Referring to the a = 8 row and 0.95 column of Table 7 in the Appendix, we have 
a 95% CI for µ = (3.45, 15.76). The corresponding 95% CI for ID = (3.45/1000, 
15.76/1000) = (345/105 person-years, 1576/105 person-years). This interval includes 
the general population rate of 400/105 person-years.

In this section, we have learned about incidence density (also called inci-
dence rate), which is expressed as the number of events per unit time, and have 
distinguished it from cumulative incidence, which is the probability of an event 
occurring over time t. We have considered one-sample inference for incidence 
rates. The inference procedures are based on modeling the number of events over 
time t by a Poisson distribution. We have used a large-sample test based on the 
normal approximation to the Poisson distribution when the expected number of 
events is ≥10 and a small-sample test based on exact Poisson probabilities when 
the expected number of events is <10. Finally, we also discussed methods of 
point and interval estimation for incidence rates. In the next section, we extend 
this discussion to investigate methods for comparing incidence rates from two 
samples.

On the flowchart at the end of this chapter (Figure 14.15, p. 857), we answer yes 
to (1) person-time data? and (2) one-sample problem? This leads us to the box la-
beled “Use one-sample test for incidence rates.”

RE  V IE  W  QUESTIONS          1 4 A

1	 What is the difference between incidence density and cumulative incidence?

2	 Suppose we observe 20 cases of ovarian cancer among 10,000 women ages  
50−69, each of whom is followed for 10 years. Provide a point estimate and a 95% 
CI for the incidence density.

3	 Suppose we observe 8 cases of ovarian cancer among a subset of 2000 women 
from the group in Review Question 14A.2, each of whom is followed for 10 years. 
The subgroup consists of women who are overweight (body-mass index [BMI] 
≥25 kg/m2). Provide a point estimate and a 95% CI for the incidence density in 
this subgroup.

	 14.3	 Tw  o - S a mp  l e  I n f e r e n c e  f o r  

I n c i d e n c e - R at e  D ata

Hypothesis Testing—General Considerations
The question we address in this section is, How can we compare the underlying in-
cidence rates between two different exposure groups?

The approach we will take is to use a conditional test. Specifically, suppose we 
consider the case of two exposure groups and have the general table in Table 14.2. 
We wish to test the hypothesis H0: ID1 = ID2 vs. H1: ID1 ≠ ID2, where ID1 = true incidence 
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density in group 1 = the number of events per unit of person-time in group 1, and 
ID2 is the comparable rate in group 2. Under the null hypothesis, a fraction t1/(t1 + t2) 
of the total number of events (a1 + a2) would be expected to occur in group 1 and a 
fraction t2/(t1 + t2) of the total number of events to occur in group 2. Thus, under 
H0, conditional on the observed total number of events = a1 + a2, the expected num-
ber of events in each group is given by

	 Equation 14.7 	 	 Expected number of events in group 1 = E1 = (a1 + a2)t1/(t1 + t2)

Expected number of events in group 2 = E2 = (a1 + a2)t2/(t1 + t2)

	 Example 14.9 	 Cancer  Compute the expected number of events among current and never users 
for the OC-breast-cancer data in Table 14.1 (on page 777).

	 	 Solution:  We have a1 = 9, a2 = 239, t1 = 2935 person-years, t2 = 135,130 person-years. 
Therefore, under H0, from Equation 14.7, 2935/(2935 + 135,130) = .0213 of the cases 
would be expected to occur among current OC users and 135,130/(2935 + 135,130) 
= .9787 of the cases to occur among never OC users. Thus,

		  E1 = .0213(248) = 5.27

		  E2 = .9787(248) = 242.73

Normal-Theory Test
To assess statistical significance, the number of events in group 1 under H0 is treated 
as a binomial random variable with parameters n = a1 + a2 and p0 = t1/(t1 + t2). 
Under this assumption, the hypotheses can be stated as H0: p = p0 vs. H1: p ≠ p0, where 
p = the true proportion of events that are expected to occur in group 1. We also as-
sume that the normal approximation to the binomial distribution is valid. Using 
the normal approximation to the binomial distribution, the observed number of 
events in group 1 = a1 is normally distributed with mean = np0 = (a1 + a2)t1/(t1 + t2) = 
E1 and variance = np0q0 = (a1 + a2)t1t2/(t1 + t2)

2 = V1. H0 is rejected if a1 is much smaller or 
larger than E1. This is an application of the large-sample one-sample binomial test, 
given by the following.

	 Equation 14.8 	 	 Comparison of Incidence Rates (Large-Sample Test) 
	 	 	 To test the hypothesis H0: ID1 = ID2 vs. H1: ID1 ≠ ID2, where ID1 and ID2 are the true 

incidence densities in groups 1 and 2, use the following procedure:

	 Table 14.2 	 General observed table for comparing incidence rates 
between two groups

Exposure group	 Number of events	 Person-time

1	 a1	 t1

2      	 a2	 t2

Total	 a1 + a2	 t1 + t2
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(1)	 Compute the test statistic

			 

z
a E

V
a E

a E
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a E

= − − >

= − + ≤

1 1

1
1 1

1 1

1
1 1

5
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if
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		  where       E a a t t t

V a a t t t t
1 1 2 1 1 2

1 1 2 1 2 1 2
2

= + +

= + +

( ) ( )

( ) ( )

			   

a a
t
1 2

1

,
,

= number of events in groups 1 and 2
tt2 = amount of person-time in groups 1 and 2

		  Under H0, z ~ N(0, 1)

(2)	 For a two-sided level α test,

		  if z z> −1 2α/  or z < zα/2, then reject H0.

		  if zα/2 ≤ z ≤ z1-α/2, then accept H0.

(3)	 Use this test only if V1 ≥ 5.

(4)	 The p-value for this test is given by

		      
2 1× − ≥

×
[ ( )]

( )
Φ

Φ
z

z
if z 0

2 if z < 0

The critical regions and p-value are illustrated in Figures 14.1 and 14.2, 
respectively.

	 Figure 14.1 	 Acceptance and rejection regions for the two-sample test for incidence rates 
(normal-theory method)

0 z1 – α/2zα/2

z > z1 – α/2
Rejection region

z < zα/2
Rejection

region  zα/2 ≤ z ≤ z1 – α/2
Acceptance region

0

Value

N(0, 1) distribution

Fr
eq

u
en

cy

If a1 > E1, z =
a1 – E1 – .5

V1

If a1 ≤ E1, z =
a1 – E1 + .5

V1

	 Example 14.10 	 Cancer  Assess the statistical significance of the OC−breast-cancer data in  
Table 14.1 (on page 777).

	 	 Solution:  From Example 14.9, a1 = 9, a2 = 239, t1 = 2935, t2 = 135,130, E1 = 5.27,  
E2 = 242.73. Furthermore,
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Because V1 ≥ 5, we can use the large-sample test in Equation 14.8.

Furthermore, because a1 > E1, z N= − − = =9 5 27 5
5 16

3 23
2 27

1 42 0 1
. .
.

.

.
. ~ ( , )

The p-value = 2 × [l − Φ(l .42)] = 2 × (1 − .9223) = .155. Thus, the results are not 
statistically significant and there is no significant difference in the incidence 
rate of breast cancer between current OC users and never OC users in this age 
group.
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N(0, 1) distribution
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If z < 0, then p = 2 × Φ(z).

If z ≥ 0, then p = 2[1 – Φ(z)].

	 Figure 14.2 	 Computation of the p-value for the two-sample test for incidence rates 	
(normal-theory method)
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Exact Test
Suppose the number of events is too small to apply the normal-theory test (i.e.,  
V1 < 5). In this case, an exact test based on the binomial distribution must be used. 
From the earlier discussion (p. 783), under H0, the number of events in group 1 (a1) 
will follow a binomial distribution with parameters n = a1 + a2 and p = p0 = t1/(t1 + t2). 
We want to test the hypothesis H0: p = p0 vs. H1: p ≠ p0, where p is the underlying 
proportion of events that occur in group 1. This is an application of the exact 
one-sample binomial test. H0 will be rejected if the observed number of events a1 is 
much smaller or much larger than the expected number of events = E1 = np0. The 
following test procedure is used.

	 Equation 14.9 	 	 Comparison of Incidence Rates—Exact Test 
	 	 	 Let a1, a2 be the observed number of events and t1, t2 the amount of person-

time in groups 1 and 2, respectively. Let p = true proportion of events in group 
1. To test the hypothesis H0: ID1 = ID2 (or equivalently, p = p0) vs. H1: ID1 ≠ ID2 (or 
equivalently, p ≠ p0), where

		    ID1 = true incidence density in group 1

		    ID2 = true incidence density in group 2

		       p0 = t1/(t1 + t2), q0 = 1 − p0

using a two-sided test with significance level α, use the following procedure:

(1)	 If a a a p1 1 2 0< +( ) ,

		  then p
a a

k
p qk a a k

k

a

-value = ×
+





+ −

=
∑2 1 2

0 0
0

1 2
1

(2)	 If a a a p1 1 2 0≥ +( ) ,

		  then p
a a

k
p qk a a k

k a

a a

-value = ×
+



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+ −

=

+

2 1 2
0 0

1 2

1

1 2

∑∑

(3)	 This test is valid in general for comparing two incidence densities but is  
particularly useful when V1 < 5, in which case the normal-theory test in  
Equation 14.8 should not be used.

The computation of the p-value is illustrated in Figure 14.3.

	 Example 14.11 	 Cancer  Suppose we have the data in Table 14.3 relating OC use and incidence  
of breast cancer among women ages 30−34. Assess the statistical significance of  
the data.

See page 783 for  
Equation 14.8

	 Table 14.3 	 Relationship between breast-cancer incidence and OC use 
among 30- to 34-year-old women in the NHS

OC-use group	 Number of cases	 Number of person-years

Current users	 3	 8250
Never users	 9	 17,430
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	 	 Solution:  Note that a1 = 3, a2 = 9, t1 = 8250, t2 = 17,430. Thus,

		  V1 2
12 8250 17 430

8250 17 430
2 62 5=

+
= <( )( , )

( , )
.

Because V1 < 5, the small-sample test must be used. From Equation 14.9,  
p0 = 8250/25,680 = .321, n = a1 + a2 = 12. Because a1 = 3 < 12(.321) = 3.9, we have

		
p

k
k k

k

- value = ×




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−

=
∑2

12
321 679 12

0

3

(. ) (. )

To evaluate the p-value, let X be a random variable representing the number of 
events in group 1. We use the pbinom function of R. We have:

	 p-value = 2 × pbinom (12, 3, 0.321) = 0.856.

Therefore, there is no significant effect of current OC use on breast-cancer incidence 
in the 30- to 34-year-old age group.

The Rate Ratio
In Equation 13.2 (page 638), we defined the risk ratio (RR) as a measure of effect for 
the comparison of two proportions. We applied this measure to compare cumulative 

	 Figure 14.3 	 Illustration of the p-value for the two-sample test for incidence rates, exact method 
(two-sided alternative)
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If a1 < (a1 + a2)p0, then
p/2 = sum of binomial probabilities for X ≤ a1
      = sum of vertical bars shown

If a1 ≥ (a1 + a2)p0, then
p/2 = sum of binomial probabilities for X ≥ a1
      = sum of vertical bars shown
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incidence between two exposure groups in a prospective study, where the person 
was the unit of analysis. A similar concept can be employed to compare two inci-
dence rates based on person-time data.

	 Definition 14.2 	 Let λ1, λ2 be incidence rates for an exposed and an unexposed group, respectively. 
The incidence rate ratio is defined as λ1/λ2 and denoted by IRR. Usually, the IRR is  
abbreviated as just “rate ratio.”

	 Example 14.12 	 Cancer  Suppose the incidence rate of breast cancer is 500/105 person-years among 
40- to 49-year-old premenopausal women with a family history of breast can-
cer (either a mother or a sister history of breast cancer) (group 1) compared with 
200/105 person-years among 40- to 49-year-old premenopausal women with no 
family history (group 2). What is the rate ratio of group 1 vs. group 2?

	 	 Solution:  The rate ratio = (500/105)/(200/105) = 2.5.

What is the relationship between the rate ratio (IRR) based on incidence rates 
and the risk ratio (RR) based on cumulative incidence? Suppose each person in a 
cohort is followed for T years, with incidence rate λ1 in the exposed group and 
λ2 in the unexposed group. If the cumulative incidence is low, then the cumula-
tive incidence will be approximately λ1T in the exposed group and λ2T in the 
unexposed group. Thus, the RR will be approximately λ1T/(λ2T) = λ1/λ2 = rate ratio 
= IRR.

How can we estimate the rate ratio from observed data? Suppose we have the 
number of events and person-years shown in Table 14.2 (on page 783). The esti-
mated incidence rate in the exposed group = a1/t1 and in the unexposed group = 
a2/t2. A point estimate of the rate ratio is given by IR

^
R
 

a t a t( ) ( )1 1 2 2= . To obtain an 
interval estimate, we assume approximate normality of ln(IR

^
R). It can be shown that

	 Equation 14.10 	 Var[ln(IR
^

R)] ≈ +1 1

1 2a a

Therefore, a two-sided 100% × (1 − α) CI for ln(IRR) is given by

		    (d1, d2) = ln(IR
^

R) ± +−z
a a1 2

1 2

1 1
α/

If we take the antilog of d1 and d2, we obtain a two-sided 100% × (1 − α) CI for IRR. 
This is summarized as follows.

	 Equation 14.11 	 	 Point and Interval Estimation of the Rate Ratio 
	 	 	 Suppose we have observed a1 events in t1 person-years for an exposed group 

and a2 events in t2 person-years for an unexposed group. A point estimate of 
the rate ratio is given by

		    IR
^

R
 = ( ) ( )a t a t1 1 2 2
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A two-sided 100% × (1 − α) CI for IRR is given by (c1, c2) where
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This interval should only be used if V1 = (a1 + a2)t1t2/(t1 + t2)
2 is ≥ 5.

	 Example 14.13 	 Cancer  Obtain a point estimate and associated 95% CI for the rate ratio relating 
OC use to breast-cancer incidence based on the data in Table 14.1 (on page 777).

	 	 Solution:  From Table 14.1, the estimated rate ratio is

		  IR
^

R = =9 2935
239 135 130

1 73
/
/ ,

.

To obtain an interval estimate, we refer to Equation 14.11. A 95% CI for ln(IRR) is 
(d1, d2), where
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Therefore, c1 = e−0.115 = 0.89, c2 = e1.216 = 3.37. Thus, the 95% CI for IRR is (0.89, 3.37).

In this section, we have introduced the rate ratio, which is a measure of ef-
fect for comparing two incidence rates. It is analogous to but not the same as the 
risk ratio. The latter was introduced in Chapter 13 as a measure of effect for com-
paring two cumulative incidence rates. Inference procedures for comparing two 
incidence rates are based on the one-sample binomial test, where the number of 
units of analysis = the number of events over the two samples combined, and the 
probability of success p = the probability that a subject is in group 1, given that he 
(she) has had an event. We considered both large-sample and small-sample infer-
ence procedures based on the normal approximation to the binomial distribution and 
exact binomial probabilities, respectively. In the next section, we consider power 
and sample-size estimation procedures for comparing two incidence rates.

On the flowchart (Figure 14.15, p. 857), we answer yes to (1) person-time data? 
no to (2) one-sample problem? and yes to (3) incidence rates remain constant over 
time? and (4) two-sample problem? This leads us to the box labeled “Use two-sample 
test for comparison of incidence rates, if no confounding is present, or methods for 
stratified person-time data, if confounding is present.” In this section, we assume 
no confounding is present. In Section 14.5, we consider two-sample inference for 
incidence rates when confounding is present.

IR
^

R

IR
^

R

IR
^

R

IR
^

R
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RE  V IE  W  QUESTIONS          1 4 B

1	 What is a rate ratio? How does it differ from a risk ratio?

2 	 Suppose we are studying a gene that has been linked to coronary heart disease. 
We find in a pilot study that in subjects with the C/C genotype 20 events have  
occurred over 2000 person-years, whereas in subjects with the T/T genotype 
30 events have occurred over 2500 person-years.

	 (a)	 Perform a test to compare the incidence density in the T/T-genotype group vs. 
the C/C-genotype group, and report a two-tailed p-value.

	 (b)	 Provide an estimate for the rate ratio for coronary heart disease for people with 
the T/T genotype compared with people with the C/C genotype, and obtain a 
corresponding 95% CI.

	 14.4	 P o w e r  a n d  S a mp  l e - S i z e  E s t i m at i o n  

f o r  P e r s o n - T i m e  D ata

Estimation of Power
	 Example 14.14 	 Cancer  Suppose researchers propose to enroll 10,000 postmenopausal women who 

have not had any previous cancer for a clinical trial, where 5000 are randomized 
to receive estrogen-replacement therapy (ERT) and 5000 are randomized to placebo. 
The endpoint is breast-cancer incidence. Participants are enrolled from January 1, 
2010, to December 31, 2011, and are followed until December 31, 2015, for an aver-
age of 5 years of follow-up for each participant (range, 4 to 6 years of follow-up). 
The expected incidence rate in the control group is 300/105 person-years. If it is 
hypothesized that ERT increases the incidence rate of breast cancer by 25%, then 
how much power does the proposed study have?

We base our power calculations on the comparison of incidence rates as given 
in Equation 14.8. We want to test the hypothesis H0: rate ratio (IRR) = 1 vs. H1: IRR ≠ 1 , 
where IRR = ID1/ID2. The result is given in Equation 14.12.

	 Equation 14.12 	 	 Power for the Comparison of Two Incidence Rates 
	 	 	 Suppose we want to test the hypothesis H0: ID1 = ID2 vs. H1: ID1 ≠ ID2, where ID1, 

ID2 are incidence densities in groups 1 and 2. The power of the test for the spe-
cific alternative ID1/ID2 = IRR with two-sided significance level = α is given by

		  
Power = + −
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p q
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where

      p0 = t1/(t1 + t2)

      p1 = t1IRR/(t1IRR + t2)

        m = expected number of events in the two groups combined = m1 + m2

      m1 = n1[1 − exp(−ID1t1*)] ≅ n1ID1t1*

      m2 = n2[1 − exp(−ID2t2*)] ≅ n2ID2t2*

     n1, n2 = number of subjects available in groups 1 and 2, respectively

See page 783 for  
Equation 14.8
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      t1, t2 = total number of person-years in groups 1 and 2, respectively

     t1*, t2* = �average number of person-years per subject in groups 1 and 2,  
respectively = (t1/n1 and t2/n2 in groups 1 and 2)

  ID1, ID2 = incidence density in groups 1 and 2, respectively, under H1

This equation is derived in Section 14.15 (page 854).

	 Example 14.15 	 Cancer  Answer the question posed in Example 14.14.

	 	 Solution:  We have n1 = n2 = 5000 subjects, t1* = t2* = 5, ID2 = 300/105 person-years,  
ID1 = 1.25 × 300/105 = 375/105 person-years, IRR = 1.25. Thus, from Equation 14.12,
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Therefore, the study only has about 30% power to test the hypotheses.

Sample-Size Estimation
Clearly, the study proposed in Example 14.14 is too small to have sufficient power 
to test the hypotheses proposed. The issue is how large a study would be needed 
to have a prespecified (say, 80%) level of power. For this purpose, if we prespecify a 
power of 1 − β, then we can solve for the required total number of events m from the 
one-sample binomial test. Specifically, from Equation 7.33 we have

	 Equation 14.13 	 m
p q z p q z

p p
=

+
−

− −( )

| |
/0 0 1 2 1 1 1

2

0 1
2

α β

To convert from the required number of events (m) to the required number of sub-
jects (n), we have (see Derivation Equation 14.56, page 855):

	 Equation 14.14 	 m = m1 + m2 = n1ID1t1* + n2ID2t2*

See page 257 for  
Equation 7.33
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If we prespecify the ratio of sample sizes in the two groups—i.e., n2/n1 = k; then it 
follows from Equation 14.14 that

	 Equation 14.15 	 =
+

=

n
m

ID t kID t

n kn

1
1 1

*
2 2

*

2 1

Combining Equations 14.13−14.15 yields the following sample-size formula.

	 Equation 14.16 	 	 Sample-Size Estimation for the Comparison of Two Incidence Rates 
	 	 	 Suppose we want to test the hypothesis H0: ID1 = ID2 vs. H1: ID1 ≠ ID2, where ID1 

and ID2 are the incidence densities in groups 1 and 2, respectively. We assume 
that the ratio of sample sizes in the two samples is prespecified as k = n2/n1. If 
we conduct a two-sided test with significance level α and power 1 − β, then 
we need a total expected number of events over both groups of m, where

		    m
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	     t1, t2 = total number of person-years in groups 1 and 2, respectively 

  ID1, ID2 = incidence densities in groups 1 and 2, respectively, under H1

The corresponding number of subjects in each group is
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t1*, t2* = average number of person-years per subject in groups 1 and 2, respectively.

	 Example 14.16 	 Cancer  How many participants need to be enrolled in the study proposed in Exam-
ple 14.14 to have 80% power, if a two-sided test with significance level of .05 is 
used and an equal number of participants are enrolled in each group?

	 	 Solution:  We have α = .05, 1 − β = .80, k = 1. Also, from the solution to Example 
14.15, we have p0 = .50, p1 = .556. Thus, from Equation 14.16, the required total num-
ber of events is
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Thus, we need a total of 633 events to achieve 80% power. From Example 14.15, we 
have t1* = t2* = 5 years, ID1 = 375/105 person-years, ID2 = 300/105 person-years. Also, 
because the sample size in each group is the same, we have k = 1. Therefore, from 
Equation 14.16, the required number of participants in each group is

		

n n
633

(375 10 )(5) (300 10 )(5)

633
.0335

18,916.2 or 18,917 participants

1 2 5 5= =
+

= =

Thus, we need to enroll 18,917 participants in each group or a total of 37,834 par-
ticipants to have 80% power. This is about four times as large a study as the one 
originally contemplated in Example 14.14 (on page 790). This study would be 
expected to yield

		

m

m

18,917(375 /10 )(5)
351 events in the ERT group

18,917(300 /10 )(5)
282 events in the control group

1
5

2
5

=
=

=
=

for a total of 633 events. This is one study design used in the Women’s Health Initi-
ative, a large multicenter set of clinical trials that have similar sample sizes, numbers 
of events, and time frames to those posed in Examples 14.14−14.16.

In this section, we have considered power and sample-size formulas for compar-
ing two incidence rates. The formulas are special cases of similar formulas used for the 
one-sample binomial test in Equations 7.32 and 7.33, respectively. If the number of 
person-years of follow-up is the same for each subject, then these formulas should be 
approximately the same as the corresponding power and sample-size formulas for com-
paring two proportions, which are given in Equations 10.14 and 10.13, respectively. 
However, the advantage of the methods in this section is that they allow for a variable 
length of follow-up for individual subjects, which is more realistic in many clinical-trial 
situations. In the next section, we consider inference procedures for comparing inci-
dence rates between two groups, while controlling for confounding variables.

	 14.5	 I n f e r e n c e  f o r  S t r at i f i e d  P e r s o n - T i m e  D ata

Hypothesis Testing
It is very common in analyzing person-time data to control for confounding vari-
ables before assessing the relationship between the main exposure of interest and 
disease. Confounding variables may include age and sex as well as other covariates 
related to exposure, disease, or both.

	 Example 14.17 	 Cancer  An issue of continuing interest is the effect of postmenopausal hormone 
(PMH) replacement on cardiovascular and cancer outcomes in postmenopausal 
women. Data were collected from postmenopausal women in the Nurses’ Health 
Study (NHS) to address this issue. Women were mailed an initial questionnaire 
in 1976 and follow-up questionnaires every 2 years thereafter. Data from 1976 to 
1986, encompassing 352,871 person-years of follow-up and 707 incident cases of 
breast cancer, are given in Table 14.4 [1].

See pages 256 and 257 for  
Equations 7.32 
and 7.33

See pages 405 and 404 for  
Equations 
10.14 and 10.13, 
respectively
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There were 23,607 women who were postmenopausal and did not have any type 
of cancer (except for nonmelanoma skin cancer) in 1976. Other women became 
postmenopausal during the follow-up period. Follow-up was terminated at the 
diagnosis of breast cancer, death, or the date of the last questionnaire return. Thus, 
each woman had a variable duration of follow-up. Because breast-cancer incidence 
and possibly PMH use are related to age, it was important to control for age in the 
analysis.

We can use methods similar to the Mantel-Haenszel test used for cumulative 
incidence data (or generally for count data), as presented in Chapter 13.

Suppose we have k strata, where the number of events and the amount of person-
time in the ith stratum are as shown in Table 14.5.

	 Table 14.5 	 General observed table for the number of events and 	
person-time in the ith stratum, i = 1, . . . , k

Exposure group	 Number of events	 Person-time

Exposed	 a1i	 t1i

Unexposed	 a2i	 t2i

Total	 a1i + a2i	 t1i + t2i

The procedure is derived in Section 14.15 and is summarized in Equation 14.17.

	 Equation 14.17 	 	 Hypothesis Testing for Stratified Person-Time Data 
	 	 	 Let p1i, p2i = incidence rate of disease for the exposed and unexposed groups 

in the ith stratum, respectively. Let a1i, t1i = the number of events and person-
years for the exposed group in the ith stratum, a2i, t2i = the number of events 
and person-years for the unexposed group in the ith stratum, i = 1, . . . , k.

We assume IRR = p1i/p2i is constant across all strata. To test the hypothesis  
H0: IRR = 1 vs. H1: IRR ≠ 1 using a two-sided test with significance level = α:

(1)	 We compute the total observed number of events among the exposed over

all strata = =
=
∑A a i
i

k

1
1

.

	 Table 14.4 	 Current and past use of PMH (postmenopausal hormones) and risk of breast cancer 
among postmenopausal participants in the NHS

	 Never users		  Current users			  Past users

		  No. of		  No. of			   No. of 
Age	 cases	 Person-years	 cases	 Person-years	 IRR	 cases	 Person-years	 IRR

39–44	 5	 4722	 12	 10,199	 1.11	 4	 3835	 0.99
45–49	 26	 20,812	 22	 14,044	 1.25	 12	 8921	 1.08
50–54	 129	 71,746	 51	 24,948	 1.14	 46	 26,256	 0.97
55–59	 159	 73,413	 72	 21,576	 1.54	 82	 39,785	 0.95
60–64	 35	 15,773	 23	 4876	 2.13	 29	 11,965	 1.09
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(2)	 We compute the total expected number of events under H0 among the 

exposed over all strata = =
=
∑E A E a i
i

k

( ) ( )1
1

, where

		      E a a a t t t i ki i i i i i( ) ( ) ( ), , . . . ,1 1 2 1 1 2 1= + + =

(3)	 We compute Var A Var a i
i

k

( ) ( )=
=
∑ 1

1

 under H0, where

		      Var a a a t t t t ii i i i i i i( ) ( ) ( ) , , . . . ,1 1 2 1 2 1 2
2 1= + + = kk

(4)	 We compute the test statistic

		      X
A E A

Var A
2

20 5= − −(| ( ) | . )
( )

		�  which follows a chi-square distribution with 1 degree of freedom (df)  
under H0.

(5)	 If X2
1 1
2> −χ α, , then we reject H0.

		  If X2
1 1
2≤ −χ α, , then we accept H0.

(6)	 The p-value = >Pr( )χ1
2 2X .

(7)	 This test should only be used if Var(A) ≥ 5.

	 Example 14.18 	 Cancer  Test the hypothesis that there is a significant association between breast-
cancer incidence and current use of PMH based on the data in Table 14.4.

	 	 Solution:  We compare current users of PMH (the exposed group) with never users 
of PMH (the unexposed group) using the method in Equation 14.17. For 39- to 
44-year-old women, we have

		
a

E a

11

11

12
12 5 10 199

10 199 4722
17 68

=

= +
+

= ×( )
( ) ,

,
. 44 11 62

17 684 316 3 67711

=

= × × =

.

( ) . . .Var a

Similar computations are performed for each of the other four age groups, whereby

		

A
E A

= + + + + =
= + + +

12 22 51 72 23 180
11 62 19 34 46 44( ) . . . 552 47 13 70 143 57
3 677 11 548 34 4

. . .
( ) . . .

+ =
= + +Var A 559 40 552 10 462 100 698

180 143 57 02

+ + =

= − −

. . .

(| . |
X

.. )
.

.
.

. ~
5

100 698
35 93

100 698
12 82

2 2

1
2= = χ under HH0

Because X2
1 999
210 83> =. ,.χ , it follows that p < .001. Therefore, there is a highly sig-

nificant association between breast-cancer incidence and current PMH use.

Estimation of the Rate Ratio
We use a similar approach to that considered in estimating a single rate ratio in 
Section 14.3. We obtain estimates of the ln(rate ratio) in each stratum and then 
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compute a weighted average of the stratum-specific estimates to obtain an overall 
estimate of the ln(rate ratio). Specifically, let

	 Equation 14.18 	 IR
^

Ri = ( ) ( )a t a ti i i i1 1 2 2

be the estimate of the rate ratio in the ith stratum. From Equation 14.10, we have

	 Equation 14.19 	 Var[ln(IR
^

Ri)] =
.  1 1

1 2a ai i
+

To obtain an overall estimate of ln(IRR), we now compute a weighted average of 
ln(IR

^
Ri) where the weights are the inverse of the variance of ln(IR

^
Ri) and then take 

the antilog of the weighted average.

	  Equation 14.20  	 ln(IR
^

R) = =

=

∑

∑

w

w

i i
i

k

i
i

k

ln( )
1

1

	

where wi  =  1/Var[ln(IR
^

Ri)]. We then take the antilog of ln(IR
^

R) to obtain an estimate 
of IRR.
To obtain confidence limits for the rate ratio, we use Equation 14.20 to obtain the 
variance of ln(IR

^
R) as follows.

	 Equation 14.21 	 Var

w

Var w

i
i

k
i i

i

k

[ln( )] ln( )=





=

=∑
∑1

1

2
1











=







 

=

=∑
∑1

1

2
2

1
w

w Var

i
i

k
i

i

k

iln( )

=







=




=

=

=

∑
∑

∑

1
1

1

1

2
2

1

1

w

w w

w

i
i

k
i i

i

k

i
i

k

( )





=
=

=

∑
∑

2
1

1

1
w

w
i

i

k

i
i

k

Thus, a two-sided 100% × (1 − α) CI for ln(IRR) is given by

		
ln( ) /± ×−

=
∑z wi
i

k

1 2
1

1α

See page 788 for  
Equation 14.10

IR
^

R

IR
^

R IR
^

R

IR
^

R

IR
^

R
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We then take the antilog of each of the confidence limits for ln(IRR) to obtain confi-
dence limits for IRR. This procedure is summarized as follows.

	 Equation 14.22 	 	 Point and Interval Estimation of the Rate Ratio (Stratified Data)

Let a1i, t1i = �number of events and person-years for the exposed in the ith  
stratum

      a2i, t2i = �number of events and person-years for the unexposed in the ith 
stratum

A point estimate of the rate ratio (RR) is given by IR
^

R = ec, where

		      

c
w

w

a t
a t

w
a

i i
i

k

i
i

k

i
i i

i i

i

=

=

=

=

=

∑

∑

ln( )

/
/

1

1

1 1

2 2

1

1

ii ia
+







−
1

2

1

		     

c
w

w

a t
a t

w
a

i i
i

k

i
i

k

i
i i

i i

i

=

=

=

=

=

∑

∑

ln( )

/
/

1

1

1 1

2 2

1

1

ii ia
+







−
1

2

1

A two-sided 100% × (1 − α) CI for IRR is given by ( , )e ec c1 2 , where

	   

c z w

c z w

i
i

k

i
i

k

1 1 2
1

2 1 2
1

1

1

= −

= +

−
=

−
=

∑ln( )

ln( )

/

/

α

α ∑∑

This interval should only be used if Var(A) as given in Equation 14.17 is ≥ 5.

	 Example 14.19 	 Cancer  Obtain a point estimate and associated 95% confidence limits for the rate 
ratio for breast-cancer incidence rate for current vs. never users of estrogen-
replacement therapy, based on the data in Table 14.4 (on page 794).

	 	 Solution:  The computations are summarized in Table 14.6. For example, for the age 
group 39−44,

		

Var

w

12 10,199
5 4722

1.11

ln( ) 0.105

[ln( )]
1

12
1
5

0.283

1 0.283 3.53

1

1

1

1

= =

=

= + =

= =

Similar computations are performed for each of the other age strata. Thus, the over-
all estimate of the rate ratio = 1.41 with 95% confidence limits = (1.17, 1.69). This 
indicates the incidence of breast cancer is estimated to be about 40% higher for 
current users of estrogen-replacement therapy than for never users even after con-
trolling for age. Note that the crude IRR = (180/75,643)/(354/186,466) = 1.25 < 1.41, 
which implies that age is a negative confounder. Age is a negative confounder 

IR
^

R

IR
^

R

IR
^

R

IR
^

R

See page 794 for  
Equation 14.17

IR
^

R

IR
^

R

IR
^

R
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because the percentage of postmenopausal women using estrogen-replacement 
therapy decreases with increasing age, whereas the incidence rate of breast cancer 
increases with increasing age.

	 Table 14.6 	 Breast cancer vs. estrogen-replacement therapy, estimation of the rate ratio 	
after stratification by age

Age group	 IR
^

Ri	 ln(IR
^

Ri)	 Var[ln(IR
^

Ri)]	 wi	 wiln(IR
^

Ri)

39–44	 1.11	 0.105	 0.283	 3.53	 0.372
45–49	 1.25	 0.226	 0.084	 11.92	 2.697
50–54	 1.14	 0.128	 0.027	 36.55	 4.691
55–59	 1.54	 0.432	 0.020	 49.56	 21.423
60–64	 2.13	 0.754	 0.072	 13.88	 10.467

Total				    115.43	 39.650

Note:

	 ln(IR
^

R ) = 
39.650
115.43

 = 0.343, IR
^

R = exp(0.343) = 1.41

	 Var[ln(IR
^

R )] = 1/115.43 = 0.0087, se[ln(IR
^

R )] = √0.0087 = 0.0931
	 95% CI for ln(IRR) = 0.343 ± 1.96(0.0931) = 0.343 ± 0.182 = (0.161, 0.526)
	 95% CI for IRR = [exp(0.161), exp(0.526)] = (1.17, 1.69) 

Testing the Assumption of Homogeneity  
of the Rate Ratio across Strata
An important assumption made in the estimation methods in Equation 14.22 is that 
the underlying rate ratio is the same in all strata. If this assumption is not true, then 
it makes little sense to estimate a common rate ratio. If the rate ratios in different 
strata are all in the same direction relative to the null hypothesis (i.e., all rate ratios > 
1 or all rate ratios < 1), then the hypothesis-testing procedure in Equation 14.17 is 
still valid with only a slight loss of power. However, if the rate ratios are in differ-
ent directions in different strata, or are null in some strata, then the power of the 
hypothesis-testing procedure is greatly diminished.

To test this assumption, we use similar methods to those used for testing the 
assumption of homogeneity of the odds ratio in different strata for count data given 
in Chapter 13. Specifically, we want to test the hypothesis H0: IRR1 = . . . = IRRk vs. H1: at 
least two of the IRRi’s are different. We base our hypothesis test on the test statistic

		
X w Hi

i

k

i khet
2 under= −[ ]

=
−∑

1

2
1

2
0ln( ) ln( ) ∼ χ

and will reject H0 for large values of Xhet
2 . The test procedure is summarized as follows.

	Equation 14.23 	 	 Chi-Square Test for Homogeneity of Rate Ratios across Strata 
	 	 	 Suppose we have incidence-rate data and wish to control for the confounding 

effect of another variable(s) that comprises k strata. To test the hypothesis H0: 
IRR1 = . . . = IRRk vs. H1: at least two of the IRRi’s differ, with significance level α, 
we use the following procedure:

(1)	 We compute the test statistic

X w Hi
i

k

i khet
2 under= −[ ]

=
−∑

1

2
1

2
0ln( ) ln( ) ∼ χ

See page 794 for  
Equation 14.17

IR
^

RIR
^

R

IR
^

RIR
^

R
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		  where  IR
^

Ri = estimated rate ratio in the ith stratum

IR
^

R  = estimate of the overall rate ratio as given in Equation 14.22

w Vari = 1/ [ln(IR
^

Ri )] as defined in Equation 14.22

(2)	 If X khet
2 > − −χ α1 1

2
, , we reject H0.

		  If X khet
2 ≤ − −χ α1 1

2
, , we accept H0.

(3)	 The p-value is given by p Pr Xk= >( )−χ 1
2

het
2 .

(4)	 An alternative computational form for the test statistic in step 1 is

		      
w wi i i

i

k

i

k

[ln( )] [ln( )]2

1

2

1

−





==
∑∑

	 Example 14.20 	 Cancer  Test for the assumption of the homogeneity of the rate ratio over the five 
age strata based on the data in Table 14.4 (on page 794).

	 	 Solution:  We have that

		

X w wi
i

i
i

het
2 = −  =   −




∑ ∑ln( ) ln( ) ln( )

2 2


 

= − =

−∑ ln( ) ~

. . ( . )

2
1

2

218 405 115 43 0 343

χk
i

118 405 13 619 4 786 4
2

0. . . ~− =

=

χ under

value

H

p Pr- χχ4
2 4 786 31>( ) =. .

Thus there is no significant heterogeneity. However, it appears from Table 14.6 that 
the rate ratios are increasing with age. Thus, the test procedure in Equation 14.23 
may not be sensitive to variation in the rate ratios in a specific direction with respect 
to the confounding variable(s). One possible explanation is that the average dura-
tion of use generally increases with increasing age. Thus, the apparent increase in 
risk with increasing age may actually represent an increase in risk with increasing 
duration of use. To properly account for the effects of both age and duration of use, 
it is more appropriate to use Cox regression analyses, which are discussed later in 
this chapter.

In this section, we have considered a method for comparing incidence rates be-
tween two groups while controlling for a single categorical exposure variable. This 
method can also be used if there is more than one covariate to be controlled for, 
but it would be tedious to do so with many covariates. Instead, Poisson regression 
analysis can be used to accomplish this. This is a generalization of logistic regres-
sion for incidence-rate data but is beyond the scope of this text.

On the flowchart (Figure 14.15, p. 857), we answer yes to (1) person-time data? 
no to (2) one-sample problem? and yes to (3) incidence rates remain constant 
over time? and (4) two-sample problem? which leads us to the box labeled “Use 
two-sample test for comparison of incidence rates, if no confounding is present, 
or methods for stratified person-time data, if confounding is present.” In this 
section, we have considered techniques for performing two-sample inference for 
incidence rates when confounding is present.

IR
^

RIR
^

R

IR
^

RIR
^

RiIR
^

RIR
^

Ri
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RE  V IE  W  QUESTIONS          1 4 C
Suppose we want to study the effect of cigarette smoking on the incidence rate of pri-
mary open-angle glaucoma. The following data were obtained from the Nurses’ Health 
Study (NHS) over the time period 1980−1996 and the Health Professionals’ Follow-Up 
Study (a study of male health professionals) over the time period 1986−1996 [2].

	 Table 14.7 	 Association between open-angle glaucoma and cigarette smoking in 	
the Nurses’ Health Study and the Health Professionals’ Follow-Up Study

	 Never smokers	 Current smokers

	 Number of cases	 Person-years	 Number of cases	 Person-years

Women	 150	 360,348	 38	 147,476
Men	 71	 117,802	 10	 17,706

1	 If we assume the age distributions of current smokers and never smokers are com-
parable within each study, then test the hypothesis that current cigarette smoking is 
associated with the incidence of open-angle glaucoma. Report a two-tailed p-value.

2	 Estimate the rate ratio relating current cigarette smoking to the incidence of open- 
angle glaucoma, and provide a 95% CI.

3	 Test for the homogeneity of the rate ratio between men and women.

In the actual analysis, we would have to control for age and possibly other factors. 
The technique for doing so is discussed later in this chapter in our work on the Cox 
proportional-hazards model.

	 14.6	 P o w e r  a n d  S a mp  l e - S i z e  E s t i m at i o n  f o r 

S t r at i f i e d  P e r s o n - T i m e  D ata

Sample-Size Estimation
In Section 14.4, we studied how to obtain power and sample-size estimates for com-
paring two incidence rates. In this section, we extend this discussion to allow for 
power and sample-size estimation for comparison of incidence rates while control-
ling for confounding variables.

	 Example 14.21 	 Cancer  Suppose we want to study whether the positive association between breast-
cancer incidence and postmenopausal hormone (PMH) use is also present in an-
other study population. We assume that the age-specific incidence rates of breast 
cancer for unexposed women (i.e., never users of PMH) and the age distribution and 
percentage of women using PMH within specific age groups (as reflected by the per-
centage of total person-years realized by specific age-exposure groups) are the same 
as in the NHS (Table 14.4 on page 794). We also assume the true rate ratio within 
each age group = 1.5. How many participants do we need to enroll if the average 
participant is followed for 5 years and we want 80% power using a two-sided test 
with α = .05?

The sample-size estimate depends on

(1)	 The age-specific incidence rates of disease in the unexposed group

(2)	 The distribution of total person-years within specific age-exposure groups

R
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(3)	 The true rate ratio under the alternative hypothesis

(4)	 The type I and type II errors

	 The sample-size estimate is given as follows.

	 Equation 14.24 	 	 Sample-Size Estimation for Incidence-Rate Data 
	 	 	 Suppose we have s strata. Let pi = the probability that a case in the ith stratum 

comes from the exposed group. We wish to test the hypothesis

		    H p t t t p H p IRRt Ii i i i i i i0 1 1 2
0

1 1: ( ) : (( )= + = =vs. RRRt t p i si i i1 2
1 1+ = =) , , . . . ,( )

where
	   t1i = �number of person-years of follow-up among exposed participants in the 

ith stratum
		  t2i = �number of person-years of follow-up among unexposed participants in 

the ith stratum

The equivalent hypotheses are H0: IRR = 1 vs. H1: IRR ≠ 1, where IRR = ID1i/ID2i = 
ratio of incidence densities of exposed compared with unexposed participants 
in the ith stratum. IRR is assumed to be the same for all strata. To test these 
hypotheses using a two-sided test with significance level α and power of 1 − β 
vs. a true rate ratio of IRR under H1 requires a total expected number of cases 
over both groups = m, where

		     m
z C z D

A B
=

+( )
−( )

− −1 2 1
2
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α β
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= −  =
= =
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	      λi = Gi/G = proportion of cases in the ith stratum

and where

		         
G

k p p
k

i s G Gi
i i i i

i
i

i

s

=
+( )

+
= =

=
∑θ 2 1

11
1, , . . . , ,

	        p2i = rate of disease among the unexposed participants in stratum i

		                 = ID2iT2i , i = 1, . . . , s

	        p1i = rate of disease among exposed participants in stratum i
		                      = IRR ID2iT1i , i = 1, . . . , s

	          T1i = average length of follow-up per exposed participant in stratum i

	          T2i = average length of follow-up per unexposed participant in stratum i

	  ID2i = incidence density among unexposed participants in the ith stratum, i
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=
= =

1
12 1

, . . . ,
, , . . . ,
s

k t t i si i i

	                       θi in n=  = overall proportion of participants in the ith stratum, i = 1, . . . , s
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i = 1, . . . , s
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The required total sample size (n) is
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1

	 Example 14.22 	 Cancer  Compute the required sample size for the study proposed in Example 14.21 
using a two-sided test with α = .05, power = 80%, IRR = 1.5, if there are 5 years of 
follow-up for each participant, the incidence rate of disease among the unexposed 
is the same as in Table 14.4 (on page 794) for never users, and the age-exposure 
distribution of person-years is the same as in Table 14.4.

	 	 Solution:  We need to compute ID2i, p2i, p1i, ki, θi, pi
(0), and pi

(1) for each of the five age 
strata in Table 14.4. For example, in the first age group (age group = 39–44 years old) 
we have

		

ID

p

p

k

p

p

5 4722 105.9 10 person-years

5(105.9) 10 .00528

5(1.5)(105.9) 10 .00791

4722 10,199 0.463

10,199 (10,199 4722)

10,199 14,921 .684

10,199(1.5) [10,199(1.5) 4722]

15,299 20,021 .764

2,1
5

2,1
5

1,1
5

1

1
(0)

1
(1)

= =

= =

= =
= =

= +
= =

= +
= =

The number of participants in each age group is not given in Table 14.4. However, 
if we assume the average length of follow-up is the same for each age group, then

		  θi i i
i

s

t t≅
=
∑

1

where ti = t1i + t2i. Thus,

		  θ1 14 921 262 109 0569= =, , .

The computations for each age group are summarized in Table 14.8.
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Therefore, the required expected total number of events is

		

m
z z

=
+( )
−

=

. .. .

(. . )

[ .

975 80

2

2

1894 2197

2734 3566

1 996 4352 0 84 4687

0832
1 2468

0832

2

2

2

(. ) . (. )]

.
.

.

+

= 22 224 5 225= . or events

The corresponding total number of participants is

		  n =
×

=−
225

1 04 10
21 560 4 21 5612.

, . ,or participants

This constitutes approximately 107,805 person-years among current and never 
users combined. From Table 14.4, we see that 90,762 person-years (25.7%) are 
realized by past users of PMH out of a total of 352,871 person-years. Thus, 
we need to accrue 107,805/(1 − .257) = 145,135 person-years or enroll 29,027 
postmenopausal women and follow them for 5 years to achieve 80% power in the 
comparison of current users with never users, if the underlying IRR = 1.5 between 
these groups.

Estimation of Power
In some instances, the size of the study population and the average duration of 
follow-up are fixed by design and we want to assess the power that can be obtained 
for a given rate ratio. In this instance, we can solve for the power as a function of the 

total number of person-years T t ji
i

s

j

=










==
∑∑

11

2

 , stratum-specific incidence rates among 

the unexposed (ID2i), distribution of person-years by stratum and exposure status (t1i, t2i), 
projected rate ratio (IRR), and type I error (α). The power formula follows.

Table 14.8 	 Computations needed for sample-size estimate in Example 14.22

i	 Age group	 ID2i
a	 p2i	 p1i	 t1i	 t2i	 ki	 θi	 pi

(0)	 pi
(1)	 Gi	 λi

1	 39–44	 105.9	 .00528	 .00791	 10,199	 4722	 0.463	 0.0569	 .684	 .764	 4.03 × 10–4	 .039
2	 45–49	 124.9	 .00623	 .00933	 14,044	 20,812	 1.482	 0.1330	 .403	 .503	 9.94 × 10–4	 .095
3	 50–54	 179.8	 .00895	 .01339	 24,948	 71,746	 2.876	 0.3689	 .258	 .343	 3.72 × 10–3	 .357
4	 55–59	 216.6	 .01077	 .01611	 21,576	 73,413	 3.403	 0.3624	 .227	 .306	 4.34 × 10–3	 .416
5	 60–64	 221.9	 .01103	 .01650	 4876	 15,773	 3.235	 0.0788	 .236	 .317	 9.71 × 10–4	 .093

Total											           1.04 × 10–2

i	 Age group	 Ai	 Bi	 Ci	 Di

1	 39–44	 .0264	 .0295	 .0084	 .0070
2	 45–49	 .0384	 .0479	 .0229	 .0238
3	 50–54	 .0921	 .1223	 .0683	 .0804
4	 55–59	 .0945	 .1273	 .0731	 .0884
5	 60–64	 .0220	 .0295	 .0168	 .0201

Total		  .2734	 .3566	 .1894	 .2197

aPer 105 person-years.
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	 Equation 14.25 	 	 Estimation of Power for Stratified Incidence-Rate Data 
	 	 	 Suppose we want to compare the incidence rate of disease between exposed and 

unexposed participants and want to control for one (or more) covariates that 
can, as a group, be represented by a single categorical variable with k categories. 
Using the same notation as in Equation 14.24, if we wish to test the hypothesis 
H0: IRR (rate ratio) = 1 vs. H1: IRR ≠ 1, using a two-sided test with significance 
level α, then the power vs. the specific rate ratio = IRR under the alternative hy-
pothesis is given by

		    Power =
− −







−Φ

m B A z C
D

| | /1 2α

where m = the total expected number of events given by

		    m G ni
i

s

=





=
∑

1

n = total number of exposed and unexposed individuals over all strata, and A, B, 
C, D, and Gi are defined in Equation 14.24.

	 Example 14.23 	 Cancer  Suppose we enroll 25,000 postmenopausal women and expect that 75% of 
the person-time is attributable to current or never PMH use with an average follow-
up of 5 years per woman. If the same assumptions are made as in Example 14.22, 
then how much power will the study have if the true rate ratio = 1.5?

	 	 Solution:  Because the exposure-stratum-specific incidence rates (p1i, p2i) and person-
year distribution are the same as in Example 14.22, we can use the same values for 
p1i, p2i, pi

(0), pi
(1), and λi. Thus, from Table 14.8, A = .2734, B = .3566, C = .1894, and 

D = .2197. To compute m, we note from Table 14.8 that Gi
i=

−∑ = ×
1

5
21 04 10. . Also, the 

number of women who are current or never users = 25,000(.75) = 18,750. Thus,

		  m = × =−1 04 10 18 750 195 7 1962. ( , ) . or events

To compute power, we refer to Equation 14.25 and obtain

		

Power = − −





Φ 196 3566 2734 1894

2197
975(. . ) .

.
.z




= −



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=

Φ

Φ

1 1651 1 96 4352
4687

0 3120
0

. . (. )
.

.

..
( . ) .

4687
0 666 747







= =Φ

Thus, the study would have about 75% power. Note that, from Example 14.22, to 
achieve 80% power we needed to accrue 145,135 person-years among all postmeno-
pausal women or 107,805 person-years among current or never PMH users to yield 
an expected 225 events. If we actually accrue 125,000 person-years among all post-
menopausal women, as in this example, then this will result in 93,750 person-years 
among current or never PMH users, which yields an expected 196 events and, as a 
result, obtains about 75% power.

See page 801 for  
Equation 14.24

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



	 14.7      Testing for Trend: Incidence-Rate Data              805

Another approach to power estimation is to ignore the effect of age and base the 
power computation on the comparison of overall incidence rates between current 
and never PMH users. However, from Example 14.19 (on page 797) we see that the 
age-adjusted IRR = 1.41, whereas the crude IRR = 1.25, between breast-cancer inci-
dence and current PMH use. In this example, age is a negative confounder because 
it is positively related to breast-cancer incidence and is negatively related to PMH 
use. Thus, the power based on crude rates is lower than the appropriate power based 
on rates stratified by age. In the case of a positive confounder, the power based on 
crude rates is higher than the power based on rates stratified by age. In general, if 
confounding is present, then it is important to base power calculations on Equation 
14.25, which takes confounding into account, rather than Equation 14.12, which 
does not.

RE  V IE  W  QUESTIONS          1 4 D

1	 Consider the study described in Review Questions 14C. Suppose we are planning 
a new study among both men and women, assessing the association between ciga-
rette smoking and the incidence of open-angle glaucoma. Let’s classify participants 
as current smokers or never smokers at baseline and follow each participant for 
5 years. We want to conduct a two-sided test with α = .05 and power = 80% to  
detect an IRR of 0.80 comparing current smokers with never smokers. If the sex dis-
tribution and the sex-specific incidence rates of open-angle glaucoma among never 
smokers are the same as in Review Questions 14C, then how many participants do 
we need to enroll? (Hint: Recall that in Review Questions 14C, each woman was 
followed for an average of 16 years and each man was followed for an average of 
10 years.)

2	 Suppose we have a total cohort (men and women combined) of 100,000 people 
and each is followed for 5 years. How much power will the study have to detect 
an IRR of 0.8 under the same assumptions as in Review Question 14D.1? (Hint: 
Assume the sex by smoking distribution is the same as in Table 14.7 on page 800.)

	 14.7	 T e s t i n g  f o r  T r e n d :  I n c i d e n c e - R at e  D ata

In Sections 14.1–14.6, we were concerned with the comparison of incidence rates 
between an exposed and an unexposed group, possibly after controlling for other 
relevant covariates. In some instances, there are more than two exposure categories 
and researchers want to assess whether incidence rates are increasing or decreasing 
in a consistent manner as the level of exposure increases.

	 Example 14.24 	 Cancer  The data in Table 14.9 display the relationship between breast-cancer inci-
dence and parity (the number of children) by age, based on NHS data from 1976 to 
1990. We see that within a given parity group, breast-cancer incidence rises sharply 
with age. Thus, it is important to control for age in the analysis. Also, within a given 
age group, breast-cancer incidence is somewhat higher for women with 1 birth 
than for nulliparous women (women with 0 births). However, for parous women 
(women with at least 1 child), breast-cancer incidence seems to decline with increas-
ing parity. How should we assess the relationship between breast-cancer incidence 
and parity?

R
 E

 V
 I 

E 
W

  

See page 790 for  
Equation 14.12
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	 Table 14.9 	 Relationship of breast-cancer incidence to parity after controlling for age, 	
NHS, 1976–1990

	 Parity

	 0	 1	 2	 3+

Age	 Cases/person-years	 Cases/person-years	 Cases/person-years	 Cases/person-years 
group	 (incidence rate)a	 (incidence rate)	 (incidence rate)	 (incidence rate)

30–39	 13/15,265	 18/20,098	 72/87,436	 60/86,452
	 (85)	 (90)	 (82)	 (69)
40–49	 44/30,922	 73/31,953	 245/140,285	 416/262,068
	 (142)	 (228)	 (175)	 (159)
50–59	 102/35,206	 94/31,636	 271/103,399	 608/262,162
	 (290)	 (297)	 (262)	 (232)
60–69	 32/11,594	 50/10,264	 86/29,502	 176/64,448
	 (276)	 (487)	 (292)	 (273)

aPer 100,000 person-years.

It is reasonable to study parous women as a group and to model ln(breast-cancer 
incidence) for the ith age group and the jth parity group as a linear function of parity.

	 Equation 14.26 	 ln( ) ( )p jij i= + −α β 1

where αi represents ln(incidence) for women in the ith age group with 1 child and β 
represents the increase in ln(incidence) for each additional child. Notice that β is as-
sumed to be the same for each age group (i). In general, if we have k exposure groups 
we might assign a score Sj for the jth exposure group, which might represent average 
exposure within that group, and consider a model of the form

	 Equation 14.27 	 ln( )p Sij i j= +α β

We want to test the hypothesis H0: β = 0 vs. H1: β ≠ 0. The models in Equations 14.26 
and 14.27 represent a more efficient use of the data than comparing individual pairs 
of groups because we can use all the data to test for an overall trend. Comparing 
pairs of groups might yield contradictory results and would often have less power 
than the overall test for trend. We use a “weighted regression approach” where inci-
dence rates based on a larger number of cases are given more weight. The procedure 
is summarized as follows.

	 Equation 14.28 	 	 Test for Trend: Incidence-Rate Data 
	 	 	 Suppose we have an exposure variable E with k levels of exposure, where the jth 

exposure group is characterized by a score Sj, which may represent the average 
level of exposure within that group, if available. If no obvious scoring method 
is available, then integer scores 1, . . . , k may be used instead. If pij = true inci-
dence rate for the ith stratum and jth level of exposure, i = 1, . . . , s; j = 1, . . . , k; 
p̂ij = the corresponding observed incidence rate and we assume that

		  ln p Sij i j( ) = +α β
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then, to test the hypothesis H0: β = 0 vs. H1: β ≠ 0, using a two-sided test with 
significance level α:

(1)	 We compute a point estimate of β given by ˆ ,β = L Lxy xx  where

		      

L w S p w Sxy ij
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k
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	       wij = aij = number of cases in the ith stratum and jth level of exposure

(2)	 The standard error of β̂ is given by

		        se Lxxβ̂( ) = 1

(3)	 We compute the test statistic

		        z se N H= ˆ (ˆ) ( , )β β ∼ 0 1 0under

(4)	 If z z z z H> < −− −1 2 1 2 0α αor then we reject, ;

		  if − ≤ ≤− −z z z H1 2 1 2 0α α , .then we accept

(5)	 The two-sided p-value = 2 0Φ( )z zif <

					             = 2 1 0−[ ] ≥Φ( )z zif

(6)	 A two-sided 100% × (1 − α) CI for β is given by

		        ˆ ˆβ βα± ( )−z se1 2

	 Example 14.25 	 Cancer  Assess whether there is a significant trend between breast-cancer incidence 
and parity for parous women based on the data in Table 14.9.

	 	 Solution:  We have four age strata (30−39, 40−49, 50−59, 60−69) (s = 4) and three 
exposure (parity) groups (k = 3) to which we assign scores of 1, 2, 3, respectively. The 
ln(incidence rate), score, and weight are given for each of the 12 cells in Table 14.10. 
We then proceed as in Equation 14.28, as follows:
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	 Table 14.10 	 ln(incidence rate) of breast cancer and weight used in 
weighted regression analysis

Age group	 i	 Parity ( j )	 ln(p̂ij)	 wij

30–39	 1	 1	 –7.018	 18
30–39	 1	 2	 –7.102	 72
30–39	 1	 3	 –7.273	 60
40–49	 2	 1	 –6.082	 73
40–49	 2	 2	 –6.350	 245
40–49	 2	 3	 –6.446	 416
50–59	 3	 1	 –5.819	 94
50–59	 3	 2	 –5.944	 271
50–59	 3	 3	 –6.067	 608
60–69	 4	 1	 –5.324	 50
60–69	 4	 2	 –5.838	 86
60–69	 4	 3	 –5.903	 176
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∼ N

p-value Φ 11

Thus, there is a significant inverse association between ln(breast-cancer incidence) 
and parity among parous women. Breast-cancer incidence declines by (1 − e−0.124) × 
100% = 11.7% for each additional birth up to 3 births within a given age group.

In this section, we have considered the problem of relating the incidence density 
to a categorical exposure variable E, where E has more than two categories and the 
categories of E correspond to an ordinal scale with an associated score variable Sj 

for the jth category. The procedure is similar to the chi-square test for trend given 
in Chapter 10, except that here we are modeling trends in incidence rates based on 
person-time data, whereas in Chapter 10 we were modeling trends in proportions 
based on count data (which as a special case might correspond to cumulative inci-
dence), where the person is the unit of analysis.

On the flowchart (Figure 14.15, p. 857), we answer yes to (1) person-time data? 
no to (2) one-sample problem? yes to (3) incidence rates remain constant over time? 
and no to (4) two-sample problem? which leads to (5) interested in test of trend over 
more than two exposure groups. This path leads us to the box labeled “Use test of 
trend for incidence rates.”

	 14.8	 I n t r o d u c t i o n  t o  S u r v i v a l  A n a ly s i s

Sections 14.1−14.7 discussed methods for comparing incidence rates between two 
groups, where the period of follow-up may differ for the two groups considered. One 
assumption made in performing these analyses is that incidence rates remain con-
stant over time. In many instances this assumption is not warranted and one wants 
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to compare the number of disease events between two groups where the incidence 
of disease varies over time.

	 Example 14.26 	 Health Promotion  Consider Data Set SMOKE.DAT at www.cengagebrain.com.  
In this data set, 234 smokers who expressed a willingness to quit smoking were 
followed for 1 year to estimate the cumulative incidence of recidivism; that is, 
the proportion of smokers who quit for a time but who started smoking again. 
One hypothesis is that older smokers are less likely than younger smokers to be 
successful quitters (and more likely to be recidivists). How can this hypothesis be 
tested?

The data in Table 14.11 were obtained after subdividing the study population by 
age (>40/≤40).

 Data set available

	 Table 14.11 	 Number of days quit smoking by age

		  Number of days quit smoking

Age	 ≤90	 91–180	 181–270	 271–364	 365	 Total

>40	 92	 4	 4	 1	 19	 120

≤40	 88	 7	 3	 2	 14	 114

Total	 180	 11	 7	 3	 33	 234
Percentage	 76.9	 4.7	 3.0	 1.3	 14.1

We can compute the estimated incidence rate of disease (recidivism) within each 
90-day period for the combined study population. Let’s assume participants who 
started smoking within a given period did so at the midpoint of the respective pe-
riod. Thus, the number of person-days within days 1−90 = 180(45) + 54(90) = 12,960, 
and the incidence rate of recidivism = 180/12,960 = 14 events per 1000 person-days.  
For days 91−180, there were 11 recidivists and 43 successful quitters. Hence, the 
number of person-days = 11(45) + 43(90) = 4365 person-days and the incidence rate =  
11/4365 = 2.5 events per 1000 person-days. Similarly, the incidence rate over days 
181−270 = 7/[7(45) + 36(90)] = 7/3555 = 2.0 events per 1000 person-days. Finally, 
the incidence rate over days 271−365 = 3/[3(47) + 33(95)] = 3/3276 = 0.9 events per 
1000 person-days. Thus, the incidence rate of recidivism is much higher in the first 
90 days and declines throughout the 365-day period. Incidence rates that vary sub-
stantially over time are more commonly called hazard rates.

In Example 14.26, we have assumed, for simplicity, that the hazard remains 
constant during each 90-day period. One nice way of comparing incidence rates 
between two groups is to plot their hazard functions.

	 Example 14.27 	 Health Promotion  Plot the hazard function for subjects age >40 and age ≤40,  
respectively.

	 	 Solution:  The hazard functions are plotted in Figure 14.4. There is actually a slight 
tendency for younger smokers (≤40) to be more likely to start smoking (i.e., become 
recidivists) than older smokers (>40), particularly after the first 90 days.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



810              C H A P T E R  14      Hypothesis Testing: Person-Time Data

Hazard functions are used extensively in biostatistical work to assess mortality risk.
Another way of comparing disease incidence between two groups is by their 

cumulative incidence. If the incidence rate of disease over time is constant, as was 
assumed in Sections 14.1−14.7, then the cumulative incidence over time t is given 
exactly by 1 − e−λt and approximately by λt if the cumulative incidence is low (see 
Equation 14.3). We could also compute the probability of not developing disease = 
1 − cumulative incidence = e−λt ≅ 1 − λt. The probability of not developing disease is  
more commonly called the survival probability. We can plot the survival probabil-
ity as a function of time. This function is the survival function.

	 Definition 14.3  	 The survival function S(t) is the probability of survival up to time t for each t ≥ 0.

The hazard at time t, denoted by h(t), can be expressed in terms of the survival func-
tion S(t) as follows:

	 Definition 14.4 	 The hazard function h(t) is the instantaneous probability of having an event at time 
t (per unit time), i.e., the instantaneous incidence rate, given that one has survived 
(i.e., has not had an event) up to time t. In particular,

		  h t
S t S t t

t
S t( ) ( )= ( ) − +( )





∆
∆

  as Δt approaches 0

	 Example 14.28 	 Demography  Based on U.S. life table data in 1986 there were 100,000 men at age 
0 of whom 80,908 survived to age 60, 79,539 survived to age 61, 34,789 survived to 
age 80, and 31,739 survived to age 81. Compute the approximate mortality hazard 
at ages 60 and 80, respectively, for U.S. men in 1986.

	 	 Solution:  There were 80,908 men who survived to age 60, and 79,539 men who sur-
vived to age 61. Therefore, the hazard at age 60 is approximately,

		  h( )
, ,

,
.60

80 908 79 539
80 908
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See page 778 for  
Equation 14.3
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	 Figure 14.4 	 Hazard rates (per 1000 person-days) by age
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Similarly, because 34,789 men survived to age 80, and 31,739 men survived to  
age 81, the hazard at age 80 is approximately given by

		  h( )
, ,

,
.80

34 789 31 739
34 789

088= − =

Thus, in words, the probability of dying in the next year is 1.7% given that one has sur-
vived to age 60, and 8.8% given that one has survived to age 80. The percentages 1.7% 
and 8.8% represent the approximate hazard at ages 60 and 80, respectively. To improve 
the approximation, shorter time intervals than 1 year would need to be considered.

RE  V IE  W  QUESTION        s  1 4 E

1	 What is a survival function?

2	 What is a hazard function?

	 14.9	 E s t i m at i o n  o f  S u r v i v a l  C u r v e s : 

T h e  K a p l a n - M e i e r  E s t i m at o r

To estimate the survival probability when the incidence rate varies over time, we 
could use a more complex parametric survival model than the exponential model 
given in Equation 14.3. (See [3] for a good description of other parametric survival 
models.) For this purpose, we will discuss the Weibull model later in this chapter. 
However, a more common approach is to use a nonparametric method referred to as 
the product-limit or Kaplan-Meier estimator.

Suppose individuals in the study population are assessed at times t1, . . . , tk where 
the times do not have to be equally spaced. If we want to compute the probability of 
surviving up to time ti, we can write this probability in the form.

	 Equation 14.29 	 S(ti) = Prob(surviving to time ti) = Prob(surviving to time t1)

						      

× Prob(surviving to time survived to timet2 )

Prob(surviving to time survived t

t

t j

1

× oo time )

Prob(surviving to time su

t

t

j

i

−

×

1

rrvived to time )ti−1

	 Example 14.29 	 Health Promotion  Estimate the survival curve for people age >40 and age ≤40 for 
the participants depicted in Table 14.11.

	 	 Solution:  We have for persons age >40,
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For people age ≤40, we have
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These survival curves are plotted in Figure 14.5.
Participants age >40 have a slightly higher estimated survival probability (i.e., 

probability of remaining a quitter) after the first 90 days.
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	 Figure 14.5 	 Survival probabilities by age
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The Treatment of Censored Data
In Example 14.26 (on page 809), all members of the study population were followed 
until they started smoking again or for 1 year, whichever occurred first. In other 
instances, some participants are not followed for the maximum period of follow-up 
but have not yet had an event (have not yet failed).

	 Example 14.30 	 Ophthalmology  A clinical trial was conducted to test the efficacy of different vita-
min supplements in preventing visual loss in patients with retinitis pigmentosa (RP) 
[4]. Visual loss was measured by loss of retinal function as characterized by a 50% 
decline in the electroretinogram (ERG) 30 Hz amplitude, a measure of the electrical 
activity in the retina. In normal people, the normal range for ERG 30 Hz amplitude 
is >50 µV (microvolts). In patients with RP, ERG 30 Hz amplitude is usually <10 µV 
and is often <1 µV. Approximately 50% of patients with ERG 30 Hz amplitudes near 
0.05 µV are legally blind compared with <10% of patients whose ERG 30 Hz ampli-
tudes are near 1.3 µV (the average ERG amplitude for patients in this clinical trial). 
Patients in the study were randomized to one of four treatment groups:

Group 1 received 15,000 IU of vitamin A and 3 IU (a trace amount) of vitamin E.

Group 2 received 75 IU (a trace amount) of vitamin A and 3 IU of vitamin E.

Group 3 received 15,000 IU of vitamin A and 400 IU of vitamin E.

Group 4 received 75 IU of vitamin A and 400 IU of vitamin E.

Let’s call these four groups the A group, trace group, AE group, and E group, 
respectively. We want to compare the proportion of patients who fail (i.e., lose 50% 
of initial ERG 30 Hz amplitude) in different treatment groups. Patients were enrolled 
in 1984−1987, and follow-up was terminated in September 1991. Because follow-
up was terminated at the same point in chronological time, the period of follow-up 
differed for each patient. Patients who entered early in the study were followed for 
6 years, whereas patients who enrolled later in the study were followed for 4 years. 
In addition, some patients dropped out of the study before September 1991 and had 
not failed. Dropouts were due to death, other diseases, side effects possibly due to 
the study medications, or unwillingness to comply (take study medications). How 
can we estimate the hazard and survival functions in each treatment group in the 
presence of variable follow-up for each patient?

	 Definition 14.5 	 We refer to patients who do not reach a disease endpoint during their period of 
follow-up as censored observations. A participant has been censored at time t if the 
participant has been followed up to time t and has not failed.

We assume censoring is noninformative; that is, patients who are censored have 
the same underlying survival curve after their censoring time as patients who are 
not censored.

	 Definition 14.6 	 Right censored data are data in which a subject is known to have survived for at 
least t weeks but the failure time after this point is unknown. For example, in a can-
cer clinical trial in which the endpoint is recurrence, a subject may have remained in 
remission (i.e., survived) for 13 weeks during the study and did not experience a re-
currence (i.e., fail) as of the end of the study. The survival time for this subject is de-
noted by 13+ weeks. This is distinct from another subject who remained in remission 
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for 13 weeks and then had a recurrence at this time (i.e., failed). The survival time for 
this subject is 13 weeks.

Thus, each subject has two important data values that are used in the analysis of 
survival data, (Ti, Ci), where Ti = survival time during the study and Ci = censoring 
indicator = 1 if the subject failed during the study and = 0 if the subject was cen-
sored. Thus, the first subject is denoted by (13, 0) or 13+, while the second subject is 
denoted by (13, 1) or just 13.

Other Types of Censoring
Other types of censoring are also possible.

	 Definition 14.7 	 Left Censoring In a study of age of legal blindness among subjects with RP, there 
may be a subset of subjects who are already legally blind at the start of the study; the 
precise age of legal blindness is unknown. This is known as left censoring.

	 Definition 14.8 	 Interval Censoring In a study of age of developing breast cancer among postmeno-
pausal women, it may be known that a woman is breast cancer free at age 50 (first 
questionnaire) and has developed breast cancer by age 52 (next questionnaire), but 
the precise age at diagnosis is unknown. These data would be interval censored.

In this text, we will focus on right censoring, which is the most common.
To estimate the survival function in the presence of censoring, suppose Si−l pa-

tients have survived through time ti−1 and are not censored at time ti−1. Among these 
patients, Si patients survive, di patients fail, and li patients are censored at time ti. 
Thus, S S d li i i i− = + +1 . We can estimate the probability of surviving to time ti given 
that a patient has survived up to time ti−1 by 1 11−( ) = − + +( )−d S d S d li i i i i i[ ]. The li 
patients who are censored at time ti do not contribute to the estimation of the sur-
vival function at time > ti. However, these patients do contribute to the estimation 
of the survival function at time ≤ ti. We can summarize this procedure as follows.

	 Equation 14.30 	 	 Kaplan-Meier (Product-Limit) Estimator of Survival (Censored Data) 
	 	 	 Suppose that Si−1 subjects have survived up to time ti−1 and are not censored at 

time ti−1, of whom Si survive, di fail, and li are censored at time ti, i = 1, . . . , k. The 
Kaplan-Meier estimator of the survival probability at time ti is

		  
ˆ( ) . . .S t
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	 	 	 Furthermore, the survival probability is assumed to remain constant between 
time ti−1 and ti (i.e., at level ( )−S tˆ

i 1 .

	 Example 14.31 	 Ophthalmology  Estimate the survival probability at each of years 1−6 for par-
ticipants receiving 15,000 IU of vitamin A (i.e., groups A and AE combined) and 
participants receiving 75 IU of vitamin A (i.e., groups E and trace combined), respec-
tively, based on the data set mentioned in Example 14.30.
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	 	 Solution:  The calculations are given in Table 14.12. For example, for the participants 
receiving 15,000 IU of vitamin A the survival probability at year 1 = .9826. The sur-
vival probability is assumed to remain constant between year 1 and year 2 (i.e. S(t) =  
0.9826 for 1 ≤ t < 2. The probability of surviving to year 2 given that one survives 
to year 1 = 159/165 = .9636. Thus, the survival probability at year 2 = .9826 × .9636 
= .9468, etc. The survival probabilities for the participants receiving 15,000 IU of 
vitamin A tend to be higher than for the participants receiving 75 IU of vitamin A, 
particularly at year 6.

In the above example, we assume that subjects who are censored at time t are 
followed up to time t and have not failed as of time t. There are other methods for 
calculating survival probabilities, such as assuming that censored participants are 
only followed for half of the time interval during which they were measured. These 
methods are beyond the scope of this text.

Interval Estimation of Survival Probabilities
In Equation 14.30, we derived a point estimate of the survival probability at specific 
time points. We can derive an interval estimate as well. To obtain an interval esti-
mate for S(t) we consider the complementary log-log transformation of

{ }( )= − 



S t ln S tˆ( ) ln ˆ . The rationale for using this transformation is that confidence

limits based on this transformation are always between 0 and 1. Its variance is given 
by:

	 Equation 14.31 	 VAR S t
d

S S d
S tln ln ˆ

( )
/ ln ˆ

i
j

j j jj

i

i
1 11

2

∑{ }{ } { }( ) ( )− 



 =

−






− −=

Table 14.12	� Survival probabilities for participants receiving 15,000 IU of vitamin A 	
and 75 IU of vitamin A, respectively

					     Prob(survive to time 
					     ti | survived up to 
Time	 Fail	 Censored	 Survive	 Total	 time ti–1)	 S

^
(ti)	 h

^
(ti)

15,000 IU of vitamin A daily
	 1 yr = t1 	 3	 4	 165	 172	 .9826	 .9826	 0.0174
	 2 yr = t2	 6	 0	 159	 165	 .9636	 .9468	 0.0364
	 3 yr = t3	 15	 1	 143	 159	 .9057	 .8575	 0.0943
	 4 yr = t4	 21	 26	 96	 143	 .8531	 .7316	 0.1469
	 5 yr = t5	 15	 35	 46	 96	 .8438	 .6173	 0.1563
	 6 yr = t6	 5	 41	 0	 46	 .8913	 .5502	 0.1087

75 IU of vitamin A daily
	 1 yr = t1	 8	 0	 174	 182	 .9560	 .9560	 0.0440
	 2 yr = t2	 13	 3	 158	 174	 .9253	 .8846	 0.0747
	 3 yr = t3	 21	 2	 135	 158	 .8671	 .7670	 0.1329
	 4 yr = t4	 21	 28	 86	 135	 .8444	 .6477	 0.1556
	 5 yr = t5	 13	 31	 42	 86	 .8488	 .5498	 0.1512
	 6 yr = t6	 13	 29	 0	 42	 .6905	 .3796	 0.3095

Note: A person fails if his or her ERG 30 Hz amplitude declines by at least 50% from baseline to any follow-up visit, regardless of any subsequent ERG 
values obtained after the visit where the failure occurs.
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	 We then can obtain an approximate two-sided 100% × (1 − α) CI for 
{ }( )−  S tln ln i  given by

			 
{ }{ } { }( ) ( ) ( )− 



 ± × − 



 =−αS t z Var S t c cln ln ˆ ln ln ˆ ,i i1 2 1 2

	 The corresponding two-sided 100% × (1 − α) CI for S(ti ) is given by { − cexp[ exp( )],2

}− cexp[ exp( )] .1  This procedure is summarized as follows.

	 Equation 14.32 	 	 Interval Estimation of Survival Probabilities 
	 	 	 Suppose that Si−1 subjects have survived up to time ti−1 and are not censored at 

time ti−1, of whom Si survive, di fail, and li are censored at time ti, i = 1, . . . , k. A 
two-sided 100% × (1 − α) CI for the survival probability at time ti (i.e., S(ti)) is 
given by c cexp[ exp( )], exp[ exp( )] ,2 1{ }− −  where
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Ŝ ti( ) is obtained from the Kaplan-Meier estimator in Equation 14.30 and
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	 Example 14.32 	 Ophthalmology  Obtain a 95% CI for the survival probability at 6 years for the pa-
tients assigned to the 15,000 IU/day vitamin A group based on the data in Table 14.12.

	 	 Solution:  From Table 14.12, we have:  

		
{ }( ) ( ) ( )= , = − , − = −S S Sˆ 6 0.550 ln[ˆ 6 ] 0.5975 ln ln[ˆ 6 ] 0.5150.

To compute the variance of { }( )− Sln ln[ˆ 6 ] , we have:
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Thus,
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− 
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
 = − =

− 



 = =

Var S

se S

ln ln ˆ 6 0.00677 / ( 0.5975) 0.0190,

ln ln ˆ 6 0.0190 0.1377.

2

Thus,

		  c1 = −0.5150 − 1.96(0.1377) = −0.7849

		  c2 = −0.5150 + 1.96(0.1377) = −0.2451

Finally, the 95% CI for S(6) is:

		  exp exp 0.2451 , exp exp 0.7849 0.457, 0.634 .{ }[ ] [ ] ( )( ) ( )− − − − =

Thus, the estimated survival probability at year 6 = 0.550 with 95% CI = (0.457, 0.634).
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Using the Computer to Obtain Kaplan-Meier Survival Probabilities
We can use the sts list command of Stata for this purpose as shown below for the 
15,000 IU of vitamin A group in Table 14.12 .

. sts list

     failure _d: fail
analysis time t: time
         weight: [fweight=freq)

		  Beg.		  Net	 Survivor	 Std.
	Time	 Total	 Fail	 Lost	 Function	 Error	 [95% Conf Int.)
---------------------------------------------------------------------

	 1	 172	 3	 4	 0.9826	 0.0100	 0.9469  0.9943
	 2	 165	 6	 0	 0.9468	 0.0172	 0.9003  0.9720
	 3	 159	 15	 1	 0.8575	 0.0269	 0.7950  0.9021
	 4	 143	 21	 26	 0.7316	 0.0342	 0.6576  0.7921
	 5	 96	 15	 35	 0.6173	 0.0396	 0.5346  0.6896
	 6	 46	 5	 41	 0.5502	 0.0453	 0.4572  0.6337
---------------------------------------------------------------------

The 6-year survival probability and associated 95% CI agree with the results in 
Examples 14.31 and 14.32.

Estimation of the Hazard Function: The Product-Limit Method
In Example 14.27 (on page 809), we considered estimation of the hazard function 
in the context of the smoking-cessation data in Table 14.11 (on page 809). In this 
example, we estimated the hazard for each group for each approximately 90-day 
period. We assumed recidivists would resume smoking randomly throughout the 
90-day period. Thus, to compute the hazard in the first 90 days for participants with 
age >40, we assume at day 45 half the recidivists (92/2 = 46) had resumed smoking. 
Thus, there remain 120 − 46 = 74 participants who are still quitters. Among these par-
ticipants 92/90 = 1.022 participants resume smoking at day 46. Thus, the estimated 
hazard rate at day 45 = 1.022/74 = .0138 events per person-day. In a similar manner, 
the hazard for each 90-day period was approximated by the hazard at the period mid-
point. This approach to hazard estimation is often called the actuarial method.

In epidemiology, another approach is often used. A key assumption of the ac-
tuarial method is that events occur randomly throughout a defined follow-up pe-
riod. Another approach is to assume an event occurs at the precise time it is either 
observed (e.g., if an abnormality such as a heart murmur is observed at a physical 
examination) or reported (e.g., if the patient reports a specific symptom, such as 
dizzy spells or breathlessness). This approach is called the product-limit method.

	 Example 14.33 	 Ophthalmology  Estimate the hazard at each year of follow-up for each vitamin A 
dose group based on the data in Table 14.12 using the product-limit method.

	 	 Solution:  For participants taking 15,000 IU of vitamin A daily, the estimated hazard 
at year 1 = number of participants with events at year 1/number of participants avail-
able for examination at year 1 = 3/172 = .0174. At year 2, 165 participants were exam-
ined, of whom 6 failed. Thus, the estimated hazard at year 2 = 6/165 = .0364, . . . , etc. 
In general, the estimated hazard at year t h t d Si i i i= ( ) = = −−1 1 Prob(survive to time 
ti | survive to time ti-1). The estimated hazard function for each group by year is given 
in the last column of Table 14.12.
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In the rest of this chapter, we use the product-limit approach for hazard estimation. 
In this section, we introduced the basic concepts of survival analysis. The pri-
mary outcome measures in this type of analysis are the survival function, which 
provides the probability of surviving to time t, and the hazard function, which  
provides the instantaneous rate of disease per unit time given that a person has sur-
vived to time t. A unique aspect of survival data is that usually not all participants are 
followed for the same length of time. Thus, we introduced the concept of a censored 
observation, which is a participant who has not failed by time t but is not followed 
any longer, so the actual time of failure for censored observations is unknown. Fi-
nally, we learned about the Kaplan-Meier product-limit method, which is a technique 
for estimating the survival and hazard functions in the presence of censored data.

On the flowchart (Figure 14.15, p. 857), we answer yes to (1) person-time data? 
and no to both (2) one-sample problem? and (3) incidence rates remain constant 
over time? This path leads us to the box labeled “Use survival-analysis methods.”

In the next section, we continue our discussion of survival analysis and examine 
analytic techniques for comparing survival curves from two independent samples.

RE  V IE  W  QUESTIONS          1 4 F

1	 What is the Kaplan-Meier estimator of the survival function?

2	 What do we mean by a “censored observation”?

3	 The following study was performed among women with breast cancer who had 
been treated with tamoxifen for at least 2 years. The women in the study were ran-
domized to either exemestane or tamoxifen and were followed for an additional 3 
years to assess whether a change in treatment after being on tamoxifen would pro-
vide a better (or worse) clinical outcome [5]. The women were followed for a maxi-
mum of 3 years or until they had an event (prior to 3 years). An event was defined as 
a recurrence of the initial breast cancer, a new breast cancer in the opposite breast, 
or death. The results are shown in Table 14.13.

	 Table 14.13 	 Time course of events by treatment group in a breast-cancer trial among women 	
who have been treated with tamoxifen for at least 2 years

Exemestane group

Year	 Number of events	 Number censored	 Number survived	 Total

1	 52	 420	 1696	 2168
2	 60	 879	 757	 1696
3	 44	 713	 0	 757

Tamoxifen group

Year	 Number of events	 Number censored	 Number survived	 Total

1	 78	 413	 1682	 2173
2	 90	 862	 730	 1682
3	 76	 654	 0	 730

	 (a)	 Obtain the Kaplan-Meier survival curve for each group, and plot the curves on 
the same graph.

	 (b)	 Does one group seem to be doing better than the other? Explain.

	 (c)	 Provide a 95% CI for the survival probability at 3 years for each group.
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	 14.10	 T h e  L o g - R a n k  T e s t

In this section, we consider how to compare the two survival curves in Figure 14.5 (on 
page 812) for the smoking-cessation data. We could compare survival at specific time 
points. However, we usually gain power if we consider the entire survival curve. We 
could also compare the mean survival time between groups. However, survival time 
distributions are often highly skewed and it isn’t clear how to treat censored observa-
tions in computing mean survival time. Suppose we want to compare the survival ex-
perience of two groups, the exposed and unexposed groups. Let h1(t) = hazard at time 
t for participants in the exposed group, and h2(t) = hazard at time t for participants in 
the unexposed group. We assume the hazard ratio is a constant = exp(β) over time, i.e.,

	 Equation 14.33 	 h t h t1 2( ) ( ) = ( )exp β

Note that the hazard function in each group can vary over time, but the hazard 
ratio is assumed to be constant.

We want to test the hypothesis H0: β = 0 vs. H1: β ≠ 0. If β = 0, then the survival 
curves of the two groups are the same. If β > 0, then exposed participants are con-
sistently at greater risk for disease than unexposed participants, or equivalently, 
the survival probability of the exposed group is less than that of the unexposed 
group at each time t. If β < 0, then the exposed participants are at lower risk than 
the unexposed participants and their survival probabilities are greater than those 
of the unexposed participants. This is a similar hypothesis-testing situation to that 
in Equation 14.8, where we were interested in comparing two incidence rates. The 
difference is that in Equation 14.8 we assumed the incidence rate for a group was 
constant over time, whereas in Equation 14.33 we let the hazard rate for each group 
vary over time but maintain a constant hazard ratio at each time t.

Consider the data in Table 14.11 (on page 809). These data could be analyzed in 
terms of cumulative incidence over 1 year; that is, the percentage of older vs. younger 
ex-smokers who were successful quitters for 1 year could be compared. However, if 
incidence changes greatly over the year this is not as powerful as the log-rank test 
described later in Equation 14.34. Using this procedure, when an event occurs (in this 
case the event is recidivism) rather than simply whether it occurs is taken into account.

To implement this procedure, the total period of follow-up is subdivided into 
shorter time periods over which incidence is relatively constant. In Example 14.26 
(on page 809), the ideal situation would be to subdivide the 1-year interval into 365 
daily time intervals. However, to illustrate the method time has been subdivided 
into 3-month intervals. For each time interval, the number of people who have been 
successful quitters up to the beginning of the interval are identified. These people 
are at risk for recidivism during this time interval. This group is then categorized ac-
cording to whether they remained successful quitters or became recidivists during 
the time interval. For each time interval, the data are displayed as a 2 × 2 contin-
gency table relating age to incidence of recidivism over the time interval.

	 Example 14.34 	 Health Promotion  Display the smoking-cessation data in Table 14.11 in the form of 
incidence rates by age for each of the four time intervals, 0−90 days, 91−180 days, 
181−270 days, and 271−365 days.

	 	 Solution:  For the first time interval, 0−90 days, 120 older smokers were successful 
quitters at time 0, of whom 92 became recidivists during the 0- to 90-day period; 
similarly, of 114 younger smokers, 88 became recidivists during this time period. 

See page 783 for  
Equation 14.8
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These data are shown in a 2 × 2 contingency table in Table 14.14. For the second 
time period, 91−180 days, 28 older smokers remained successful quitters at day 90, 
of whom 4 became recidivists during the period from day 91 to day 180; similarly, 
26 younger smokers remained successful quitters at 90 days, of whom 7 became 
recidivists from day 91 to day 180. Thus, the second 2 × 2 contingency table would 
look like Table 14.15. Similarly, 2 × 2 contingency tables for the time periods 181−270 
days and 271−365 days can be developed, as in Tables 14.16 and 14.17, respectively.

	 Table 14.14 	 Incidence rates by age for the 0- to 90-day period

	 Outcome

		  Successful 
Age	 Recidivist	 quitter	 Total

>40	 92	 28	 120

≤40	 88	 26	 114

Total	 180	 54	 234

	 Table 14.15 	 Incidence rates by age for the 91- to 180-day period

	 Outcome

		  Successful  
Age	 Recidivist	 quitter	 Total

>40	 4	 24	 28

≤40	 7	 19	 26

Total	 11	 43	 54

	 Table 14.16 	 Incidence rates by age for the 181- to 270-day period

	 Outcome

		  Successful  
Age	 Recidivist	 quitter	 Total

>40	 4	 20	 24

≤40	 3	 16	 19

Total	 7	 36	 43

	 Table 14.17 	 Incidence rates by age for the 271- to 365-day period

	 Outcome	

		  Successful  
Age	 Recidivist	 quitter	 Total

>40	 1	 19	 20

≤40	 2	 14	 16

Total	 3	 33	 36

If age has no association with recidivism, then the incidence rate for recidivism 
for older and younger smokers within each of the four time intervals should be the 
same. Conversely, if it is harder for older smokers than younger smokers to remain 
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quitters, then the incidence rate of recidivism should be consistently higher for 
older smokers within each of the four time intervals considered. Note that incidence 
is allowed to vary over different time intervals under either hypothesis. To accumu-
late evidence over the entire period of follow-up, the Mantel-Haenszel procedure 
in Equation 13.16, based on the 2 × 2 tables in Tables 14.14 to 14.17, is used. This 
procedure is called the log-rank test and is summarized as follows.

	 Equation 14.34 	 	 The Log-Rank Test 
	 	 	 To compare incidence rates for an event between two exposure groups, where 

incidence varies over the period of follow-up (T ), use the following procedure:

(1)	 Subdivide T into k smaller time intervals, over which incidence is homo-
geneous.

(2)	 Compute a 2 × 2 contingency table corresponding to each time interval 
relating incidence over the time interval to exposure status (+/−). Consider 
censored subjects at a particular time as having a slightly longer follow-up 
time than subjects who fail at a given time. The ith table is displayed in 
Table 14.18,

		  where ni1 = �the number of exposed people who have not yet had the event 
at the beginning of the ith time interval and were not censored 
at the beginning of the interval

ni2 = �the number of unexposed people who have not yet had the 
event at the beginning of the ith time interval and were not 
censored at the beginning of the interval

ai = �the number of exposed people who had an event during the ith 
time interval

bi = �the number of exposed people who did not have an event dur-
ing the ith time interval

		  and ci, di are defined similarly for unexposed people.

(3)	 Perform the Mantel-Haenszel test over the collection of 2 × 2 tables defined 
in step 2. Specifically, compute the test statistic
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		  which under H0 follows a chi-square distribution with one df.

(4)	 For a two-sided test with significance level α, 
		  if XLR

2
1 1
2> −χ α, , then reject H0. 

		  If XLR
2

1 1
2≤ −χ α, , then accept H0.

See page 660 for  
Equation 13.16

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



822              C H A P T E R  14      Hypothesis Testing: Person-Time Data

(5)	 The exact p-value for this test is given by
		      

p XLR-value 1
2= >( )Pr χ 2

(6)	 This test should be used only if VarLR ≥ 5.

The acceptance and rejection regions for the log-rank test are shown in  
Figure 14.6. Computation of the exact p-value is given in Figure 14.7.

	 Table 14.18 	 Relationship of disease incidence to exposure 	
status over the ith time interval

	 Event

Exposure	 +	 –	 Total

+	 ai	 bi	 ni1

–	 ci	 di	 ni2

Total	 ai + ci	 bi + di	 ni

0 Value

Fr
eq

u
en

cy

χ1 distribution2

XLR =2 (|O – E| – .5)2

VarLR

22

22XLR > χ1, 1 – α
Rejection region

2χ1, 1 – α

XLR ≤ χ1, 1 – α
Acceptance region

	 Figure 14.6 	 Acceptance and rejection regions for the log-rank test
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XLR =2 (|O – E| – .5)2

VarLR

p

2XLR

	 Figure 14.7 	 Computation of the p-value for the log-rank test
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	 Example 14.35 	 Health Promotion  Evaluate the statistical significance of the possible association  
between age and incidence of recidivism based on the smoking cessation data in 
Table 14.11 (on page 809).

	 	 Solution:  Refer to the four 2 × 2 tables (Tables 14.14−14.17, on page 820) developed 
in Example 14.34 (on page 819). We have

		    

O

E

= + + + =

= × + × + × +

92 4 4 1 101

120 180
234

28 11
54

24 7
43

200 3
36

92 308 5 704 3 907 1 667 103 585
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= + + + =. . . . .
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+ × × ×120 114 180 54
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28 26 11 43
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+ × × ×
×

+ × × ×

53

24 19 7 36
43 42

20 16 3 33
2 336 35

10 422 2 228 1 480 0 698 14

2 ×

= + + + =. . . . ..829

Because VarLR ≥ 5, the log-rank test can be used. The test statistic is given by

		  XLR
2

2 2101 103 585 5
14 829

2 085
14 829

0=
− −( )

= =
. .

.
.
.

..29 1
2

0∼ χ under H

Because χ1 95
2 3 84 0 29,. . .= > , it follows that the p-value > .05, and there is no signifi-

cant difference in recidivism rates between younger and older smokers.

The data set in Table 14.11 did not have any censored data; that is, all par-
ticipants were followed until either 1 year had elapsed or they resumed smoking, 
whichever occurred first. However, the log-rank test can also be used if censored 
data are present. Here, for the year i table, Si = number of participants who survived 
to time ti and li = number of participants who were censored at time ti and did not 
fail are combined into one group, because they all survived from time tt−1 to time ti.

	 Example 14.36 	 Ophthalmology  Compare the survival curves for participants receiving 15,000 
IU of vitamin A vs. participants receiving 75 IU of vitamin A, given the data in 
Table 14.12 (on page 815).

	 	 Solution:  We have 6 contingency tables corresponding to years 1, 2, 3, 4, 5, and 6:

	 	 Year 1

Vitamin A dose	 Fail	 Survive	 Total

15,000 IU	 3	 169	 172

75 IU	 8	 174	 182

	 11	 343	 354

	 	 Year 2

Vitamin A dose	 Fail	 Survive	 Total

15,000 IU	 6	 159	 165

75 IU	 13	 161	 174

	 19	 320	 339
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	 	 Year 3

Vitamin A dose	 Fail	 Survive	 Total

15,000 IU	 15	 144	 159

75 IU	 21	 137	 158

	 36	 281	 317

	 	 Year 4

Vitamin A dose	 Fail	 Survive	 Total

15,000 IU	 21	 122	 143

75 IU	 21	 114	 135

	 42	 236	 278

	 	 Year 5

Vitamin A dose	 Fail	 Survive	 Total

15,000 IU	 15	 81	 96

75 IU	 13	 73	 86

	 28	 154	 182

	 	 Year 6

Vitamin A dose	 Fail	 Survive	 Total

15,000 IU	 5	 41	 46

75 IU	 13	 29	 42

	 18	 70	 88

We use the sts test command of Stata to analyze the data as shown below, where 
group = 1 is the 15,000 IU/day group and group = 0 is the 75 IU/day group.

. sts test group

     failure _d: fail
analysis time t: time
         weight: [fweight=freq]

Log-rank test for equality of survivor functions
---------------------------------------------------

  .    |     Events            Events
group  |    observed          expected
-------+------------------------------
0      |          89             75.57
1      |             65             78.43
-------+------------------------------
Total  |         154            154.00

                     chi2 (1} =   5.36
                      Pr>chi2 = 0.0206
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We see that there are fewer events expected in the 15,000 IU per day group and that 
the chi-square statistic = 5.36, p = 0.021.

Note that the sts test command does not use a continuity correction. Thus, the 
test statistic is

		  X
O E
VarLR

LR
,

( )
uncorrected

2
2

= −

as opposed to

		  X
O E

VarLR
LR

2
25= − −(| | . )

given in Equation 14.34. In this example, XLR
2 = 4.97, with p-value = .026. The Wil-

coxon and likelihood ratio (LR) procedures are other approaches for comparing 
survival curves. These approaches are not discussed in this text because the log-rank 
test is more widely used. The Stata sts test command can also provide survival prob-
abilities by treatment group similar to Table 14.12 (on page 815).

Therefore, there is a significant difference between the survival curves of the two 
groups. Because O = observed number of events in the 15,000 IU group = 65 < E = 
expected number of events in the 15,000 IU group = 78.43, it follows that the 15,000 
IU group had a better survival experience than the 75 IU group. Stated another way, 
there were significantly fewer failures in the 15,000 IU group than in the 75 IU group.

In this section, we have presented the log-rank test, which is a procedure for 
comparing survival curves from two independent samples. It is similar to the 
Mantel-Haenszel test and can be used to compare survival curves with and without 
censored data. It allows one to compare the entire survival curve, which provides 
more power than focusing on survival at specific points in time.

On the flowchart (Figure 14.15, p. 857), we answer yes to (1) person-time data? 
and no to (2) one-sample problem? and (3) incidence rates remain constant over 
time? This path leads to the box labeled “Use survival-analysis methods.” We then 
answer yes to (4) interested in comparison of survival curves of two groups with lim-
ited control of covariates? This leads to the box labeled “Use log-rank test.”

RE  V IE  W  QUESTIONS          1 4 G

1	 (a)  What is the log-rank test?

	 (b)	 How does it differ from comparing survival curves between two groups at 
specific points in time?

2	 Refer to the data in Review Question 14F.3, on page 818.

	 (a)	 Use the log-rank test to compare the survival experience of the exemestane 
group vs. the tamoxifen group. Report a two-tailed p-value.

	 (b)	 What is your overall interpretation of the results?

	 14.11	 T h e  P r o p o r t i o n a l - H a z a r d s  M o d e l

The log-rank test is a very powerful method for analyzing data when the time to an 
event is important rather than simply whether or not the event occurs. The test can 
be used if variable periods of follow-up are available for each individual and/or if 
some data are censored. It can also be extended to allow one to look at the relation-
ship between survival and a single primary exposure variable, while controlling for 

See page 821 for  
Equation 14.34
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the effects of one or more other covariate(s). This can be accomplished by stratify-
ing the data according to the levels of the other covariates; computing the observed 
number, expected number, and variance of the number of failures in each stratum; 
summing the respective values over all strata; and using the same test statistic as 
in Equation 14.34. However, if there are many strata and/or if there are several risk 
factors of interest, a more convenient approach is to use a method of regression 
analysis for survival data.

Many different models can be used to relate survival to a collection of other risk 
factors. One of the most frequently used models, first proposed by D. R. Cox [6], is 
called a proportional-hazards model.

	 Equation 14.35 	 	 Proportional-Hazards Model 
	 	 	 Under a proportional-hazards model, the hazard h(t) is modeled as

		  h t h t x xk k( ) ( )exp( . . . )= + +0 1 1β β

where x1, . . . , xk are a collection of independent variables, and h0(t) is the baseline 
hazard at time t, representing the hazard for a person with the value 0 for all 
the independent variables. The hypothesis H0: βj = 0 vs. H1: βj ≠ 0 can be tested 
as follows:

(1)	 Compute the test statistic z sej j= ˆ (ˆ )β β .

(2)	 To conduct a two-sided level α significance test,

		  if  z < zα/2 or z > z1−α/2, then reject H0;

		  if  zα/2 ≤ z ≤ z1−α/2, then accept H0.

(3)	 The exact p-value is given by

		      

2 1 0
2 0
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By dividing both sides of Equation 14.35 by h0(t) and taking logarithms, a propor-
tional-hazards model can be written in the form

		  ln
( )
( )

. . .h t
h t

x xk k
0

1 1








 = + +β β

This representation lets us interpret the coefficients of a proportional-hazards model 
in a similar manner to that of a multiple logistic-regression model. In particular, if xj 
is a dichotomous independent variable, then the following principle applies.

	 Equation 14.36 	 	 Estimation of the Hazard Ratio for Dichotomous Independent Variables in 
Proportional-Hazards Models 

	 	 	 Suppose we have a dichotomous independent variable (xj) that is coded as 1 if 
present and 0 if absent. For the proportional-hazards model in Equation 14.35 
the quantity exp(βj) represents the ratio of hazards for two people, one with the 
risk factor present and the other with the risk factor absent, given that both 
people have the same values for all other covariates. The hazard ratio or relative 
hazard can be interpreted as the instantaneous relative risk of an event per unit 
time for a person with the risk factor present compared with a person with the 

See page 821 for  
Equation 14.34
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risk factor absent, given that both individuals have survived to time t and are the 
same on all other covariates.

A two-sided 100% × (1 − α) CI for βj is given by ( , )e ec c1 2 , where
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j j
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2 1 2
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Similarly, if xj is a continuous independent variable, then the following interpre-
tation of the regression coefficient βj is used.

	 Equation 14.37 	 	 Estimation of the Hazard Ratio for Continuous Independent Variables in 
Proportional-Hazards Models 

	 	 	 Suppose there is a continuous independent variable (xj). Consider two people 
who differ by the quantity ∆ on the jth independent variable and are the same 
for all other independent variables. The quantity exp(βj ∆) represents the ratio of 
hazards between the two individuals. The hazard ratio can also be interpreted 
as the instantaneous relative risk of an event per unit time for an individual 
with risk-factor level xj + ∆ compared with someone with risk-factor level xj, 
given that both people have survived to time t and are the same for all other 
covariates.

A two-sided 100% × (1 − α) CI for βj ∆ is given by ( , )e ec c1 2  where

		    c z se

c z se

j j

j

1 1 2

2 1 2

= ∆ −

= ∆ +

−

−

[ˆ (ˆ )]

[ˆ (ˆ
/

/

β β

β β

α

α jj )]

Note that the hazard for a subject (h(t)) can vary over time, but the ratio of hazards 
between 2 subjects, one of whom has covariate values (x1, . . . , xk) and the other of 

whom has covariate values of 0 for all covariates is given by exp( β j j
j

k

x
=
∑

1

), which is 

the same for all t. The Cox proportional-hazards model can also be thought of as 
an extension of multiple logistic regression where the time when an event occurs is 
taken into account, rather than simply whether an event occurs.

	 Example 14.37 	 Health Promotion  Fit a proportional-hazards model to the smoking-cessation data 
in Example 14.26 (on page 809) using the risk factors sex and adjusted log(CO 
concentration), which is an index of inhalation of smoking prior to quitting. Assess 
the statistical significance of the results, and interpret the regression coefficients.

	 	 Solution:  The SAS PHREG (Proportional Hazards Regression model) procedure has 
been used to fit the Cox model to the smoking-cessation data. For ease of interpreta-
tion, sex was recoded as (1 = male, 0 = female) from the original coding of (1 = male, 
2 = female). For this example, the actual time of starting smoking was used as the 
“survival time” based on the raw data in Data Set SMOKE.DAT, at www.cengagebrain 
.com, rather than on the grouped data given in Table 14.11 (on page 809). The results 
are given in Table 14.19.

 Data set available
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	 Table 14.19 	 Proportional-hazards model fitted to the smoking-cessation data in SMOKE.DAT

	 Regression coefficient	 Standard error	 z 

Risk factor	 ( β
^

i )	 se( β
^

i )	 [β
^

i /se ( β
^

i )]

log10 CO (adjusted)a	 0.833	 0.350	 2.380
Sex (1 = M, 0 = F)	 –0.117	 0.135	 –0.867

aThis variable represents CO values adjusted for minutes elapsed since last cigarette smoked prior to quitting.

To assess the significance of each regression coefficient, compute the test statistic 
given in Equation 14.35 as follows:

		

z

p

(log ) . . .

(log ) [
10

10

0 833 0 350 2 380

2 1

CO

CO

= =
= × − ΦΦ( . )] ( . ) .

( ) . .

2 380 2 1 9913 017

0 117 0 1

= × − =
= −z sex 335 0 867

2 0 867 2 1 0 867
= −

= × − = × −
.

( ) ( . ) [ ( . )]p sex Φ Φ == × − =2 1 8069 386( . ) .

Thus, there is a significant effect of CO concentration on the hazard or risk of recidi-
vism (i.e., propensity to start smoking again), with the higher the CO concentration, 
the higher the hazard (risk of recidivism). Based on these data, there is no significant 
effect of sex on the risk of recidivism.

The effect of CO can be quantified in terms of relative risk. Specifically, if two 
people of the same sex who differ by one unit on adjusted log10CO are considered 
(i.e., who differ by 10-fold in CO concentration), then the instantaneous relative risk 
of recidivism for a person with adjusted log10CO = xj + 1 (person A) compared with a 
person with adjusted log10CO = xj (person B) is given by

		
RR = =exp( . ) .0 833 2 30

Thus, given that person A and person B have not started smoking up to time t, 
person A is 2.3 times as likely to start smoking over a short period of time as person B.

The Cox proportional-hazards model can also be used with censored data.

	 Example 14.38 	 Ophthalmology  Use the Cox proportional-hazards model to compare the survival 
curves for subjects receiving a high dose (15,000 IU) vs. a low dose (75 IU) of vitamin 
A, based on the data in Table 14.12 (on page 815).

	 	 Solution:  We have used the SAS program PROC PHREG to compare the survival 
curves. In this case, there is only a single binary covariate x defined by

		  x =




1
0

if high dose A
if low dose A

The output from the program is given in Table 14.20. We see that subjects on 
15,000 IU of vitamin A (denoted by high_a) have a significantly lower hazard 
than subjects on 75 IU of vitamin A (p = .031, denoted by Pr > ChiSq). The haz-
ard ratio is estimated by e e

ˆ . .β = =−0 35173 0 703. Thus, the failure rate at any point 
in time is approximately 30% lower for patients on 15,000 IU of vitamin A than 
for patients on 75 IU of vitamin A. We can obtain 95% confidence limits for the 
hazard ratio by( , )e ec c1 2 , where
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		  c se

c

1 1 96 0 352 1 96 0 163 0 672= − = − − = −ˆ . (ˆ) . . ( . ) .β β

22 1 96 0 352 1 96 0 163 0 032= + = − + = −ˆ . (ˆ) . . ( . ) .β βse

Thus, the 95% CI = (e−0.672, e−0.032) = (0.51, 0.97). The estimated survival curve(s) by 
year (LENFL30) are given in the last column (labeled s) at the bottom of Table 
14.20 separately for the high-dose A group (high_a = 1) (rows 1–7) and the low-
dose A group (high_a = 0) (rows 8–14), and are plotted in Figure 14.8. It is esti-
mated that by year 6, 45% of subjects in the high-dose group (1 − .55) and 57% of 
subjects in the low-dose group (1 − .43) will have failed; that is, their ERG amplitude 
will have declined by at least 50%.

If there are no ties—that is, if all subjects have a unique failure time—then the 
Cox proportional-hazards model with a single binary covariate and the log-rank 
test provide very similar results. There are several different methods for handling 
ties with the Cox proportional-hazards model; in general, in the presence of ties, 
the Cox proportional-hazards model and the log-rank test do not yield the same 
p-values, particularly in data sets with many tied observations, as in Table 14.20. 
Similarly, if there are many ties, then the survival curve estimated using the propor-
tional-hazards model will not be exactly the same as that obtained from the Kaplan-
Meier product-limit method. However, in this example the p-value  from the Cox 
proportional-hazards model (see Table 14.20, p = 0.031) is similar to the p-value from 
the log-rank test (page 825, p = 0.026).

	 Table 14.20 	 Cox proportional-hazards model run on the RP data set in Table 14.12 (on page 815)

The PHREG Procedure

Model Information

Data Set:	 WORK.TIMES2

Dependent Variable:	 LENFL30

Censoring Variable:	 FAIL30

Censoring Value(s):	 0

Ties Handling:	 BRESLON

Number of Observations Read	 354

Number of Observations Used	 354

Summary of the Number of

Event and Censored Values

                                                  Percent

             Total      Event      Censored      Censored

               354        154           200         56.50

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied

Model Fit Statistics

	 Without	 With 
Criterion	 Covariates	 Covariates

-2 LOG L	 1690.482	 1685.777

AIC	 1690.482	 1687.777

SBC	 1690.482	 1690.814 (continued )
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	 Example 14.39 	 Ophthalmology  The Cox proportional-hazards model can also be used to control 
for the effects of other covariates as well as for the other treatment (denoted by 
high_e), which is defined by

		  HIGH_E
1 if patient received400 IUof vitaminE daily

0 if patient received3IUof vitaminE daily
=







The other covariates considered were

		  agebas = age at the baseline visit − 30 (in years)

		  SEX
1 if male

0 if female
=







		  er30oucn = ln(ERG 30 Hz amplitude at baseline) − 0.215

		  blretlcn = baseline serum retinol − 50.0 (vitamin A) (µg/dL)

		  blvitecn = baseline serum alpha-tocopherol − 0.92 (vitamin E) (mg/dL)

	 Table 14.20 	 Cox proportional-hazards model run on the RP data set in Table 14.12 (on page 815) 
(Continued )

Testing Global Null Hypothesis: BETA=0

Test	 Chi-Square	 DF	 Pr > ChiSq

Likelihood Ratio	 4.7053	 1	 0.0301

Score	 4.6915	 1	 0.0303

Wald	 4.6436	 1	 0.0312

Analysis of Maximum Likelihood Estimates

                Parameter   Standard                              Hazard

Parameter  DF     Estimate      Error   Chi-Square    Pr > ChiSq    Ratio

high_a     1     -0.35173    0.16322       4.6436        0.0312    0.703

The SAS System

	Obs	 ID	 FAIL30	 HIGH_A	 hi	 low	 LENFL30	 s

	 1	 0006	 0	 1	 0	 0	 0	 1.00000

	 2	 0006	 0	 1	 0	 0	 1	 0.97478

	 3	 0006	 0	 1	 0	 0	 2	 0.93089

	 4	 0006	 0	 1	 0	 0	 3	 0.84750

	 5	 0006	 0	 1	 0	 0	 4	 0.74761

	 6	 0006	 0	 1	 0	 0	 5	 0.65760

	 7	 0006	 0	 1	 0	 0	 6	 0.55463

	 8	 0018	 0	 0	 1	 0	 0	 1.00000

	 9	 0018	 0	 0	 1	 0	 1	 0.96435

	10	 0018	 0	 0	 1	 0	 2	 0.90321

	11	 0018	 0	 0	 1	 0	 3	 0.79040

	12	 0018	 0	 0	 1	 0	 4	 0.66134

	13	 0018	 0	 0	 1	 0	 5	 0.55109

	14	 0018	 0	 0	 1	 0	 6	 0.43261
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		  dretincn = dietary intake of retinol at baseline − 3624 (vitamin A) (IU)

		  dvtmnecn = dietary intake of alpha-tocopherol at baseline − 11.89  
(vitamin E) (IU) 

The mean value was subtracted from each covariate so as to minimize the time to 
convergence of the iterative algorithm used to fit Cox regression methods. The re-
sults are given in Table 14.21.

We see there are significant effects of both treatments but in opposite directions. 
The estimated hazard ratio for subjects given 15,000 IU of vitamin A vs. subjects 
given 75 IU of vitamin A was 0.70 (p = .032), whereas the estimated hazard ratio 
for subjects given 400 IU of vitamin E vs. subjects given 3 IU of vitamin E was 1.45  
(p = .024). Thus, vitamin A has a significant protective effect and vitamin E has a 
significant harmful effect even after controlling for other baseline risk factors. Sub-
jects given high-dose vitamin A were about a third less likely to fail than subjects 
given low-dose vitamin A, whereas subjects given high-dose vitamin E were about 
50% more likely to fail than subjects given low-dose vitamin E. None of the other 
baseline covariates were statistically significant, although baseline serum retinol was 
the closest to being significant (p = .09), with subjects with a high serum retinol be-
ing less likely to fail. 

	 Figure 14.8 	 Survival curve for patients receiving 15,000 IU of vitamin A (high_A = 1) and 75 IU 	
of vitamin A (high_A = 0)
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	 Table 14.21 	 Effects of treatments administered in RP clinical trial, while controlling for the effects 
of other baseline covariates using the SAS PHREG procedure

The PHREG Procedure

Model Information

Data Set:	 WORK.TIMES2

Dependent Variable:	 lenfl30

Censoring Variable:	 fail30

Censoring Value(s):	 0

Ties Handling:	 BRESLOW

Number of Observations Read	 354

Number of Observations Used	 354

Summary of the Number of

Event and Censored Values

                                                  Percent

             Total      Event      Censored      Censored

               354        154           200         56.50

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

	 Without	 With 
Criterion	 Covariates	 Covariates

-2 LOG L	 1690.482	 1672.718

AIC	 1690.482	 1690.718

SBC	 1690.482	 1718.051

Testing Global Null Hypothesis: BETA=0

Test	 Chi-Square	 DF	 Pr > Chi-Sq

Likelihood Ratio	 17.7640	 9	 0.0380

Score	 17.1355	 9	 0.0466

Wald	 16.9629	 9	 0.0493

Analysis of Maximum Likelihood Estimates

              	  Parameter    Standard                              Hazard

Variable  DF     Estimate       Error   Chi-Square   Pr > Chi-Sq    Ratio

agebas     1     –0.00560     0.01108       0.2552       0.6135     0.994

sex        1     –0.03554     0.17413       0.0417       0.8363     0.965

er30oucn   1     –0.09245     0.07333       1.5895       0.2074     0.912

blretlcn   1     –0.01599     0.00953       2.8178       0.0932     0.984

blvitecn   1      0.44933     0.43161       1.0838       0.2978     1.567

dretincn   1   –0.0000443   0.0000479       0.8562       0.3548     1.000

dvtmnecn   1     –0.01103     0.01404       0.6180       0.4318     0.989

high_a     1     –0.35307     0.16473       4.5939       0.0321     0.703

high_e     1      0.37258     0.16534       5.0781       0.0242     1.451
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Testing the Assumptions of the Cox  
Proportional-Hazards Model
In this section, we have been introduced to the Cox proportional-hazards model. 
This technique is analogous to multiple logistic regression and lets us estimate the 
hazard ratio of a primary exposure variable while controlling for the effects of other 
covariates. An important assumption of this method is that the hazard ratio of the 
primary exposure (and also of any other covariates in the model) remains constant 
over time. This assumption can be tested by introducing a cross-product term of a 
specific variable of interest (x) by time (t) into the model and testing for statistical 
significance, and is considered below.

	 Example 14.40 	 Cardiovascular Disease  The Physicians’ Health Study was a randomized trial among 
22,071 male U.S. physicians that simultaneously tested the efficacy of 325 mg of as-
pirin (ASA, or acetylsalicylic acid) taken every other day to prevent coronary heart 
disease and 50 mg of beta-carotene taken every day to prevent cancer using a 2 × 2 
factorial design, where subjects were randomized to four groups (1 = ASA active and  
beta-carotene placebo; 2 = ASA placebo and beta-carotene active; 3 = ASA active  
and beta-carotene active; 4 = ASA placebo and beta-carotene placebo). In addition, 
risk-factor information was collected at baseline to be used for subsequent risk pre-
diction. The following variables were used for risk prediction of myocardial infarction 
(MI), a type of coronary heart disease: age, body-mass index (BMI), current cigarette 
smoking, history of high blood pressure, history of high cholesterol, and history of 
diabetes. These variables were defined based on the baseline (1982) questionnaire.

A total of 18,662 participants in the study with complete covariate information 
were followed from 1982 through 2001, although the randomized aspirin compo-
nent of the study ended in 1990 and the randomized beta-carotene component 
ended in 1995. To be eligible for the study, participants could not have had a his-
tory of MI at baseline. However, 1215 participants developed an MI over the 20-year 
follow-up period. The issue is whether the baseline covariates have similar predictive 
power over the entire 20-year follow-up period.

	 	 Solution:  The fitted model is given in the first column of Table 14.22. We see there 
are significant effects of age, BMI, history of high blood pressure (hypertension), 
history of high cholesterol, history of diabetes, and current cigarette smoking (p < 
.001 for all covariates).

The model assumes the hazard ratio for the baseline covariates remains the same 
over the 20-year follow-up period. Because some variables may change over time, it 
would be prudent to test this assumption. For this purpose, a second model was fit, 
including terms of the form BMI × [ln(time) − 2.8], . . . , current cigarette smoking × 
[ln(time) − 2.8], in addition to the variables in the first column of Table 14.22, where 
time = follow-up time (yrs) from 1982 to time t. The Cox proportional-hazards model 
allows for “time-dependent covariates,” which means the values of the variables are al-
lowed to change over time. Thus, a variable such as BMI × [ln(time) − 2.8] is an exam-
ple of a time-dependent covariate because its value changes over the follow-up period. 
The results from fitting this model are given in the second column of Table 14.22.

We see there are several violations of the proportional-hazards assumption. 
Specifically, the terms high cholesterol × [ln(time) − 2.8] (p = .015) and history of 
diabetes × [ln(time) − 2.8] (p = .022) are statistically significant. The estimated relative 
risks for each of these variables are less than 1, which implies that the effects of high 
cholesterol and diabetes as reported at baseline are much stronger at the beginning 
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of the study and weaker toward the end of the study, possibly because the risk-factor 
status of the men changed over time or because the effects of these variables are 
weaker for older men.

If a violation of the proportional-hazards assumption is found, then the pru-
dent approach is to present separate analyses for different periods of time (e.g., first 
10 years, last 10 years), and/or to consider updating the risk factors, if possible, so 
that a man’s risk-factor status could be allowed to change over time. For this pur-
pose, a Cox proportional-hazards model using baseline covariates was fit separately 
for follow-up time during the first 10 years of the study (1982−1991) and during 
the last 10 years of the study (1992−2001). The results are shown in Table 14.23. 
We see that the effects of high cholesterol and diabetes are much stronger in the 
first 10 years than in the last 10 years of the study. Hypertension showed a similar 
trend in Table 14.23, which is consistent with the nonsignificant inverse RR of 
hypertension × [ln(time) − 2.8] in Table 14.22. Age, BMI, and current smoking seem 
to behave similarly in the two time periods.

Table 14.22 	 �Hazard ratio of MI among 18,662 participants in the Physicians’ 	
Health Study; 1,215 developed MI over a median follow-up of 20.1 years

	 Model without time interactions	 Model with time interactions

Variable	 Hazard ratio	 (95% CI)	   p-value	 Hazard ratio	 (95% CI )	   p-value

Age, per year	 1.05	 (1.04–1.06)	 <.001	 1.05a	 (1.04–1.05)	 <.001
BMI, per 1 kg/m2	 1.06 	 (1.04–1.08)	 <.001	 1.06a 	 (1.03–1.09)	 <.001
Hypertension	 1.55 	 (1.37–1.75)	 <.001	 1.43a 	 (1.22–1.68)	 <.001
High cholesterol	 1.39 	 (1.20–1.61) 	 <.001	 1.19a 	 (0.98–1.46)	 .079
Diabetes mellitus	 2.00 	 (1.57–2.55) 	 <.001	 1.51a	 (1.05–2.15)	 .024
Current smoking	 1.72 	 (1.47–2.01)	 <.001	 1.74a	 (1.42-2.14)	 <.001
Age × In(time)b	 —			   0.996c	 (0.99–1.00)	 .16
BMI × In(time)b	 —			   0.999c 	 (0.98–1.02)	 .89
Hptnd × In(time)b	 —			   0.92c	 (0.82–1.04)	 .17
Chold × In(time)b	 —			   0.85c	 (0.74–0.97)	 .015
DMd × In(time)b	 —			   0.80c	 (0.66–0.97)	 .022
Smoking × In(time)b	 —			   1.02c	 (0.87–1.19)	 .84

aRelative risk for this variable at the geometric mean follow-up time (16.4 years).
bIn these interactions, In(time) is centered at its mean value of 2.8 ln(years).
cChange in effects of this variable per unit increase in ln(time).
dHptn = hypertension; Chol = high cholesterol; DM = diabetes mellitus.

Table 14.23 	 �Hazard ratio of MI in the Physicians’ Health Study according to baseline risk factors stratified by 
time; 629 MIs in the first 10 years of follow-up and 586 MIs after 10 years

	 629 events in the first 10 years	 586 events after 10 years

Variable	 Hazard ratio	 (95% CI)	   p-value	 Hazard ratio	 (95% CI)	   p-value

Age, per year	 1.05	 (1.05–1.06)	 <.001	 1.04	 (1.04–1.05)	 <.001
BMI, per 1 kg/m2	 1.06	 (1.03–1.08)	 <.001	 1.06	 (1.04–1.09)	 <.001
Hypertension	 1.69	 (1.43–2.00)	 <.001	 1.39	 (1.16–1.66)	 <.001
High cholesterol	 1.56	 (1.29–1.90)	 <.001	 1.21	 (0.97–1.52)	 .093
Diabetes mellitus	 2.17	 (1.62–2.93)	 <.001	 1.67	 (1.09–2.56)	 .020
Current smoking	 1.69	 (1.36–2.09)	 <.001	 1.75	 (1.39–2.20)	 <.001
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On the flowchart (Figure 14.15, p. 857), we answer yes to (1) person-time data? and 
no to each of (2) one-sample problem? and (3) incidence rates remain constant over 
time? which leads to the box labeled “Use survival-analysis methods.” We then answer 
no to (4) interested in comparison of survival curves of two groups with limited control 
of covariates? which leads to (5) interested in effects of several risk factors on survival. 
We then answer no to (6) willing to assume survival curve comes from a Weibull distri-
bution. This leads us to the box labeled “Use Cox proportional-hazards model.”

In the next section, we consider methods of power and sample-size estimation 
for proportional-hazards models.

RE  V IE  W  QUESTIONS          1 4 H

1	 What is the difference between the Cox proportional-hazards model and a multiple- 
logistic-regression model? When do we use each?

2	 When do we use the Cox proportional-hazards model, and when do we use the 
log-rank test?

3	 (a)  What does the term proportional hazards mean?

	 (b)	 How can we check whether the proportional-hazards assumption is correct?

4	 Suppose we are studying the effect of current smoking on the incidence of lung 
cancer. We fit a Cox proportional-hazards model with age, sex, and current smok-
ing as covariates. Suppose the regression coefficient for current smoking = 2.5 with  
se = 1.0. What does the regression coefficient of 2.5 mean? (Hint: Interpret the results 
in terms of an estimated-hazard ratio for current smoking and an associated 95% CI.)

	 14.12	 P o w e r  a n d  S a mp  l e - S i z e  E s t i m at i o n  u n d e r 

t h e  P r o p o r t i o n a l - H a z a r d s  M o d e l

Estimation of Power
	 Example 14.41 	 Ophthalmology  Suppose the investigators consider repeating the study described 

in Example 14.30 (on page 813) to be sure the protective effect of vitamin A was 
not a random occurrence. The study design of the new study would have only two 
vitamin A treatment groups, 15,000 IU per day and 75 IU per day. The investigators 
feel they can recruit 200 patients in each group who were not involved in the previ-
ous study. As in the previous study, the participants would be enrolled over a 2-year 
period and followed for a maximum of 6 years. How much power would the study 
have to detect an RR of 0.7, where the endpoint is a 50% decline in ERG 30 Hz am-
plitude comparing the 15,000 IU per day group with the 75 IU per day group?

Several methods have been proposed for estimation of power and sample size 
for clinical trials based on survival curves that satisfy the proportional-hazards  
assumption. We present the method of Freedman [7] because it is relatively easy to 
implement and has fared relatively well in comparative simulation studies [8]. The 
method is as follows.

	 Equation 14.38 	 	 Estimation of Power for the Comparison of Survival Curves Between Two Groups 
under the Cox Proportional-Hazards Model 

	 	 	 Suppose we want to compare the survival curves between an experimental group 
(E) and a control group (C) in a clinical trial with n1 participants in the E group 

R
 E

 V
 I 

E 
W
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and n2 participants in the C group, with a maximum follow-up of t years. We wish 
to test the hypothesis H0: IRR = 1 vs. H1: IRR ≠ 1, where IRR = underlying hazard 
ratio for the E group vs. the C group. We postulate a hazard ratio of IRR under H1 
and will conduct a two-sided test with significance level α. If the ratio of partici-
pants in group 1 compared with group 2 = n1/n2 = k, then the power of the test is

		    Power = −
+

−




−Φ km IRR

kIRR
z

1
1 1 2α

where

		        m = expected total number of events over both groups

		          = n1  pE + n2  pC

		    n1, n2 = number of participants in groups 1 and 2 (i.e., the E and C groups)

		        pC = �probability of failure in group C over the maximum time period of the 
study (t years)

		        pE = �probability of failure in group E over the maximum time period of the 
study (t years)

To calculate pC and pE, we let

(1)	 λi = Pr(failure at time i among participants in the C group, given that  
a participant has survived to time i − 1 and is not censored at time i − 1) = 
approximate hazard at time i in the C group, i = 1, . . . , t

(2)	 IRRλi = Pr(failure at time i among participants in the E group, given that  
a participant has survived to time i − 1 and is not censored at time i − 1) = 
approximate hazard at time i in the E group, i = 1, . . . , t

(3)	 δi = Pr(a participant is censored at time i given that they were followed up to 
time i and had not failed), i = 0, . . . , t, which is assumed the same in each 
group

It follows from (1), (2), and (3) that

		    ∑ ∑= λ ≡
= =

p A C DC i
i

t

i i i
i

t

1 1

		  
∑ ∑= λ ≡
= =

p IRR B C E( )E i
i

t

i i i
i

t

1 1

where
		  

Ai j
j

i

= −( )
=

−

∏ 1
1

1

λ

		    B IRRi j
j

i

= −( )
=

−

∏ 1
0

1

λ

		    Ci k
k

i

= −( )
=

−

∏ 1
0

1

δ

Note that the power formula in Equation 14.38 depends on the total number of 
events over both groups (m), as well as the rate ratio (IRR). Hence, if analysis of the 
data is based on the Cox proportional-hazards model

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



	 14.12      Power and Sample-Size Estimation under the Proportional-Hazards Model              837

		  λ λ βt t x( ) = ( ) ( )0 exp

where x = 1 if a subject is in group E and = 0 if a subject is in group C, then the power 
depends on m, which is a function of both the baseline hazard function λ0(t) (in this 
case, the hazard function for the control group), as well as the hazard function for 
the experimental group = λ0(t) exp(β) = λ0(t) IRR. The power formula also assumes 
that the central-limit theorem is valid and hence is appropriate for large samples.

	 Example 14.42 	 Ophthalmology  Compute the power for the study proposed in Example 14.41.

	 	 Solution:  We have IRR = 0.7, α = .05, z1−α/2 = z.975 = 1.96, k = 1, n1 = n2 = 200, t = 6. To 

compute pC and pE, we must obtain λi, IRRλi, and δi. We use the data in Table 14.12 

(on page 815).

In this example, the 75 IU per day group is group C and the 15,000 IU per day 
group is group E. Also, no participants are censored at year 0 (i.e., all participants 

were followed for at least 1 year). We have λ1 = 8/182 = 0.0440, λ2 = 13/174 = 0.0747, 

. . . , λ6 = 13/42 = 0.3095. Also, δ0 = 0, δ1 = 0, δ2 = 3/161 = .0186, . . . , δ5 = 31/73 = .4247, 
δ6 = 29/29 = 1.0. The computations are shown in Table 14.24.

	 Table 14.24 	 Calculation of pC and pE for Example 14.42

i	 λi	 IRR λi	 δi	 Ai	 Bi	 Ci	 Di	 Ei

0	 0.0	 0.0	 0.0	 —	 —	 —	 —	 —
1	 0.0440	 0.0308	 0.0	 1.0	 1.0	 1.0	 0.0440	 0.0308
2	 0.0747	 0.0523	 0.0186	 0.9560	 0.9692	 1.0	 0.0714	 0.0507
3	 0.1329	 0.0930	 0.0146	 0.8846	 0.9185	 0.9814	 0.1154	 0.0839
4	 0.1556	 0.1089	 0.2456	 0.7670	 0.8331	 0.9670	 0.1154	 0.0877
5	 0.1512	 0.1058	 0.4247	 0.6477	 0.7424	 0.7295	 0.0714	 0.0573
6	 0.3095	 0.2167	 1.0	 0.5498	 0.6638	 0.4197	 0.0714	 0.0604

Total							       0.4890	 0.3707

Thus, pC = .4890, pE = .3707, and m = 200(.4890 + .3707)  = 171.9. Finally,	

		

Power = −
+

−






=

Φ 171 9 0 7 1
0 7 1

1 96
. .
.

.

ΦΦ

Φ

13 11 0 3
1 7

1 96

2 314

. .
.

.

.

( ) −





= − 11 96

0 354 638

.

. .

( )
= ( ) =Φ

Thus, the study would have about 64% power.

Estimation of Sample Size
Similarly, we can ask the following question: How many participants are needed in 
each group to achieve a specified power of 1 − β? The sample size can be obtained by 
solving for m and as a result n1, n2 based on the power formula in Equation 14.38. 
The result is as follows.
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	 Equation 14.39 	 	 Sample-Size Estimation for the Comparison of Survival Curves Between Two 
Groups under the Cox Proportional-Hazards Model 

	 	 	 Suppose we wish to compare the survival curves between an experimental group 
(group E) and a control group (group C) in a clinical trial in which the ratio 
of participants in group E (n1) to group C (n2) is given by k and the maximum 
length of follow-up = t. We postulate a hazard ratio of IRR for group E compared 
with group C and wish to conduct a two-sided test with significance level α. The 
number of participants needed in each group to achieve a power of 1 − β is

		  
n

mk
kp p

n
m

kp pE EC C
1 2=

+
=

+
,

where

		  
m

k
kIRR
IRR

z z= +
−





 +( )− −

1 1
1

2

1 2 1
2

α β

and pE, pC are the probabilities of failure over time t in groups E and C, respec-

tively, given in Equation 14.38.

	 Example 14.43 	 Ophthalmology  Estimate the required number of participants needed in each group 
to achieve 80% power for the study proposed in Example 14.41.

	 	 Solution:  From Example 14.42 we have pE = .3707, pC = .4890, and k = 1. Also, from 
Equation 14.39 we have

		

m z z= 



 +( )

= +

1 7
0 3

32 11 1 96 0

2

975 80
2.

.

. . .

. .

884

32 11 7 84 251 8

2( )
= ( ) = events over both. . . groups combined

Thus,

		

n n1 2
251 8

3707 4890

251 8
8597

= =
+

=

.
. .

.
.

== 293 participants per group

Therefore, we need to recruit 293 participants in each group, or 586 participants in 
total, to achieve 80% power.

It may seem counterintuitive that we were able to achieve statistical significance 
based on the original study of 354 participants in total over both groups, and yet 
the sample-size requirement for the new study is about 50% larger. The reason is 
that the results from the original study were only borderline significant (p = .03). If 
the p-value was exactly .05, and we used the same effect size in the proposed new 
study, then we would achieve only 50% power. Our power was slightly larger (64%) 
because the p-value was somewhat smaller than .05. To achieve 80% power, we need 
a larger sample size to allow for random fluctuations around the true effect size in 
finite-sample clinical trials.

See page 835 for  
Equation 14.38
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The methods of power and sample-size estimation given in this section assume a 
proportional-hazards model relating the survival curves between the E and C groups. 
If the proportional-hazards assumption is not satisfied, then more complicated 
methods of power and sample-size estimation are needed. Other approaches for 
sample-size and power estimation are given in [8] and [9].

	 Example 14.44 	 Cancer  Apply the method of sample-size estimation in Equation 14.39 to the study 
proposed in Example 14.14 (on page 790). Compare the results with those obtained 
in Example 14.16 (on page 792) using Equation 14.16.

	 	 Solution:  We have IRR = 1.25, α = .05, β = .20, and k = 1. Thus,

		

m =
+( )
−( )

+( )

=

1 25 1

1 25 1
1 96 0 84

635 04

2

2
2.

.
. .

.

This is very similar to the required total number of events in Example 14.16 (633). 
To find the corresponding sample-size estimate in each group, we use the Kaplan-
Meier estimator to estimate pC and pE as follows:

		

p

p

C

E

= − − ×( )



 = − =

= −

−1 1 300 10 1 98509 01491

1

5 5
. .

11 375 10 1 98139 018615 5
− ×( )



 = − =− . .

Thus,

		
n n1 2

635 04
01861 01491

18 945= =
+

=.
. .

, participantss per group

or 37,890 participants in total, to have 80% power.

This is also very similar to the total sample size in Example 14.16 (37,834 par-
ticipants). Thus, although somewhat different approaches were used to derive these 
sample-size formulas, the results in this example are very similar, which gives confi-
dence in the validity of each approach.

	 14.13	 P a r a m e t r i c  S u r v i v a l  A n a ly s i s

	 Example 14.45 	 Cancer  A clinical trial to evaluate the efficacy of maintenance chemotherapy for 
leukemia patients was conducted [3]. 

After reaching remission through chemotherapy treatment, subjects were ran-
domized to 2 groups: 

(a)	 a maintenance chemotherapy group 

(b)	 control group

The primary goal of the study was to compare the survival experience of the 2 treat-
ment groups with survival defined as maintenance of remission. The preliminary 
data as of 10/74 are given in Table 14.25. How should the data be analyzed? 
In this example, survival is defined in terms of maintenance of remission. 

The estimated survival curves for each group based on the Kaplan-Meier estima-
tor are plotted in Figure 14.9. 

See page 792 for  
Equation 14.16
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	 Table 14.25 	 Length of complete remission (weeks) for leukemia treatment dataa 

Maintained group (n = 11)	 Non-maintained group (n = 12)

	 9 	 5 
	 13 	 5 
	 13+ 	 8 
	 18 	 8 
	 23 	 12 
	 28+ 	 16+ 
	 31 	 23 
	 34 	 27 
	 45+ 	 30 
	 48 	 33 
	161+ 	 43 
		  45 

a13+ weeks indicates a censored observation. The patient was in remission for 13 weeks and  
was not followed any further. 

	 Figure 14.9 	 Survival curves by treatment group in the leukemia treatment trial 
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Weeks (t)

Non-maintained group

Maintained group

500

0.2

0.4

0.8

0.6

1.0

S(t)ˆ

The maintained group appears to have a better survival profile since the prob-
ability of survival is higher for the maintained group than the control group at each 
point in time. Because the sample sizes are small, we will consider both parametric 
and nonparametric methods of analysis to maximize power. 

Weibull Survival Model 

	 Definition 14.9 	 The Weibull survival function is defined by 

		  S t e t( ) ( )= − λ γ

where λ and γ are > 0. 

The parameter γ is referred to as the shape parameter, and 1/λ is referred to as the 
scale parameter. The corresponding hazard function is given by 
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	 Equation 14.40 	 h(t) = λγ(λt)γ  −1

A plot of the hazard function for different values of γ holding λ fixed (at 1) is given 
in Figure 14.10 [10]. 

0

1

2

h(t)

γ = 4

γ = 2

γ = 1

γ = 0.5

1 2 3 t

	 Figure 14.10 	 Hazard functions of the Weibull distribution with λ = 1 

The hazard increases over time if γ > 1, decreases over time if γ < 1, and remains 
constant if γ = 1. If γ = 1, then the Weibull model is also called an exponential sur-
vival model.

Estimation of the Parameters of the Weibull Model 
The parameters of the Weibull model are estimated either by least squares or by 
maximum likelihood methods based on an iterative algorithm. 

The estimation methods take account of censoring and can be implemented 
with either right censored, left censored, or interval censored data. We will discuss 
only the right censored case here. 

We have used MINITAB to fit the Weibull model to the survival data for each 
treatment group in the leukemia recurrence example (Example 14.45). The results 
are shown in Table 14.26 together with the fitted percentiles and are displayed in 
Figure 14.11 (on page 845). 

	 Table 14.26 	 Estimation of the survival curve by treatment group for the data in Example 14.45 
using the MINITAB Weibull distribution program

Probability Plot for time

Distribution Analysis: time by group

Variable: time 
group = 1 (maintained group) (continued)
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	 Table 14.26 	 Estimation of the survival curve by treatment group for the data in Example 14.45 
using the MINITAB Weibull distribution program (Continued )

Censoring Information	 Count  
Uncensored value	 7  
Right censored value	 4

Censoring value: relapse = 0  
Estimation Method: Least Squares (failure time(X) on rank(Y))

Distribution: Weibull

	 	 Parameter Estimates

	 95.0% Normal CI

		  Standard 
Parameter	 Estimate	 Error	 Lower	 Upper

Shape	 1.78230	 0.236879	 1.37357	 2.31266
Scale 	 38.8114	 8.33681	 25.4753	 59.1289

Log-Likelihood =  −43.100 

Goodness-of-Fit

Anderson-Darling (adjusted) = 13.551  
Correlation Coefficient = 0.993 

	 	 Characteristics of Distribution

	 95.0% Normal CI

		  Standard 
	 Estimate	 Error	 Lower	 Upper

Mean (MTTF) 	 34.5316	 7.23079	 22.9075	 52.0541
Standard Deviation 	 20.0298	 2.75775	 15.2926	 26.2344
Median 		  31.5974	 7.49082	 19.8544	 50.2859
First Quartile (Q1) 	 19.2917	 5.67183	 10.8421	 34.3263
Third Quartile (Q3) 	 46.6177	 9.13894	 31.7454	 68.4574
Interquartile Range (IQR)	 27.3260	 3.96947	 20.5555	 36.3266

	 	 Table of Percentiles

	 95.0% Normal CI

		  Standard 
Percent	 Percentile	 Error	 Lower	 Upper

1	 2.93790	 1.55662	 1.04001	 8.29925
2	 4.34681	 2.08455	 1.69813	 11.1268
3	 5.47287	 2.46377	 2.26476	 13.2254
4	 6.45015	 2.76925	 2.78050	 14.9629
5	 7.33178	 3.02909	 3.26242	 16.4770
6	 8.14541	 3.25736	 3.71977	 17.8365
7	 8.90766	 3.46228	 4.15828	 19.0815

(continued)
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	 Table 14.26 	 Estimation of the survival curve by treatment group for the data in Example 14.45 
using the MINITAB Weibull distribution program (Continued )

	 95.0% Normal CI

		  Standard 
Percent	 Percentile	 Error	 Lower	 Upper

  8	 9.62945	 3.64908	 4.58183	 20.2378
  9	 10.3184	 3.82135	 4.99318	 21.3231
10	 10.9802	 3.98169	 5.39441	 22.3500
20	 16.7289	 5.20412	 9.09226	 30.7797
30	 21.7647	 6.08838	 12.5788	 37.6586
40	 26.6244	 6.82551	 16.1088	 44.0044
50	 31.5974	 7.49082	 19.8544	 50.2859
60	 36.9537	 8.13020	 24.0095	 56.8762
70	 43.0716	 8.78640	 28.8769	 64.2439
80	 50.6896	 9.52430	 35.0738	 73.2580
90	 61.9711	 10.5187	 44.4334	 86.4308
91	 63.5464	 10.6522	 45.7515	 88.2626
92	 65.2721	 10.7975	 47.1975	 90.2686
93	 67.1864	 10.9580	 48.8036	 92.4935
94	 69.3445	 11.1383	 50.6163	 95.0023
95	 71.8311	 11.3457	 52.7067	 97.8946
96	 74.7857	 11.5923	 55.1920	 101.335
97	 78.4653	 11.9012	 58.2870	 105.629
98	 83.4334	 12.3238	 62.4613	 111.447
99	 91.4300	 13.0249	 69.1558	 120.878

Distribution Analysis: time by group 

Variable: time 
group = 2 (control group)

Censoring Information Count  
Uncensored value      11  
Right censored value    1 

Censoring value: relapse = 0 
Estimation Method: Least Squares (failure time(X) on rank(Y))

Distribution: Weibull

	 	 Parameter Estimate

	 95.0% Normal CI

		  Standard 
Parameter	 Estimate	 Error	 Lower	 Upper

Shape 	 1.41762	 0.394237	 0.821947	 2.44499
Scale 	 25.0227	 5.50354	 16.2600	 38.5078

Log-Likelihood = −44.236 

Goodness-of-Fit

Anderson-Darling (adjusted) = 1.695 
Correlation Coefficient = 0.957 

(continued)
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	 Table 14.26 	 Estimation of the survival curve by treatment group for the data in Example 14.45 
using the MINITAB Weibull distribution program (Continued )

	 	 Characteristics of Distribution

	 95.0% Normal CI

		  Standard 
	 Estimate	 Error	 Lower	 Upper

Mean (MTTF) 	 22.7625	 4.90629	 14.9194	 34.7288
Standard Deviation 	 16.2840	 5.45149	 8.44887	 31.3851
Median 		  19.3220	 4.72679	 11.9624	 31.2093
First Quartile (Q1) 	 10.3908	 3.73968	 5.13212	 21.0377
Third Quartile (Q3) 	 31.5065	 6.82059	 20.6125	 48.1582
Interquartile Range (IQR)	 21.1157	 5.82343	 12.2986	 36.2540

	 	 Table of Percentiles

	 95.0% Normal CI

		  Standard 
Percent	 Percentile	 Error	 Lower	 Upper

1	 0.975124	 0.946333	 0.145543	 6.53325
2	 1.59573	 1.33639	 0.309098	 8.23802
3	 2.13177	 1.62000	 0.480711	 9.45356
4	 2.62090	 1.84782	 0.658149	 10.4370
5	 3.07895	 2.03989	 0.840348	 11.2810
6	 3.51450	 2.20657	 1.02669	 12.0306
7	 3.93286	 2.35408	 1.21676	 12.7119
8	 4.33761	 2.48648	 1.41030	 13.3411
9	 4.73133	 2.60660	 1.60708	 13.9293
10	 5.11594	 2.71650	 1.80695	 14.4845
20	 8.68603	 3.48247	 3.95869	 19.0586
30	 12.0922	 3.95544	 6.36898	 22.9583
40	 15.5793	 4.33114	 9.03460	 26.8650
50	 19.3220	 4.72679	 11.9624	 31.2093
60	 23.5262	 5.26964	 15.1667	 36.4933
70	 28.5234	 6.15135	 18.6910	 43.5283
80	 35.0045	 7.74129	 22.6923	 53.9968
90	 45.0654	 11.1125	 27.7939	 73.0698
91	 46.5104	 11.6726	 28.4398	 76.0631
92	 48.1039	 12.3095	 29.1316	 79.4323
93	 49.8842	 13.0437	 29.8808	 83.2789
94	 51.9070	 13.9055	 30.7040	 87.7521
95	 54.2578	 14.9419	 31.6266	 93.0834
96	 57.0784	 16.2316	 32.6898	 99.6624
97	 60.6313	 17.9228	 33.9687	 108.222
98	 65.4965	 20.3489	 35.6255	 120.414
99	 73.4839	 24.5783	 38.1495	 141.545
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Estimation of Percentiles of the Weibull Survival Function 
Note that Table 14.26 gives percentiles for the cumulative distribution function 
(c.d.f.) for each group. Thus, the 100% × (1 − p)th percentile of the c.d.f. [F(t)] cor-
responds to a survival probability of p. Therefore, to solve for the survival time ( )t p  
associated with a survival probability of p, we set 

		  1 − = = −
p S t ep

t p( )
( )λ γ

then take logs of both sides of the equation and multiply by −1, yielding: 

		  − − =ln( ) ( )1 p t pλ γ

We now raise each side of the equation to the 1/γ power and divide by λ to obtain: 

	 Equation 14.41 	 t p pp = − − = − −[ ( )] / ( / )[ ( )]/ /ln ln1 1 11 1γ γλ λ

		   = × − −[ ( )] /scale parameter shape parameln 1 1p tter

	 Example 14.46 	 Cancer  Estimate the time corresponding to the 90th percentile for group 1 (main-
tained group) in the leukemia recurrence data in Example 14.45 (on page 839). 

	 	 Solution:  From Table 14.26 we see that the scale parameter = 38.8114 and the shape 
parameter = 1.7823 for the maintained group (group 1). Hence, using Equation 14.41 
we obtain: 

		  t.
/ .. [ ( . )]90

1 1 782338 8114 0 1= −ln

		       = =38 8114 2 30 61 970 56. ( . ) .. weeks

Thus, 90% of group 1 subjects have failed by 61.97 weeks, with only 10% surviving 
beyond this time, or ˆ( . ) .S 61 97 0 10= . 

Note that the percentiles are higher for group 1 (maintained group) than for 
group 2 (control group) (e.g., 90th percentile for group 2 = 45.1 weeks). 
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	 Figure 14.11 	 Estimated survival curve by treatment group with 95% confidence limits based 	
on the data in Example 14.45 using the MINITAB Weibull Distribution Program
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This is also clearly shown in Figure 14.11, where the percentiles for group 1 are con-
sistently to the right of those from group 2. 

A reasonable question is whether the survival curve for the maintained group is 
significantly different from the control group when both groups are modeled using 
a Weibull distribution. We discuss this in Section 14.14. 

Assessing Goodness of Fit of the Weibull Model 
From Definition 14.9 (on page 840), we have that S t e t( ) /( / )= =− α γ

αwhere 1 λ. 

If we take logs of both sides of the equation and multiply by −1 we obtain: 

		  − =ln[ ( )] ( )S t t α γ

If we take logs a second time we obtain: 

	 Equation 14.42 	 ln ln ln ln{ [ ( )]}− = −S t tγ γ α

The transformation on the left-hand side is referred to as a complementary log-log 
transformation. 

Thus, if the Weibull model holds, there should be a linear relationship between 
ln ln{ [ ( )]}− S t  and ln t with slope equal to the shape parameter γ.  Therefore, if a plot 
of ln ln{ [ ( )]}− S t  vs. ln t is approximately linear, the Weibull model should provide a 
good fit. 

	 Example 14.47 	 Cancer  Assess the goodness of fit of the Weibull model for the leukemia recurrence 
data in Example 14.45 (on page 839). 

	 	 Solution:  We use MINITAB, clicking on Statistics/Reliability/Survival/Distribution 
analysis (Right Censoring)/Nonparametric Distribution Analysis, entering c2 for 
variables (survival time), c3 for censoring variable, and By variable c4. Under stor-
age we click times for probabilities and survival probabilities so that t and S(t) will 
be stored in different columns for each group. We then compute log{-log[S(t)]} and 
log t in separate columns for each group using the CALC/Calculator command. The 
results are shown in Table 14.27. 

	 Table 14.27 	 Summary statistics used to assess goodness of fit for the leukemia 	
recurrence data in Example 14.45 

Data Display

		    Maintained group

Row	 t_1	 S(t)_1	 log[−log(S(t))]_1	 log(t)_1

1	 9	 0.909091	 −2.35062	 2.19722

2	 13	 0.818182	 −1.60609	 2.56495

3	 18	 0.715909	 −1.09601	 2.89037

4	 23	 0.613636	 −0.71672	 3.13549

5	 31	 0.490909	 −0.34039	 3.43399

6	 34	 0.368182	 −0.00082	 3.52636

7	 48	 0.184091	 0.52610	 3.87120

(continued )
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	 Table 14.27 	 Summary statistics used to assess goodness of fit for the leukemia 	
recurrence data in Example 14.45 (Continued )

Data Display

		    Contast group

Row	 t_2	 S(t)_2	 log[−log(S(t))]_2	 log(t)_2

1	 5	 0.833333	 −1.70198	 1.60944

2	 8	 0.666667	 −0.90272	 2.07944

3	 12	 0.583333	 −0.61805	 2.48491

4	 23	 0.486111	 −0.32668	 3.13549

5	 27	 0.388889	 −0.05714	 3.29584

6	 30	 0.291667	 0.20876	 3.40120

7	 33	 0.194444	 0.49324	 3.49651

8	 43	 0.097222	 0.84619	 3.76120

9	 45	 0.000000	 *	 3.80666

We now plot log{-log[S(t)]} vs. log t separately for each group as shown in Figure 14.12. 
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	 Figure 14.12 	 Scatterplot of log[−log(S(t))] vs. log t by treatment group for the leukemia 	
recurrence data in Example 14.45

The plots look approximately linear, especially for group 1 (maintained group). 
Also, log{ log[ ( )]}− S t  is consistently lower for group 1 vs. group 2 for all t, indicating 
a higher survival probability for group 1 vs. group 2. 

Thus, in summary, the Weibull model appears to fit these data reasonably well. 

	 14.14	 P a r a m e t r i c  R e g r e s s i o n  M o d e l s  f o r 

S u r v i v a l  D ata

The Weibull model is of the form 

	 Equation 14.43 	 Pr( ) ( ) ( / )T t e et t> = ≡− −λ αγ γ
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where
α = 1/λ = Weibull scale parameter
γ = Weibull shape parameter
It can be shown based on this model that the probability density function (pdf) of 
Y = ln(T ) is given by 

	 Equation 14.44 	 f y
y y

( ) exp
ln

exp
ln

,= − − −















1
σ

α
σ

α
σ

−−∞ < < ∞y

where σ = 1/γ = 1/shape parameter and α = scale parameter. 
To incorporate covariates (x), we let 

	 Equation 14.45 	 α α β β
β

= = ≡
=

∑e x x
x

k
k

K

k
%

%

~
ln

~
or

1

Thus, the distributions of survival times for two subjects with different covariates 
vectors xA~  and xB~  have the same shape parameter (γ), but different scale parameters 

given by e xA
% %
β  and e xB

% %
β , respectively. Based on Equations 14.44 and 14.45, if we write 

Z Y= −( ln )α σ, we can express Y in the form 

	 Equation 14.46 	 Y x Z
~ ~= +β σ

σZ can be interpreted similarly to the error term in linear regression. However, because 
the distribution of Y [i.e., ln(survival time)] is skewed to the right, Z is not normally 
distributed but instead follows a standard extreme value distribution with pdf = exp( )z ez− . 

Under very general conditions, the standard extreme value distribution is used 
to obtain a limiting distribution for max( , . . . , )X Xn1  in a sample of size n as n gets 
large. Its pdf is illustrated in Figure 14.13 [11]. 

–2.0
0

0.10

0.20

M
od

e

M
ea

n

f (z)

0.30

0.40

–1.0 0 1.0 2.0

z

3.0 4.0 5.0 6.0 7.0

	 Figure 14.13 	 Probability density function of a standard extreme value distribution given by 	
f (z ) = exp(- z - e z) 
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Thus, 

		  E Y x E Y x x E Y( ) ( | ) ( )
~

= + = ≡ +
% % % %
β β0 0

For a particular covariate xj, 

If βj < 0, then the expected value of y decreases as xj increases;  
If  βj > 0, then the expected value of y increases as xj increases. 

Thus, this type of model is sometimes called an accelerating failure time model since 
the time to failure is accelerated if β < 0 and decelerated if β > 0. 

It can also be shown that the Weibull model is a proportional hazards model. 
To see this we note from Equation 14.40 that the hazard function of a Weibull 

distribution can be written in the form

	 Equation 14.47 	 ( )h t t t= = 





− −λ γ
α

γγ γ
γ

γ1 11

Substituting α β= e x
% % from Equation 14.45, we obtain 

		
h t

e
tx( ) = −1 1

γ
γ

β γ
% %

Thus, if we have two individuals with covariate vectors 
%
x1 and 

%
x2, respectively, the 

hazard ratio comparing subject 2 with subject 1 is 

	 Equation 14.48 	












= 









 =∼ ∼ γ β γ β

β − γh t x h t x
e e

e
1 1

2 1
1 2

x x
x x

2 1
( )

which is independent of t. Hence, the hazard ratio comparing two subjects who are 
1 unit apart on a variable xk and are the same for all other covariates is given by 

	 Equation 14.49 	 ( | ) ( | )h t x h t x ek k
k+ = −1 β γ

Although the Weibull model is a proportional-hazards model, it is different from the 
Cox proportional-hazards model because the hazard function is specified explicitly 
in terms of the parameters λ and γ (i.e., parametrically) rather than nonparametri-
cally in the Cox model. 

	 Example 14.48 	 Cancer  Use a Weibull parametric regression survival model to compare the survival 
curves of the 2 treatment groups using the leukemia recurrence data in Example 14.45 
(on page 839). 

	 	 Solution:  We have run a Weibull parametric regression model using MINITAB, where 
Y = ln(survival time) and 

		    Y x Z= +β σ

where x = 1 if a subject is in group 2 (control)

		      = 0 is a subject is in group 1 (maintained)

and Z is a standard extreme value distribution. 
The data used for this analysis are given in Table 14.28. 

To perform the analysis, we click on Statistics/Reliability/Survival/Accelerated Life 
Testing/Weibull. The results are shown in Table 14.29. 

See page 841 for  
Equation 14.40

~ ~
~ ~ ~

~ ~
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	 Table 14.28 	 Data display for leukemia recurrence data 

	 Survival

Row	 time	 Censor	 Group

 1	 9	 1	 1

 2	 13	 1	 1

 3	 13	 0	 1

 4	 18	 1	 1

 5	 23	 1	 1

 6	 28	 0	 1

 7	 31	 1	 1

 8	 34	 1	 1

 9	 45	 0	 1

10	 48	 1	 1

11	 161	 0	 1

12	 5	 1	 2

13	 5	 1	 2

14	 8	 1	 2

15	 8	 1	 2

16	 12	 1	 2

17	 16	 0	 2

18	 23	 1	 2

19	 27	 1	 2

20	 30	 1	 2

21	 33	 1	 2

22	 43	 1	 2

23	 45	 1	 2

	 Table 14.29 	 MINITAB Weibull parametric survival model using the leukemia recurrence data in 
Example 14.45 (on page 839)

Accelerated Life Testing: time versus group 

         Response Variable: time

         Censoring Information    Count

         Uncensored value          18

         Right censored value       5

         Censoring value: relapse = 0

         Estimation Method: Maximum Likelihood

         Distribution:   Weibull

         Relationship with accelerating variable(s):   Linear

Regression Table

                        Standard                       95.0% Normal CI

Predictor       Coef       Error       Z       P      Lower       Upper

Intercept    5.03840    0.643906    7.82   0.000    3.77636     6.30043

group      -0.929342    0.382502   -2.43   0.015   -1.67903   -0.179652
Shape        1.26430    0.225328                   0.891546     1.79289

Log-Likelihood = -80.522
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We see that there is a significant effect of group ( . . , . )β = − ± =0 93 0 38 015p  with 
the ln(survival time) being shorter (i.e., accelerated failure) for group 2 (the control 
group) relative to group 1 (the maintained group). Also, the hazard ratio comparing 
subjects in group 2 vs. group 1 = e+0.929(1.264) = 3.2 or for group 1 (maintained group) 
vs. group 2 (control group) = e−0.929(1.264) = 0.31. Thus, at any time t, subjects in the 
maintained group are about one-third as likely to experience a recurrence than sub-
jects in the control group. 

Note that this parametric regression analysis is somewhat different from the 
analysis in Table 14.26 (on pages 841–844), where we fit separate Weibull survival 
functions in each group and as a result allowed both the shape and scale parameters 
to vary between the 2 groups. The approach in Table 14.26 makes it possible to 
compare survival probabilities at specific times but makes it difficult to compare the 
entire survival curve between the 2 groups. Using the regression approach, the shape 
parameter is forced to be the same for each group (or in general for different values 
of x~), while only the scale parameter is different. Hence, if we have 2 individuals 
who vary by 1 unit on a particular covariate (say xj) with all other variables held con-
stant, then this implies that the scale parameter is different for these individuals, the 
hazard ratio comparing these two individuals is different from 1, and the respective 
survival curves are different from each other. 

Estimation of Percentiles for the  
Weibull Survival Distribution 
In addition, we can estimate percentiles of the survival distribution for each group. 
For the pth percentile, we compute 

	 Equation 14.50 	 [ ( )] /t pp = − − ×ln 1 1 shape parameter scale parameeter

where scale parameter original scale = exp(scale parameter log scale). 

	 Example 14.49 	 Cancer  Estimate the 10th, 50th, and 90th percentiles for the survival time for each 
group in the leukemia recurrence data in Example 14.45 (on page 839). 

	 	 Solution:  We have the following shape and scale parameters in each group. 

	 Shape parameter	 Scale parameter 

Group 1	 1.2643 	 e4.10906 = 60.8892
Group 2	 1.2643 	 e4.10906 - 0.9293 = 24.0399

Hence, using Equation 14.50, we obtain: 

Group 1 (maintained group)

		  t0 10
1 1 26430 9 60 8892 10 3.
/ .[ ( . )] . .= − =ln weeks

		  t0 50
1 1 26430 5 60 8892 45 6.
/ .[ ( . )] . .= − =ln weeks

		  t0 90
1 1 26430 1 60 8892 117 8.
/ .[ ( . )] . .= − =ln weekss
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Group 2 (control group)
		

t0 10
1 1 26430 9 24 0399 4 1.
/ .[ ( . )] . .= − =ln weeks

		  t0 50
1 1 26430 5 24 0399 18 0.
/ .[ ( . )] . .= − =ln weeks

		  t0 90
1 1 26430 1 24 0399 46 5.
/ .[ ( . )] . .= − =ln weeks

In general, the survival function is S t e t hape parameter
( ) ( / )= − scale parameter s

. For group 1, 

the survival function is S t e t( ) ( / . ) .
= − 60 8892 1 2643

. For group 2, the survival function is 

S t e t( ) ( / . ) .
= − 24 0399 1 2643

.

The complete set of percentiles is given in Figure 14.14. 

	 Figure 14.14 	 Plot of survival time by group using the MINITAB Weibull survival 	
regression program 
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In general, the Weibull scale parameter is given by eβ∼x∼. Hence, to interpret βk,  
if we compare 2 people who differ by 1 unit on xk (subject 1 = +xk 1; subject 2 = xk)  
and are the same for all other covariates, then the estimated pth percentile for the 
first subject/estimated pth percentile for the second subject = eβk. For the leukemia 
data, β = −0.929 for group 2 vs. group 1 or, equivalently, β = 0.929 for group 1 vs. 
group 2. Hence, the ratio of the estimated pth percentile of the survival distribution 
for a person in the maintained group (group 1) vs. the pth percentile for a person in 
the control group (group 2) e 2.50.929= = , which is the same for all p.  

We have also analyzed the leukemia recurrence data using a Cox proportional-
hazards model: 

		   h t h t x( ) ( )exp( )= 0 β
where if group 1x = 1

		      = 0 if group 2

The results using the SAS PROC PHREG program are given in Table 14.30. We see 
that the estimated hazard ratio = 2.47 for group 2 vs. group 1, but the results are not 
statistically significant ( p = .078). 
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It is interesting that comparisons of the survival curves for the 2 groups were signif-
icant using the parametric Weibull model ( p = .015), whereas they were not significant 
using the nonparametric Cox regression model ( p = .078). The hazard ratio for group 2 
(control) vs. group 1 (maintained) = exp(0.929) = 2.53 with the Weibull model and 2.47 
with the Cox model which are similar. In general, nonparametric methods such as the 
Cox proportional-hazards model have the advantage of making fewer assumptions but 
may be slightly less efficient than their parametric counterparts, especially if the latter 
are supported by acceptable goodness of fit, as was the case for the leukemia data. 

	 Table 14.30 	 Analysis of the leukemia recurrence data using the Cox proportional-hazards model 

The PHREG Procedure

Model Information

                 Data Set                       WORK.LEUKEMIA

                 Dependent Variable             survival

                 Censoring Variable             censored

                 Censoring Value(s)             0

                 Ties Handling                  BRESLOW

              Number of Observations Read                23

              Number of Observations Used                23

Summary of the Number of Event and Censored Values

                                                Percent

              Total       Event    Censored    Censored

                 23          18           5       21.74

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

                                 Without           With

               Criterion      Covariates     Covariates

                -2 LOG L          85.796         82.500

                AIC               85.796         84.500

                SBC               85.796         85.391

Testing Global Null Hypothesis: BETA=0

        Test                 Chi-Square       DF     Pr > ChiSq

        Likelihood Ratio         3.2960        1         0.0694

        Score                    3.3226        1         0.0683

        Wald                     3.1159        1         0.0775

Analysis of Maximum Likelihood Estimates

                 Paramete   Standard                              Hazard

Variable   DF    Estimate      Error   Chi-Square   Pr > ChiSq     Ratio

group       1     0.90422    0.51225       3.1159       0.0775     2.470
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The methods of survival analysis (at least for the Cox model) can be extended 
to handle: 

(a)	 time-dependent covariates (i.e., covariates that change over time) 

(b)	 competing risks (i.e., where there are multiple types of failure that “compete” 
with each other). For example, if the outcome of interest is time to initial breast 
cancer, a competing risk would be death from another cause (e.g., heart attack).

However, this is beyond the scope of this text (see Miller [3]). 

	 14.15	 D e r i v at i o n  o f  s e l e c t e d  f o r m u l a s 

( a )  D e r i v at i o n  o f  e q u at i o n  1 4 . 1 2  ( p a g e  7 9 0 )

As discussed in Equation 14.9, another way to state the hypothesis is as follows: 
H0: p = p0 vs. H1: p ≠ p0, where p0 = t1/(t1 + t2). This is a one-sample binomial test con-
sidered in Section 7.9, where n = total number of events over both groups and p = 
probability that an individual person with an event comes from group 1. The issue 
is: What specific value of p under H1 (call it p1) corresponds to a rate ratio of IRR? To 
derive this, note that

Expected number of events in group 1 = 1 − exp(−ID1t1) ≅ t1ID1

Expected number of events in group 2 = 1 − exp(−ID2t2) ≅ t2ID2

Thus, the expected proportion of events in group 1 is

	 Equation 14.51 	 p t ID t ID t ID= +1 1 1 1 2 2/ ( )

If we divide the numerator and denominator of Equation 14.51 by ID2, we obtain

	 Equation 14.52 	 p t IRR t IRR t= +1 1 2/ ( )

Under H1, IRR will differ from 1, and we denote p in Equation 14.52 by p1. Under 
H0, p = t1/(t1 + t2), which we denote by p0. We now apply the power formula for the 
one-sample binomial test (Equation 7.32) and obtain

	 Equation 14.53 	 Power = + −












Φ p q

p q
z

p p m
p q

0 0

1 1
2

0 1

0 0
α/

| |





where m = expected number of events over both groups combined = m1 + m2

We now want to relate the expected number of events in groups 1 and 2 (m1, m2) 
to the number of participants available in each group (n1, n2). Recall from Equa-
tion 14.1 that

	 Equation 14.54 	 CUMI t IDt
t

( ) exp( *)
*
= − −

=
1

where average numberr of person-years per subject

See pages 790 and 786 for 
EQUATIONS 14.12  
and 14.9, 
respectively

See page 256 for  
Equation 7.32

See page 778 for  
Equation 14.1

 ≅ IDt*
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Applying Equation 14.54 to each group, we have

	 Equation 14.55 	 Cumulative incidence in group 1 11 1 1 1= = − −m n ID t/ exp( *) ≅ ID1t1*

		  Cumulative incidence in group 2 12 2 2 2= = − −m n ID t/ exp( *) ≅ ID2t2*

or

	 Equation 14.56 	 m n ID t
m n ID t

1 1 1 1

2 2 2 2

1
1

= − −
= − −

[ exp( *)]
[ exp( *)]

Substituting Equation 14.56 into Equation 14.53, we obtain the power formula in 
Equation 14.12.

	 	 ( b )  d e r i v at i o n  o f  e q u at i o n  1 4 . 1 7

Let’s denote the incidence rate of disease among the exposed by p1i and among the 
unexposed by p2i. Therefore, the expected number of events among the exposed = 
p1it1i and among the unexposed = p2it2i. Let pi = the expected proportion of the total 
number of events over both groups that are among the exposed. We can relate pi 
to p1i and p2i by

	 Equation 14.57 	 p
p t

p t p t
t

t ti
i i

i i i i

i

i i
=

+
=

+
1 1

1 1 2 2

1

1 2
 if p1i = p2i, which we denote by pi

(0)

We assume the rate ratio relating disease to exposure is the same for each stratum 
and denote it by IRR. Therefore, IRR = p1i/p2i and is the same for each i = 1, . . . , k. If 
we divide the numerator and denominator of Equation 14.57 by p2i and substitute 
IRR for p1i/p2i, we obtain

	 Equation 14.58 	 p
p p t

p p t t

IRRt
IRRt

i
i i i

i i i i

i

=
+

=

( / )
( / )

1 2 1

1 2 1 2

1

1ii it+ 2
, which we denote by .(1)pi

We want to test the hypothesis H0: IRR = 1 vs. H1: IRR ≠ 1 or, equivalently, H0: pi = pi
(0) 

vs. H1: pi = pi
(1), i = 1, . . . , k. We base our test on A a i

i

k

= =
=
∑ 1

1

total observed number 

of events for the exposed. Under H0, we assume the total observed number of events 
for the ith stratum (a1i + a2i) is fixed. Therefore, under H0,

	 Equation 14.59 	 E a a a p a a t t ti i i i i i i i i( ) ( ) ( ) ( )( )
1 1 2

0
1 2 1 1 2= + = + +

VVar a a a p p a ai i i i i i i( ) ( ) ( ) ( )( ) ( )
1 1 2

0 0
1 21= + − = + tt t t ti i i i1 2 1 2

2( )+

 ≅ n1ID1t1*
 ≅ n2ID2t2*

See page 790 for  
Equation 14.12

See page 794 for  
Equation 14.17
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and E A E a i
i

k

( ) ( )=
=
∑ 1

1

, Var A Var a i
i

k

( ) ( )=
=
∑ 1

1

. Under H1, A is larger than E(A) if IRR > 1 and is  

smaller than E(A) if IRR < 1. We use the test statistic X2 = | ( ) | . ( )A E A Var A− −[ ]0 5 2 , 

which follows a χ1
2 distribution under H0 and reject H0 for large values of X2. This is 

summarized in Equation 14.17.

	 14.16	 S u mm  a r y

In this chapter, we discussed how to analyze data where the unit of analysis is 
person-time. The incidence rate was defined as the number of events per unit of 
person-time and was compared with cumulative incidence, which is the proportion 
of people who develop disease over a specified period of time. The incidence rate 
is in units of events per unit time and has no upper bound, whereas cumulative 
incidence is a proportion bounded between 0 and 1. We discussed procedures for 
comparing a single estimated incidence rate with a known incidence rate and also 
for comparing two incidence rates both for crude data as well as for data stratified 
by other potential covariates. We then discussed methods of power and sample-size 
estimation for study designs based on comparisons of two incidence rates, both 
with and without adjusting for confounding variables. Finally, these methods were 
extended to exposure variables with more than two levels of exposure and a test of 
trend was introduced to analyze data of this form.

If incidence rates change greatly over time, then methods of survival analy-
sis are appropriate. We introduced the concept of a hazard function, which is a 
function characterizing how incidence changes over time. We also introduced the 
concept of a survival curve, which is a function giving the cumulative probability 
of not having an event (i.e., surviving) as a function of time. The Kaplan-Meier 
estimator was introduced as a nonparametric method for estimating a survival 
curve. The log-rank test was then presented to let us statistically compare two 
survival curves (e.g., for an exposed vs. an unexposed group). If we want to study 
the effects of several risk factors on survival, then the Cox proportional-hazards 
model can be used. This method is analogous to multiple logistic regression 
where the time when an event occurs is considered rather than simply whether 
or not an event has occurred. We also discussed methods for assessing whether 
the assumption of proportional hazards is appropriate. Furthermore, we consid-
ered methods of power and sample-size estimation for studies where the primary 
method of analysis is the Cox proportional-hazards model. Finally, we considered 
methods of parametric survival analysis based on the Weibull distribution to es-
timate survival curves and to test hypotheses concerning the effect of covariates 
on survival curves. The methods in this chapter are outlined in the flowchart in 
Figure 14.15.

Cancer
The data relating oral-contraceptive (OC) use and the inci-
dence of breast cancer in the age group 40−44 in the NHS 
are given in Table 14.31.

*14.1  Compare the incidence density of breast cancer in 
current users vs. never users, and report a p-value.

*14.2  Compare the incidence density of breast cancer in 
past users vs. never users, and report a p-value.

P r o b l e m s
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	 Figure 14.15 	 Flowchart for appropriate methods of statistical inference—person-time data
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Table 14.31 	 �Relationship between breast-cancer 
incidence and OC use among 40- to 
44-year-old women in the NHS

	 Number of	 Number of 
OC-use group	 cases	 person-years

Current users	 13	 4,761
Past users	 164	 121,091
Never users	 113	 98,091

*14.3  Estimate the rate ratio comparing current users vs. 
never users, and provide a 95% CI about this estimate.

*14.4  Estimate the rate ratio comparing past users vs. 
never users, and provide a 95% CI about this estimate.

14.5  How much power did the study have for detecting an 
IRR for breast cancer of 1.5, comparing current OC users 
vs. never OC users among 40- to 44-year-old women if

(a) the true incidence rate of breast cancer among never 
users and the amount of person-time for current and never 
users are the same as in Table 14.31, (b) the expected 
number of events for never OC users is the same as the 
observed number of events in Table 14.31, and (c) the aver-
age follow-up time per subject is the same for both current 
and never OC users?

14.6  What is the expected number of events that need 
to be realized in each group to achieve 80% power to 
detect an IRR for breast cancer of 1.5 for current OC us-
ers vs. never OC users under the same assumptions as in 
Problem 14.5?

Health Promotion
Refer to Data Set SMOKE.DAT at www.cengagebrain.com.

14.7  Divide participants according to median log10CO 
(adjusted), and estimate survival curves for each subgroup.

14.8  Compare survival curves of the two groups, using 
hypothesis-testing methods, and report a p-value.

A Cox proportional-hazards model was fit to these data to 
assess the relationship between age, sex, number of ciga-
rettes smoked, and log10CO concentration, when consid-
ered simultaneously, on the ability to remain abstinent from 
smoking. The results are given in Table 14.32.

14.9  Assess the significance of each of the variables.

14.10  Estimate the effects of each variable in terms of haz-
ard ratios, and provide 95% confidence limits correspond-
ing to each point estimate.

14.11  Compare the crude and adjusted analyses of the 
relationship of log10CO to recidivism in Problems 14.8 and 
14.9.

 Data set available

Table 14.32 	 �Proportional-hazards model relating 
the hazard of recidivism to age, sex, 
number of cigarettes smoked prior to 
quitting, and log10CO concentration

	 Regression	 Standard 
	 coefficient	 error 

Risk factor	 (β
^

i )	 se(β
^

i )

Age	 0.0023	 0.0058
Sex(1 = M/0 = F)	 –0.127	 0.143
Number of cigarettes smoked	 –0.0038	 0.0050
Log10CO (adjusted)a	 0.912	 0.366

aThis variable represents CO values adjusted for minutes elapsed since last 
cigarette smoked prior to quitting.

Bioavailability
Refer to Data Set BETACAR.DAT at www.cengagebrain 
.com.

14.12  Suppose we regard a preparation as being bioavail-
able for a subject at the first week when level of plasma car-
otene increases by 50% from the baseline level (based on 
an average of the first and second baseline determinations). 
Use survival-analysis methods to estimate the proportion of 
subjects for whom the preparation is not bioavailable at dif-
ferent points in time.

14.13  Assess whether there are significant differences among 
the survival curves obtained in Problem 14.12. (Hint: Use a 
dummy-variable approach with proportional-hazards models.)

14.14  Answer the same question as in Problem 14.12 as-
suming the criterion for bioavailability is a 100% increase in 
plasma-carotene level from baseline.

14.15  Answer the same question posed in Problem 14.13 
assuming the criterion for bioavailability is a 100% increase in 
plasma-carotene level from baseline.

Ophthalmology
In Table 14.33, we present data from the RP clinical trial 
described in Example 14.30 (on page 813) concerning 
effect of high-dose vitamin E (400 IU/day) vs. low-dose 
vitamin E (3 IU/day) on survival (where failure is loss of at 
least 50% of initial ERG 30 Hz amplitude).

14.16  Estimate the hazard function by year for each group.

14.17  Estimate the survival probability by year for each group.

14.18  Obtain a 95% CI for the survival probability at year 6 
for each group.

14.19  Compare overall survival curves of the two groups, 
and obtain a p-value.

14.20  Suppose a new study is planned, with 200 patients 
randomly assigned to each of a 400 IU per day vitamin E group 
and a 3 IU per day vitamin E group. If the survival experience in 
the 3 IU per day group is assumed the same as in Table 14.33, 
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the relative hazard for the 400 IU/day group vs. the 3 IU/day 
group = 1.5, and the censoring experience of both groups are 
assumed the same as for the 3 IU per day group in Table 14.33, 
then how much power would a new study have if the maximum 
duration of follow-up is 4 years (rather than 6 years as in the 
original study) and a two-sided test is used with α = .05?

14.21  How many subjects need to be enrolled in each 
group (assume equal sample size in each group) to achieve 
80% power if a two-sided test is used with α = .05 and the 
same assumptions are made as in Problem 14.20?

Infectious Disease
Suppose the rate of allergic reactions in a certain popula-
tion is constant over time.

*14.22  A person is selected randomly from the population 
and followed for 1.5 years. If the true rate of allergic reactions 
is 5 reactions per 100 person-years, what is the probability 
that the subject will have at least one allergic reaction dur-
ing the follow-up period (i.e., cumulative incidence)?

*14.23  Two hundred subjects are selected randomly from 
the population and followed for various lengths of time. The 
average length of follow-up is 1.5 years. Suppose that at 
the end of the study, the estimated rate is 4 per 100 per-
son-years. How many events must have been observed in 
order to yield the estimated rate of 4 per 100 person-years?

*14.24  Provide a 95% CI for the underlying rate, based on 
the observed data in Problem 14.23. Express the answer in 
units of number of events per 100 person-years.

 Data set available

Cancer
The data in Table 14.34 provide the relationship between 
breast-cancer incidence rate and menopausal status by 
age, based on Nurses’ Health Study (NHS) data from 1976 
to 1990.

Table 14.34 	 �Relationship between breast-cancer 
incidence rate and menopausal 
status after controlling for age, 	
NHS, 1976–1990

	 Premenopausal	 Postmenopausal

	 Cases/person-years	 Cases/person-years 
Age	 (incidence rate)a	 (incidence rate)

35–39	 124/131,704	 15/14,795
	 (94)	 (101)
40–44	 264/179,132	 47/43,583
	 (147)	 (108)
45–49	 304/151,548	 163/90,965
	 (201)	 (179)
50–54	 159/61,215	 401/184,597
	 (260)	 (217)
55–59	 25/6133	 490/180,458
	 (408)	 (272)

aPer 100,000 person-years.

14.25  Assess whether there is a difference between the inci-
dence rate of breast cancer for premenopausal vs. postmen-
opausal women, while controlling for age. Report a p-value.

14.26  Estimate the rate ratio for postmenopausal vs. pre-
menopausal women after controlling for age. Provide a 95% 
CI for the rate ratio.

Renal Disease
Refer to Data Set SWISS.DAT at  www.cengagebrain.com.

14.27  Suppose a serum-creatinine level of ≥1.5 mg/dL is 
considered a sign of possible kidney toxicity. Use survival-
analysis methods to assess whether there are differences in 
the incidence of kidney toxicity between the high-N-acetyl-
p-aminophenol (NAPAP) group and the control group. In 
this analysis, exclude subjects who were ≥1.5 mg/dL at 
baseline.

14.28  Answer Problem 14.27 comparing the low-NAPAP 
group with the control group.

One issue is that the groups in Problem 14.27 may not 
be exactly balanced by age and/or initial level of serum 
creatinine.

14.29  Answer Problem 14.27 while controlling for possible 
age and initial-level differences between groups. Consider 
both parametric and nonparametric survival analysis methods.

14.30  Answer Problem 14.28 while controlling for possible 
age and initial-level differences between groups.

Table 14.33 	 �Number of patients who failed, 	
were censored, or survived by year 
in the 400 IU vitamin E group and 	
3 IU vitamin E group, respectively, 
RP clinical trial

	 Fail	 Censored	 Survive	 Total

400 IU of vitamin E daily
	 0–1 yr	 7	 3	 170	 180
	 1–2 yr	 9	 2	 159	 170
	 2–3 yr	 22	 2	 135	 159
	 3–4 yr	 24	 27	 84	 135
	 4–5 yr	 13	 32	 39	 84
	 5–6 yr	 11	 28	 0	 39

3 IU of vitamin E daily
	 0–1 yr	 4	 1	 169	 174
	 1–2 yr	 10	 3	 156	 169
	 2–3 yr	 14	 1	 141	 156
	 3–4 yr	 16	 27	 98	 141
	 4–5 yr	 15	 34	 49	 98
	 5–6 yr	 7	 42	 0	 49

Note: A person fails if his or her ERG amplitude declines by at least 50% 
from baseline to any follow-up visit.
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14.31  Assess the validity of the proportional-hazards as-
sumption in Problems 14.29 and 14.30.

Infectious Disease
Suppose the incidence rate of influenza (flu) during the win-
ter of 2008−2009 (i.e., from December 21, 2008, to March 
20, 2009) was 50 events per 1000 person-months among 
students in high schools in a particular city.

14.32  A group of high-risk high school students was iden-
tified in the winter of 2008−2009 who had 3+ previous 
episodes of influenza before December 21, 2008. There 
were 20 students in this group, each followed for 90 days, 
of whom 8 developed influenza. Test the hypothesis that the 
high-risk students had a higher incidence rate of influenza 
than the average high school student during the winter of 
2008−2009. Report a one-tailed p-value.

14.33  Provide a two-sided 95% CI for incidence rate of flu 
among high-risk students during winter 2008−2009.

Among 1200 students in one high school in the city, 200 
developed a new case of influenza over the 90 days from 
December 21, 2009, to March 20, 2010.

14.34  What is the estimated incidence rate of flu in the 
2009−2010 winter season per 1000 person-months?

14.35  Provide a 95% CI for the rate estimated in Problem 
14.34.

14.36  Test the hypothesis that the rate of flu has changed 
from the 2008−2009 to 2009−2010 winter season. Report 
a two-tailed p-value.

Orthopedics
A study was performed among patients with piriformis 
syndrome, a pelvic condition that involves malfunction of 
the piriformis muscle (a deep buttock muscle), which often 
causes lumbar and buttock pain with sciatica (pain radiating 
down the leg). A randomized double-blind clinical trial was 
performed whereby patients were injected with one of three 
substances.

Group 1 received an injection of a combination of triamci-
nolone and lidocaine (the TL group).

Group 2 received a placebo injection.

Group 3 received an injection of Botox.

The randomization schedule was set up such that, approxi-
mately, for every six patients, three were assigned to group 
1, one to group 2, and two to group 3. All injections were 
directly into the piriformis muscle. Patients were asked to 
come back at 2 weeks post-injection (0.5 month), 1 month 
post-injection, and monthly thereafter up to 17 months, 
although there were many missed visits. At each visit the 
patients rated their percentage of improvement of pain vs. 

baseline on a visual analog scale, with a maximum of 100% 
improvement (indicated by 100). Negative numbers indicate 
percentage of worsening. There were a total of 69 subjects 
and 70 legs (one patient, ID 23, had the condition in both 
legs). A priori it was of interest to compare the degree of 
efficacy between each pair of groups. Three additional co-
variates may influence the outcome: age (yrs), gender (1 = 
male, 0 = female), and the affected side (L = left, R = right). 
The data are in BOTOX.DAT, with a description in BOTOX.
DOC, at www.cengagebrain.com.

14.37  If the visual analog scale is treated as a continu-
ous variable, assess whether there are any between-group 
differences in efficacy without considering the covariates. 
Try to do at least one analysis that uses the entire data set 
rather than focusing on specific time points.

14.38  Repeat the analysis in Problem 14.37, but account 
for covariate differences between groups.

14.39  Another way to score the visual analog scale is as 
a categorical variable where ≥50% improvement is con-
sidered a success and <50% improvement, remaining 
the same, or worsening is considered a failure. Answer 
the question posed in Problem 14.37 using the success/
failure scoring. Note that a patient may be a success at one 
visit but a failure at succeeding visits. (Hint: Either logistic- 
regression methods or survival-analysis methods may be 
applicable here.)

14.40  Repeat the analyses in Problem 14.39, but account 
for covariate differences between groups.

To reduce variability, the investigators also considered a  
criterion of at least 50% improvement on two successive 
visits as a definition of success.

14.41  Answer Problem 14.39 under this definition of  
success.

14.42  Answer Problem 14.40 under this definition of  
success.

Cancer
Suppose we wish to study the association between aspirin 
intake and the incidence of colon cancer. We find that 10% 
of women take 7 aspirin tablets per week (ASA group), while 
50% of women never take aspirin (control group). The ASA 
group is followed for 50,000 person-years, during which 34 
new colon cancers occurred over a 20-year period. The con-
trol group is followed for 250,000 person-years, during which 
251 new colon cancers developed over a 20-year period.

14.43  What are the estimated incidence rates in the ASA 
and control groups?

14.44  Is there a significant difference between these inci-
dence rates? Report a p-value (two-tailed).

14.45  What is the estimated rate ratio for colon cancer 
between the ASA and placebo groups?

14.46  Provide a 95% CI for the rate ratio in Problem 14.45. Data set available
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14.47  Suppose we look at the subset of women with a 
family history of colon cancer. Aspirin might be more ben-
eficial in this high-risk subgroup. We have a total of 5000 
person-years among ASA women and 2 events. We have 
a total of 20,000 person-years among control women and 
20 events. Is there a significant difference in the incidence 
rates of colon cancer between these 2 groups? Provide a 
p-value (two-tailed).

Health Promotion
A recent, article by Kenfield et al. [12] studied the relation-
ship between various aspects of smoking and mortality 
among 104,519 women in the Nurses’ Health Study (NHS) 
from 1980−2004. One issue is whether there is a mortality 
benefit from quitting smoking vs. continuing to smoke and, 
if so, how long it takes for the mortality experience of former 
smokers to approximate that of never smokers. The data in 
Table 14.35 were presented comparing former smokers 
with current smokers.

Table 14.35 	 �Relationship of time since quitting 	
to total mortality

		  Number of person-years  
	 Number of deaths	 of follow-up

Current smokers	 3,602	 420,761
Former smokers		
  Quit <5 yrs	 889	 124,095
  Quit 5–9 yrs	 669	 113,056
  Quit 10–14 yrs	 590	 111,701
  Quit 15–19 yrs	 541	 117,914
  Quit 20+ yrs	 1,707	 336,177

14.48  What is the estimated mortality rate and 95% CI per 
1000 person-years among current smokers?

14.49  What test can be performed to compare mortality 
incidence between former smokers who quit <5 years ago 
vs. current smokers?

14.50  Implement the test in Problem 14.49, and report a 
p-value (two-tailed).

14.51  What is the estimated rate ratio for total mortality be-
tween former smokers who quit 20+ years ago and current 
smokers? Provide a 95% CI for this estimate.

14.52  The age-adjusted rate ratio between the groups in 
Problem 14.51 was 0.34. Is this different from the estimated 
rate ratio in Problem 14.51? If so, why? (Hint: Assume that 
former smokers who quit for 20+ years are older than cur-
rent smokers and mortality increases with age.)

Cancer
A study was performed to compare breast cancer inci-
dence between postmenopausal women who used PMH 
vs. women who did not. A group of 200 women who were 
current PMH users and 1000 women who were never 
PMH users in 1990 in the NHS were identified. All women 
were postmenopausal and free of cancer as of 1990. 
The 1200 women were ascertained for incident breast 
cancer by mail questionnaire every 2 years up to the year 
2000. However, not all women had complete follow-up. For 
simplicity, we will assume that women can only fail every 
2 years, i.e., in 1992, 1994, . . . , 2000. The results are 
given in Table 14.36.

14.53  What does a censored observation in 1992 mean in 
the context of these data?

14.54  Estimate the 10-year incidence of breast cancer in 
each group. (Hint: Use the product limit method.)

14.55  What test can be used to compare the incidence of 
breast cancer between the 2 groups, taking into account 
the time when breast cancer develops and the length of 
follow-up of each subject?

	 Table 14.36 	 Relationship between PMH use and breast cancer incidence among 1200 women 	
in the NHS

	 Current PMH users	 Never PMH users		

	 Number of women	 Number of women

Year	 In risk set	 Faileda	 Censoredb	 In risk set	 Failed	 Censored

1990	 200	 0	 1	 1000	 0	 12	
1992	 199	 3	 2	 988	 3	 10	
1994	 194	 2	 2	 975	 9	 22	
1996	 190	 4	 1	 944	 7	 23	
1998	 185	 2	 50	 914	 5	 193	

2000	 133	 2	 131	 716	 9	 107	

aFailed means developed breast cancer. 
bAssume that at any given year that the failures occur just prior to the censored observations in that year.
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14.56  Implement the test in Problem 14.55, and report a 
p-value (two-tailed).

Pulmonary Disease
A study was performed among 169,871 Chinese men 
and women in 1991 ages 40 years and older [13]. Base-
line data were collected in 1991, and a follow-up exam 
was conducted in 1999−2000. One component of the 
follow-up exam was a mortality follow-up for subjects who 
died between 1991 and 1999, where the date and cause 
of death were determined from Chinese vital statistics 
data. Of particular interest were risk factors for death from 
chronic-obstructive pulmonary disease (COPD), A Cox 
proportional-hazards regression model was used to relate 
risk factors in 1991 to time of death from COPD between 
1991 and 1999−2000.

14.57  What is a hazard rate in the context of this study?

14.58  Write down the Cox proportional-hazards model. 
What does the term proportional hazards mean?

The results in Table 14.37 were obtained from the study.

14.59  What is the hazard ratio for COPD mortality among 
men for smokers of ≥20 pack-years vs. never smokers? 
Provide a 95% CI.

Most risk factors seem of comparable magnitude for men 
and women. However, one exception is cigarette smoking.

14.60  Test the hypothesis that the hazard ratio for smoking 
≥20 pack-years vs. never smoking is significantly different 
(at the 5% level) for men vs. women. (Hint: Use a z statistic 
approach, considering the men and women as 2 independ-
ent samples.)

Cancer
14.61  Suppose we wish to conduct a clinical trial to study 
the association between ASA and colon cancer. We will 
enroll 50,000 women in the study, half of whom will be as-
signed to ASA and half to placebo. Each woman is followed 
for 5 years. The expected incidence rate of colon cancer in 
the ASA group = 70/105 person-years and in the placebo 
group = 100/105 person-years. If we conduct a two-sided 
test with α = 0.05, how much power will the study have?

	 Table 14.37 	 Risk factors for COPD death among 169,871 study participants, China, 1991−2000

Baseline
	 Men	 Women

risk factor	 b	 se	 b	 se

Age, 10 years	 1.030	 0.031	 0.997	 0.034
Alcohol consumption	 −0.174	 0.064	 0.365	 0.153
(at least 12 times in past year)				  
Cigarette smoking				  
  1–19 pack-years	 −0.062	 0.091	 0.300	 0.109
  ≥ 20 pack-years	 0.166	 0.067	 0.571	 0.100
Hypertension	 0.049	 0.063	 0.058	 0.069
No high school education	 0.863	 0.110	 0.904	 0.202
Physical inactivity	 0.451	 0.082	 0.300	 0.073
Underweight (BMI <18.5)	 0.978	 0.065	 0.956	 0.073
Living in Northern China	 0.329	 0.062	 0.548	 0.073
Living in rural China	 0.761	 0.071	 0.582	 0.074

14.62  Suppose we want to enroll n subjects per group in the 
previously proposed study and follow each woman for 5 years. 
How many subjects do we need to achieve 90% power?

Cancer
The data set in file BREAST.DAT consists of 1200 women 
in the NHS. The women were ascertained in 1990 and were 
postmenopausal and free of any cancer as of 1990. The 
1200 women were selected in such a way that 200 of the 
women were current postmenopausal hormone (PMH) users 
in 1990 and 1000 of the women had never used PMH as 
of 1990. The objective of the analysis was to relate breast 

cancer incidence from 1990 to 2000 to PMH use as of 
1990. Fifty-three of the women developed breast cancer 
between 1990 and 2000. PMH use is characterized both 
by current use/never use in 1990 as well as by duration 
of use as of 1990. Some current users in 1990 may have 
duration of use of 0 as of 1990 if they just started use in 
1990 or if they used other types of PMH as of 1990 (other 
than estrogen or estrogen plus progesterone). There are 
two duration variables according to type of PMH use (du-
ration of estrogen use in months as of 1990 and duration 
of estrogen plus progesterone use in months as of 1990). 
Each woman has a date of return of the 1990 questionnaire 
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and a follow-up date = date of diagnosis of breast cancer if 
a case, or date of the last questionnaire filled out up to 2000 
if a control. On the data file we provide the length of follow-
up = follow-up date - date of return of the 1990 question-
naire (variable 18). Thus, the first subject (ID 10013) had a 
date of return of 1087 = July 1990 = (12 × 90 + 7) and a 
follow-up date of 1206 = June 2000 = (12 × 100 + 6). In ad-
dition, the file contains the values of other breast cancer risk 
factors as of 1990.  A description of the data set is given in  
BREAST.DOC.

Format for Breast Cancer—postmenopausal hormone file

  1	 ID
  2	 case 1=case, 0=control
  3	 age
  4	 age at menarche
  5	 age at menopause
  6	 age at first birth 98=nullip
  7	 parity
  8	 Benign Breast disease (bbd) 1=yes/0=no
  9	 family history of breast cancer 1=yes/0=no
10	 BMI (kg/m**2)
11	 Height (inches)
12	 Alcohol use (grams/day)
13	 PMH status 2=never user/3=current user
14	 Duration of Estrogen use (months)
15	� Duration of Estrogen  +  progesterone use (months)
16	 Current Smoker 1=yes/0=no
17	 Past smoker 1=yes/0=no
18	 follow-up time (months)

14.63  Compare breast cancer incidence between the two 
exposure groups, where group 3 is the current PMH sub-
jects and group 2 is the never PMH subjects. (Hint: Both 
the number of events and when the events occurred should 
be considered in the analysis.)

14.64  Is there a difference in incidence according to dura-
tion of use (Variables 14 and 15)?

14.65  Compare the current PMH users vs. the never users 
in 1990 on other possible confounding variables.

14.66  Perform an adjusted analysis comparing breast 
cancer incidence between the current PMH users vs. the 
never PMH users, adjusting for confounders that you found 
in Problem 14.65.

14.67  Are there any interaction effects between PMH ex-
posure and other risk factors? 

Opththalmology
Retinitis pigmentosa (RP) is a hereditary ocular disease in 
which patches of pigment appear on the retina; the condi-
tion can result in substantial losses of vision and, in some 
cases, complete blindness. There are various modes of 
inheritance, including a dominant form, a recessive form, 

and a sex-linked form. An important discovery over the 
past 10 years was a set of genes that account for many 
of the RP cases. Specifically, mutations in the rhodopsin 
gene (RHO) account for many of the dominantly inherited 
cases; mutations in the RPGR gene (RPGR) account 
for many of the sex-linked cases. An important issue is 
whether the rate of progression is different between the 
RHO patients and the RPGR patients. On the data file 
FIELD.DAT are visual field data from approximately 100 
patients in each group. Visual field is a measure of area 
of vision. It is measured in degrees2. Longitudinal data 
with varying follow-up times are provided for each patient 
separately for the right eye (labeled OD) and the left eye 
(labeled OS). Follow-up time varies from a minimum of 
3 years to a maximum of about 25−30 years. (Hint: For 
simplicity, use the geometric mean field over 2 eyes as the 
summary measure of field for a subject at a particular visit.)

14.68  Assess whether the baseline level of visual field dif-
fers between RHO and RPGR patients.

14.69  Assess whether the rate of decline differs between 
RHO and RPGR patients.

FIELD.DOC

Column	 Variable

  1−6	 ID
  8	 group (1 = RHO/2 = RPGR)
11−14	 age at visit (XX.X in years)
16	� gender (1 = m/2 = f) Gender is coded as missing, 

but is actually male for all members of the RPGR 
group.

18−27	 date of visit (month/day/year)
29−34	 time from 1st visit in years
36−43	 total field area right eye (OD) in degrees2

45−52	 total field area left eye (OS) in degrees2

One possible complexity is that the age distribution of the 2 
groups may not be balanced. Also, the RHO group contains 
both males and females while the RPGR group consists ex-
clusively of males. Gender is also missing for some subjects 
in the RHO group. Gender is coded as missing for subjects 
in the RPGR group because they are all male.

14.70  Answer the question posed in Problem 14.69, while 
accounting for possible age and gender differences be-
tween groups.

An important endpoint for RP patients is legal blindness. 
For visual field, legal blindness is usually defined as <20° 
diameter of equivalent circular field area in the better eye. 
The equivalent circular field area for a 20° diameter is πR2 
= π(10°)2 = 314 degrees squared. For example, ID 156 
reached this endpoint at the fifth visit (approximately at 5.06 
years of follow-up) in the right eye and at both eyes at the 
sixth visit (approximately 6 years of follow-up).
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14.71  Assess whether the time to legal blindness is the 
same or different between the RHO group and the RPGR 
group. For simplicity, assume that legal blindness in a  
particular eye is an absorbing state (i.e., once they become 
legally blind in an eye, they remain legally blind). Also, do not 
include eyes that are legally blind at baseline in the analysis, 
since they have already reached the endpoint. The format of 
the data set is given in FIELD.DOC.

Infectious Disease
A study was recently performed concerning the incidence of 
H1N1 influenza in Australia and New Zealand [14].

14.72  It was found that among 626 Australian H1N1 pa-
tients admitted to an intensive care unit (ICU), 61 were 
aboriginal. If 2.5% of Australians are aboriginal, test the 
hypothesis that the percentage of aboriginal H1N1 cases 
differs from the percentage of aboriginals in the general 
population. Provide a two-sided p-value.

The data in Table 14.38 were presented on H1N1 patients 
admitted to the ICU (no. per million inhabitants) by week 
and region.

Table 14.38 	 �H1N1 patients admitted to the ICU 
in 2009 (no. per million inhabitants) 
by week and region

	 Region

Week	 Victoria	 New South Wales	 Queensland

06/29	 4.2	 1.8	 0.2
07/06	 2.8	 4.2	 0.8
07/13	 4.5	 6.5	 3.7
07/20	 1.7	 4.7	 6.1
07/27	 0.9	 4.7	 6.8
08/03	 1.3	 2.0	 6.1
08/10	 1.7	 1.2	 5.2
2001  
  Population	 5,314,000	 6,984,000	 4,294,000

14.73  For each region,

 (i)	� estimate the incidence rate per million (106) inhabitants 
(per week) over the 7-week period, and

(ii)	� the number of cases over 7 weeks from 06/29/09 to 
08/16/09 (rounded to the nearest integer).

14.74  Using the incidence rates calculated in Problem 
14.73, test whether there are significant differences in 
incidence rates by region over the 7-week period. Provide 
a two-sided p-value. (Note: Assume that the underly-
ing incidence rate in a given region is the same over the 
7 weeks.)

14.75  There were 722 patients admitted to the ICU for 
H1N1 in Australia and New Zealand from June 1 to August 

31, 2009 (winter season). The total population of Australia 
and New Zealand is approximately 25,000,000 = 25 million. 
Suppose that the underlying incidence rate is the same for 
the United States as for Australia and New Zealand. If there 
are 250 million people who live in the United States, then 
what is the estimated number of H1N1 cases admitted 
to the ICU in the United States during the winter season 
(12/21/09−3/20/10), and what is a 95% CI for the number 
of US cases?

Cancer
A study was conducted concerning the effect of screen-
ing mammography on breast cancer mortality in Norway 
(Kalager et al. [15]). A recommendation was made start-
ing in 1996 to offer screening mammography to women 
ages 50–69. The 19 counties in Norway were grouped 
into 6 regions, and the screening project was introduced 
in a staggered fashion starting from 1996 until 2005. Thus, 
each region had a time period from part of 1996 to 2005 
during which screening was offered (period A). In addi-
tion, historical information was used to estimate breast 
cancer mortality from 1986–1995 prior to when screening 
was introduced (period B). Thus, if screening was in place 
from 2001–2005 in a region, the historical exposure from 
1991–1995 was considered in the same region. The results 
were as follows:

Table 14.39 	 �Comparison of breast cancer 
mortality between period A and 
period B

	 # deaths	 # person-years

Period A	 423	 2,337,323	 (screening period from 	
			   1996–2005)
Period B	 555	 2,197,469	 (experience 10 years 
			   prior to period A)

14.76  Estimate the incidence rate ratio (IRR) comparing 
mortality incidence between period A and period B, and 
provide a 95% CI about this estimate.

14.77  Estimate the incidence rate difference (IRD) compar-
ing mortality incidence between period A and period B, and 
provide a 95% CI about this estimate. 

One issue is that there may be time trends in breast cancer 
mortality that have nothing to do with screening. To control 
for this, a non-screening time period was identified (period 
C) during 1996–2005 in each region during which breast 
cancer screening was not introduced (in the above region 
it would be from 1996–2000). In addition, a time period 
10 years prior to this non-screening period was identified 
during 1986–1995 (period D) (in the above region from 
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1986–1990). The breast cancer mortality exposure in these 
two periods was as follows:

Table 14.40 	 �Comparison of breast cancer 
mortality between period C and 
period D

	 # deaths	 # person-years

Period C	 396	 1,866,741	 (non-screening period 
			   from 1996–2005)
Period D	 494	 1,898,989	 (experience 10 years 
			   prior to period C)

14.78  Test the hypothesis that the IRR comparing period A 
to period B is the same as from period C to period D. (Hint: 
Use a test for homogeneity.) 

14.79  Interpret what the results mean. Specifically, did 
the screening program have a significant impact on breast 
cancer mortality or not? 

Cancer
A paper was recently published concerning the association 
between alcohol consumption and breast cancer incidence  
based on Nurses’ Health Study data from 1980–2006 
(Chen et al. [16]). The following table was presented

Table 14.41 	 �Association between alcohol intake 
in 1980 and breast cancer incidence 
from 1980 to 2006.

		 Baseline alcohol	 Median alcohol		   
		 intake	 intake 
	Group	 (grams/day)	 (grams/day)	 Cases	 Incidence rate*

0	 0	 0	 1776	 312

1	 0.1–4.9	 2.5	 2016	 331

2	 5.0–9.9	 7.5	 723	 363

3	 10.0–19.9	 15.0	 1020	 370

4	 20.0–29.9	 25.0	 246	 412

5	 ≥30.0	 30.0	 413	 476

*per 105 person-years

14.80  What test can be performed to compare the breast 
cancer incidence rate between the ≥30.0g group and the 
0g group?

14.81  Perform the test in Problem 14.80, and report a  
p-value (two-tail). 

14.82  What is the estimated incidence rate ratio comparing 
the ≥30.0g group vs. the 0g group?

14.83  Provide a 95% CI for the IRR in Problem 14.82.

14.84  Perform a test for trend based on the data in Table 
14.41.
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	 Table 1 	 Exact binomial probabilities Pr(X = k) =  pkqn–k

n	 k	 .05	 .10	 .15	 .20	 .25	 .30	 .35	 .40	 .45	 .50

	2	 0	 .9025	 .8100	 .7225	 .6400	 .5625	 .4900	 .4225	 .3600	 .3025	 .2500
	 	 1	 .0950	 .1800	 .2550	 .3200	 .3750	 .4200	 .4550	 .4800	 .4950	 .5000
	 	 2	 .0025	 .0100	 .0225	 .0400	 .0625	 .0900	 .1225	 .1600	 .2025	 .2500
	3	 0	 .8574	 .7290	 .6141	 .5120	 .4219	 .3430	 .2746	 .2160	 .1664	 .1250
	 	 1	 .1354	 .2430	 .3251	 .3840	 .4219	 .4410	 .4436	 .4320	 .4084	 .3750
	 	 2	 .0071	 .0270	 .0574	 .0960	 .1406	 .1890	 .2389	 .2880	 .3341	 .3750
	 	 3	 .0001	 .0010	 .0034	 .0080	 .0156	 .0270	 .0429	 .0640	 .0911	 .1250
	4	 0	 .8145	 .6561	 .5220	 .4096	 .3164	 .2401	 .1785	 .1296	 .0915	 .0625
	 	 1	 .1715	 .2916	 .3685	 .4096	 .4219	 .4116	 .3845	 .3456	 .2995	 .2500
	 	 2	 .0135	 .0486	 .0975	 .1536	 .2109	 .2646	 .3105	 .3456	 .3675	 .3750
	 	 3	 .0005	 .0036	 .0115	 .0256	 .0469	 .0756	 .1115	 .1536	 .2005	 .2500
	 	 4	 .0000	 .0001	 .0005	 .0016	 .0039	 .0081	 .0150	 .0256	 .0410	 .0625
	5	 0	 .7738	 .5905	 .4437	 .3277	 .2373	 .1681	 .1160	 .0778	 .0503	 .0313
	 	 1	 .2036	 .3280	 .3915	 .4096	 .3955	 .3602	 .3124	 .2592	 .2059	 .1563
	 	 2	 .0214	 .0729	 .1382	 .2048	 .2637	 .3087	 .3364	 .3456	 .3369	 .3125
	 	 3	 .0011	 .0081	 .0244	 .0512	 .0879	 .1323	 .1811	 .2304	 .2757	 .3125
	 	 4	 .0000	 .0004	 .0022	 .0064	 .0146	 .0283	 .0488	 .0768	 .1128	 .1563
	 	 5	 .0000	 .0000	 .0001	 .0003	 .0010	 .0024	 .0053	 .0102	 .0185	 .0313
	6	 0	 .7351	 .5314	 .3771	 .2621	 .1780	 .1176	 .0754	 .0467	 .0277	 .0156
	 	 1	 .2321	 .3543	 .3993	 .3932	 .3560	 .3025	 .2437	 .1866	 .1359	 .0938
	 	 2	 .0305	 .0984	 .1762	 .2458	 .2966	 .3241	 .3280	 .3110	 .2780	 .2344
	 	 3	 .0021	 .0146	 .0415	 .0819	 .1318	 .1852	 .2355	 .2765	 .3032	 .3125
	 	 4	 .0001	 .0012	 .0055	 .0154	 .0330	 .0595	 .0951	 .1382	 .1861	 .2344
	 	 5	 .0000	 .0001	 .0004	 .0015	 .0044	 .0102	 .0205	 .0369	 .0609	 .0938
	 	 6	 .0000	 .0000	 .0000	 .0001	 .0002	 .0007	 .0018	 .0041	 .0083	 .0156
	7	 0	 .6983	 .4783	 .3206	 .2097	 .1335	 .0824	 .0490	 .0280	 .0152	 .0078
	 	 1	 .2573	 .3720	 .3960	 .3670	 .3115	 .2471	 .1848	 .1306	 .0872	 .0547
	 	 2	 .0406	 .1240	 .2097	 .2753	 .3115	 .3177	 .2985	 .2613	 .2140	 .1641
	 	 3	 .0036	 .0230	 .0617	 .1147	 .1730	 .2269	 .2679	 .2903	 .2918	 .2734
	 	 4	 .0002	 .0026	 .0109	 .0287	 .0577	 .0972	 .1442	 .1935	 .2388	 .2734
	 	 5	 .0000	 .0002	 .0012	 .0043	 .0115	 .0250	 .0466	 .0774	 .1172	 .1641
	 	 6	 .0000	 .0000	 .0001	 .0004	 .0013	 .0036	 .0084	 .0172	 .0320	 .0547
	 	 7	 .0000	 .0000	 .0000	 .0000	 .0001	 .0002	 .0006	 .0016	 .0037	 .0078
	8	 0	 .6634	 .4305	 .2725	 .1678	 .1001	 .0576	 .0319	 .0168	 .0084	 .0039
	 	 1	 .2793	 .3826	 .3847	 .3355	 .2670	 .1977	 .1373	 .0896	 .0548	 .0313
	 	 2	 .0515	 .1488	 .2376	 .2936	 .3115	 .2965	 .2587	 .2090	 .1569	 .1094
	 	 3	 .0054	 .0331	 .0839	 .1468	 .2076	 .2541	 .2786	 .2787	 .2568	 .2188

(continued on next page)

APPENDIX  |   Tables
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	 Table 1 	 Exact binomial probabilities Pr(X = k) =  pkqn–k (continued)

n	 k	 .05	 .10	 .15	 .20	 .25	 .30	 .35	 .40	 .45	 .50

	 	 4	 .0004	 .0046	 .0185	 .0459	 .0865	 .1361	 .1875	 .2322	 .2627	 .2734
	 	 5	 .0000	 .0004	 .0026	 .0092	 .0231	 .0467	 .0808	 .1239	 .1719	 .2188
	 	 6	 .0000	 .0000	 .0002	 .0011	 .0038	 .0100	 .0217	 .0413	 .0703	 .1094
	 	 7	 .0000	 .0000	 .0000	 .0001	 .0004	 .0012	 .0033	 .0079	 .0164	 .0313
	 	 8	 .0000	 .0000	 .0000	 .0000	 .0000	 .0001	 .0002	 .0007	 .0017	 .0039
	9	 0	 .6302	 .3874	 .2316	 .1342	 .0751	 .0404	 .0207	 .0101	 .0046	 .0020
	 	 1	 .2985	 .3874	 .3679	 .3020	 .2253	 .1556	 .1004	 .0605	 .0339	 .0176
	 	 2	 .0629	 .1722	 .2597	 .3020	 .3003	 .2668	 .2162	 .1612	 .1110	 .0703
	 	 3	 .0077	 .0446	 .1069	 .1762	 .2336	 .2668	 .2716	 .2508	 .2119	 .1641
	 	 4	 .0006	 .0074	 .0283	 .0661	 .1168	 .1715	 .2194	 .2508	 .2600	 .2461
	 	 5	 .0000	 .0008	 .0050	 .0165	 .0389	 .0735	 .1181	 .1672	 .2128	 .2461
	 	 6	 .0000	 .0001	 .0006	 .0028	 .0087	 .0210	 .0424	 .0743	 .1160	 .1641
	 	 7	 .0000	 .0000	 .0000	 .0003	 .0012	 .0039	 .0098	 .0212	 .0407	 .0703
	 	 8	 .0000	 .0000	 .0000	 .0000	 .0001	 .0004	 .0013	 .0035	 .0083	 .0176
	 	 9	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0001	 .0003	 .0008	 .0020
	10	 0	 .5987	 .3487	 .1969	 .1074	 .0563	 .0282	 .0135	 .0060	 .0025	 .0010
	 	 1	 .3151	 .3874	 .3474	 .2684	 .1877	 .1211	 .0725	 .0403	 .0207	 .0098
	 	 2	 .0746	 .1937	 .2759	 .3020	 .2816	 .2335	 .1757	 .1209	 .0763	 .0439
	 	 3	 .0105	 .0574	 .1298	 .2013	 .2503	 .2668	 .2522	 .2150	 .1665	 .1172
	 	 4	 .0010	 .0112	 .0401	 .0881	 .1460	 .2001	 .2377	 .2508	 .2384	 .2051
	 	 5	 .0001	 .0015	 .0085	 .0264	 .0584	 .1029	 .1536	 .2007	 .2340	 .2461
	 	 6	 .0000	 .0001	 .0012	 .0055	 .0162	 .0368	 .0689	 .1115	 .1596	 .2051
	 	 7	 .0000	 .0000	 .0001	 .0008	 .0031	 .0090	 .0212	 .0425	 .0746	 .1172
	 	 8	 .0000	 .0000	 .0000	 .0001	 .0004	 .0014	 .0043	 .0106	 .0229	 .0439
	 	 9	 .0000	 .0000	 .0000	 .0000	 .0000	 .0001	 .0005	 .0016	 .0042	 .0098
	 	 10	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0001	 .0003	 .0010
	11	 0	 .5688	 .3138	 .1673	 .0859	 .0422	 .0198	 .0088	 .0036	 .0014	 .0005
	 	 1	 .3293	 .3835	 .3248	 .2362	 .1549	 .0932	 .0518	 .0266	 .0125	 .0054
	 	 2	 .0867	 .2131	 .2866	 .2953	 .2581	 .1998	 .1395	 .0887	 .0513	 .0269
	 	 3	 .0137	 .0710	 .1517	 .2215	 .2581	 .2568	 .2254	 .1774	 .1259	 .0806
	 	 4	 .0014	 .0158	 .0536	 .1107	 .1721	 .2201	 .2428	 .2365	 .2060	 .1611
	 	 5	 .0001	 .0025	 .0132	 .0388	 .0803	 .1321	 .1830	 .2207	 .2360	 .2256
	 	 6	 .0000	 .0003	 .0023	 .0097	 .0268	 .0566	 .0985	 .1471	 .1931	 .2256
	 	 7	 .0000	 .0000	 .0003	 .0017	 .0064	 .0173	 .0379	 .0701	 .1128	 .1611
	 	 8	 .0000	 .0000	 .0000	 .0002	 .0011	 .0037	 .0102	 .0234	 .0462	 .0806
	 	 9	 .0000	 .0000	 .0000	 .0000	 .0001	 .0005	 .0018	 .0052	 .0126	 .0269
	 	 10	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0002	 .0007	 .0021	 .0054
	 	 11	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0002	 .0005
	12	 0	 .5404	 .2824	 .1422	 .0687	 .0317	 .0138	 .0057	 .0022	 .0008	 .0002
	 	 1	 .3413	 .3766	 .3012	 .2062	 .1267	 .0712	 .0368	 .0174	 .0075	 .0029
	 	 2	 .0988	 .2301	 .2924	 .2835	 .2323	 .1678	 .1088	 .0639	 .0339	 .0161
	 	 3	 .0173	 .0852	 .1720	 .2362	 .2581	 .2397	 .1954	 .1419	 .0923	 .0537
	 	 4	 .0021	 .0213	 .0683	 .1329	 .1936	 .2311	 .2367	 .2128	 .1700	 .1208
	 	 5	 .0002	 .0038	 .0193	 .0532	 .1032	 .1585	 .2039	 .2270	 .2225	 .1934
	 	 6	 .0000	 .0005	 .0040	 .0155	 .0401	 .0792	 .1281	 .1766	 .2124	 .2256
	 	 7	 .0000	 .0000	 .0006	 .0033	 .0115	 .0291	 .0591	 .1009	 .1489	 .1934
	 	 8	 .0000	 .0000	 .0001	 .0005	 .0024	 .0078	 .0199	 .0420	 .0762	 .1208
	 	 9	 .0000	 .0000	 .0000	 .0001	 .0004	 .0015	 .0048	 .0125	 .0277	 .0537
	 	 10	 .0000	 .0000	 .0000	 .0000	 .0000	 .0002	 .0008	 .0025	 .0068	 .0161
	 	 11	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0001	 .0003	 .0010	 .0029
	 	 12	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0001	 .0002
13	 0	 .5133	 .2542	 .1209	 .0550	 .0238	 .0097	 .0037	 .0013	 .0004	 .0001
	 	 1	 .3512	 .3672	 .2774	 .1787	 .1029	 .0540	 .0259	 .0113	 .0045	 .0016
	 	 2	 .1109	 .2448	 .2937	 .2680	 .2059	 .1388	 .0836	 .0453	 .0220	 .0095
	 	 3	 .0214	 .0997	 .1900	 .2457	 .2517	 .2181	 .1651	 .1107	 .0660	 .0349
	 	 4	 .0028	 .0277	 .0838	 .1535	 .2097	 .2337	 .2222	 .1845	 .1350	 .0873
	 	 5	 .0003	 .0055	 .0266	 .0691	 .1258	 .1803	 .2154	 .2214	 .1989	 .1571
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	 Table 1 	 Exact binomial probabilities Pr(X = k) =  pkqn–k (continued)

n	 k	 .05	 .10	 .15	 .20	 .25	 .30	 .35	 .40	 .45	 .50

	 	 6	 .0000	 .0008	 .0063	 .0230	 .0559	 .1030	 .1546	 .1968	 .2169	 .2095
	 	 7	 .0000	 .0001	 .0011	 .0058	 .0186	 .0442	 .0833	 .1312	 .1775	 .2095
	 	 8	 .0000	 .0000	 .0001	 .0011	 .0047	 .0142	 .0336	 .0656	 .1089	 .1571
	 	 9	 .0000	 .0000	 .0000	 .0001	 .0009	 .0034	 .0101	 .0243	 .0495	 .0873
	 	 10	 .0000	 .0000	 .0000	 .0000	 .0001	 .0006	 .0022	 .0065	 .0162	 .0349
	 	 11	 .0000	 .0000	 .0000	 .0000	 .0000	 .0001	 .0003	 .0012	 .0036	 .0095
	 	 12	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0001	 .0005	 .0016
	 	 13	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0001
	14	 0	 .4877	 .2288	 .1028	 .0440	 .0178	 .0068	 .0024	 .0008	 .0002	 .0001
	 	 1	 .3593	 .3559	 .2539	 .1539	 .0832	 .0407	 .0181	 .0073	 .0027	 .0009
	 	 2	 .1229	 .2570	 .2912	 .2501	 .1802	 .1134	 .0634	 .0317	 .0141	 .0056
	 	 3	 .0259	 .1142	 .2056	 .2501	 .2402	 .1943	 .1366	 .0845	 .0462	 .0222
	 	 4	 .0037	 .0349	 .0998	 .1720	 .2202	 .2290	 .2022	 .1549	 .1040	 .0611
	 	 5	 .0004	 .0078	 .0352	 .0860	 .1468	 .1963	 .2178	 .2066	 .1701	 .1222
	 	 6	 .0000	 .0013	 .0093	 .0322	 .0734	 .1262	 .1759	 .2066	 .2088	 .1833
	 	 7	 .0000	 .0002	 .0019	 .0092	 .0280	 .0618	 .1082	 .1574	 .1952	 .2095
	 	 8	 .0000	 .0000	 .0003	 .0020	 .0082	 .0232	 .0510	 .0918	 .1398	 .1833
	 	 9	 .0000	 .0000	 .0000	 .0003	 .0018	 .0066	 .0183	 .0408	 .0762	 .1222
	 	 10	 .0000	 .0000	 .0000	 .0000	 .0003	 .0014	 .0049	 .0136	 .0312	 .0611
	 	 11	 .0000	 .0000	 .0000	 .0000	 .0000	 .0002	 .0010	 .0033	 .0093	 .0222
	 	 12	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0001	 .0005	 .0019	 .0056
	 	 13	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0001	 .0002	 .0009
	 	 14	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0001
	15	 0	 .4633	 .2059	 .0874	 .0352	 .0134	 .0047	 .0016	 .0005	 .0001	 .0000
	 	 1	 .3658	 .3432	 .2312	 .1319	 .0668	 .0305	 .0126	 .0047	 .0016	 .0005
	 	 2	 .1348	 .2669	 .2856	 .2309	 .1559	 .0916	 .0476	 .0219	 .0090	 .0032
	 	 3	 .0307	 .1285	 .2184	 .2501	 .2252	 .1700	 .1110	 .0634	 .0318	 .0139
	 	 4	 .0049	 .0428	 .1156	 .1876	 .2252	 .2186	 .1792	 .1268	 .0780	 .0417
	 	 5	 .0006	 .0105	 .0449	 .1032	 .1651	 .2061	 .2123	 .1859	 .1404	 .0916
	 	 6	 .0000	 .0019	 .0132	 .0430	 .0917	 .1472	 .1906	 .2066	 .1914	 .1527
	 	 7	 .0000	 .0003	 .0030	 .0138	 .0393	 .0811	 .1319	 .1771	 .2013	 .1964
	 	 8	 .0000	 .0000	 .0005	 .0035	 .0131	 .0348	 .0710	 .1181	 .1647	 .1964
	 	 9	 .0000	 .0000	 .0001	 .0007	 .0034	 .0116	 .0298	 .0612	 .1048	 .1527
	 	 10	 .0000	 .0000	 .0000	 .0001	 .0007	 .0030	 .0096	 .0245	 .0515	 .0916
	 	 11	 .0000	 .0000	 .0000	 .0000	 .0001	 .0006	 .0024	 .0074	 .0191	 .0417
	 	 12	 .0000	 .0000	 .0000	 .0000	 .0000	 .0001	 .0004	 .0016	 .0052	 .0139
	 	 13	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0001	 .0003	 .0010	 .0032
	 	 14	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0001	 .0005
	 	 15	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000
	16	 0	 .4401	 .1853	 .0743	 .0281	 .0100	 .0033	 .0010	 .0003	 .0001	 .0000
	 	 1	 .3706	 .3294	 .2097	 .1126	 .0535	 .0228	 .0087	 .0030	 .0009	 .0002
	 	 2	 .1463	 .2745	 .2775	 .2111	 .1336	 .0732	 .0353	 .0150	 .0056	 .0018
	 	 3	 .0359	 .1423	 .2285	 .2463	 .2079	 .1465	 .0888	 .0468	 .0215	 .0085
	 	 4	 .0061	 .0514	 .1311	 .2001	 .2252	 .2040	 .1553	 .1014	 .0572	 .0278
	 	 5	 .0008	 .0137	 .0555	 .1201	 .1802	 .2099	 .2008	 .1623	 .1123	 .0667
	 	 6	 .0001	 .0028	 .0180	 .0550	 .1101	 .1649	 .1982	 .1983	 .1684	 .1222
	 	 7	 .0000	 .0004	 .0045	 .0197	 .0524	 .1010	 .1524	 .1889	 .1969	 .1746
	 	 8	 .0000	 .0001	 .0009	 .0055	 .0197	 .0487	 .0923	 .1417	 .1812	 .1964
	 	 9	 .0000	 .0000	 .0001	 .0012	 .0058	 .0185	 .0442	 .0840	 .1318	 .1746
	 	 10	 .0000	 .0000	 .0000	 .0002	 .0014	 .0056	 .0167	 .0392	 .0755	 .1222
	 	 11	 .0000	 .0000	 .0000	 .0000	 .0002	 .0013	 .0049	 .0142	 .0337	 .0667
	 	 12	 .0000	 .0000	 .0000	 .0000	 .0000	 .0002	 .0011	 .0040	 .0115	 .0278
	 	 13	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0002	 .0008	 .0029	 .0085
	 	 14	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0001	 .0005	 .0018
	 	 15	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0001	 .0002
	 	 16	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000
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	 Table 1 	 Exact binomial probabilities Pr(X = k) =  pkqn–k (continued)

n	 k	 .05	 .10	 .15	 .20	 .25	 .30	 .35	 .40	 .45	 .50

	17	 0	 .4181	 .1668	 .0631	 .0225	 .0075	 .0023	 .0007	 .0002	 .0000	 .0000
	 	 1	 .3741	 .3150	 .1893	 .0957	 .0426	 .0169	 .0060	 .0019	 .0005	 .0001
	 	 2	 .1575	 .2800	 .2673	 .1914	 .1136	 .0581	 .0260	 .0102	 .0035	 .0010
	 	 3	 .0415	 .1556	 .2359	 .2393	 .1893	 .1245	 .0701	 .0341	 .0144	 .0052
	 	 4	 .0076	 .0605	 .1457	 .2093	 .2209	 .1868	 .1320	 .0796	 .0411	 .0182
	 	 5	 .0010	 .0175	 .0668	 .1361	 .1914	 .2081	 .1849	 .1379	 .0875	 .0472
	 	 6	 .0001	 .0039	 .0236	 .0680	 .1276	 .1784	 .1991	 .1839	 .1432	 .0944
	 	 7	 .0000	 .0007	 .0065	 .0267	 .0668	 .1201	 .1685	 .1927	 .1841	 .1484
	 	 8	 .0000	 .0001	 .0014	 .0084	 .0279	 .0644	 .1134	 .1606	 .1883	 .1855
	 	 9	 .0000	 .0000	 .0003	 .0021	 .0093	 .0276	 .0611	 .1070	 .1540	 .1855
	 	 10	 .0000	 .0000	 .0000	 .0004	 .0025	 .0095	 .0263	 .0571	 .1008	 .1484
	 	 11	 .0000	 .0000	 .0000	 .0001	 .0005	 .0026	 .0090	 .0242	 .0525	 .0944
	 	 12	 .0000	 .0000	 .0000	 .0000	 .0001	 .0006	 .0024	 .0081	 .0215	 .0472
	 	 13	 .0000	 .0000	 .0000	 .0000	 .0000	 .0001	 .0005	 .0021	 .0068	 .0182
	 	 14	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0001	 .0004	 .0016	 .0052
	 	 15	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0001	 .0003	 .0010
	 	 16	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0001
	 	 17	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000
	18	 0	 .3972	 .1501	 .0536	 .0180	 .0056	 .0016	 .0004	 .0001	 .0000	 .0000
	 	 1	 .3763	 .3002	 .1704	 .0811	 .0338	 .0126	 .0042	 .0012	 .0003	 .0001
	 	 2	 .1683	 .2835	 .2556	 .1723	 .0958	 .0458	 .0190	 .0069	 .0022	 .0006
	 	 3	 .0473	 .1680	 .2406	 .2297	 .1704	 .1046	 .0547	 .0246	 .0095	 .0031
	 	 4	 .0093	 .0700	 .1592	 .2153	 .2130	 .1681	 .1104	 .0614	 .0291	 .0117
	 	 5	 .0014	 .0218	 .0787	 .1507	 .1988	 .2017	 .1664	 .1146	 .0666	 .0327
	 	 6	 .0002	 .0052	 .0301	 .0816	 .1436	 .1873	 .1941	 .1655	 .1181	 .0708
	 	 7	 .0000	 .0010	 .0091	 .0350	 .0820	 .1376	 .1792	 .1892	 .1657	 .1214
	 	 8	 .0000	 .0002	 .0022	 .0120	 .0376	 .0811	 .1327	 .1734	 .1864	 .1669
	 	 9	 .0000	 .0000	 .0004	 .0033	 .0139	 .0386	 .0794	 .1284	 .1694	 .1855
	 	 10	 .0000	 .0000	 .0001	 .0008	 .0042	 .0149	 .0385	 .0771	 .1248	 .1669
	 	 11	 .0000	 .0000	 .0000	 .0001	 .0010	 .0046	 .0151	 .0374	 .0742	 .1214
	 	 12	 .0000	 .0000	 .0000	 .0000	 .0002	 .0012	 .0047	 .0145	 .0354	 .0708
	 	 13	 .0000	 .0000	 .0000	 .0000	 .0000	 .0002	 .0012	 .0045	 .0134	 .0327
	 	 14	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0002	 .0011	 .0039	 .0117
	 	 15	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0002	 .0009	 .0031
	 	 16	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0001	 .0006
	 	 17	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0001
	 	 18	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000
	19	 0	 .3774	 .1351	 .0456	 .0144	 .0042	 .0011	 .0003	 .0001	 .0000	 .0000
	 	 1	 .3774	 .2852	 .1529	 .0685	 .0268	 .0093	 .0029	 .0008	 .0002	 .0000
	 	 2	 .1787	 .2852	 .2428	 .1540	 .0803	 .0358	 .0138	 .0046	 .0013	 .0003
	 	 3	 .0533	 .1796	 .2428	 .2182	 .1517	 .0869	 .0422	 .0175	 .0062	 .0018
	 	 4	 .0112	 .0798	 .1714	 .2182	 .2023	 .1491	 .0909	 .0467	 .0203	 .0074
	 	 5	 .0018	 .0266	 .0907	 .1636	 .2023	 .1916	 .1468	 .0933	 .0497	 .0222
	 	 6	 .0002	 .0069	 .0374	 .0955	 .1574	 .1916	 .1844	 .1451	 .0949	 .0518
	 	 7	 .0000	 .0014	 .0122	 .0443	 .0974	 .1525	 .1844	 .1797	 .1443	 .0961
	 	 8	 .0000	 .0002	 .0032	 .0166	 .0487	 .0981	 .1489	 .1797	 .1771	 .1442
	 	 9	 .0000	 .0000	 .0007	 .0051	 .0198	 .0514	 .0980	 .1464	 .1771	 .1762
	 	 10	 .0000	 .0000	 .0001	 .0013	 .0066	 .0220	 .0528	 .0976	 .1449	 .1762
	 	 11	 .0000	 .0000	 .0000	 .0003	 .0018	 .0077	 .0233	 .0532	 .0970	 .1442
	 	 12	 .0000	 .0000	 .0000	 .0000	 .0004	 .0022	 .0083	 .0237	 .0529	 .0961
	 	 13	 .0000	 .0000	 .0000	 .0000	 .0001	 .0005	 .0024	 .0085	 .0233	 .0518
	 	 14	 .0000	 .0000	 .0000	 .0000	 .0000	 .0001	 .0006	 .0024	 .0082	 .0222
	 	 15	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0001	 .0005	 .0022	 .0074
	 	 16	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0001	 .0005	 .0018
	 	 17	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0001	 .0003
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	 Table 1 	 Exact binomial probabilities Pr(X = k) =  pkqn–k (continued)

n	 k	 .05	 .10	 .15	 .20	 .25	 .30	 .35	 .40	 .45	 .50

	 	 18	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000
	 	 19	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000
	20	 0	 .3585	 .1216	 .0388	 .0115	 .0032	 .0008	 .0002	 .0000	 .0000	 .0000
	 	 1	 .3774	 .2702	 .1368	 .0576	 .0211	 .0068	 .0020	 .0005	 .0001	 .0000
	 	 2	 .1887	 .2852	 .2293	 .1369	 .0669	 .0278	 .0100	 .0031	 .0008	 .0002
	 	 3	 .0596	 .1901	 .2428	 .2054	 .1339	 .0716	 .0323	 .0123	 .0040	 .0011
	 	 4	 .0133	 .0898	 .1821	 .2182	 .1897	 .1304	 .0738	 .0350	 .0139	 .0046
	 	 5	 .0022	 .0319	 .1028	 .1746	 .2023	 .1789	 .1272	 .0746	 .0365	 .0148
	 	 6	 .0003	 .0089	 .0454	 .1091	 .1686	 .1916	 .1712	 .1244	 .0746	 .0370
	 	 7	 .0000	 .0020	 .0160	 .0546	 .1124	 .1643	 .1844	 .1659	 .1221	 .0739
	 	 8	 .0000	 .0004	 .0046	 .0222	 .0609	 .1144	 .1614	 .1797	 .1623	 .1201
	 	 9	 .0000	 .0001	 .0011	 .0074	 .0271	 .0654	 .1158	 .1597	 .1771	 .1602
	 	 10	 .0000	 .0000	 .0002	 .0020	 .0099	 .0308	 .0686	 .1171	 .1593	 .1762
	 	 11	 .0000	 .0000	 .0000	 .0005	 .0030	 .0120	 .0336	 .0710	 .1185	 .1602
	 	 12	 .0000	 .0000	 .0000	 .0001	 .0008	 .0039	 .0136	 .0355	 .0727	 .1201
	 	 13	 .0000	 .0000	 .0000	 .0000	 .0002	 .0010	 .0045	 .0146	 .0366	 .0739
	 	 14	 .0000	 .0000	 .0000	 .0000	 .0000	 .0002	 .0012	 .0049	 .0150	 .0370
	 	 15	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0003	 .0013	 .0049	 .0148
	 	 16	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0003	 .0013	 .0046
	 	 17	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0002	 .0011
	 	 18	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0002
	 	 19	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000
	 	 20	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000

	 Table 2 	 Exact Poisson probabilities 

	 µ

	 k	 0.5	 1.0	 1.5	 2.0	 2.5	 3.0	 3.5	 4.0	 4.5	 5.0

	 0	 .6065	 .3679	 .2231	 .1353	 .0821	 .0498	 .0302	 .0183	 .0111	 .0067
	 1	 .3033	 .3679	 .3347	 .2707	 .2052	 .1494	 .1057	 .0733	 .0500	 .0337
	 2	 .0758	 .1839	 .2510	 .2707	 .2565	 .2240	 .1850	 .1465	 .1125	 .0842
	 3	 .0126	 .0613	 .1255	 .1804	 .2138	 .2240	 .2158	 .1954	 .1687	 .1404
	 4	 .0016	 .0153	 .0471	 .0902	 .1336	 .1680	 .1888	 .1954	 .1898	 .1755
	 5	 .0002	 .0031	 .0141	 .0361	 .0668	 .1008	 .1322	 .1563	 .1708	 .1755
	 6	 .0000	 .0005	 .0035	 .0120	 .0278	 .0504	 .0771	 .1042	 .1281	 .1462
	 7	 .0000	 .0001	 .0008	 .0034	 .0099	 .0216	 .0385	 .0595	 .0824	 .1044
	 8	 .0000	 .0000	 .0001	 .0009	 .0031	 .0081	 .0169	 .0298	 .0463	 .0653
	 9	 .0000	 .0000	 .0000	 .0002	 .0009	 .0027	 .0066	 .0132	 .0232	 .0363
	10	 .0000	 .0000	 .0000	 .0000	 .0002	 .0008	 .0023	 .0053	 .0104	 .0181
	11	 .0000	 .0000	 .0000	 .0000	 .0000	 .0002	 .0007	 .0019	 .0043	 .0082
	12	 .0000	 .0000	 .0000	 .0000	 .0000	 .0001	 .0002	 .0006	 .0016	 .0034
	13	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0001	 .0002	 .0006	 .0013
	14	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0001	 .0002	 .0005
	15	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0001	 .0002
	16	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000

	 µ

	 k	 5.5	 6.0	 6.5	 7.0	 7.5	 8.0	 8.5	 9.0	 9.5	 10.0

	 0	 .0041	 .0025	 .0015	 .0009	 .0006	 .0003	 .0002	 .0001	 .0001	 .0000
	 1	 .0225	 .0149	 .0098	 .0064	 .0041	 .0027	 .0017	 .0011	 .0007	 .0005
	 2	 .0618	 .0446	 .0318	 .0223	 .0156	 .0107	 .0074	 .0050	 .0034	 .0023
	 3	 .1133	 .0892	 .0688	 .0521	 .0389	 .0286	 .0208	 .0150	 .0107	 .0076

(continued on next page)
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(continued on next page)

	 Table 2 	 Exact Poisson probabilities  (continued)

	 µ

	 k	 5.5	 6.0	 6.5	 7.0	 7.5	 8.0	 8.5	 9.0	 9.5	 10.0

	 4	 .1558	 .1339	 .1118	 .0912	 .0729	 .0573	 .0443	 .0337	 .0254	 .0189
	 5	 .1714	 .1606	 .1454	 .1277	 .1094	 .0916	 .0752	 .0607	 .0483	 .0378
	 6	 .1571	 .1606	 .1575	 .1490	 .1367	 .1221	 .1066	 .0911	 .0764	 .0631
	 7	 .1234	 .1377	 .1462	 .1490	 .1465	 .1396	 .1294	 .1171	 .1037	 .0901
	 8	 .0849	 .1033	 .1188	 .1304	 .1373	 .1396	 .1375	 .1318	 .1232	 .1126
	 9	 .0519	 .0688	 .0858	 .1014	 .1144	 .1241	 .1299	 .1318	 .1300	 .1251
	10	 .0285	 .0413	 .0558	 .0710	 .0858	 .0993	 .1104	 .1186	 .1235	 .1251
	11	 .0143	 .0225	 .0330	 .0452	 .0585	 .0722	 .0853	 .0970	 .1067	 .1137
	12	 .0065	 .0113	 .0179	 .0263	 .0366	 .0481	 .0604	 .0728	 .0844	 .0948
	13	 .0028	 .0052	 .0089	 .0142	 .0211	 .0296	 .0395	 .0504	 .0617	 .0729
	14	 .0011	 .0022	 .0041	 .0071	 .0113	 .0169	 .0240	 .0324	 .0419	 .0521
	15	 .0004	 .0009	 .0018	 .0033	 .0057	 .0090	 .0136	 .0194	 .0265	 .0347
	16	 .0001	 .0003	 .0007	 .0014	 .0026	 .0045	 .0072	 .0109	 .0157	 .0217
	17	 .0000	 .0001	 .0003	 .0006	 .0012	 .0021	 .0036	 .0058	 .0088	 .0128
	18	 .0000	 .0000	 .0001	 .0002	 .0005	 .0009	 .0017	 .0029	 .0046	 .0071
	19	 .0000	 .0000	 .0000	 .0001	 .0002	 .0004	 .0008	 .0014	 .0023	 .0037
	20	 .0000	 .0000	 .0000	 .0000	 .0001	 .0002	 .0003	 .0006	 .0011	 .0019
	21	 .0000	 .0000	 .0000	 .0000	 .0000	 .0001	 .0001	 .0003	 .0005	 .0009
	22	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0001	 .0001	 .0002	 .0004
	23	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0001	 .0002
	24	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0001
	25	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000

	 µ

	 k	 10.5	 11.0	 11.5	 12.0	 12.5	 13.0	 13.5	 14.0	 14.5	 15.0

	 0	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000
	 1	 .0003	 .0002	 .0001	 .0001	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000
	 2	 .0015	 .0010	 .0007	 .0004	 .0003	 .0002	 .0001	 .0001	 .0001	 .0000
	 3	 .0053	 .0037	 .0026	 .0018	 .0012	 .0008	 .0006	 .0004	 .0003	 .0002
	 4	 .0139	 .0102	 .0074	 .0053	 .0038	 .0027	 .0019	 .0013	 .0009	 .0006
	 5	 .0293	 .0224	 .0170	 .0127	 .0095	 .0070	 .0051	 .0037	 .0027	 .0019
	 6	 .0513	 .0411	 .0325	 .0255	 .0197	 .0152	 .0115	 .0087	 .0065	 .0048
	 7	 .0769	 .0646	 .0535	 .0437	 .0353	 .0281	 .0222	 .0174	 .0135	 .0104
	 8	 .1009	 .0888	 .0769	 .0655	 .0551	 .0457	 .0375	 .0304	 .0244	 .0194
	 9	 .1177	 .1085	 .0982	 .0874	 .0765	 .0661	 .0563	 .0473	 .0394	 .0324
	10	 .1236	 .1194	 .1129	 .1048	 .0956	 .0859	 .0760	 .0663	 .0571	 .0486
	11	 .1180	 .1194	 .1181	 .1144	 .1087	 .1015	 .0932	 .0844	 .0753	 .0663
	12	 .1032	 .1094	 .1131	 .1144	 .1132	 .1099	 .1049	 .0984	 .0910	 .0829
	13	 .0834	 .0926	 .1001	 .1056	 .1089	 .1099	 .1089	 .1060	 .1014	 .0956
	14	 .0625	 .0728	 .0822	 .0905	 .0972	 .1021	 .1050	 .1060	 .1051	 .1024
	15	 .0438	 .0534	 .0630	 .0724	 .0810	 .0885	 .0945	 .0989	 .1016	 .1024
	16	 .0287	 .0367	 .0453	 .0543	 .0633	 .0719	 .0798	 .0866	 .0920	 .0960
	17	 .0177	 .0237	 .0306	 .0383	 .0465	 .0550	 .0633	 .0713	 .0785	 .0847
	18	 .0104	 .0145	 .0196	 .0255	 .0323	 .0397	 .0475	 .0554	 .0632	 .0706
	19	 .0057	 .0084	 .0119	 .0161	 .0213	 .0272	 .0337	 .0409	 .0483	 .0557
	20	 .0030	 .0046	 .0068	 .0097	 .0133	 .0177	 .0228	 .0286	 .0350	 .0418
	21	 .0015	 .0024	 .0037	 .0055	 .0079	 .0109	 .0146	 .0191	 .0242	 .0299
	22	 .0007	 .0012	 .0020	 .0030	 .0045	 .0065	 .0090	 .0121	 .0159	 .0204
	23	 .0003	 .0006	 .0010	 .0016	 .0024	 .0037	 .0053	 .0074	 .0100	 .0133
	24	 .0001	 .0003	 .0005	 .0008	 .0013	 .0020	 .0030	 .0043	 .0061	 .0083
	25	 .0001	 .0001	 .0002	 .0004	 .0006	 .0010	 .0016	 .0024	 .0035	 .0050
	26	 .0000	 .0000	 .0001	 .0002	 .0003	 .0005	 .0008	 .0013	 .0020	 .0029
	27	 .0000	 .0000	 .0000	 .0001	 .0001	 .0002	 .0004	 .0007	 .0011	 .0016
	28	 .0000	 .0000	 .0000	 .0000	 .0001	 .0001	 .0002	 .0003	 .0005	 .0009
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	 Table 2 	 Exact Poisson probabilities  (continued)

	 µ

	 k	 10.5	 11.0	 11.5	 12.0	 12.5	 13.0	 13.5	 14.0	 14.5	 15.0

	29	 .0000	 .0000	 .0000	 .0000	 .0000	 .0001	 .0001	 .0002	 .0003	 .0004
	30	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0001	 .0001	 .0002
	31	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0001	 .0001
	32	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0001
	33	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000

	 µ

	 k	 15.5	 16.0	 16.5	 17.0	 17.5	 18.0	 18.5	 19.0	 19.5	 20.0

	 0	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000
	 1	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000
	 2	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000
	 3	 .0001	 .0001	 .0001	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000
	 4	 .0004	 .0003	 .0002	 .0001	 .0001	 .0001	 .0000	 .0000	 .0000	 .0000
	 5	 .0014	 .0010	 .0007	 .0005	 .0003	 .0002	 .0002	 .0001	 .0001	 .0001
	 6	 .0036	 .0026	 .0019	 .0014	 .0010	 .0007	 .0005	 .0004	 .0003	 .0002
	 7	 .0079	 .0060	 .0045	 .0034	 .0025	 .0019	 .0014	 .0010	 .0007	 .0005
	 8	 .0153	 .0120	 .0093	 .0072	 .0055	 .0042	 .0031	 .0024	 .0018	 .0013
	 9	 .0264	 .0213	 .0171	 .0135	 .0107	 .0083	 .0065	 .0050	 .0038	 .0029
	10	 .0409	 .0341	 .0281	 .0230	 .0186	 .0150	 .0120	 .0095	 .0074	 .0058
	11	 .0577	 .0496	 .0422	 .0355	 .0297	 .0245	 .0201	 .0164	 .0132	 .0106
	12	 .0745	 .0661	 .0580	 .0504	 .0432	 .0368	 .0310	 .0259	 .0214	 .0176
	13	 .0888	 .0814	 .0736	 .0658	 .0582	 .0509	 .0441	 .0378	 .0322	 .0271
	14	 .0983	 .0930	 .0868	 .0800	 .0728	 .0655	 .0583	 .0514	 .0448	 .0387
	15	 .1016	 .0992	 .0955	 .0906	 .0849	 .0786	 .0719	 .0650	 .0582	 .0516
	16	 .0984	 .0992	 .0985	 .0963	 .0929	 .0884	 .0831	 .0772	 .0710	 .0646
	17	 .0897	 .0934	 .0956	 .0963	 .0956	 .0936	 .0904	 .0863	 .0814	 .0760
	18	 .0773	 .0830	 .0876	 .0909	 .0929	 .0936	 .0930	 .0911	 .0882	 .0844
	19	 .0630	 .0699	 .0761	 .0814	 .0856	 .0887	 .0905	 .0911	 .0905	 .0888
	20	 .0489	 .0559	 .0628	 .0692	 .0749	 .0798	 .0837	 .0866	 .0883	 .0888
	21	 .0361	 .0426	 .0493	 .0560	 .0624	 .0684	 .0738	 .0783	 .0820	 .0846
	22	 .0254	 .0310	 .0370	 .0433	 .0496	 .0560	 .0620	 .0676	 .0727	 .0769
	23	 .0171	 .0216	 .0265	 .0320	 .0378	 .0438	 .0499	 .0559	 .0616	 .0669
	24	 .0111	 .0144	 .0182	 .0226	 .0275	 .0328	 .0385	 .0442	 .0500	 .0557
	25	 .0069	 .0092	 .0120	 .0154	 .0193	 .0237	 .0285	 .0336	 .0390	 .0446
	26	 .0041	 .0057	 .0076	 .0101	 .0130	 .0164	 .0202	 .0246	 .0293	 .0343
	27	 .0023	 .0034	 .0047	 .0063	 .0084	 .0109	 .0139	 .0173	 .0211	 .0254
	28	 .0013	 .0019	 .0028	 .0038	 .0053	 .0070	 .0092	 .0117	 .0147	 .0181
	29	 .0007	 .0011	 .0016	 .0023	 .0032	 .0044	 .0058	 .0077	 .0099	 .0125
	30	 .0004	 .0006	 .0009	 .0013	 .0019	 .0026	 .0036	 .0049	 .0064	 .0083
	31	 .0002	 .0003	 .0005	 .0007	 .0010	 .0015	 .0022	 .0030	 .0040	 .0054
	32	 .0001	 .0001	 .0002	 .0004	 .0006	 .0009	 .0012	 .0018	 .0025	 .0034
	33	 .0000	 .0001	 .0001	 .0002	 .0003	 .0005	 .0007	 .0010	 .0015	 .0020
	34	 .0000	 .0000	 .0001	 .0001	 .0002	 .0002	 .0004	 .0006	 .0008	 .0012
	35	 .0000	 .0000	 .0000	 .0000	 .0001	 .0001	 .0002	 .0003	 .0005	 .0007
	36	 .0000	 .0000	 .0000	 .0000	 .0000	 .0001	 .0001	 .0002	 .0003	 .0004
	37	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0001	 .0001	 .0001	 .0002
	38	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0001	 .0001
	39	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0001
	40	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000	 .0000
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	 x	 Aa	 B b	 C c	 Dd	 x	 A	 B	 C	 D

	0.0	 .5000	 .5000	 .0	 .0	 0.32	 .6255	 .3745	 .1255	 .2510
	0.01	 .5040	 .4960	 .0040	 .0080	 0.33	 .6293	 .3707	 .1293	 .2586
	0.02	 .5080	 .4920	 .0080	 .0160	 0.34	 .6331	 .3669	 .1331	 .2661
	0.03	 .5120	 .4880	 .0120	 .0239	 0.35	 .6368	 .3632	 .1368	 .2737
	0.04	 .5160	 .4840	 .0160	 .0319	 0.36	 .6406	 .3594	 .1406	 .2812
	0.05	 .5199	 .4801	 .0199	 .0399	 0.37	 .6443	 .3557	 .1443	 .2886
	0.06	 .5239	 .4761	 .0239	 .0478	 0.38	 .6480	 .3520	 .1480	 .2961
	0.07	 .5279	 .4721	 .0279	 .0558	 0.39	 .6517	 .3483	 .1517	 .3035
	0.08	 .5319	 .4681	 .0319	 .0638	 0.40	 .6554	 .3446	 .1554	 .3108
	0.09	 .5359	 .4641	 .0359	 .0717	 0.41	 .6591	 .3409	 .1591	 .3182
	0.10	 .5398	 .4602	 .0398	 .0797	 0.42	 .6628	 .3372	 .1628	 .3255
	0.11	 .5438	 .4562	 .0438	 .0876	 0.43	 .6664	 .3336	 .1664	 .3328
	0.12	 .5478	 .4522	 .0478	 .0955	 0.44	 .6700	 .3300	 .1700	 .3401
	0.13	 .5517	 .4483	 .0517	 .1034	 0.45	 .6736	 .3264	 .1736	 .3473
	0.14	 .5557	 .4443	 .0557	 .1113	 0.46	 .6772	 .3228	 .1772	 .3545
	0.15	 .5596	 .4404	 .0596	 .1192	 0.47	 .6808	 .3192	 .1808	 .3616
	0.16	 .5636	 .4364	 .0636	 .1271	 0.48	 .6844	 .3156	 .1844	 .3688
	0.17	 .5675	 .4325	 .0675	 .1350	 0.49	 .6879	 .3121	 .1879	 .3759
	0.18	 .5714	 .4286	 .0714	 .1428	 0.50	 .6915	 .3085	 .1915	 .3829
	0.19	 .5753	 .4247	 .0753	 .1507	 0.51	 .6950	 .3050	 .1950	 .3899
	0.20	 .5793	 .4207	 .0793	 .1585	 0.52	 .6985	 .3015	 .1985	 .3969
	0.21	 .5832	 .4168	 .0832	 .1663	 0.53	 .7019	 .2981	 .2019	 .4039
	0.22	 .5871	 .4129	 .0871	 .1741	 0.54	 .7054	 .2946	 .2054	 .4108
	0.23	 .5910	 .4090	 .0910	 .1819	 0.55	 .7088	 .2912	 .2088	 .4177
	0.24	 .5948	 .4052	 .0948	 .1897	 0.56	 .7123	 .2877	 .2123	 .4245
	0.25	 .5987	 .4013	 .0987	 .1974	 0.57	 .7157	 .2843	 .2157	 .4313
	0.26	 .6026	 .3974	 .1026	 .2051	 0.58	 .7190	 .2810	 .2190	 .4381
	0.27	 .6064	 .3936	 .1064	 .2128	 0.59	 .7224	 .2776	 .2224	 .4448
	0.28	 .6103	 .3897	 .1103	 .2205	 0.60	 .7257	 .2743	 .2257	 .4515
	0.29	 .6141	 .3859	 .1141	 .2282	 0.61	 .7291	 .2709	 .2291	 .4581
	0.30	 .6179	 .3821	 .1179	 .2358	 0.62	 .7324	 .2676	 .2324	 .4647
	0.31	 .6217	 .3783	 .1217	 .2434	 0.63	 .7357	 .2643	 .2357	 .4713

(continued on next page)

Table 3   The normal distribution

0 x 0 x

(a) (b)

0 x 0 x–x

(c) (d)

f(x) =
2π
1 e(–1/2)x2

f(x) =
2π
1 e(–1/2)x2

f(x) =
2π
1 e(–1/2)x2

A(x) = Φ(x) = Pr(X ≤ x)

B(x) = 1 – Φ(x) = Pr(X > x)

D(x) = Pr(–x ≤ X ≤ x)

f(x) =
2π
1 e(–1/2)x2

C(x) = Pr(0 ≤ X ≤ x)
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(continued on next page)

Table 3   The normal distribution (continued)

	 x	 Aa	 B b	 C c	 Dd	 x	 A	 B	 C	 D

	0.64	 .7389	 .2611	 .2389	 .4778	 1.23	 .8907	 .1093	 .3907	 .7813
	0.65	 .7422	 .2578	 .2422	 .4843	 1.24	 .8925	 .1075	 .3925	 .7850
	0.66	 .7454	 .2546	 .2454	 .4907	 1.25	 .8944	 .1056	 .3944	 .7887
	0.67	 .7486	 .2514	 .2486	 .4971	 1.26	 .8962	 .1038	 .3962	 .7923
	0.68	 .7517	 .2483	 .2517	 .5035	 1.27	 .8980	 .1020	 .3980	 .7959
	0.69	 .7549	 .2451	 .2549	 .5098	 1.28	 .8997	 .1003	 .3997	 .7995
	0.70	 .7580	 .2420	 .2580	 .5161	 1.29	 .9015	 .0985	 .4015	 .8029
	0.71	 .7611	 .2389	 .2611	 .5223	 1.30	 .9032	 .0968	 .4032	 .8064
	0.72	 .7642	 .2358	 .2642	 .5285	 1.31	 .9049	 .0951	 .4049	 .8098
	0.73	 .7673	 .2327	 .2673	 .5346	 1.32	 .9066	 .0934	 .4066	 .8132
	0.74	 .7703	 .2297	 .2703	 .5407	 1.33	 .9082	 .0918	 .4082	 .8165
	0.75	 .7734	 .2266	 .2734	 .5467	 1.34	 .9099	 .0901	 .4099	 .8198
	0.76	 .7764	 .2236	 .2764	 .5527	 1.35	 .9115	 .0885	 .4115	 .8230
	0.77	 .7793	 .2207	 .2793	 .5587	 1.36	 .9131	 .0869	 .4131	 .8262
	0.78	 .7823	 .2177	 .2823	 .5646	 1.37	 .9147	 .0853	 .4147	 .8293
	0.79	 .7852	 .2148	 .2852	 .5705	 1.38	 .9162	 .0838	 .4162	 .8324
	0.80	 .7881	 .2119	 .2881	 .5763	 1.39	 .9177	 .0823	 .4177	 .8355
	0.81	 .7910	 .2090	 .2910	 .5821	 1.40	 .9192	 .0808	 .4192	 .8385
	0.82	 .7939	 .2061	 .2939	 .5878	 1.41	 .9207	 .0793	 .4207	 .8415
	0.83	 .7967	 .2033	 .2967	 .5935	 1.42	 .9222	 .0778	 .4222	 .8444
	0.84	 .7995	 .2005	 .2995	 .5991	 1.43	 .9236	 .0764	 .4236	 .8473
	0.85	 .8023	 .1977	 .3023	 .6047	 1.44	 .9251	 .0749	 .4251	 .8501
	0.86	 .8051	 .1949	 .3051	 .6102	 1.45	 .9265	 .0735	 .4265	 .8529
	0.87	 .8078	 .1922	 .3078	 .6157	 1.46	 .9279	 .0721	 .4279	 .8557
	0.88	 .8106	 .1894	 .3106	 .6211	 1.47	 .9292	 .0708	 .4292	 .8584
	0.89	 .8133	 .1867	 .3133	 .6265	 1.48	 .9306	 .0694	 .4306	 .8611
	0.90	 .8159	 .1841	 .3159	 .6319	 1.49	 .9319	 .0681	 .4319	 .8638
	0.91	 .8186	 .1814	 .3186	 .6372	 1.50	 .9332	 .0668	 .4332	 .8664
	0.92	 .8212	 .1788	 .3212	 .6424	 1.51	 .9345	 .0655	 .4345	 .8690
	0.93	 .8238	 .1762	 .3238	 .6476	 1.52	 .9357	 .0643	 .4357	 .8715
	0.94	 .8264	 .1736	 .3264	 .6528	 1.53	 .9370	 .0630	 .4370	 .8740
	0.95	 .8289	 .1711	 .3289	 .6579	 1.54	 .9382	 .0618	 .4382	 .8764
	0.96	 .8315	 .1685	 .3315	 .6629	 1.55	 .9394	 .0606	 .4394	 .8789
	0.97	 .8340	 .1660	 .3340	 .6680	 1.56	 .9406	 .0594	 .4406	 .8812	
	0.98	 .8365	 .1635	 .3365	 .6729	 1.57	 .9418	 .0582	 .4418	 .8836	
	0.99	 .8389	 .1611	 .3389	 .6778	 1.58	 .9429	 .0571	 .4429	 .8859
	1.00	 .8413	 .1587	 .3413	 .6827	 1.59	 .9441	 .0559	 .4441	 .8882
	1.01	 .8438	 .1562	 .3438	 .6875	 1.60	 .9452	 .0548	 .4452	 .8904
	1.02	 .8461	 .1539	 .3461	 .6923	 1.61	 .9463	 .0537	 .4463	 .8926
	1.03	 .8485	 .1515	 .3485	 .6970	 1.62	 .9474	 .0526	 .4474	 .8948
	1.04	 .8508	 .1492	 .3508	 .7017	 1.63	 .9484	 .0516	 .4484	 .8969	
	1.05	 .8531	 .1469	 .3531	 .7063	 1.64	 .9495	 .0505	 .4495	 .8990	
	1.06	 .8554	 .1446	 .3554	 .7109	 1.65	 .9505	 .0495	 .4505	 .9011
	1.07	 .8577	 .1423	 .3577	 .7154	 1.66	 .9515	 .0485	 .4515	 .9031
	1.08	 .8599	 .1401	 .3599	 .7199	 1.67	 .9525	 .0475	 .4525	 .9051
	1.09	 .8621	 .1379	 .3621	 .7243	 1.68	 .9535	 .0465	 .4535	 .9070
	1.10	 .8643	 .1357	 .3643	 .7287	 1.69	 .9545	 .0455	 .4545	 .9090
	1.11	 .8665	 .1335	 .3665	 .7330	 1.70	 .9554	 .0446	 .4554	 .9109
	1.12	 .8686	 .1314	 .3686	 .7373	 1.71	 .9564	 .0436	 .4564	 .9127
	1.13	 .8708	 .1292	 .3708	 .7415	 1.72	 .9573	 .0427	 .4573	 .9146
	1.14	 .8729	 .1271	 .3729	 .7457	 1.73	 .9582	 .0418	 .4582	 .9164
	1.15	 .8749	 .1251	 .3749	 .7499	 1.74	 .9591	 .0409	 .4591	 .9181
	1.16	 .8770	 .1230	 .3770	 .7540	 1.75	 .9599	 .0401	 .4599	 .9199
	1.17	 .8790	 .1210	 .3790	 .7580	 1.76	 .9608	 .0392	 .4608	 .9216
	1.18	 .8810	 .1190	 .3810	 .7620	 1.77	 .9616	 .0384	 .4616	 .9233
	1.19	 .8830	 .1170	 .3830	 .7660	 1.78	 .9625	 .0375	 .4625	 .9249
	1.20	 .8849	 .1151	 .3849	 .7699	 1.79	 .9633	 .0367	 .4633	 .9265
	1.21	 .8869	 .1131	 .3869	 .7737	 1.80	 .9641	 .0359	 .4641	 .9281
	1.22	 .8888	 .1112	 .3888	 .7775	 1.81	 .9649	 .0351	 .4649	 .9297
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Table 3   The normal distribution (continued)

	 x	 Aa	 B b	 C c	 Dd	 x	 A	 B	 C	 D

	1.82	 .9656	 .0344	 .4656	 .9312	 2.39	 .9916	 .0084	 .4916	 .9832
	1.83	 .9664	 .0336	 .4664	 .9327	 2.40	 .9918	 .0082	 .4918	 .9836
	1.84	 .9671	 .0329	 .4671	 .9342	 2.41	 .9920	 .0080	 .4920	 .9840
	1.85	 .9678	 .0322	 .4678	 .9357	 2.42	 .9922	 .0078	 .4922	 .9845
	1.86	 .9686	 .0314	 .4686	 .9371	 2.43	 .9925	 .0075	 .4925	 .9849
	1.87	 .9693	 .0307	 .4693	 .9385	 2.44	 .9927	 .0073	 .4927	 .9853
	1.88	 .9699	 .0301	 .4699	 .9399	 2.45	 .9929	 .0071	 .4929	 .9857
	1.89	 .9706	 .0294	 .4706	 .9412	 2.46	 .9931	 .0069	 .4931	 .9861
	1.90	 .9713	 .0287	 .4713	 .9426	 2.47	 .9932	 .0068	 .4932	 .9865
	1.91	 .9719	 .0281	 .4719	 .9439	 2.48	 .9934	 .0066	 .4934	 .9869
	1.92	 .9726	 .0274	 .4726	 .9451	 2.49	 .9936	 .0064	 .4936	 .9872
	1.93	 .9732	 .0268	 .4732	 .9464	 2.50	 .9938	 .0062	 .4938	 .9876
	1.94	 .9738	 .0262	 .4738	 .9476	 2.51	 .9940	 .0060	 .4940	 .9879
	1.95	 .9744	 .0256	 .4744	 .9488	 2.52	 .9941	 .0059	 .4941	 .9883
	1.96	 .9750	 .0250	 .4750	 .9500	 2.53	 .9943	 .0057	 .4943	 .9886
	1.97	 .9756	 .0244	 .4756	 .9512	 2.54	 .9945	 .0055	 .4945	 .9889
	1.98	 .9761	 .0239	 .4761	 .9523	 2.55	 .9946	 .0054	 .4946	 .9892
	1.99	 .9767	 .0233	 .4767	 .9534	 2.56	 .9948	 .0052	 .4948	 .9895
	2.00	 .9772	 .0228	 .4772	 .9545	 2.57	 .9949	 .0051	 .4949	 .9898
	2.01	 .9778	 .0222	 .4778	 .9556	 2.58	 .9951	 .0049	 .4951	 .9901
	2.02	 .9783	 .0217	 .4783	 .9566	 2.59	 .9952	 .0048	 .4952	 .9904
	2.03	 .9788	 .0212	 .4788	 .9576	 2.60	 .9953	 .0047	 .4953	 .9907
	2.04	 .9793	 .0207	 .4793	 .9586	 2.61	 .9955	 .0045	 .4955	 .9909	
	2.05	 .9798	 .0202	 .4798	 .9596	 2.62	 .9956	 .0044	 .4956	 .9912
	2.06	 .9803	 .0197	 .4803	 .9606	 2.63	 .9957	 .0043	 .4957	 .9915
	2.07	 .9808	 .0192	 .4808	 .9615	 2.64	 .9959	 .0041	 .4959	 .9917
	2.08	 .9812	 .0188	 .4812	 .9625	 2.65	 .9960	 .0040	 .4960	 .9920	
	2.09	 .9817	 .0183	 .4817	 .9634	 2.66	 .9961	 .0039	 .4961	 .9922
	2.10	 .9821	 .0179	 .4821	 .9643	 2.67	 .9962	 .0038	 .4962	 .9924
	2.11	 .9826	 .0174	 .4826	 .9651	 2.68	 .9963	 .0037	 .4963	 .9926
	2.12	 .9830	 .0170	 .4830	 .9660	 2.69	 .9964	 .0036	 .4964	 .9929
	2.13	 .9834	 .0166	 .4834	 .9668	 2.70	 .9965	 .0035	 .4965	 .9931	
	2.14	 .9838	 .0162	 .4838	 .9676	 2.71	 .9966	 .0034	 .4966	 .9933
	2.15	 .9842	 .0158	 .4842	 .9684	 2.72	 .9967	 .0033	 .4967	 .9935
	2.16	 .9846	 .0154	 .4846	 .9692	 2.73	 .9968	 .0032	 .4968	 .9937
	2.17	 .9850	 .0150	 .4850	 .9700	 2.74	 .9969	 .0031	 .4969	 .9939
	2.18	 .9854	 .0146	 .4854	 .9707	 2.75	 .9970	 .0030	 .4970	 .9940
	2.19	 .9857	 .0143	 .4857	 .9715	 2.76	 .9971	 .0029	 .4971	 .9942
	2.20	 .9861	 .0139	 .4861	 .9722	 2.77	 .9972	 .0028	 .4972	 .9944
	2.21	 .9864	 .0136	 .4864	 .9729	 2.78	 .9973	 .0027	 .4973	 .9946
	2.22	 .9868	 .0132	 .4868	 .9736	 2.79	 .9974	 .0026	 .4974	 .9947
	2.23	 .9871	 .0129	 .4871	 .9743	 2.80	 .9974	 .0026	 .4974	 .9949
	2.24	 .9875	 .0125	 .4875	 .9749	 2.81	 .9975	 .0025	 .4975	 .9950
	2.25	 .9878	 .0122	 .4878	 .9756	 2.82	 .9976	 .0024	 .4976	 .9952
	2.26	 .9881	 .0119	 .4881	 .9762	 2.83	 .9977	 .0023	 .4977	 .9953
	2.27	 .9884	 .0116	 .4884	 .9768	 2.84	 .9977	 .0023	 .4977	 .9955
	2.28	 .9887	 .0113	 .4887	 .9774	 2.85	 .9978	 .0022	 .4978	 .9956
	2.29	 .9890	 .0110	 .4890	 .9780	 2.86	 .9979	 .0021	 .4979	 .9958
	2.30	 .9893	 .0107	 .4893	 .9786	 2.87	 .9979	 .0021	 .4979	 .9959
	2.31	 .9896	 .0104	 .4896	 .9791	 2.88	 .9980	 .0020	 .4980	 .9960
	2.32	 .9898	 .0102	 .4898	 .9797	 2.89	 .9981	 .0019	 .4981	 .9961
	2.33	 .9901	 .0099	 .4901	 .9802	 2.90	 .9981	 .0019	 .4981	 .9963
	2.34	 .9904	 .0096	 .4904	 .9807	 2.91	 .9982	 .0018	 .4982	 .9964
	2.35	 .9906	 .0094	 .4906	 .9812	 2.92	 .9982	 .0018	 .4982	 .9965
	2.36	 .9909	 .0091	 .4909	 .9817	 2.93	 .9983	 .0017	 .4983	 .9966
	2.37	 .9911	 .0089	 .4911	 .9822	 2.94	 .9984	 .0016	 .4984	 .9967
	2.38	 .9913	 .0087	 .4913	 .9827	 2.95	 .9984	 .0016	 .4984	 .9968

(continued on next page)
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Table 3   The normal distribution (continued)

	 x	 Aa	 B b	 C c	 Dd	 x	 A	 B	 C	 D

	2.96	 .9985	 .0015	 .4985	 .9969	 3.49	 .9998	 .0002	 .4998	 .9995
	2.97	 .9985	 .0015	 .4985	 .9970	 3.50	 .9998	 .0002	 .4998	 .9995
	2.98	 .9986	 .0014	 .4986	 .9971	 3.51	 .9998	 .0002	 .4998	 .9996
	2.99	 .9986	 .0014	 .4986	 .9972	 3.52	 .9998	 .0002	 .4998	 .9996
	3.00	 .9987	 .0013	 .4987	 .9973	 3.53	 .9998	 .0002	 .4998	 .9996
	3.01	 .9987	 .0013	 .4987	 .9974	 3.54	 .9998	 .0002	 .4998	 .9996
	3.02	 .9987	 .0013	 .4987	 .9975	 3.55	 .9998	 .0002	 .4998	 .9996
	3.03	 .9988	 .0012	 .4988	 .9976	 3.56	 .9998	 .0002	 .4998	 .9996
	3.04	 .9988	 .0012	 .4988	 .9976	 3.57	 .9998	 .0002	 .4998	 .9996
	3.05	 .9989	 .0011	 .4989	 .9977	 3.58	 .9998	 .0002	 .4998	 .9997
	3.06	 .9989	 .0011	 .4989	 .9978	 3.59	 .9998	 .0002	 .4998	 .9997
	3.07	 .9989	 .0011	 .4989	 .9979	 3.60	 .9998	 .0002	 .4998	 .9997
	3.08	 .9990	 .0010	 .4990	 .9979	 3.61	 .9998	 .0002	 .4998	 .9997
	3.09	 .9990	 .0010	 .4990	 .9980	 3.62	 .9999	 .0001	 .4999	 .9997
	3.10	 .9990	 .0010	 .4990	 .9981	 3.63	 .9999	 .0001	 .4999	 .9997
	3.11	 .9991	 .0009	 .4991	 .9981	 3.64	 .9999	 .0001	 .4999	 .9997
	3.12	 .9991	 .0009	 .4991	 .9982	 3.65	 .9999	 .0001	 .4999	 .9997
	3.13	 .9991	 .0009	 .4991	 .9983	 3.66	 .9999	 .0001	 .4999	 .9997
	3.14	 .9992	 .0008	 .4992	 .9983	 3.67	 .9999	 .0001	 .4999	 .9998
	3.15	 .9992	 .0008	 .4992	 .9984	 3.68	 .9999	 .0001	 .4999	 .9998
	3.16	 .9992	 .0008	 .4992	 .9984	 3.69	 .9999	 .0001	 .4999	 .9998
	3.17	 .9992	 .0008	 .4992	 .9985	 3.70	 .9999	 .0001	 .4999	 .9998
	3.18	 .9993	 .0007	 .4993	 .9985	 3.71	 .9999	 .0001	 .4999	 .9998
	3.19	 .9993	 .0007	 .4993	 .9986	 3.72	 .9999	 .0001	 .4999	 .9998
	3.20	 .9993	 .0007	 .4993	 .9986	 3.73	 .9999	 .0001	 .4999	 .9998
	3.21	 .9993	 .0007	 .4993	 .9987	 3.74	 .9999	 .0001	 .4999	 .9998
	3.22	 .9994	 .0006	 .4994	 .9987	 3.75	 .9999	 .0001	 .4999	 .9998
	3.23	 .9994	 .0006	 .4994	 .9988	 3.76	 .9999	 .0001	 .4999	 .9998
	3.24	 .9994	 .0006	 .4994	 .9988	 3.77	 .9999	 .0001	 .4999	 .9998
	3.25	 .9994	 .0006	 .4994	 .9988	 3.78	 .9999	 .0001	 .4999	 .9998
	3.26	 .9994	 .0006	 .4994	 .9989	 3.79	 .9999	 .0001	 .4999	 .9998
	3.27	 .9995	 .0005	 .4995	 .9989	 3.80	 .9999	 .0001	 .4999	 .9999
	3.28	 .9995	 .0005	 .4995	 .9990	 3.81	 .9999	 .0001	 .4999	 .9999
	3.29	 .9995	 .0005	 .4995	 .9990	 3.82	 .9999	 .0001	 .4999	 .9999
	3.30	 .9995	 .0005	 .4995	 .9990	 3.83	 .9999	 .0001	 .4999	 .9999
	3.31	 .9995	 .0005	 .4995	 .9991	 3.84	 .9999	 .0001	 .4999	 .9999
	3.32	 .9995	 .0005	 .4995	 .9991	 3.85	 .9999	 .0001	 .4999	 .9999
	3.33	 .9996	 .0004	 .4996	 .9991 	 3.86	 .9999	 .0001	 .4999	 .9999
	3.34	 .9996	 .0004	 .4996	 .9992	 3.87	 .9999	 .0001	 .4999	 .9999
	3.35	 .9996	 .0004	 .4996	 .9992	 3.88	 .9999	 .0001	 .4999	 .9999
	3.36	 .9996	 .0004	 .4996	 .9992	 3.89	 .9999	 .0001	 .4999	 .9999
	3.37	 .9996	 .0004	 .4996	 .9992	 3.90	 1.0000	 .0000	 .5000	 .9999
	3.38	 .9996	 .0004	 .4996	 .9993	 3.91	 1.0000	 .0000	 .5000	 .9999
	3.39	 .9997	 .0003	 .4997	 .9993	 3.92	 1.0000	 .0000	 .5000	 .9999
	3.40	 .9997	 .0003	 .4997	 .9993	 3.93	 1.0000	 .0000	 .5000	 .9999
	3.42	 .9997	 .0003	 .4997	 .9994	 3.94	 1.0000	 .0000	 .5000	 .9999
	3.43	 .9997	 .0003	 .4997	 .9994	 3.95	 1.0000	 .0000	 .5000	 .9999
	3.45	 .9997	 .0003	 .4997	 .9994	 3.96	 1.0000	 .0000	 .5000	 .9999
	3.46	 .9997	 .0003	 .4997	 .9995	 3.97	 1.0000	 .0000	 .5000	 .9999
	3.47	 .9997	 .0003	 .4997	 .9995	 3.98	 1.0000	 .0000	 .5000	 .9999
	3.48	 .9997	 .0003	 .4997	 .9995	 3.99	 1.0000	 .0000	 .5000	 .9999

aA(x) = Φ(x) = Pr(X ≤ x), where X is a standard normal distribution.
bB(x) = 1 – Φ(x) = Pr(X > x), where X is a standard normal distribution.
cC(x) = Pr(0 ≤ X ≤ x), where X is a standard normal distribution.
dD(x) = Pr(–x ≤ X ≤ x), where X is a standard normal distribution.
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Table 4   Table of 1000 random digits

01	 32924	 22324	 18125	 09077	  26	 96772	 16443	 39877	 04653
02	 54632	 90374	 94143	 49295	 27	 52167	 21038	 14338	 01395
03	 88720	 43035	 97081	 83373	 28	 69644	 37198	 00028	 98195
04	 21727	 11904	 41513	 31653	 29	 71011	 62004	 81712	 87536
05	 80985	 70799	 57975	 69282	 30	 31217	 75877	 85366	 55500
06	 40412	 58826	 94868	 52632	 31	 64990	 98735	 02999	 35521
07	 43918	 56807	 75218	 46077	 32	 48417	 23569	 59307	 46550
08	 26513	 47480	 77410	 47741	 33	 07900	 65059	 48592	 44087
09	 18164	 35784	 44255	 30124	 34	 74526	 32601	 24482	 16981
10	 39446	 01375	 75264	 51173	 35	 51056	 04402	 58353	 37332
11	 16638	 04680	 98617	 90298	 36	 39005	 93458	 63143	 21817
12	 16872	 94749	 44012	 48884	 37	 67883	 76343	 78155	 67733
13	 65419	 87092	 78596	 91512	 38	 06014	 60999	 87226	 36071
14	 05207	 36702	 56804	 10498	 39	 93147	 88766	 04148	 42471
15	 78807	 79243	 13729	 81222	 40	 01099	 95731	 47622	 13294
16	 69341	 79028	 64253	 80447	 41	 89252	 01201	 58138	 13809
17	 41871	 17566	 61200	 15994	 42	 41766	 57239	 50251	 64675
18	 25758	 04625	 43226	 32986	 43	 92736	 77800	 81996	 45646
19	 06604	 94486	 40174	 10742	 44	 45118	 36600	 68977	 68831
20	 82259	 56512	 48945	 18183	 45	 73457	 01579	 00378	 70197
21	 07895	 37090	 50627	 71320	 46	 49465	 85251	 42914	 17277
22	 59836	 71148	 42320	 67816	 47	 15745	 37285	 23768	 39302
23	 57133	 76610	 89104	 30481	 48	 28760	 81331	 78265	 60690
24	 76964	 57126	 87174	 61025	 49	 82193	 32787	 70451	 91141
25	 27694	 17145	 32439	 68245	 50	 89664	 50242	 12382	 39379
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Table 5   Percentage points of the t distribution (td,u)
a

	 u

	 .75	 .80	 .85	 .90	 .95	 .975	 .99	 .995	 .9995

	 1	 1.000	 1.376	 1.963	 3.078	 6.314	 12.706	 31.821	 63.657	 636.619
	 2	 0.816	 1.061	 1.386	 1.886	 2.920	 4.303	 6.965	 9.925	 31.598
	 3	 0.765	 0.978	 1.250	 1.638	 2.353	 3.182	 4.541	 5.841	 12.924
	 4	 0.741	 0.941	 1.190	 1.533	 2.132	 2.776	 3.747	 4.604	 8.610
	 5	 0.727	 0.920	 1.156	 1.476	 2.015	 2.571	 3.365	 4.032	 6.869

	 6	 0.718	 0.906	 1.134	 1.440	 1.943	 2.447	 3.143	 3.707	 5.959
	 7	 0.711	 0.896	 1.119	 1.415	 1.895	 2.365	 2.998	 3.499	 5.408
	 8	 0.706	 0.889	 1.108	 1.397	 1.860	 2.306	 2.896	 3.355	 5.041
	 9	 0.703	 0.883	 1.100	 1.383	 1.833	 2.262	 2.821	 3.250	 4.781
	 10	 0.700	 0.879	 1.093	 1.372	 1.812	 2.228	 2.764	 3.169	 4.587

	 11	 0.697	 0.876	 1.088	 1.363	 1.796	 2.201	 2.718	 3.106	 4.437
	 12	 0.695	 0.873	 1.083	 1.356	 1.782	 2.179	 2.681	 3.055	 4.318
	 13	 0.694	 0.870	 1.079	 1.350	 1.771	 2.160	 2.650	 3.012	 4.221
	 14	 0.692	 0.868	 1.076	 1.345	 1.761	 2.145	 2.624	 2.977	 4.140
	 15	 0.691	 0.866	 1.074	 1.341	 1.753	 2.131	 2.602	 2.947	 4.073

	 16	 0.690	 0.865	 1.071	 1.337	 1.746	 2.120	 2.583	 2.921	 4.015
	 17	 0.689	 0.863	 1.069	 1.333	 1.740	 2.110	 2.567	 2.898	 3.965
	 18	 0.688	 0.862	 1.067	 1.330	 1.734	 2.101	 2.552	 2.878	 3.922
	 19	 0.688	 0.861	 1.066	 1.328	 1.729	 2.093	 2.539	 2.861	 3.883
	 20	 0.687	 0.860	 1.064	 1.325	 1.725	 2.086	 2.528	 2.845	 3.850

	 21	 0.686	 0.859	 1.063	 1.323	 1.721	 2.080	 2.518	 2.831	 3.819
	 22	 0.686	 0.858	 1.061	 1.321	 1.717	 2.074	 2.508	 2.819	 3.792
	 23	 0.685	 0.858	 1.060	 1.319	 1.714	 2.069	 2.500	 2.807	 3.767
	 24	 0.685	 0.857	 1.059	 1.318	 1.711	 2.064	 2.492	 2.797	 3.745
	 25	 0.684	 0.856	 1.058	 1.316	 1.708	 2.060	 2.485	 2.787	 3.725

	 26	 0.684	 0.856	 1.058	 1.315	 1.706	 2.056	 2.479	 2.779	 3.707
	 27	 0.684	 0.855	 1.057	 1.314	 1.703	 2.052	 2.473	 2.771	 3.690
	 28	 0.683	 0.855	 1.056	 1.313	 1.701	 2.048	 2.467	 2.763	 3.674
	 29	 0.683	 0.854	 1.055	 1.311	 1.699	 2.045	 2.462	 2.756	 3.659
	 30	 0.683	 0.854	 1.055	 1.310	 1.697	 2.042	 2.457	 2.750	 3.646

	 40	 0.681	 0.851	 1.050	 1.303	 1.684	 2.021	 2.423	 2.704	 3.551
	 60	 0.679	 0.848	 1.046	 1.296	 1.671	 2.000	 2.390	 2.660	 3.460
	 120	 0.677	 0.845	 1.041	 1.289	 1.658	 1.980	 2.358	 2.617	 3.373
	 ∞	 0.674	 0.842	 1.036	 1.282	 1.645	 1.960	 2.326	 2.576	 3.291

aThe uth percentile of a t distribution with d degrees of freedom.
Source:  Table 5 is taken from Table III of Fisher and Yates: “Statistical Tables for Biological, Agricultural and Medical Research,” 	
published by Longman Group Ltd., London (previously published by Oliver and Boyd Ltd., Edinburgh). 

Degrees of	
freedom, d
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Table 6   Percentage points of the chi-square distribution (χ2
d,u)

a

	 u

  d	 .005	 .01	 .025	 .05	 .10	 .25	 .50	 .75	 .90	 .95	 .975	 .99	 .995	 .999

	 1	 0.04393b	 0.03157c	 0.03982d	 0.00393	 0.02	 0.10	 0.45	 1.32	 2.71	 3.84	 5.02	 6.63	 7.88	 10.83
	 2	 0.0100	 0.0201	 0.0506	 0.103	 0.21	 0.58	 1.39	 2.77	 4.61	 5.99	 7.38	 9.21	 10.60	 13.81
	 3	 0.0717	 0.115	 0.216	 0.352	 0.58	 1.21	 2.37	 4.11	 6.25	 7.81	 9.35	 11.34	 12.84	 16.27
	 4	 0.207	 0.297	 0.484	 0.711	 1.06	 1.92	 3.36	 5.39	 7.78	 9.49	 11.14	 13.28	 14.86	 18.47
	 5	 0.412	 0.554	 0.831	 1.15	 1.61	 2.67	 4.35	 6.63	 9.24	 11.07	 12.83	 15.09	 16.75	 20.52

	 6	 0.676	 0.872	 1.24	 1.64	 2.20	 3.45	 5.35	 7.84	 10.64	 12.59	 14.45	 16.81	 18.55	 22.46
	 7	 0.989	 1.24	 1.69	 2.17	 2.83	 4.25	 6.35	 9.04	 12.02	 14.07	 16.01	 18.48	 20.28	 24.32
	 8	 1.34	 1.65	 2.18	 2.73	 3.49	 5.07	 7.34	 10.22	 13.36	 15.51	 17.53	 20.09	 21.95	 26.12
	 9	 1.73	 2.09	 2.70	 3.33	 4.17	 5.90	 8.34	 11.39	 14.68	 16.92	 19.02	 21.67	 23.59	 27.88
	10	 2.16	 2.56	 3.25	 3.94	 4.87	 6.74	 9.34	 12.55	 15.99	 18.31	 20.48	 23.21	 25.19	 29.59

	11	 2.60	 3.05	 3.82	 4.57	 5.58	 7.58	 10.34	 13.70	 17.28	 19.68	 21.92	 24.72	 26.76	 31.26
	12	 3.07	 3.57	 4.40	 5.23	 6.30	 8.44	 11.34	 14.85	 18.55	 21.03	 23.34	 26.22	 28.30	 32.91
	13	 3.57	 4.11	 5.01	 5.89	 7.04	 9.30	 12.34	 15.98	 19.81	 22.36	 24.74	 27.69	 29.82	 34.53
	14	 4.07	 4.66	 5.63	 6.57	 7.79	 10.17	 13.34	 17.12	 21.06	 23.68	 26.12	 29.14	 31.32	 36.12
	15	 4.60	 5.23	 6.27	 7.26	 8.55	 11.04	 14.34	 18.25	 22.31	 25.00	 27.49	 30.58	 32.80	 37.70

	16	 5.14	 5.81	 6.91	 7.96	 9.31	 11.91	 15.34	 19.37	 23.54	 26.30	 28.85	 32.00	 34.27	 39.25
	17	 5.70	 6.41	 7.56	 8.67	 10.09	 12.79	 16.34	 20.49	 24.77	 27.59	 30.19	 33.41	 35.72	 40.79
	18	 6.26	 7.01	 8.23	 9.39	 10.86	 13.68	 17.34	 21.60	 25.99	 28.87	 31.53	 34.81	 37.16	 42.31
	19	 6.84	 7.63	 8.91	 10.12	 11.65	 14.56	 18.34	 22.72	 27.20	 30.14	 32.85	 36.19	 38.58	 43.82
	20	 7.43	 8.26	 9.59	 10.85	 12.44	 15.45	 19.34	 23.83	 28.41	 31.41	 34.17	 37.57	 40.00	 45.32

	21	 8.03	 8.90	 10.28	 11.59	 13.24	 16.34	 20.34	 24.93	 29.62	 32.67	 35.48	 38.93	 41.40	 46.80
	22	 8.64	 9.54	 10.98	 12.34	 14.04	 17.24	 21.34	 26.04	 30.81	 33.92	 36.78	 40.29	 42.80	 48.27
	23	 9.26	 10.20	 11.69	 13.09	 14.85	 18.14	 22.34	 27.14	 32.01	 35.17	 38.08	 41.64	 44.18	 49.73
	24	 9.89	 10.86	 12.40	 13.85	 15.66	 19.04	 23.34	 28.24	 33.20	 36.42	 39.36	 42.98	 45.56	 51.18
	25	 10.52	 11.52	 13.12	 14.61	 16.47	 19.94	 24.34	 29.34	 34.38	 37.65	 40.65	 44.31	 46.93	 52.62

	26	 11.16	 12.20	 13.84	 15.38	 17.29	 20.84	 25.34	 30.43	 35.56	 38.89	 41.92	 45.64	 48.29	 54.05
	27	 11.81	 12.88	 14.57	 16.15	 18.11	 21.75	 26.34	 31.53	 36.74	 40.11	 43.19	 46.96	 49.64	 55.48
	28	 12.46	 13.56	 15.31	 16.93	 18.94	 22.66	 27.34	 32.62	 37.92	 41.34	 44.46	 48.28	 50.99	 56.89
	29	 13.12	 14.26	 16.05	 17.71	 19.77	 23.57	 28.34	 33.71	 39.09	 42.56	 45.72	 49.59	 52.34	 58.30
	30	 13.79	 14.95	 16.79	 18.49	 20.60	 24.48	 29.34	 34.80	 40.26	 43.77	 46.98	 50.89	 53.67	 59.70

	40	 20.71	 22.16	 24.43	 26.51	 29.05	 33.66	 39.34	 45.62	 51.81	 55.76	 59.34	 63.69	 66.77	 73.40
	50	 27.99	 29.71	 32.36	 34.76	 37.69	 42.94	 49.33	 56.33	 63.17	 67.50	 71.42	 76.15	 79.49	 86.66
	60	 35.53	 37.48	 40.48	 43.19	 46.46	 52.29	 59.33	 66.98	 74.40	 79.08	 83.30	 88.38	 91.95	 99.61
	70	 43.28	 45.44	 48.76	 51.74	 55.33	 61.70	 69.33	 77.58	 85.53	 90.53	 95.02	 100.42	 104.22	 112.32
	80	 51.17	 53.54	 57.15	 60.39	 64.28	 71.14	 79.33	 88.13	 96.58	 101.88	 106.63	 112.33	 116.32	 124.84

	90	 59.20	 61.75	 65.65	 69.13	 73.29	 80.62	 89.33	 98.64	 107.56	 113.14	 118.14	 124.12	 128.30	 137.21
	100	 67.33	 70.06	 74.22	 77.93	 82.36	 90.13	 99.33	 109.14	 118.50	 124.34	 129.56	 135.81	 140.17	 149.45

aχ2
d,u = uth percentile of a χ2 distribution with d degrees of freedom.

b = 0.0000393
c = 0.000157
d = 0.000982
Source: Based on the Biometrika Trustees, from Table 3 of Biometrika Tables for Statisticians, Volume 2, edited by E. S. Pearson and H. O. Hartley.
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Table 7   Confidence limits for the expectation of a Poisson variable (µ)

Confidence level (1 – α)

	 0.998	 0.99	 0.98	 0.95	 0.90	

	 x	 Lower	 Upper	 Lower	 Upper	 Lower	 Upper	 Lower	 Upper	 Lower	 Upper	 x

	 0	 0.00000	 6.91	 0.00000	 5.30	 0.0000	 4.61	 0.0000	 3.69	 0.0000	 3.00	 0
	 1	 .00100	 9.23	 .00501	 7.43	 .0101	 6.64	 .0253	 5.57	 .0513	 4.74	 1
	 2	 .0454	 11.23	 .103	 9.27	 .149	 8.41	 .242	 7.22	 .355	 6.30	 2
	 3	 .191	 13.06	 .338	 10.98	 .436	 10.05	 .619	 8.77	 .818	 7.75	 3
	 4	 .429	 14.79	 .672	 12.59	 .823	 11.60	 1.09	 10.24	 1.37	 9.15	 4
	 5	 0.739	 16.45	 1.08	 14.15	 1.28	 13.11	 1.62	 11.67	 1.97	 10.51	 5
	 6	 1.11	 18.06	 1.54	 15.66	 1.79	 14.57	 2.20	 13.06	 2.61	 11.84	 6
	 7	 1.52	 19.63	 2.04	 17.13	 2.33	 16.00	 2.81	 14.42	 3.29	 13.15	 7
	 8	 1.97	 21.16	 2.57	 18.58	 2.91	 17.40	 3.45	 15.76	 3.98	 14.43	 8
	 9	 2.45	 22.66	 3.13	 20.00	 3.51	 18.78	 4.12	 17.08	 4.70	 15.71	 9
	10	 2.96	 24.13	 3.72	 21.40	 4.13	 20.14	 4.80	 18.39	 5.43	 16.96	 10
	11	 3.49	 25.59	 4.32	 22.78	 4.77	 21.49	 5.49	 19.68	 6.17	 18.21	 11
	12	 4.04	 27.03	 4.94	 24.14	 5.43	 22.82	 6.20	 20.96	 6.92	 19.44	 12
	13	 4.61	 28.45	 5.58	 25.50	 6.10	 24.14	 6.92	 22.23	 7.69	 20.67	 13
	14	 5.20	 29.85	 6.23	 26.84	 6.78	 25.45	 7.65	 23.49	 8.46	 21.89	 14
	15	 5.79	 31.24	 6.89	 28.16	 7.48	 26.74	 8.40	 24.74	 9.25	 23.10	 15
	16	 6.41	 32.62	 7.57	 29.48	 8.18	 28.03	 9.15	 25.98	 10.04	 24.30	 16
	17	 7.03	 33.99	 8.25	 30.79	 8.89	 29.31	 9.90	 27.22	 10.83	 25.50	 17
	18	 7.66	 35.35	 8.94	 32.09	 9.62	 30.58	 10.67	 28.45	 11.63	 26.69	 18
	19	 8.31	 36.70	 9.64	 33.38	 10.35	 31.85	 11.44	 29.67	 12.44	 27.88	 19
	20	 8.96	 38.04	 10.35	 34.67	 11.08	 33.10	 12.22	 30.89	 13.25	 29.06	 20
	21	 9.62	 39.38	 11.07	 35.95	 11.82	 34.36	 13.00	 32.10	 14.07	 30.24	 21
	22	 10.29	 40.70	 11.79	 37.22	 12.57	 35.60	 13.79	 33.31	 14.89	 31.42	 22
	23	 10.96	 42.02	 12.52	 38.48	 13.33	 36.84	 14.58	 34.51	 15.72	 32.59	 23
	24	 11.65	 43.33	 13.25	 39.74	 14.09	 38.08	 15.38	 35.71	 16.55	 33.75	 24
	25	 12.34	 44.64	 14.00	 41.00	 14.85	 39.31	 16.18	 36.90	 17.38	 34.92	 25
	26	 13.03	 45.94	 14.74	 42.25	 15.62	 40.53	 16.98	 38.10	 18.22	 36.08	 26
	27	 13.73	 47.23	 15.49	 43.50	 16.40	 41.76	 17.79	 39.28	 19.06	 37.23	 27
	28	 14.44	 48.52	 16.24	 44.74	 17.17	 42.98	 18.61	 40.47	 19.90	 38.39	 28
	29	 15.15	 49.80	 17.00	 45.98	 17.96	 44.19	 19.42	 41.65	 20.75	 39.54	 29
	30	 15.87	 51.08	 17.77	 47.21	 18.74	 45.40	 20.24	 42.83	 21.59	 40.69	 30
	35	 19.52	 57.42	 21.64	 53.32	 22.72	 51.41	 24.38	 48.68	 25.87	 46.40	 35
	40	 23.26	 63.66	 25.59	 59.36	 26.77	 57.35	 28.58	 54.47	 30.20	 52.07	 40
	45	 27.08	 69.83	 29.60	 65.34	 30.88	 63.23	 32.82	 60.21	 34.56	 57.69	 45
	50	 30.96	 75.94	 33.66	 71.27	 35.03	 69.07	 37.11	 65.92	 38.96	 63.29	 50

Note: If X is the  random variable denoting the observed number of events and µ1, µ2 are the lower and upper confidence limits for its expectation, µ, then 
Pr(µ1 ≤ µ ≤ µ2) = 1 – α.
Source: Biometrika Tables for Statisticians, 3rd edition, Volume 1, edited by E. S. Pearson and H. O. Hartley. Published for the Biometrika Trustees, Cam-
bridge University Press, Cambridge, England, 1966.
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Table 8   Percentage points of the F distribution (Fd1,d2,p)

	 df for numerator, d1

	 p	 1	 2	 3	 4	 5	 6	 7	 8	 12	 24	 ∞

	 1	 .90	 39.86	 49.50	 53.59	 55.83	 57.24	 58.20	 58.91	 59.44	 60.71	 62.00	 63.33
	 	 .95	 161.4	 199.5	 215.7	 224.6	 230.2	 234.0	 236.8	 238.9	 243.9	 249.1	 254.3
	 	 .975	 647.8	 799.5	 864.2	 899.6	 921.8	 937.1	 948.2	 956.7	 976.7	 997.2	 1018.
	 	 .99	 4052.	 5000.	 5403.	 5625.	 5764.	 5859.	 5928.	 5981.	 6106.	 6235.	 6366.
	 	 .995	 16211.	 20000.	 21615.	 22500.	 23056.	 23437.	 23715.	 23925.	 24426.	 24940.	 25464.
	 	 .999	 405280.	 500000.	 540380.	 562500.	 576400.	 585940.	 592870.	 598140.	 610670.	 623500.	 636620.

	 2	 .90	 8.53	 9.00	 9.16	 9.24	 9.29	 9.33	 9.35	 9.37	 9.41	 9.45	 9.49
	 	 .95	 18.51	 19.00	 19.16	 19.25	 19.30	 19.33	 19.35	 19.37	 19.41	 19.45	 19.50
	 	 .975	 38.51	 39.00	 39.17	 39.25	 39.30	 39.33	 39.36	 39.37	 39.42	 39.46	 39.50
	 	 .99	 98.50	 99.00	 99.17	 99.25	 99.30	 99.33	 99.36	 99.37	 99.42	 99.46	 99.50
	 	 .995	 198.5	 199.0	 199.2	 199.2	 199.3	 199.3	 199.4	 199.4	 199.4	 199.5	 199.5
	 	 .999	 998.5	 999.0	 999.2	 999.2	 999.3	 999.3	 999.4	 999.4	 999.4	 999.5	 999.5

	 3	 .90	 5.54	 5.46	 5.39	 5.34	 5.31	 5.28	 5.27	 5.25	 5.22	 5.18	 5.13
	 	 .95	 10.13	 9.55	 9.28	 9.12	 9.01	 8.94	 8.89	 8.85	 8.74	 8.64	 8.53
	 	 .975	 17.44	 16.04	 15.44	 15.10	 14.88	 14.74	 14.62	 14.54	 14.34	 14.12	 13.90
	 	 .99	 34.12	 30.82	 29.46	 28.71	 28.24	 27.91	 27.67	 27.49	 27.05	 26.60	 26.13
	 	 .995	 55.55	 49.80	 47.47	 46.20	 45.39	 44.84	 44.43	 44.13	 43.39	 42.62	 41.83
	 	 .999	 167.00	 148.5	 141.1	 137.1	 134.6	 132.8	 131.6	 130.6	 128.3	 125.9	 123.5

	 4	 .90	 4.54	 4.32	 4.19	 4.11	 4.05	 4.01	 3.98	 3.95	 3.90	 3.83	 3.76
	 	 .95	 7.71	 6.94	 6.59	 6.39	 6.26	 6.16	 6.09	 6.04	 5.91	 5.77	 5.63
	 	 .975	 12.22	 10.65	 9.98	 9.60	 9.36	 9.20	 9.07	 8.98	 8.75	 8.51	 8.26
	 	 .99	 21.20	 18.00	 16.69	 15.98	 15.52	 15.21	 14.98	 14.80	 14.37	 13.93	 13.46
	 	 .995	 31.33	 26.28	 24.26	 23.16	 22.46	 21.98	 21.62	 21.35	 20.70	 20.03	 19.32
	 	 .999	 74.14	 61.25	 56.18	 53.44	 51.71	 50.53	 49.66	 49.00	 47.41	 45.77	 44.05

	 5	 .90	 4.06	 3.78	 3.62	 3.52	 3.45	 3.40	 3.37	 3.34	 3.27	 3.19	 3.10
	 	 .95	 6.61	 5.79	 5.41	 5.19	 5.05	 4.95	 4.88	 4.82	 4.68	 4.53	 4.36
	 	 .975	 10.01	 8.43	 7.76	 7.39	 7.15	 6.98	 6.85	 6.76	 6.52	 6.28	 6.02
	 	 .99	 16.26	 13.27	 12.06	 11.39	 10.97	 10.67	 10.46	 10.29	 9.89	 9.47	 9.02
	 	 .995	 22.78	 18.31	 16.53	 15.56	 14.94	 14.51	 14.20	 13.96	 13.38	 12.78	 12.14
	 	 .999	 47.18	 37.12	 33.20	 31.09	 29.75	 28.83	 28.16	 27.65	 26.42	 25.13	 23.79

	 6	 .90	 3.78	 3.46	 3.29	 3.18	 3.11	 3.05	 3.01	 2.98	 2.90	 2.82	 2.72
	 	 .95	 5.99	 5.14	 4.76	 4.53	 4.39	 4.28	 4.21	 4.15	 4.00	 3.84	 3.67
	 	 .975	 8.81	 7.26	 6.60	 6.23	 5.99	 5.82	 5.70	 5.60	 5.37	 5.12	 4.85
	 	 .99	 13.75	 10.92	 9.78	 9.15	 8.75	 8.47	 8.26	 8.10	 7.72	 7.31	 6.88
	 	 .995	 18.64	 14.54	 12.92	 12.03	 11.46	 11.07	 10.79	 10.57	 10.03	 9.47	 8.88
	 	 .999	 35.51	 27.00	 23.70	 21.92	 20.80	 20.03	 19.46	 19.03	 17.99	 16.90	 15.75

	 7	 .90	 3.59	 3.26	 3.07	 2.96	 2.88	 2.83	 2.78	 2.75	 2.67	 2.58	 2.47
	 	 .95	 5.59	 4.74	 4.35	 4.12	 3.97	 3.87	 3.79	 3.73	 3.57	 3.41	 3.23
	 	 .975	 8.07	 6.54	 5.89	 5.52	 5.29	 5.12	 4.99	 4.90	 4.67	 4.42	 4.14
	 	 .99	 12.25	 9.55	 8.45	 7.85	 7.46	 7.19	 6.99	 6.84	 6.47	 6.07	 5.65
	 	 .995	 16.24	 12.40	 10.88	 10.05	 9.52	 9.16	 8.89	 8.68	 8.18	 7.65	 7.08
	 	 .999	 29.25	 21.69	 18.77	 17.20	 16.21	 15.52	 15.02	 14.63	 13.71	 12.73	 11.70

	 8	 .90	 3.46	 3.11	 2.92	 2.81	 2.73	 2.67	 2.62	 2.59	 2.50	 2.40	 2.29
	 	 .95	 5.32	 4.46	 4.07	 3.84	 3.69	 3.58	 3.50	 3.44	 3.28	 3.12	 2.93
	 	 .975	 7.57	 6.06	 5.42	 5.05	 4.82	 4.65	 4.53	 4.43	 4.20	 3.95	 3.67
	 	 .99	 11.26	 8.65	 7.59	 7.01	 6.63	 6.37	 6.18	 6.03	 5.67	 5.28	 4.86
	 	 .995	 14.69	 11.04	 9.60	 8.81	 8.30	 7.95	 7.69	 7.50	 7.01	 6.50	 5.95
	 	 .999	 25.42	 18.49	 15.83	 14.39	 13.49	 12.86	 12.40	 12.04	 11.19	 10.30	 9.33

	 9	 .90	 3.36	 3.01	 2.81	 2.69	 2.61	 2.55	 2.51	 2.47	 2.38	 2.28	 2.16
	 	 .95	 5.12	 4.26	 3.86	 3.63	 3.48	 3.37	 3.29	 3.23	 3.07	 2.90	 2.71
	 	 .975	 7.21	 5.71	 5.08	 4.72	 4.48	 4.32	 4.20	 4.10	 3.87	 3.61	 3.33
	 	 .99	 10.56	 8.02	 6.99	 6.42	 6.06	 5.80	 5.61	 5.47	 5.11	 4.73	 4.31
	 	 .995	 13.61	 10.11	 8.72	 7.96	 7.47	 7.13	 6.88	 6.69	 6.23	 5.73	 5.19
	 	 .999	 22.86	 16.39	 13.90	 12.56	 11.71	 11.13	 10.70	 10.37	 9.57	 8.72	 7.81

	 10	 .90	 3.29	 2.92	 2.73	 2.61	 2.52	 2.46	 2.41	 2.38	 2.28	 2.18	 2.06
	 	 .95	 4.96	 4.10	 3.71	 3.48	 3.33	 3.22	 3.14	 3.07	 2.91	 2.74	 2.54
	 	 .975	 6.94	 5.46	 4.83	 4.47	 4.24	 4.07	 3.95	 3.85	 3.62	 3.37	 3.08
	 	 .99	 10.04	 7.56	 6.55	 5.99	 5.64	 5.39	 5.20	 5.06	 4.71	 4.33	 3.91
	 	 .995	 12.83	 9.43	 8.08	 7.34	 6.87	 6.54	 6.30	 6.12	 5.66	 5.17	 4.64
	 	 .999	 21.04	 14.91	 12.55	 11.28	 10.48	 9.93	 9.52	 9.20	 8.45	 7.64	 6.76

	 12	 .90	 3.18	 2.81	 2.61	 2.48	 2.39	 2.33	 2.28	 2.24	 2.15	 2.04	 1.90
	 	 .95	 4.75	 3.89	 3.49	 3.26	 3.11	 3.00	 2.91	 2.85	 2.69	 2.51	 2.30
	 	 .975	 6.55	 5.10	 4.47	 4.12	 3.89	 3.73	 3.61	 3.51	 3.28	 3.02	 2.72

df for 
denominator, 

d2

(continued on next page)
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Table 8   Percentage points of the F distribution (Fd1,d2,p) (continued)

	 df for numerator, d1

	 p	 1	 2	 3	 4	 5	 6	 7	 8	 12	 24	 ∞

	 	 .99	 9.33	 6.93	 5.95	 5.41	 5.06	 4.82	 4.64	 4.50	 4.16	 3.78	 3.36
	 	 .995	 11.75	 8.51	 7.23	 6.52	 6.07	 5.76	 5.52	 5.35	 4.91	 4.43	 3.90
	 	 .999	 18.64	 12.97	 10.80	 9.63	 8.89	 8.38	 8.00	 7.71	 7.00	 6.25	 5.42

	 14	 .90	 3.10	 2.73	 2.52	 2.39	 2.31	 2.24	 2.19	 2.15	 2.05	 1.94	 1.80
	 	 .95	 4.60	 3.74	 3.34	 3.11	 2.96	 2.85	 2.76	 2.70	 2.53	 2.35	 2.13
	 	 .975	 6.30	 4.86	 4.24	 3.89	 3.66	 3.50	 3.38	 3.29	 3.05	 2.79	 2.49
	 	 .99	 8.86	 6.51	 5.56	 5.04	 4.69	 4.46	 4.28	 4.14	 3.80	 3.43	 3.00
	 	 .995	 11.06	 7.92	 6.68	 6.00	 5.56	 5.26	 5.03	 4.86	 4.43	 3.96	 3.44
	 	 .999	 17.14	 11.78	 9.73	 8.62	 7.92	 7.44	 7.08	 6.80	 6.13	 5.41	 4.60

	 16	 .90	 3.05	 2.67	 2.46	 2.33	 2.24	 2.18	 2.13	 2.09	 1.99	 1.87	 1.72
	 	 .95	 4.49	 3.63	 3.24	 3.01	 2.85	 2.74	 2.66	 2.59	 2.42	 2.24	 2.01
	 	 .975	 6.12	 4.69	 4.08	 3.73	 3.50	 3.34	 3.22	 3.12	 2.89	 2.63	 2.32
	 	 .99	 8.53	 6.23	 5.29	 4.77	 4.44	 4.20	 4.03	 3.89	 3.55	 3.18	 2.75
	 	 .995	 10.58	 7.51	 6.30	 5.64	 5.21	 4.91	 4.69	 4.52	 4.10	 3.64	 3.11
	 	 .999	 16.12	 10.97	 9.01	 7.94	 7.27	 6.80	 6.46	 6.19	 5.55	 4.85	 4.06

	 18	 .90	 3.01	 2.62	 2.42	 2.29	 2.20	 2.13	 2.08	 2.04	 1.93	 1.81	 1.66
	 	 .95	 4.41	 3.55	 3.16	 2.93	 2.77	 2.66	 2.58	 2.51	 2.34	 2.15	 1.92
	 	 .975	 5.98	 4.56	 3.95	 3.61	 3.38	 3.22	 3.10	 3.01	 2.77	 2.50	 2.19
	 	 .99	 8.29	 6.01	 5.09	 4.58	 4.25	 4.01	 3.84	 3.71	 3.37	 3.00	 2.57
	 	 .995	 10.22	 7.21	 6.03	 5.37	 4.96	 4.66	 4.44	 4.28	 3.86	 3.40	 2.87
	 	 .999	 15.38	 10.39	 8.49	 7.46	 6.81	 6.35	 6.02	 5.76	 5.13	 4.45	 3.67

	 20	 .90	 2.97	 2.59	 2.38	 2.25	 2.16	 2.09	 2.04	 2.00	 1.89	 1.77	 1.61
	 	 .95	 4.35	 3.49	 3.10	 2.87	 2.71	 2.60	 2.51	 2.45	 2.28	 2.08	 1.84
	 	 .975	 5.87	 4.46	 3.86	 3.51	 3.29	 3.13	 3.01	 2.91	 2.68	 2.41	 2.09
	 	 .99	 8.10	 5.85	 4.94	 4.43	 4.10	 3.87	 3.70	 3.56	 3.23	 2.86	 2.42
	 	 .995	 9.94	 6.99	 5.82	 5.17	 4.76	 4.47	 4.26	 4.09	 3.68	 3.22	 2.69
	 	 .999	 14.82	 9.95	 8.10	 7.10	 6.46	 6.02	 5.69	 5.44	 4.82	 4.15	 3.38

	 30	 .90	 2.88	 2.49	 2.28	 2.14	 2.05	 1.98	 1.93	 1.88	 1.77	 1.64	 1.46
	 	 .95	 4.17	 3.32	 2.92	 2.69	 2.53	 2.42	 2.33	 2.27	 2.09	 1.89	 1.62
	 	 .975	 5.57	 4.18	 3.59	 3.25	 3.03	 2.87	 2.75	 2.65	 2.41	 2.14	 1.79
	 	 .99	 7.56	 5.39	 4.51	 4.02	 3.70	 3.47	 3.30	 3.17	 2.84	 2.47	 2.01
	 	 .995	 9.18	 6.35	 5.24	 4.62	 4.23	 3.95	 3.74	 3.58	 3.18	 2.73	 2.18
	 	 .999	 13.29	 8.77	 7.05	 6.12	 5.53	 5.12	 4.82	 4.58	 4.00	 3.36	 2.59

	 40	 .90	 2.84	 2.44	 2.23	 2.09	 2.00	 1.93	 1.87	 1.83	 1.71	 1.57	 1.38
	 	 .95	 4.08	 3.23	 2.84	 2.61	 2.45	 2.34	 2.25	 2.18	 2.00	 1.79	 1.51
	 	 .975	 5.42	 4.05	 3.46	 3.13	 2.90	 2.74	 2.62	 2.53	 2.29	 2.01	 1.64
	 	 .99	 7.31	 5.18	 4.31	 3.83	 3.51	 3.29	 3.12	 2.99	 2.66	 2.29	 1.80
	 	 .995	 8.83	 6.07	 4.98	 4.37	 3.99	 3.71	 3.51	 3.35	 2.95	 2.50	 1.93
	 	 .999	 12.61	 8.25	 6.59	 5.70	 5.13	 4.73	 4.44	 4.21	 3.64	 3.01	 2.23

	 60	 .90	 2.79	 2.39	 2.18	 2.04	 1.95	 1.87	 1.82	 1.77	 1.66	 1.51	 1.29
	 	 .95	 4.00	 3.15	 2.76	 2.53	 2.37	 2.25	 2.17	 2.10	 1.92	 1.70	 1.39
	 	 .975	 5.29	 3.93	 3.34	 3.01	 2.79	 2.63	 2.51	 2.41	 2.17	 1.88	 1.48
	 	 .99	 7.08	 4.98	 4.13	 3.65	 3.34	 3.12	 2.95	 2.82	 2.50	 2.12	 1.60
	 	 .995	 8.49	 5.80	 4.73	 4.14	 3.76	 3.49	 3.29	 3.13	 2.74	 2.29	 1.69
	 	 .999	 11.97	 7.77	 6.17	 5.31	 4.76	 4.37	 4.09	 3.86	 3.32	 2.69	 1.89

	 120	 .90	 2.75	 2.35	 2.13	 1.99	 1.90	 1.82	 1.77	 1.72	 1.60	 1.45	 1.19
	 	 .95	 3.92	 3.07	 2.68	 2.45	 2.29	 2.17	 2.09	 2.02	 1.83	 1.61	 1.25
	 	 .975	 5.15	 3.80	 3.23	 2.89	 2.67	 2.52	 2.39	 2.30	 2.05	 1.76	 1.31
	 	 .99	 6.85	 4.79	 3.95	 3.48	 3.17	 2.96	 2.79	 2.66	 2.34	 1.95	 1.38
	 	 .995	 8.18	 5.54	 4.50	 3.92	 3.55	 3.28	 3.09	 2.93	 2.54	 2.09	 1.43
	 	 .999	 11.38	 7.32	 5.78	 4.95	 4.42	 4.04	 3.77	 3.55	 3.02	 2.40	 1.54

	 ∞	 .90	 2.71	 2.30	 2.08	 1.94	 1.85	 1.77	 1.72	 1.67	 1.55	 1.38	 1.00
	 	 .95	 3.84	 3.00	 2.60	 2.37	 2.21	 2.10	 2.01	 1.94	 1.75	 1.52	 1.00
	 	 .975	 5.02	 3.69	 3.12	 2.79	 2.57	 2.41	 2.29	 2.19	 1.94	 1.64	 1.00
	 	 .99	 6.63	 4.61	 3.78	 3.32	 3.02	 2.80	 2.64	 2.51	 2.18	 1.79	 1.00
	 	 .995	 7.88	 5.30	 4.28	 3.72	 3.35	 3.09	 2.90	 2.74	 2.36	 1.90	 1.00
	 	 .999	 10.83	 6.91	 5.42	 4.62	 4.10	 3.74	 3.47	 3.27	 2.74	 2.13	 1.00

Note: Fd1,d2,p = pth percentile of an F distribution with d1 and d2 degrees of freedom.

Source: Based on the Biometrika Trustees, from Biometrika Tables for Statisticians, Volume 2, edited by E. S. Pearson and H. O. Hartley.
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	 Table 9 	 Critical values for the ESD (Extreme Studentized Deviate)  
outlier statistic (ESDn,1–α , α = .05, .01)

	 1 – α	 1 – α

	 n	 .95	 .99	 n	 .95	 .99

	 5  	 1.72	 1.76	 25	 2.82	 3.14
	 6	 1.89	 1.97	 26	 2.84	 3.16
	 7	 2.02	 2.14	 27	 2.86	 3.18
	 8	 2.13	 2.28	 28	 2.88	 3.20
	 9	 2.21	 2.39	 29	 2.89	 3.22
	10	 2.29	 2.48	 30	 2.91	 3.24
	11	 2.36	 2.56	 35	 2.98	 3.32
	12	 2.41	 2.64	 40	 3.04	 3.38
	13	 2.46	 2.70	 45	 3.09	 3.44
	14	 2.51	 2.75	 50	 3.13	 3.48
	15	 2.55	 2.81	 60	 3.20	 3.56
	16	 2.59	 2.85	 70	 3.26	 3.62
	17	 2.62	 2.90	 80	 3.31	 3.67
	18	 2.65	 2.93	 90	 3.35	 3.72
	19	 2.68	 2.97	 100	 3.38	 3.75
	20	 2.71	 3.00	 150	 3.52	 3.89
	21	 2.73	 3.03	 200	 3.61	 3.98
	22	 2.76	 3.06	 300	 3.72	 4.09
	23	 2.78	 3.08	 400	 3.80	 4.17
	24	 2.80	 3.11	 500	 3.86	 4.23

Note: For values of n not found in the table, the percentiles can be evaluated using the formula ESDn,1–α = 
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t n

n n t
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−

−
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− +

2

2
2

1

2
, where p = 1 – [α/(2n)].

Table 10   Two-tailed critical values for the Wilcoxon signed-rank test

	 .10	 .05	 .02	 .01

n a	 Lower	 Upper	 Lower	 Upper	 Lower	 Upper	 Lower	 Upper

	 1	 —	 —	 — 	 —
	 2	 —	 —	 — 	 —
	 3	 —	 —	 — 	 —
	 4	 —	 —	 — 	 —
	 5	 0	 15	 —	 — 	 —
	 6	 2	 19	 0	 21	 — 	 —
	 7	 3	 25	 2	 26	 0	 28	 — 
	 8	 5	 31	 3	 33	 1	 35	 0	 36
	 9	 8	 37	 5	 40	 3	 42	 1	 44
	10	 10	 45	 8	 47	 5	 50	 3	 52
	11	 13	 53	 10	 56	 7	 59	 5	 61
	12	 17	 61	 13	 65	 9	 69	 7	 71
	13	 21	 70	 17	 74	 12	 79	 9	 82
	14	 25	 80	 21	 84	 15	 90	 12	 93
	15	 30	 90	 25	 95	 19	 101	 15	 105

an = number of untied pairs.
Source: Figures from “Documenta Geigy Scientific Tables,” 6th edition.
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Table 11   Two-tailed critical values for the Wilcoxon rank-sum test

	 α = .10	 α = .05	
	 n1

a	 n1

n2
b	 4	 5	 6	 7	 8	 9	 4	 5	 6	 7	 8	 9

	 Tl
c	 Tr

d	 Tl	 Tr	 Tl	 Tr	 Tl	 Tr	 Tl	 Tr	 Tl	 Tr	 Tl	 Tr	 Tl	 Tr	 Tl	 Tr	 Tl	 Tr	 Tl	 Tr	 Tl	 Tr

	 4	 11–25	 17–33	 24–42	 32–52	 41–63	 51–75	 10–26	 16–34	 23–43	 31–53	 40–64	 49–77

	 5	 12–28	 19–36	 26–46	 34–57	 44–68	 54–81	 11–29	 17–38	 24–48	 33–58	 42–70	 52–83
	 6	 13–31	 20–40	 28–50	 36–62	 46–74	 57–87	 12–32	 18–42	 26–52	 34–64	 44–76	 55–89
	 7	 14–34	 21–44	 29–55	 39–66	 49–79	 60–93	 13–35	 20–45	 27–57	 36–69	 46–82	 57–96
	 8	 15–37	 23–47	 31–59	 41–71	 51–85	 63–99	 14–38	 21–49	 29–61	 38–74	 49–87	 60–102
	 9	 16–40	 24–51	 33–63	 43–76	 54–90	 66–105	 14–42	 22–53	 31–65	 40–79	 51–93	 62–109

	10	 17–43	 26–54	 35–67	 45–81	 56–96	 69–111	 15–45	 23–57	 32–70	 42–84	 53–99	 65–115
	11	 18–46	 27–58	 37–71	 47–86	 59–101	 72–117	 16–48	 24–61	 34–74	 44–89	 55–105	 68–121
	12	 19–49	 28–62	 38–76	 49–91	 62–106	 75–123	 17–51	 26–64	 35–79	 46–94	 58–110	 71–127
	13	 20–52	 30–65	 40–80	 52–95	 64–112	 78–129	 18–54	 27–68	 37–83	 48–99	 60–116	 73–134
	14	 21–55	 31–69	 42–84	 54–100	 67–117	 81–135	 19–57	 28–72	 38–88	 50–104	 62–122	 76–140

	15	 22–58	 33–72	 44–88	 56–105	 69–123	 84–141	 20–60	 29–76	 40–92	 52–109	 65–127	 79–146
	16	 24–60	 34–76	 46–92	 58–110	 72–128	 87–147	 21–63	 30–80	 42–96	 54–114	 67–133	 82–152
	17	 25–63	 35–80	 47–97	 61–114	 75–133	 90–153	 21–67	 32–83	 43–101	 56–119	 70–138	 84–159
	18	 26–66	 37–83	 49–101	 63–119	 77–139	 93–159	 22–70	 33–87	 45–105	 58–124	 72–144	 87–165
	19	 27–69	 38–87	 51–105	 65–124	 80–144	 96–165	 23–73	 34–91	 46–110	 60–129	 74–150	 90–171

	20	 28–72	 40–90	 53–109	 67–129	 83–149	 99–171	 24–76	 35–95	 48–114	 62–134	 77–155	 93–177
	21	 29–75	 41–94	 55–113	 69–134	 85–155	 102–177	 25–79	 37–98	 50–118	 64–139	 79–161	 95–184
	22	 30–78	 43–97	 57–117	 72–138	 88–160	 105–183	 26–82	 38–102	 51–123	 66–144	 81–167	 98–190
	23	 31–81	 44–101	 58–122	 74–143	 90–166	 108–189	 27–85	 39–106	 53–127	 68–149	 84–172	 101–196
	24	 32–84	 45–105	 60–126	 76–148	 93–171	 111–195	 27–89	 40–110	 54–132	 70–154	 86–178	 104–202

	25	 33–87	 47–108	 62–130	 78–153	 96–176	 114–201	 28–92	 42–113	 56–136	 72–159	 89–183	 107–208
	26	 34–90	 48–112	 64–134	 81–157	 98–182	 117–207	 29–95	 43–117	 58–140	 74–164	 91–189	 109–215
	27	 35–93	 50–115	 66–138	 83–162	 101–187	 120–213	 30–98	 44–121	 59–145	 76–169	 93–195	 112–221
	28	 36–96	 51–119	 67–143	 85–167	 103–193	 123–219	 31–101	 45–125	 61–149	 78–174	 96–200	 115–227
	29	 37–99	 53–122	 69–147	 87–172	 106–198	 126–225	 32–104	 47–128	 63–153	 80–179	 98–206	 118–233

	30	 38–102	 54–126	 71–151	 89–177	 109–203	 129–231	 33–107	 48–132	 64–158	 82–184	 101–211	 121–239
	31	 39–105	 55–130	 73–155	 92–181	 111–209	 132–237	 34–110	 49–136	 66–162	 84–189	 103–217	 123–246
	32	 40–108	 57–133	 75–159	 94–186	 114–214	 135–243	 34–114	 50–140	 67–167	 86–194	 106–222	 126–252
	33	 41–111	 58–137	 77–163	 96–191	 117–219	 138–249	 35–117	 52–143	 69–171	 88–199	 108–228	 129–258
	34	 42–114	 60–140	 78–168	 98–196	 119–225	 141–255	 36–120	 53–147	 71–175	 90–204	 110–234	 132–264

	35	 43–117	 61–144	 80–172	 100–201	 122–230	 144–261	 37–123	 54–151	 72–180	 92–209	 113–239	 135–270
	36	 44–120	 62–148	 82–176	 102–206	 124–236	 148–266	 38–126	 55–155	 74–184	 94–214	 115–245	 137–277
	37	 45–123	 64–151	 84–180	 105–210	 127–241	 151–272	 39–129	 57–158	 76–188	 96–219	 117–251	 140–283
	38	 46–126	 65–155	 85–185	 107–215	 130–246	 154–278	 40–132	 58–162	 77–193	 98–224	 120–256	 143–289
	39	 47–129	 67–158	 87–189	 109–220	 132–252	 157–284	 41–135	 59–166	 79–197	 100–229	 122–262	 146–295

	40	 48–132	 68–162	 89–193	 111–225	 135–257	 160–290	 41–139	 60–170	 80–202	 102–234	 125–267	 149–301
	41	 49–135	 69–166	 91–197	 114–229	 138–262	 163–296	 42–142	 61–174	 82–206	 104–239	 127–273	 151–308
	42	 50–138	 71–169	 93–201	 116–234	 140–268	 166–302	 43–145	 63–177	 84–210	 106–244	 129–279	 154–314
	43	 51–141	 72–173	 95–205	 118–239	 143–273	 169–308	 44–148	 64–181	 85–215	 108–249	 132–284	 157–320
	44	 52–144	 74–176	 96–210	 120–244	 146–278	 172–314	 45–151	 65–185	 87–219	 110–254	 134–290	 160–326

	45	 53–147	 75–180	 98–214	 123–248	 148–284	 175–320	 46–154	 66–189	 88–224	 112–259	 137–295	 163–332
	46	 55–149	 77–183	 100–218	 125–253	 151–289	 178–326	 47–157	 68–192	 90–228	 114–264	 139–301	 165–339
	47	 56–152	 78–187	 102–222	 127–258	 154–294	 181–332	 48–160	 69–196	 92–232	 116–269	 141–307	 168–345
	48	 57–155	 79–191	 104–226	 129–263	 156–300	 184–338	 48–164	 70–200	 93–237	 118–274	 144–312	 171–351
	49	 58–158	 81–194	 106–230	 132–267	 159–305	 187–344	 49–167	 71–204	 95–241	 120–279	 146–318	 174–357
	50	 59–161	 82–198	 107–235	 134–272	 162–310	 190–350	 50–170	 73–207	 97–245	 122–284	 149–323	 177–363

an1 = minimum of the two sample sizes. 	 cTl = lower critical value for the rank sum in the first sample. 
bn2 = maximum of the two sample sizes.	 dTr = upper critical value for the rank sum in the first sample.
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Table 11   Two-tailed critical values for the Wilcoxon rank-sum test (continued)

	 α = .02	 α = .01	
	 n1

a	 n1

n2
b	 4	 5	 6	 7	 8	 9	 4	 5	 6	 7	 8	 9

	 Tl
c	 Tr

d	 Tl	 Tr	 Tl	 Tr	 Tl	 Tr	 Tl	 Tr	 Tl	 Tr	 Tl	 Tr	 Tl	 Tr	 Tl	 Tr	 Tl	 Tr	 Tl	 Tr	 Tl	 Tr

	 4 	 —   — 	 15–35	 22–44	 29–55	 38–66	 48–78	 —   —	 —    —	 21–45	 28–56	 37–67	 46–80

	 5 	 10–30	 16–39	 23–49	 31–60	 40–72	 50–85	 —   —	 15–40	 22–50	 29–62	 38–74	 48–87
	 6	 11–33	 17–43	 24–54	 32–66	 42–78	 52–92	 10–34	 16–44	 23–55	 31–67	 40–80	 50–94
	 7	 11–37	 18–47	 25–59	 34–71	 43–85	 54–99	 10–38	 16–49	 24–60	 32–73	 42–86	 52–101
	 8	 12–40	 19–51	 27–63	 35–77	 45–91	 56–106	 11–41	 17–53	 25–65	 34–78	 43–93	 54–108
	 9	 13–43	 20–55	 28–68	 37–82	 47–97	 59–112	 11–45	 18–57	 26–70	 35–84	 45–99	 56–115

	10	 13–47	 21–59	 29–73	 39–87	 49–103	 61–119	 12–48	 19–61	 27–75	 37–89	 47–105	 58–122
	11	 14–50	 22–63	 30–78	 40–93	 51–109	 63–126	 12–52	 20–65	 28–80	 38–95	 49–111	 61–128
	12	 15–53	 23–67	 32–82	 42–98	 53–115	 66–132	 13–55	 21–69	 30–84	 40–100	 51–117	 63–135
	13	 15–57	 24–71	 33–87	 44–103	 56–120	 68–139	 13–59	 22–73	 31–89	 41–106	 53–123	 65–142
	14	 16–60	 25–75	 34–92	 45–109	 58–126	 71–145	 14–62	 22–78	 32–94	 43–111	 54–130	 67–149

	15	 17–63	 26–79	 36–96	 47–114	 60–132	 73–152	 15–65	 23–82	 33–99	 44–117	 56–136	 69–156
	16	 17–67	 27–83	 37–101	 49–119	 62–138	 76–158	 15–69	 24–86	 34–104	 46–122	 58–142	 72–162
	17	 18–70	 28–87	 39–105	 51–124	 64–144	 78–165	 16–72	 25–90	 36–108	 47–128	 60–148	 74–169
	18	 19–73	 29–91	 40–110	 52–130	 66–150	 81–171	 16–76	 26–94	 37–113	 49–133	 62–154	 76–176
	19	 19–77	 30–95	 41–115	 54–135	 68–156	 83–178	 17–79	 27–98	 38–118	 50–139	 64–160	 78–183

	20	 20–80	 31–99	 43–119	 56–140	 70–162	 85–185	 18–82	 28–102	 39–123	 52–144	 66–166	 81–189
	21	 21–83	 32–103	 44–124	 58–145	 72–168	 88–191	 18–86	 29–106	 40–128	 53–150	 68–172	 83 196
	22	 21–87	 33–107	 45–129	 59–151	 74–174	 90–198	 19–89	 29–111	 42–132	 55–155	 70–178	 85–203
	23	 22–90	 34 111	 47–133	 61–156	 76–180	 93–204	 19–93	 30–115	 43–137	 57–160	 71–185	 88–209
	24	 23–93	 35 115	 48 138	 63–161	 78–186	 95–211	 20–96	 31–119	 44–142	 58–166	 73–191	 90–216

	25	 23–97	 36 119	 50 142	 64–167	 81–191	 98–217	 20–100	 32–123	 45–147	 60–171	 75–197	 92–223
	26	 24–100	 37–123	 51–147	 66–172	 83–197	 100–224	 21–103	 33–127	 46–152	 61–177	 77–203	 94–230
	27	 25–103	 38–127	 52–152	 68–177	 85–203	 103–230	 22–106	 34–131	 48–156	 63–182	 79–209	 97–236
	28	 26–106	 39–131	 54–156	 70–182	 87–209	 105–237	 22–110	 35–135	 49–161	 64–188	 81–215	 99–243
	29	 26–110	 40–135	 55–161	 71–188	 89–215	 108–243	 23–113	 36–139	 50–166	 66–193	 83–221	 101–250

	30	 27–113	 41–139	 56–166	 73–193	 91–221	 110–250	 23–117	 37–143	 51–171	 68–198	 85–227	 103–257
	31	 28–116	 42–143	 58–170	 75–198	 93–227	 112–257	 24–120	 37–148	 53–175	 68–204	 87–233	 106–263
	32	 28–120	 43–147	 59–175	 77–203	 95–233	 115–263	 24–124	 38–152	 54–180	 71–209	 89–239	 108–270
	33	 29–123	 44–151	 61–179	 78–209	 97–239	 117–270	 25–127	 39–156	 55–185	 72–215	 90–246	 110–277
	34	 30–126	 45–155	 62–184	 79–215	 99–245	 120–276	 26–130	 40–160	 56–190	 73–221	 92–252	 112–284

	35	 30–130	 46–159	 63–189	 81–220	 101–251	 122–283	 26–134	 41–164	 57–195	 75–226	 94–258	 114–291
	36	 31–133	 47–163	 65–193	 83–225	 103–257	 125–289	 27–137	 42–168	 58–200	 76–232	 96–264	 117–297
	37	 32–136	 48–167	 66–198	 84–231	 105–263	 127–296	 28–140	 43–172	 60–204	 78–237	 98–270	 119–304
	38	 32–140	 49–171	 67–203	 86–236	 107–269	 129–303	 28–144	 44–176	 61–209	 79–243	 100–276	 121–311
	39	 33–143	 50–175	 69–207	 88–241	 109–275	 132–309	 29–147	 45–180	 62–214	 81–248	 102–282	 123–318

	40	 34–146	 51–179	 70–212	 90–246	 111–281	 134–316	 29–151	 46–184	 63–219	 82–254	 103–289	 126–324
	41	 34–150	 52–183	 72–216	 91–252	 113–287	 137–322	 30–154	 46–189	 65–223	 84–259	 105–295	 128–331
	42	 35–153	 53–187	 73–221	 93–257	 116–292	 139–329	 31–157	 47–193	 66–228	 85–265	 107–301	 130–338
	43	 35–157	 54–191	 74–226	 95–262	 118–298	 142–335	 31–161	 48–197	 67–233	 87–270	 109–307	 133–344
	44	 36–160	 55–195	 76–230	 97–267	 120–304	 144–342	 32–164	 49–201	 68–238	 88–276	 111–313	 135–351

	45	 37–163	 56–199	 77–235	 98–273	 122–310	 147–348	 32–168	 50–205	 69–243	 90–281	 113–319	 137–358
	46	 37–167	 57–203	 78–240	 100–278	 124–316	 149–355	 33–171	 51–209	 71–247	 91–287	 115–325	 139–365
	47	 38–170	 58–207	 80–244	 102–283	 126–322	 152–361	 34–174	 52–213	 72–252	 93–292	 117–331	 142–371
	48	 39–173	 59–211	 81–249	 103–289	 128–328	 154–368	 34–178	 53–217	 73–257	 95–297	 118–338	 144–378
	49	 39–177	 60–215	 82–254	 105–294	 130–334	 157–374	 35–181	 54–221	 74–262	 96–303	 120–344	 146–385
	50	 40–180	 61–219	 84–258	 107–299	 132–340	 159–381	 36–184	 55–225	 76–266	 98–308	 122–350	 148–392

Source: The data of this table are from Documenta Geigy Scientific Tables, 6th edition. 
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Table 12   Fisher’s z transformation

	 r	 z	 r	 z	 r	 z	 r	 z	 r	 z

	 .00	 .000
	 .01	 .010	 .21	 .213	 .41	 .436	 .61	 .709	 .81	 1.127
	 .02	 .020	 .22	 .224	 .42	 .448	 .62	 .725	 .82	 1.157
	 .03	 .030	 .23	 .234	 .43	 .460	 .63	 .741	 .83	 1.188
	 .04	 .040	 .24	 .245	 .44	 .472	 .64	 .758	 .84	 1.221
	 .05	 .050	 .25	 .255	 .45	 .485	 .65	 .775	 .85	 1.256
	 .06	 .060	 .26	 .266	 .46	 .497	 .66	 .793	 .86	 1.293
	 .07	 .070	 .27	 .277	 .47	 .510	 .67	 .811	 .87	 1.333
	 .08	 .080	 .28	 .288	 .48	 .523	 .68	 .829	 .88	 1.376
	 .09	 .090	 .29	 .299	 .49	 .536	 .69	 .848	 .89	 1.422
	 .10	 .100	 .30	 .310	 .50	 .549	 .70	 .867	 .90	 1.472

	 .11	 .110	 .31	 .321	 .51	 .563	 .71	 .887	 .91	 1.528
	 .12	 .121	 .32	 .332	 .52	 .576	 .72	 .908	 .92	 1.589
	 .13	 .131	 .33	 .343	 .53	 .590	 .73	 .929	 .93	 1.658
	 .14	 .141	 .34	 .354	 .54	 .604	 .74	 .950	 .94	 1.738
	 .15	 .151	 .35	 .365	 .55	 .618	 .75	 .973	 .95	 1.832
	 .16	 .161	 .36	 .377	 .56	 .633	 .76	 .996	 .96	 1.946
	 .17	 .172	 .37	 .388	 .57	 .648	 .77	 1.020	 .97	 2.092
	 .18	 .182	 .38	 .400	 .58	 .662	 .78	 1.045	 .98	 2.298
	 .19	 .192	 .39	 .412	 .59	 .678	 .79	 1.071	 .99	 2.647
	 .20	 .203	 .40	 .424	 .60	 .693	 .80	 1.099
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	 Table 13 	 Two-tailed upper critical values for the Spearman  
rank-correlation coefficient (rs)

	 α

n	 .10	 .05	 .02	 .01

1	 —	 —	 —	 —
2	 —	 —	 —	 —
3	 —	 —	 —	 —
4	 1.0	 —	 —	 —
5	 .900	 1.0	 1.0	 —
6	 .829	 .886	 .943	 1.0
7	 .714	 .786	 .893	 .929
8	 .643	 .738	 .833	 .881
9	 .600	 .683	 .783	 .833

Source: The data for this table have been adapted from E. G. Olds (1938), “Distributions 	
of Sums of Squares of Rank Differences for Small Numbers of Individuals,” Annals of 	
Mathematical Statistics, 9, 133–148.
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Table 14  � Critical values for the Kruskal-Wallis test statistic (H ) for selected sample sizes for k = 3

	 α

n1	 n2	 n3	 .10	 .05	 .02	 .01

1	 1	 2	 —	 —	 —	 —
1	 1	 3	 —	 —	 —	 —
1	 1	 4	 —	 —	 —	 —
1	 1	 5	 —	 —	 —	 —
1	 2	 2	 —	 —	 —	 —
1	 2	 3	 4.286	 —	 —	 —
1	 2	 4	 4.500	 —	 —	 —
1	 2	 5	 4.200	 5.000	 —	 —
1	 3	 3	 4.571	 5.143	 —	 —
1	 3	 4	 4.056	 5.389	 —	 —
1	 3	 5	 4.018	 4.960	 6.400	 —
1	 4	 4	 4.167	 4.967	 6.667	 —
1	 4	 5	 3.987	 4.986	 6.431	 6.954
1	 5	 5	 4.109	 5.127	 6.146	 7.309

2	 2	 2	 4.571	 —	 —	 —
2	 2	 3	 4.500	 4.714	 —	 —
2	 2	 4	 4.500	 5.333	 6.000	 —
2	 2	 5	 4.373	 5.160	 6.000	 6.533
2	 3	 3	 4.694	 5.361	 6.250	 —
2	 3	 4	 4.511	 5.444	 6.144	 6.444
2	 3	 5	 4.651	 5.251	 6.294	 6.909
2	 4	 4	 4.554	 5.454	 6.600	 7.036
2	 4	 5	 4.541	 5.273	 6.541	 7.204
2	 5	 5	 4.623	 5.338	 6.469	 7.392

3	 3	 3	 5.067	 5.689	 6.489	 7.200
3	 3	 4	 4.709	 5.791	 6.564	 7.000
3	 3	 5	 4.533	 5.648	 6.533	 7.079
3	 4	 4	 4.546	 5.598	 6.712	 7.212
3	 4	 5	 4.549	 5.656	 6.703	 7.477
3	 5	 5	 4.571	 5.706	 6.866	 7.622

4	 4	 4	 4.654	 5.692	 6.962	 7.654
4	 4	 5	 4.668	 5.657	 6.976	 7.760
4	 5	 5	 4.523	 5.666	 7.000	 7.903

5	 5	 5	 4.580	 5.780	 7.220	 8.000

Source:  The data for this table have been adapted from Table F of A Nonparametric Introduction to Statistics by C.H. Kraft and C. Van Eeden, Macmillan, 
New York, 1968.
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ν       k: 2 3 4 5 6 7 8 9 10
1 17.97 26.98 32.82 37.08 40.41 43.12 45.40 47.36 49.07
2 6.085 8.331 9.798 10 88 11.74 12.44 13.03 13.54 13.99
3 4.501 5.910 6.825 7.502 8.037 8.478 8.853 9.177 9.462
4 3.927 5.040 5.757 6.287 6.707 7.053 7.347 7.602 7.826
5 3.635 4.602 5.218 5.673 6.033 5.330 6.582 6.802 6.995

6 3.461 4.339 4.896 5.305 5.628 5.895 6.122 6.319 6.493
7 3.344 4.165 4.681 5.060 5.359 5 606 5.815 5.998 6.158
8 3.261 4.041 4.529 4.886 5.167 5.399 5.597 5.767 5.918
9 3.199 3.949 4.415 4.756 5.024 5.244 5.432 5.595 5.739
10 3.151 3.877 4.327 4.654 4.912 5.124 5.305 5.461 5.599

11 3.113 3.820 4.256 4.574 4.823 5.028 5.202 5.353 5.487
12 3.082 3.773 4.199 4.508 4.751 4.950 5.119 5.265 5.395
13 3.055 3.735 4.151 4.453 4.690 4.885 5.049 5.192 5.318
14 3.033 3.702 4.111 4.407 4.639 4.829 4.990 5.131 5.254
15 3.014 3.674 4.076 4.367 4.595 4.782 4.940 5.077 5.198

16 2.998 3.649 4.046 4.333 4.557 4.741 4.897 5.031 5.150
17 2.984 3.628 4.020 4.303 4.524 4.705 4.858 4.991 5.108
13 2.971 3.609 3.997 4.277 4.495 4.673 4.824 4.956 5.071
19 2.960 3.593 3.977 4.253 4.469 4.645 4.794 4.924 5.038
20 2.950 3.578 3.958 4.232 4.445 4.620 4.768 4.896 5.008

24 2.919 3.532 3.901 4.166 4.373 4.541 4.684 4.807 4.915
30 2.888 3.486 3.845 4.102 4.302 4.464 4.602 4.720 4.824
40 2.858 3.442 3.791 4.039 4.232 4.389 4.521 4.635 4.735
6O 2.829 3.399 3.737 3.977 4.163 4.314 4.441 4.550 4.646
120 2.800 3.356 3.685 3.917 4.096 4.241 4.363 4.468 4.560
∞ 2.772 3.314 3.633 3.858 4.030 4.170 4.286 4.387 4.474

         k: 11 12 13 14 15 16 17 18 19
1 5.059 51.96 53.20 54.33 55.36 56.32 57.22 58.04 58.83
2 14.39 14.75 15.08 15.38 15.65 1.591 16.14 16.37 16.57
3 9.717 9.946 10.15 10.35 10.53 10.69 10.84 10 98 11.11
4 8.027 8.208 8.373 8.525 8664 8.794 8.914 9.028 9.134
5 7.168 7.324 7.466 7.596 7.717 7.828 7.932 8.030 8.122

6 6.649 6.789 6.917 7.034 7.143 7.244 7.338 7.426 7.508
7 6.302 6.431 6.550 6.658 6.759 6.852 6.939 7.020 7.097
8 6.054 6.175 6.287 6.389 6.483 6.571 6.653 6.729 6.802
9 5.867 5.983 6.089 6.186 6.276 6.359 6.437 6.510 6.579
10 5.722 5.833 5.935 6.028 6.114 6.194 6.269 6.339 6.405

11 5.605 5.713 5.811 5.901 5.984 6.062 6.134 6.202 6.265
12 5.511 5.615 5.710 5.798 5.878 5.953 6.023 6.089 6.151
13 5.431 5.533 5.625 5.711 5.789 5.862 5.931 5.995 6.055
14 5.364 5.463 5.554 5.637 5.714 5.786 5.852 5.915 5.974
15 5.306 5.404 5.493 5.574 5.649 5.720 5.785 5.846 5.904

16 5.256 5.352 5.439 5.520 5.593 5.662 5.727 5.786 5.843
17 5.212 5.307 5.392 5.471 5.544 5.612 5.675 5.734 5.790
18 5.174 5.267 5.352 5.429 5.501 5.568 5.630 5.688 5.242
19 5.140 5.231 5.315 5.391 5.462 5.528 5.589 5.647 5.701
20 5.108 5.199 5.282 5.357 5.427 5.493 5.553 5.610 5.663

24 5.012 5.099 5.179 5.251 5.319 5.381 5.439 5.494 5.545
30 4.917 5.001 5.077 5.147 5.211 5.271 5.327 5.379 5.42S
40 4.824 4.904 4.977 5.044 5.106 5.163 5.216 5.266 5.313
50 4.732 4.808 4.878 4.942 5.001 5.056 5.107 5.154 5.199
120 4.641 4.714 4.781 4.842 4.893 4.950 4.998 5.044 5.086
∞ 4.522 4.622 4.685 4.743 4.796 4.845 4.891 4.934 4.974

*qk,v,.05 = upper 5th percentile of a qk,v distribution

Table 15  � Critical values for the studentized range statistic q*, α = .05
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Answers to Selected Problems

C H A P T E R  2

2.4–2.7  The median, mode, geometric mean, and range are 
each multiplied by c.  2.13  x  = 19.54 mg/dL  2.14  s = 16.81 
mg/dL  2.16  Median = 19 mg/dL

C H A P T E R  3

3.1  At least one parent has influenza.  3.2  Both parents 
have influenza.  3.3  No.  3.4  At least one child has influ-
enza.  3.5  The 1st child has influenza.  3.6  C = A1 ∪ A2   
3.7  D = B ∪ C  3.8  The mother does not have influenza.   
3.9  The father does not have influenza.  3.10  A A1 2∩    
3.11  B C∩   3.50  7%   3.52  63%  3.53  .20  3.54  .5. 
This is a conditional probability. The probability in 
Problem 3.53 is a joint conditional unconditional 
probability.  3.55  0.2  3.56  No, because Pr(M⎮F) = 0.6 
whereas Pr(M⎮F ) = .2  3.57  .084  3.58  .655  3.59  .69   
3.60  .486  3.61  .373  3.62  No.  3.63  No.  3.68  .05   
3.69  .326  3.70  .652  3.71  .967  3.72  .479  3.73  .893   
3.74  .975  3.75  .630. It is lower than the predictive  
value negative based on self-report (i.e., .893).  3.83  .95   
3.84  .99  3.85  .913  3.86  The new test has a 13.6%  
lower cost.

C H A P T E R  4

4.1  Pr(0) = .72, Pr(1) = .26, Pr(2) = .02  4.2  .30  4.3  .25 
4.4  F(x) = 0 if x < 0; F(x) = 0.72 if 0 ≤ x < 1; F(x) = 0.98 if  
1 ≤ x < 2; F(x) = 1.0 if x ≥ 2.  4.8  362,880  4.11  .1042   
4.12 .2148  4.13  E(X) = Var(X) = 4.0  4.24  Pr(X ≤ 2)  
= .62  4.25  .202  4.26  .385  4.27  .471  4.28  .144   
4.29  1.24  4.33  .23  4.34  .882  4.35  Pr(X = 0) = .91,  
Pr(X = 1) = .08, Pr(X = 2) = .01  4.36  0.10  4.37  0.11   
4.38  6 months, .25; 1 year, .52  4.39  .435  4.40  .104   
4.41  10.4  4.48  Based on the Poisson distribution,  
Pr(X ≥ 27) = .049 < .05. Thus there is a significant excess.   
4.49  .0263  4.50  If Y = number of cases of cleft palate, then 
based on the Poisson distribution, Pr(Y ≥ 12) = .0532 > .05. 
This is a borderline result, because this probability is close 
to .05.

C H A P T E R  5

5.1  .6915  5.2  .3085  5.3  .7745  5.4  .0228  5.5 .0441
5.12  .079  5.13  .0004  5.14  .352  5.15  .268  5.16  .380
5.17  .023  5.18  .067  5.19  .0058  5.20  .435  5.25  .018
5.26  .123  5.27  .0005  5.28  ≥43  5.29  ≥69  5.30  ≥72
5.36  .851  5.37  Sensitivity.  5.38  .941  5.39  Specificity.
5.40  ∆ = 0.2375 mg/dL, compliance = 88% in each group   
5.47  63.5%  5.48  32.3%  5.49  No. The distributions are 
very skewed.

C H A P T E R  6

6.5  0.079 for normal men, 0.071 for men with chronic 
airflow limitation  6.15  .44  6.16  .099  6.17  (.25, .63)

6.18	 Point estimate	 95% CI

	 E. coli	 25.53	 (24.16–26.90)
	 S. aureus	 26.79	 (24.88–28.70)
	 P. aeruginosa	 19.93	 (18.60–21.27)

6.19	 Point estimate	 95% CI

	 E. coli	 25.06	 (23.73–26.38)
	 S. aureus	 25.44	 (24.60–26.29)
	 P. aeruginosa	 17.89	 (17.09–18.69)

6.20	 Point estimate	 95% CI

	 E. coli	 1.78	 (1.21–3.42)
	 S. aureus	 2.49	 (1.68–4.77)
	 P. aeruginosa	 1.74	 (1.17–3.32)

6.21	 Point estimate	 95% CI

E. coli	 1.73	 (1.17–3.31)
S. aureus	 1.10	 (0.75–2.12)
P. aeruginosa	 1.04	 (0.70–1.99)

6.27  .130  6.28  (.033, .228)  6.29  Because 10% is within 
the 95% CI, the two drugs are equally effective.
6.30  (6.17, 7.83)  6.31  (2.11, 9.71)  6.32  n =⋅ 251   
6.36  .544  6.37 (.26, 1.81)  6.38  .958  6.39  .999   
6.52  .615  6.53  .918  6.54  For 0.5 lb, observed  
proportion = .615. For 1lb, observed proportion = 0.935. The 
observed and expected proportions are in  
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good agreement.  6.55  Yes.  6.75  95% CI = (2.20, 13.06). 
Because this interval does not include 1.8, there are an 
excess number of cases of bladder cancer among tire work-
ers.  6.76  95% CI = (1.09, 10.24). Because this interval 
includes 2.5, there is not an excess number of cases of 
stomach cancer among tire workers.

C H A P T E R  7

7.1  z = 1.732, accept H0 at the 5% level.  7.2  p = .083
7.4  t = 1.155 ~ t11, p = .27  7.4 (0.82, 1.58)  7.5  The 95%  
CI contains 1.0, which is consistent with our decision to  
accept H0 at the 5% significant level.  7.17  z = 0.952, 
accept H0 at the 5% level.  7.18  p = .34  7.19  Accept 
H0 at the 5% level.  7.20  p = .71  7.27  z = 7.64, p < 
.001  7.28  31  7.29  .770  7.35  H0: µ = µ0 versus H1: µ ≠ µ0. 
σ2 unknown. µ = true mean daily iron intake for 9-  
to 11-year-old boys below the poverty level, µ0 = true  
mean daily iron intake for 9- to 11-year-old boys in  
the general population.  7.36  t = –2.917 ~ t50, reject  
H0 at the 5% level.  7.37  .001 < p < .01 
(exact p-value = .005)  7.38  H0: σ

2 = σ0
2 versus H1: σ

2 ≠ σ0
2. 

σ2 = underlying variance in the low-income population, 
σ0

2 = underlying variance in the general population.

7.39  X2 = 36.49 ~ χ50
2

, under H0, accept  H0 at the 5% level.   
7.40  .1 < p < .2 (exact p-value = .15)  7.41  (15.80, 34.86).

The interval contains σ0
2 = 5.562 = 30.91, so the underlying 

variances of the low-income and the general population are 
not significantly different.  7.52  One-sample binomial test, 
exact method.  7.53  p = .28  7.54  One-sample binomial test, 
large-sample method. z = 3.08, p = .0021  7.55  (.058, .142)

C H A P T E R  8

8.7  135 girls in each group or a total of 270 overall.
8.8  106 girls in each group or a total of 212 overall.
8.9  96 girls in the below-poverty group, 192 girls in the 
above-poverty group.  8.10  Power = .401  8.11  Power = 
.525  8.12  Power = .300  8.13  Power = .417  8.19  Use  
the paired t test. t = –3.37 ~ t9, .001 < p < .01 (exact p-value 
= .008)  8.20  Use the paired t test. t = –1.83 ~ t29, .05 < p 
< .10 (exact p-value = .078)  8.21  for methazolamide and 
topical drug group 95% CI is (–2.67, –0.53) and for topi-
cal drug group it is (–1.48, 0.08)  8.22  Use the two-sample 
t test with equal variances. t = –1.25 ~ t38, p > .05 (exact 
p-value = .22).  8.31  H0: µ1 = µ2 vs. H1: µ1 ≠ µ2, where µ1 = 
true mean FEV of children both of whose parents smoke, 
µ2 = true mean FEV of children neither of whose parents 
smoke.  8.32  First, perform F test for equality of two vari-
ances, F = 3.06 ~ F22, 19, p < .05. Therefore, use the two-sample 
t test with unequal variances.  8.33  t = –1.17 ~ t35,  
accept H0 at the 5% level.  8.34  (–0.55, 0.15)  8.35  212 
children in each group.  8.36  176 children in each  
group.  8.37  .363  8.38  .486  8.44  The paired t 
test.  8.45  Raw scale, t = –3.49 ~ t9, .001 < p < .01 (exact  
p-value = .007), ln scale, t  = –3.74 ~ t9, .001 < p < .01 
(exact p-value = .005). The ln scale is preferable because 
the change in the raw scale seems to be related to the 
initial level.  8.46  Urinary protein has declined by 

56.7% over 8 weeks.  8.47  95% CI for 8-week decline = 
(28.2%, 73.9%)  8.49  Two-sample t test with equal vari-
ances  8.50  H0: µ1 = µ2 vs. H1: µ1 ≠ µ2; where  µ1 = true mean 
cholesterol level for men; µ2 = true mean cholesterol level 
for women; t = –1.92 ~ t90, .05 < p < .10 (exact p-value = 
.058)  8.51  H0: µ1 = µ2 vs. H1: µ1 > µ2; t = –1.92 ~ t90, .95 < 
p < .975 (exact p-value = .97)  8.52  No. The twin pairs are 
not independent observations.  8.62  F test for the equality 
of two variances, F = 1.15 ~ F35, 29, p > .05. Therefore, use the 
two-sample t test with equal variances.  8.63  t = 1.25 ~ t64, 
.2 < p < .3 (exact p-value = .22).  8.64  RA, .32; OA, .43   
8.65 133 subjects in each of the RA and OA groups.   
8.66  Paired t test.  8.67  t = 2.27 ~ t99, .02 < p < .05 (exact  
p-value = .025)  8.68  F test for the equality of two varianc-
es, F = 1.99 ~ F98, 99, p < .05. Use the two-sample t test with 
unequal variances.  8.69  t = –4.20 ~ t176, p < .001.

C H A P T E R  9

9.1  Use the sign test. The critical values are c1 = 6.3 and c2 = 
16.7. Because c1 ≤ C ≤ c2, where C = number of patients who 
improved = 15, we accept H0 at the 5% level.  9.7  The dis-
tribution of length of stay is very skewed and far from being 
normal, which makes the t test not very useful here.
9.8  Use the Wilcoxon rank-sum test (large-sample  test).  
R1 = 83.5, T = 3.10 ~ N(0,1), p = .002  9.13  H0: F1 = F2 vs. H1: 
F1 ≠ F2, where F1 = distribution of duration of effusion for 
breast-fed babies, F2 = distribution of duration of effusion  
for bottle-fed babies.  9.14  The distribution of duration 
of effusion is very skewed and far from being normal.   
9.15  Wilcoxon signed-rank test (large-sample test).  9.16  R1 =  
215, T = 2.33 ~ N(0, 1), p = .020. Breast-fed babies have a 
shorter duration of effusion than bottle-fed babies.   
9.22  Wilcoxon signed-rank test (large-sample test).   
9.23  R1 = 33.5, T = 1.76 ~ N(0, 1), p = .078. The mean SBP  
is slightly but not significantly higher with the standard  
cuff.  9.24  Wilcoxon signed-rank test (large-sample 
test).  9.25  R1 = 32, T = 1.86 ~ N(0, 1), p = .062. Variability 
with the standard cuff is slightly, but not significantly, lower 
than with the random zero.

C H A P T E R  1 0

10.8  McNemar’s test for correlated proportions. 
10.9  X2 = 4.76 ~ χ1

2, .025 < p < .05  10.10  87  10.11  13 
10.12  McNemar’s test for correlated proportions, exact  
test; p = .267  10.13  Use chi-square test for 2 × 2 tables. 
X2 = 32.17 ~ χ1

2, p < .001  10.15  Use chi-square test for 
R × C tables. X2 = 117.02 ~ 2

2χ , p < 0.001. There is a significant  
association between ethnic origin and genetic type.   
10.27  McNemar’s test for correlated proportions.  10.28 X2 = 
4.65 ~ χ1

2, .02 < p < .05  10.32 McNemar’s test for correlated 
proportions (large-sample test).  10.33  X2 = 6.48 ~ χ1

2, .01 < 
p < .025   10.34  McNemar’s test for correlated proportions 
(exact method).  10.35 p = .387  10.36 .9997  10.42 .304   
10.43  .213  10.44  284 subjects in each group.    
10.45  Cholesterol-lowering drug patients, .218; placebo  
pill patients, .295  10.46  390 subjects in each group.   
10.48  12, .273; 13, .333; 14, .303; 15, .091; 16, 0; 17, 0   

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Answers to Selected Problems              893

10.49  15.13 years =⋅ 15 years, 2 months  10.50  We use the 
age groups, ≤12.9, 13.0–13.9, 14.0–14.9, ≥15.0, and perform
the chi-square goodness-of-fit test.  X2 = 1.27 ∼ χ1

2, .25 < p < .50. 
The goodness of fit of the normal model is adequate. 

C H A P T E R  1 1

11.1  y = 1894.8 + 112.1x  11.2  F = 180,750/490,818 =  
0.37 ~ F1, 7, p > .05  11.3  .05  11.4  R2 = % variance of  
lymphocyte count that is explained by % reticulytes.    
11.5  490,818  11.6  t = .61 ~ t7, p > .05  11.7  se(b) = 184.7, 
se(a) = 348.5  11.9  Two-sample z test to compare two cor-
relation coefficients.  11.10  λ = 3.40 ~ N(0, 1), reject H0 at  
5% level.  11.11  p < .001  11.12  Use the two-sample z test 
to compare two correlation coefficients. λ = 3.61 ~ N(0, 1), 
p < .001. The correlation coefficients are significantly  
different.  11.39  The one-sample t test for correlation   
11.40  t = 8.75 ~ t901, p < .001  11.41  The two-sample z 
test for correlation  11.42  λ = 2.563 ~ N(0, 1), p = .010   
11.43  Caucasian boys (.219, .339); African American boys 
(.051, .227)

C H A P T E R  1 2

12.1  F = 1643.08/160.65 = 10.23 ~ F2, 23, p < .05. The means 
of the three groups are significantly different.  12.2  p < .001

12.3	 Groups	 Test statistic	 p-value

	 STD, LAC	 t = 3.18 ~ t23	 .001 < p < .01
	 STD, VEG	 t = 4.28 ~ t23	 p < .001
	 LAC, VEG	 t = 1.53 ~ t23	 NS

12.4 t = –4.09 ~ t23, p < .001. The contrast is an estimate of 
the difference in mean protein intake between the general 
vegetarian population and the general non-vegetarian  
population.  12.6  F = 251.77/50.46 = 4.99 ~ F2, 19, p < .05

12.7	 Groups	 Test statistic	 p-value

	 A, B	 t = 2.67 ~ t19	 .01 < p < .02
	 A, C	 t = 2.94 ~ t19	 .001 < p < .01
	 B, C	 t = 0.82 ~ t19	 NS

12.8  A,B  p < .05. A,C  p < .05. B,C  NS.  12.18  Between-day 
variance = σ̂2

A = 1.19, Within-day variance = σ̂2 = 14.50   
12.19  F = 16.89/14.50 = 1.16 ~ F9, 10, p > .05. There is no 
significant between-day variance.

C H A P T E R  1 3

13.1  z = 6.19, p < .001  13.2  X2 = 38.34 ~ χ2
1, p < .001   

13.3  The conclusions are the same. Also, z2 = X2
corrected = 

38.34.  13.4  (0.090, 0.201)  13.5  2.29  13.6  (1.76, 2.98)   
13.15  The Mantel-Haenszel test  13.16  X2

MH = 0.51 ~ χ2
1,  

p > .05  13.17  1.38  13.18  (0.68, 2.82)  13.24  1.40   
13.25  (1.09, 1.80)  13.32  RR = 1.70, 95% CI = (0.42, 6.93) 
13.33  RR = 1.38, 95% CI = (1.06, 1.79).

C H A P T E R  1 4

14.1  Incidence density = 273.1 cases per 105 person-years 
for current users, 115.2 cases per 105 person-years for never 
users, z = 6.67/2.359 = 2.827 ~ N(0, 1), p = .005. There is a 
significant excess of breast cancer among current OC  
users vs. never users.  14.2  Incidence density = 135.4 cases 
per 105 person-years for past users, 115.2 cases per 105 
person-years for never users. z = 10.47/8.276 = 1.265 ~  
N(0, 1),  p = .21. There is no significant excess (or deficit) 
of breast cancer among past OC users vs. never OC users.   
14.3  RR

^
     = 2.37, 95% CI = (1.34, 4.21)  14.4  RR

^
     = 1.18,  

95% CI = (0.93, 1.49)  14.22  .072   14.23  12    
14.24 (2.1 events per 100 person-years, 7.0 events per  
100 person-years)
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FLOWCHART

Methods of Statistical Inference
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896              F L O W C H A R T      Methods of Statistical Inference

Start
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distribution is
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One-sample
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Underlying
distribution is

Poisson?

Use another
underlying
distribution
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nonparametric

methods
pages 341, 348
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Poisson test

pages 261, 263, 264

Exact
methods
page 253

Normal
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Normal-theory
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pages 250–251
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theorem be assumed
to hold?
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page 282
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page 299
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page 288
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Index of Data Sets

Data Set Page in text

BETACAR 623, 625, 858

BIRTHWEIGHT * 205

BLOOD 772

BONEDEN 32, 40, 111, 180, 208,  
274, 368, 544

BOTOX 860

BREAST 862

CORNEAL 631

DIABETES 333, 368, 547

EAR 69, 445, 767, 768

EFF 765

ENDOCRIN 624

ESTRADL 451, 547

ESTROGEN 767

FEV 37, 144, 326, 327, 386, 
542, 548, 549

FIELD 863

HEART Study Guide

HORMONE 326, 368, 442, 542,  
624, 766

HOSPITAL 35, 199, 201, 297, 302, 
365, 439, 596

Data Set Page in text

INFANTBP 206, 326, 542

LVM* 40

LEAD 32, 39, 207, 305, 312, 318, 
358, 520, 542, 579, 624, 

625, 769

MICE 626

NEPHRO 705, 765

NIFED 144, 207, 273, 324

OTO 765

PIRIFORM 148

SEXRAT 110, 206, 273, 447

SMOKE 109, 367, 809, 827, 828, 
858

SWISS 330, 557, 565, 574, 625, 
771, 859

TEAR 276, 369, 614, 628

TEMPERAT 624, 625

TENNIS1 445, 701, 766

TENNIS2 327, 365, 713, 716, 767

VALID 38, 146, 206, 207, 273, 
541, 544, 768

WALES* 548, 774

*New data sets for the 8th edition

901
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903

Chapter Section Page Topic Command
Statistical Package Used

R Minitab SAS Stata Excel

2 2.2 10 computes arithmetic mean mean X        

  2.2 10 computes sample median median X        

  2.2 14 computes geometric mean program to compute 
geometric mean

X        

  2.4 18 computes quantiles of a 
sample

quantile X        

  2.2 10 reads data from a spreadsheet read.xlsx X        

  2.4 20 computes arithmetic mean average         X

  2.4 20 computes standard deviation stdev         X

  2.7 25, 26 generates frequency 
distribution

PROC FREQ     X    

  2.8 28 stem and leaf plot stem.leaf X        

  2.8 30 stem and leaf plot PROC UNIVARIATE     X    

  2.8 30 box plot PROC UNIVARIATE     X    

  2.9 33 box plot box plot   X      

4 4.7 89 compute combinations comb       X  

  4.7 89 compute combinations choose X        

  4.8 94 computes pmf and cdf for 
the binomial distribution

BINOMDIST         X

  4.8 95 computes cdf for the 
binomial distribution

pbinom X        

  4.8 95 computes pmf for the 
binomial distribution

dbinom X        

  4.8 95 bar chart barplot X        

  4.11 101, 103 computes pmf and cdf for 
the Poisson distribution

POISSON         X

  4.13 106 computes Pr(X ≥ k), where 
X follows a Poisson 
distribution

poissontail       X  

5 5.4 125, 130 calculates cdf for a N(0,1) 
distribution

NORMSDIST         X

Index of Statistical Software

(continued on next page)
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Chapter Section Page Topic Command
Statistical Package Used

R Minitab SAS Stata Excel

5 5.4 127 calculates percentiles for a 
N(0,1) distribution

qnorm X

  5.5 130 calculates cdf and pdf for a 
N(μ,σ²) distribution

NORMDIST         X

  5.5 130 calculates percentiles for a 
N(μ,σ²) distribution

NORMINV         X

  5.5 130 calculates cdf for a N(μ,σ²) 
distribution

pnorm X        

  5.5 130 calculates percentiles for a 
N(μ,σ²) distribution

qnorm X        

  5.5 130 calculates pdf for a N(μ,σ²) 
distribution

dnorm X        

6 6.5 165 to display histograms PROC CHART     X    

  6.5 179 percentiles of a t distribution qt X        

  6.7 184 percentiles of a chi-square 
distribution

CHIINV         X

  6.7 184 percentiles of a chi-square 
distribution

qchisq X        

  6.8 190 obtain a large sample CI for 
a binomial parameter ρ

cii       X  

  6.8 191–192 obtain exact CI for a 
binomial parameter ρ

cii       X  

  6.9 195 obtain exact CI for the 
Poisson parameter λ

cii       X  

  6.11 201 obtain Bootstrap samples sample X        

  6.11 201 obtain sample quantiles quantile X        

7 7.3 217 to compute percentile of the 
t distribution

TINV X

7.3 217, 225, 
231

to compute the cdf for the t 
distribution

pt X

7.3 218 to compute the cdf for the t 
distribution

TDIST X

7.4 227 to perform the one-sample t 
test based on summary data

ttesti X

7.5 230 to compute percentiles of 
the t distribution

qt X

7.6 238 to compute power for a one-
sample t test

sampsi X

7.7 243 to compute sample size for a 
one-sample t test

sampsi X

7.8 248 computes right hand tail 
area under a chi-square 
distribution

CHIDIST X
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Chapter Section Page Topic Command
Statistical Package Used

R Minitab SAS Stata Excel

7 7.9 252 to perform the large sample 
version of the one-sample 
binomial test with continuity 
correction

prop.test X

7.9 254 to perform the exact version 
of the one-sample binomial 
test

bitesti X

7.9 258 to compute power and 
sample size for the one-
sample binomial test

sampsi X

7.10 262 to compute cdf of a Poisson 
distribution

ppois X

7.11 265 to compute 2-sided p-value 
for the one-sample t test

TDIST X

8 8.2 284 to perform the paired t test t.test X

8.5 291 to perform the two-sample 
t test with equal variances 
based on summary data

ttesti X

8.6 295 to obtain percentiles for the 
F distribution

qf X

8.6 295 to obtain the cdf for the F 
distribution

pf X

8.6 297 to perform the F test for 
the equality of 2 variances 
based on summary data

sdtest X

8.7 302 to perform the two-sample t 
test with unequal variances 
based on raw data

totest X

8.8 305, 308 to perform the two-sample 
t test with either equal or 
unequal variances and the 
F test for the equality of 
2 variances

PROC TTEST X

8.9 309 to estimate sample size 
for comparing means from 
2 independent samples

sampsi X

8.9 311 to estimate power for 
comparing means from 
2 independent samples

sampsi X

8.10 318 SAS macro to implement the 
ESD using outlier procedure 
in Equation 8.29

gesd macro X

9 9.2 343 to perform the large sample 
version of the sign test

prop.test X

9.3 351 to perform the Wilcoxon 
signed rank test

wilcox.test X

(continued on next page)
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Chapter Section Page Topic Command
Statistical Package Used

R Minitab SAS Stata Excel

9 9.4 356 to perform the Wilcoxon 
rank sum test

wilcox.test X

9.6 362 to perform a permutation 
test corresponding to the 
Wilcoxon rank sum test

sample X

10 10.2 385 to perform the Yates-
corrected chi-square test for 
2 × 2 tables

chisq.test X

10.3 390 to evaluate probabilities 
using the hypergeometric 
distribution

HYPGEOMDIST X

10.3 393 to perform Fisher’s exact 
test

fisher.test X

10.4 402 to perform the large-sample 
version of McNemar’s test 
for correlated proportions

mcnemar.test X

10.5 406 to estimate the sample size 
needed for comparing two 
binomial proportions

sampsi X

10.5 406 to estimate the power of 
a study for comparing two 
binomial proportions

sampsi X

10.6 417 to perform the chi-square 
test for r × c tables

chisq.test X

10.6 421 to perform the chi-square 
test for trend for a 2 × k table

prop.trend.test X

10.7 429 to perform the chi-square 
goodness of fit test for an 
externally specified model

chisq.test X

10.7 429–430 to perform the chi-square 
goodness of fit test for an 
internally specified model

custom program X

10.8 436 to compute the Kappa 
coefficient and test it for 
statistical significance

kap X

11 11.4 469 to fit linear regression models lm X

11.4 470 to obtain the ANOVA table 
for a linear regression model

lm followed by 
ANOVA

X

11.4 474 to perform the t test for 
simple linear regression

lm followed by 
summary

X

11.5 479 to obtain predicted values 
and associated confidence 
limits for simple linear 
regression

lm followed by 
predict

X

11.8 493 to perform the one-sample t 
test for correlation

cor.test X
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Chapter Section Page Topic Command
Statistical Package Used

R Minitab SAS Stata Excel

11 11.8 498 to obtain a point estimate 
and confidence interval for 
the correlation coefficient ρ

cor.test X

11.9 504, 521 to fit multiple linear 
regression models

PROC REG X

11.13 535 to obtain 95% confidence 
limits for the Spearman rank 
correlation coefficient

custom program X

12 12.3 557 to compute right-hand tail 
areas for the F distribution

Ftail X

12.3 557 to perform the F test for 
one-way ANOVA

aov followed by 
summary

X

12.3 558 to compute the mean and sd 
of a variable (var1) grouped 
by a variable (var2)

tapply X

12.3 558 to obtain an xy (scatter) plot plot X

12.4 565 to perform the one-way 
ANOVA and compare 
group means using the LSD 
method

one-way ANOVA X

12.4 572 to compute the cdf of a 
N(0,1) distribution

normal X

12.4 574 to compare groups means in 
one-way ANOVA using the 
Bonferroni procedure

oneway X

12.5 581, 588 to perform one-way ANOVA 
(fixed effects model)

PROC GLM X

12.5 586 to use a multiple regression 
approach based on dummy 
variables to fit a one-way 
ANOVA model

PROC REG X

12.6 593 to perform two-way ANOVA 
using the multiple regression 
method

PROC GLM X

12.6 595 to perform two-way 
ANCOVA using the multiple 
regression method

PROC GLM X

12.7 600 to perform the Kruskal-
Wallis test

kruskal.test X

12.7 602 to perform the Dunn 
procedure for comparing 
specific groups in the non-
parametric one-way ANOVA

dunn.test X

12.8 606 to perform the one-way 
ANOVA random effects 
model

PROC GLM X

(continued on next page)
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Chapter Section Page Topic Command
Statistical Package Used

R Minitab SAS Stata Excel

12 12.9 613 to obtain point and interval 
estimates of the intraclass 
correlation coefficient

loneway X

12.10 616 to perform a two-way 
ANOVA with one fixed and 
one random effect (i.e., a 
mixed model)

general linear model X

13 13.3 645 to obtain point and interval 
estimates of the risk 
difference (RD), risk ratio 
(RR) and odds ratio (OR) in 
a prospective study

csi X

13.3 646 to obtain point and interval 
estimates of the odds ratio 
in a case-control study

cci X

13.4 649 to compute point and 
interval estimates of the 
attributable risk (AR)

custom program X

13.6 668 to perform the Mantel-
Haenszel test and estimate 
the Mantel-Haenszel odds 
ratio

mantelhaen.test X

13.7 679, 685 to perform multiple logistic 
regression analysis

PROC LOGISTIC X

13.8 696 to perform conditional 
logistic regression analysis

PROC PHREG X

13.8 710 to fit a proportional odds 
ordinal logistic regression 
model

ordinal logistic 
regression

X

13.13 718 to fit generalized estimating 
equation (GEE) models

PROC GENMOD X

13.13 735, 739 to fit mixed effects models 
for longitudinal data analysis

PROC MIXED X

14 14.9 817 to compute Kaplan-Meier 
survival probabilities

sts list X

14.10 824 to perform the log-rank test sts test X

14.11 829 to fit the Cox proportional 
hazards model with a single 
risk factor

PROC PHREG X

14.11 832 to fit the Cox proportional 
hazards model with multiple 
risk factors

PROC PHREG X

14.13 841 to fit the Weibull distribution 
to survival data

Weibull distribution 
program

X

14.14 850 to fit a Weibull parametric 
regression survival model

Weibull accelerated 
life testing program

X
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A
Absolute value, 225
Accelerating failure time model, 849
Acceptance region, 215

Bonferroni multiple-comparisons 
procedure, 571

chi-square goodness-of-fit test, 428
chi-square test for R x C contingency 

tables, 416
chi-square test for trend in binomial 

proportions, 419
Dunn procedure, 602
F test for the equality of two 

variances, 296
F test for one-way ANOVA, 556
F test for simple linear regression, 

468
Fisher’s z test, 500
fixed-effects one-way ANOVA 

(analysis of variance), 556
hypothesis testing in multiple linear 

regression, 508
Kappa statistic, 433
Kruskal-Wallis test, 598
log-rank test, 822
Mantel-Haenszel test, 661
McNemar’s test, 398
multiple logistic regression, 682
normal-theory test, 375
one-sample binomial test (two-sided 

alternative), 250
one-sample χ2 test for variance of 

normal distribution, 246
one-sample t test for correlation 

coefficient, 492
one-sample z test for correlation 

coefficient, 495
one-way ANOVA, 556, 562
R x C contingency tables, 416
rank-correlation coefficients, 531
sign test, 341

sign test (normal-theory method), 341
Spearman rank-correlation 

coefficient, 531
t test for comparison of pairs of 

groups in one-way ANOVA, 562
t test for multiple linear regression, 

508
t test for simple linear regression, 473
two-sample inference for incidence-

rate data, 784
two-sample test for binomial 

proportions (normal-theory test), 
375

two-sample test for incidence rates 
(normal-theory method), 784

Yates-corrected chi-square test, 383
z test, one-sample, 495
z test, two-sample, 500

Actuarial method, 817
Addition law of probability, 48–50
Adjusted R2, 471
Age-standardized risk, 657
Analysis-of-variance estimator, 610
Apgar score, 529–530, 535–537
Applied statistics, 1
ARIC Study (Atherosclerosis Risk in 

Communities), 331, 770–771
Arithmetic mean, 7–9

vs. median, 11–12
properties of, 14–16
rescaled sample, 15–16
translated sample, 14–15

Atherosclerosis Risk in Communities 
(ARIC) Study, 331, 770–771

Attributable risk, 647–653
computer estimation, 652–653
estimation with multiple exposed 

groups, 650
interval estimation for, 648
and risk factor, 647

Average, 7

Index
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B
Bar graph, 5–6, 27
Bayes’ rule, 57–60
Bayesian inference, 60–61
Bayley Mental Development Index,  

543
Behrens-Fisher problem, 298
Bell-shaped distribution. See Normal 

distribution
Bernoulli trial, 135
BETACAR.DAT, 623
Between mean square, 555
Between sum of squares, 554–555
Between-group variability, 553–554
Bimodal distribution, 12
BINOMDIST function, 93, 136
Binomial distribution, 77, 90–95

binomial tables, 91–93
electronic tables, 93–95
estimation for, 187–192
expected value of, 96–97
interval estimation, exact methods, 

190–192
interval estimation, normal-theory 

methods, 188–190
normal approximation to,  

133–139
one-sample inference, 249–259
point estimation, 187–188
Poisson approximation, 104–106
variance of, 96–97

Binomial tables, 91–93
Biostatistics, 1
BIRTHWEIGHT.DAT, 205
BIRTHWEIGHT.XLS, 159
Blinding, 164
Block randomization, 163
BLOOD.DAT, 772
Bogalusa Heart Study, 370
BONEDEN.DAT (Data Set), 33–34, 40, 

111, 208, 274, 368, 544
BONEDEN.DOC (Data Set), 33–34
Bone-mineral density study, 32–34, 

180–181, 265
Bonferroni multiple-comparisons 

procedure, 570–575
acceptance and rejection regions, 

571
experiment-wise type I error, 571

Bootstrap, The, 199–202
confidence intervals, 200–201
sample, 199

BOTOX.DAT (Data Set), 860
Box plots, 29–31
BREAST.DAT (Data Set), 862
BREAST.DOC, 863

C
California Genetic Screening Program, 

68
Cardinal data, 338
Carry-over effect, 713, 717–719
Case-fatality rate, 71
Case study examples

confidence interval, 180–181
graphing of data, 32–34
multiple linear regression, 519–526
nonparametric statistical methods, 

358–359
one-sample hypothesis testing,  

265
one-way ANOVA, 579–589
two-sample hypothesis testing, 

305–307
Case-control study, 634
Categorical data

hypothesis testing and, 372–438
measures of effect for, 637–647

Causal pathway, 656
Censored data, 813–815

interval, 814
left, 814
right, 813
treatment of, 813–814

Censored observations, 813
Central-limit theorem, 171–173
CHIDIST function, 248
Childhood Respiratory Diseases (CRD) 

Study, 38, 548
Chinese Mini-Mental Status Test 

(CMMS), 70
Chi-square distribution, 182–185, 880
Chi-square test

acceptance and rejection regions, 
416, 419

goodness-of-fit test, 425–431
for homogeneity of odds ratios, 

665–666
for homogeneity of rate ratios, 

798–799
p-value, 416, 420–421
for R x C contingency tables,  

415–416
for trend in binomial proportions, 

418–421
for trend-multiple strata, 670–671
using the computer to perform,  

385–387, 417, 421–422, 429–431
for variance of a normal distribution, 

245–248
and Wilcoxon rank-sum test,  

422–424
Christmas Bird Count (CBC), 152
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Civil Action, A (book and movie), 193
Clinical trials, 410–413
Cluster sampling, 156
Clustered binary data, 721–733

generalized estimated equations,  
728

hypothesis testing, 721–726
power estimation for, 726–727
regression models, 728–733
sample-size estimation for, 726–727
two-sample test for binomial 

proportions, 722–723, 726–727
CMMS (Chinese Mini-Mental Status 

Test), 70
Coefficient of variation (CV), 22–23, 

607–608
Cohort study, 634
Column effect, 591
Column margins, 378
Combinations, 85–89
Complement, 46
Complete-case method, 753
Complete penetrance, 72
Compound symmetry correlation 

structure, 728, 734
Concordant pair, 396
Conditional logistic regression, 694–

698
Conditional probability, 50–55

relative risk, 51
total-probability rule, 53–55

Confidence interval. See also Interval 
estimation

bootstrap, 200–201
comparison of means from two 

paired samples, 285–286
factors affecting length of, 179
and hypothesis testing, 229–232
for mean of normal distribution, 

176–180
one-sided, 197–199
sample-size determination,  

244–245
Confidence limits

for expectation of Poisson variable, 
881

for incidence rates, 781–782
Confounding, 653–656

causal pathway, 656
negative confounder, 655
positive confounder, 655
stratification, 654
variable, 653

Contingency-table method, 377–379
2 x 2 contingency table, 377
expected table, 379–382

and multiple logistic regression, 
677–678

observed table, 379
significance testing, 379–385
Yates-corrected chi-square test, 

382–386
Continuity correction, 130
Continuous distribution, 3
Continuous probability distributions, 

115–141
conversion from N(μ,σ2) to N(0,1) 

distribution, 127–131
general concepts, 115–118
linear combinations of random 

variables, 132–133
normal approximation to binomial 

distribution, 133–139
normal approximation to Poisson 

distribution, 139–141
normal distribution, 118–121
standard normal distribution,  

121–127
Continuous random variable, 78

expected value of, 117
variance of, 118

Contralateral design, 274
CORNEAL.DAT, 631
CORNEAL.DOC, 631
Corrected sum of cross products,  

462
Corrected sum of squares, 462
Correlated binary data, 733
Correlation coefficient, 485–490

defined, 486
interval estimation for, 496–498
multiple correlation, 527–529
one-sample t test, 490–492
one-sample z test, 494–496
overview, 485
partial correlation, 526–527
power and sample-size estimation, 

499
rank correlation, 529–533
sample (Pearson) correlation 

coefficient, 487–488
sample regression vs. sample 

correlation coefficients, 488–490
sample vs. population correlation 

coefficients, 488
sample-size estimation for, 499
statistical inference for, 490–501
two-sample z test, 499–501
using the computer to obtain 

confidence limits for, 498
Covariance, 485
Covariates, 587
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Cox proportional-hazards model, 
825–835

assumptions testing, 833–835
hazard ratio estimation for 

continuous independent variables, 
827

hazard ratio estimation for 
dichotomous independent 
variables, 826–827

power estimation for, 835–837
sample-size estimation for,  

837–839
CRD (Childhood Respiratory Diseases) 

Study, 38, 548
Critical values, 216

Kruskal-Wallis test, 889
Spearman rank-correlation 

coefficient, 888
standardized statistic, 890
Wilcoxon rank-sum test, 885–886
Wilcoxon signed-rank test, 884

Critical-value method, 216, 219, 890
Cross-over design, 713–721

assessment of treatment effects, 
713–717

carry-over effect, 713, 717–719
definition, 713
sample-size estimation for, 719–721
washout period, 713

Cross-sectional study, 280, 635
Cumulative incidence, 64
Cumulative incidence rates, 777
Cumulative odds ordinal logistic 

regression model, 701
Cumulative-distribution function (cdf), 

84, 117, 122–123
CV (coefficient of variation), 22–23, 

607–608
D
Data

cardinal, 338
interval scale, 338
nominal scale, 339
ordinal, 339
person-time. See Person-time data
ratio scale, 338

DBP (diastolic blood pressure), 612
Deductive reasoning, 154
Degrees of freedom (df), 174
Delta method, 638–639
Denominator degrees of freedom, 293
Dependent events, 47–48
Dependent variable, 459
Derivation of

Equation 7.20, 265–267, 
Equation 8.13, 319

Equation 10.17, 436–437
Equation 11.26, 537, 539
Equation 12.30, 619–620
Equation 13.48, 760–761
Equation 14.12, 854–855
Equation 14.17, 856
interval estimation of AR, 759–760

Descriptive statistics, 5–35
arithmetic mean, 14–16
case studies, 32–34
coefficient of variation, 22–23
computer packages, 35
graphic methods, 27–31
grouped data, 24–26
measures of location, 6–14
measures of spread, 16–20

Diabetes Prevention Trial (DPT), 151
DIABETES.DAT (Data Set), 333, 368, 

547
Diastolic blood pressure (DBP), 612, 622
DIFCHISQ, 690, 692
Direct standardization, 658
Discordant pair, 396–397
Discrete distribution, 3
Discrete probability distributions, 

77–107
binomial distribution, 90–95
combinations, 85–89
cumulative-distribution function of 

discrete random variable, 84
expected value of discrete random 

variable, 81–82
permutations, 85–89
Poisson approximation to binomial 

distribution, 104–106
Poisson distribution, 98–101
Poisson probabilities, 101–102
probability-mass function, 79–81
random variable, 78
variance of discrete random variable, 

82–84
Discrete random variable, 78

cumulative-distribution function, 84
expected value of, 81–82
probability-mass function for, 79–81
variance of, 82–84

Disease variable, 634
Disease-odds ratio, 641
Distribution

binomial, 77, 90–95
chi-square, 182–185
continuous, 3
discrete, 3
F, 293–294
frequency, 3, 24–26, 79–81
hypergeometric, 389–393
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mode, 12–13
negatively skewed, 11–12
normal, 118–121
Poisson, 77
positively skewed, 11–12
probability, 79–81
sampling, 165–166
symmetric, 11–12
t, 174–180

Double blind, 164
Drop-in rate, 410
Dropout rate, 410
Dummy variable, 519, 582–583
Dunn procedure, 601–602

E
EAR.DAT (Data Set), 445, 767, 768
EFF.DAT (Data Set), 765
EFF.DOC, 765
Effect modification, 665–667
El Paso Lead Study (LEAD.DAT),  

32–33
ENDOCRIN.DAT, 624
EPESE (Established Populations for 

Epidemiologic Studies of the 
Elderly), 753

Epidemiologic studies, 633–762
attributable risk, 647–653
clustered binary data, 721–733
confounding, 653–656
cross-over design, 713–721
equivalence studies, 710–713
extensions to logistic regression, 

694–703
longitudinal data analysis, 733–743
Mantel-Haenszel test, 659–673
measures of effect for categorical 

data, 637–647
meta-analysis, 705–710
missing data, 753–758
multiple logistic regression, 673–694
power estimation for stratified 

categorical data, 672–673
sample size estimation for logistic 

regression, 703–705
standardization, 656–658
study design, 634–637

Equal variances, 292–298
F distribution, 293–294
F test, 295–297

Equivalence studies, 710–713
definition, 710
inference based on confidence-

interval estimation, 711
sample-size estimation for,  

711–712

Error, in estimate, 4
Error mean square, 607
Error term, 591
ESD (Extreme Studentized Deviate) 

statistic, 312–316, 884
Established Populations for 

Epidemiologic Studies of the 
Elderly (EPESE), 753

Estimate, 4
error in, 4

Estimated mean difference, 4
Estimated regression line, 461, 463
Estimation, 154–202. See also Interval 

estimation; Point estimation; 
Power estimation; Sample-size 
estimation

binomial distribution, 187–192
central-limit theorem, 171–173
chi-square distribution, 182–185
interval, 173–174, 185–187,  

188–192, 194–196
mean of distribution, 165–180
one-sided confidence intervals, 

197–199
point, 165–167, 181–182, 187–188, 

193–194
Poisson distribution, 193–196
population, 155–157
of power, 310–311
randomized clinical trials, 161–165
random-number tables, 157–161
sample, 155–157
standard error of the mean, 167–170
t distribution, 174–180
using the computer, for power, 238
using the computer, sample size, 

243–244, 309–310
variance of distribution, 181–187

Estimator, 166
ESTRADL.DAT (Data Set), 451, 547
ESTROGEN.DAT (Data Set), 767
Events, 43

complement, 46
dependent, 47–48
exhaustive, 54
independent, 46
mutually exclusive, 44, 54
simultaneous, 45
symbol for, 44

Exact binomial probabilities, 867–871
Exact methods. See also Normal-theory 

methods
comparison of incidence rates, 786
McNemar’s test, 399–401
one-sample binomial test (two-sided 

alternative), 252–254
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Exact Poisson probabilities, 871–873
Excel, 4, 93
Excel statistical package procedures

BINOMDIST, 93, 136
CHIDIST, 248
HYPGEOMDIST, 390
NORMDIST, 125, 129–131
NORMINV, 129–130
TDIST, 218–220
TINV, 217

Exchangeable correlation structure, 
728, 734

Exhaustive events, 54
Expected mean square, 607
Expected table, 379–382, 414–415
Expected value

for 2 × 2 contingency tables,  
380–382

of binomial distribution, 96–97
of continuous random variable, 117
of discrete random variable, 81–82
of hypergeometric distribution, 

389–390
of linear combinations of random 

variables, 132–133
of Poisson distribution, 102–103

Exposure variable, 634
Exposure-odds ratio, 641
Externally Studentized residual, 512
Extreme outlying value, 31
Extreme Studentized Deviate (ESD) 

statistic, 312–316, 884

F
F distribution, 293–294

denominator degrees of freedom, 
293

lower percentiles of, 294
numerator degrees of freedom, 293
pth percentile, 294
using the computer to obtain 

percentiles and areas for, 295
F test, 295–297

acceptance and rejection regions, 
468

for the equality of two variances, 295
for fixed-effects one-way ANOVA, 

553–557
for multiple regression, 506
p-value, 468
for simple linear regression, 467–472
using the computer for equality of 

two variances, 297–298
Factorial, 87–88
FAIR test, 148
False negative, 56

False positive, 56
False-discovery rate, 576–579
FEF (forced mid-expiratory flow), 551
FEV.DAT (Data Set), 37, 144, 326–327, 

542, 548–549
FIELD.DAT (Data Set), 863
FIELD.DOC, 863–864
Fisher’s exact test, 387–394

exact probability of obtaining table 
with cells, 390

general layout of data, 388
general procedure, 391–392
hypergeometric distribution, 389–393
p-value, 391–392
using the computer to perform, for  

2 × 2 tables, 393–394
Fisher’s z test, 499–501

acceptance and rejection regions, 500
for comparing two correlation 

coefficients, 500
p-value, 501

Fisher’s z transformation, 494, 887
Fitted regression lines, 481–485

assumptions, 481
influential points, 484
outliers, 484
standard deviation of residuals, 

482–483
Studentized residuals, 482–484

Fixed-effects one-way ANOVA (analysis 
of variance), 552–553, 604. See 
also One-way ANOVA (analysis of 
variance)

acceptance and rejection regions, 556
between-group variability, 553–554
F test, 555–556
F test for group means comparison, 

553–557
hypothesis testing, 553–559
interpretation of parameters, 553
p-value, 557
within-group variability, 553–554

Flowcharts
categorical data method for statistical 

inference, 438
methods for statistical inference, 

268, 538
person-time data methods, 857
two-sample statistical inference, 321

Follow-up study, 280
Forced mid-expiratory flow (FEF), 551
Framingham Eye Study, 54
Framingham Heart Study, 683–693, 

703, 766
Frequency definition of probability, 60
Frequency distribution, 3, 24–26, 79–81
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G
Gaussian distribution, 118–121
Generalized estimating equations 

(GEE), 728
Geometric mean, 13–14
Goodness of fit

of logistic-regression models,  
688–694

regression lines, 465–466, 481–485
of Weibull survival model, 846–847

Goodness-of-fit test, 80, 425–431
Gossett, William, 174
Grand total, 378
Graphic methods, 27–31

bar graph, 27
box plots, 29–31
stem-and-leaf plots, 27–29

Greater Boston Otitis Media Study, 767
Greene-Touchstone study, 458–459
Grouped data, 24–26

H
Harvard Medical Study, 444
Harvard Pilgrim Health Care, 207
Hazard function, 810, 818, 841
Hazard rates, 810
Hazard ratio, 826–827
Homogeneity of binomial proportions, 

378
HORMONE.DAT (Data Set), 326, 368, 

442, 542, 624, 766
HOSPITAL.DAT (Data Set), 35,  

199–201, 297, 303 596
HOSPITAL.DOC, 35
Hypergeometric distribution, 389–393
HYPGEOMDIST function, 390
Hypothesis testing, 154, 372–438

acceptance and rejection regions,  
508

case study, 265, 305–307
chi-square goodness-of-fit test, 

425–431
clustered binary data, 721–733
comparison of means from two 

paired samples, 285–286
and confidence intervals, 248
critical-value method, 216, 219
equality of two variances, 292–298
F test, 506
Fisher’s exact test, 387–394
fixed-effects one-way ANOVA,  

553–557
general concepts, 211–214
interval estimation, 290–292
multiple logistic regression, 681–686
multiple-regression analysis, 506–510

null hypothesis, 211–213
one-sample χ2 test for variance of 

normal distribution, 245–248
one-sample inference for binomial 

distribution, 249–259
one-sample problem, 211
one-sample test for mean of normal 

distribution, 215–229
one-sided alternatives, 215–222
outliers, 312, 318
paired t test, 281–285
power estimation for comparing 

binomial proportions, 403–413
power of test, 232–238
p-value, 508
R × C contingency tables, 413–424
sample-size determination, 239–245
sample-size estimation for comparing 

binomial proportions, 403–413
stratified person-time data, 794–795
t test, 508
true state of nature, 214
two-sample inference, 279–320
two-sample problem, 211
two-sample t test for independent 

samples with equal variances, 
286–290

two-sample t test for independent 
samples with unequal variances, 
298–302

two-sample test for binomial 
proportions, 373–387

two-way ANOVA, 591–594
type I error, 213–214
type II error, 213–214

I
Imputation, 754
Incidence, 63–64
Incidence density, 64, 778
Incidence rates, 777

confidence limits, 781–782
and cumulative incidence, 778
exact test, 786–787
interval estimation, 781
log-rank test, 820–821
normal-theory test, 783–785
one-sample inference, 779–782
point estimation, 781
power estimation for, 803–805
rate ratio, 787–789
sample-size estimation, 801–802
trend testing, 805–808
two-sample inference, 782–790

Independent events, 46
Independent samples, 403–406,  

410–411
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Independent variable, 133, 459
Independent-sample design, 280
Inductive reasoning, 154
INFANTBP.DAT (Data Set), 206, 326, 

542
INFANTBP.DOC, 326, 542
Inferential statistics, 4
Influential points, 484
Interaction effect, 591
Internally Studentized residual, 512
INTERSALT Study, 541
Interval censoring, 814
Interval estimation, 155, 173–174, 

185–187. See also Confidence 
interval; Estimation; Sample-size 
estimation

of AR, derivation of, 759–760
for attributable risk, 648
comparison of means from two 

independent samples, 290–292
comparison of means from two 

paired samples, 285–286
for correlation coefficients, 496–498
exact methods, 190–192, 194–195
for incidence rates, 781
intraclass correlation coefficient, 610
for linear regression, 475–481
multiple logistic regression, 687
normal-theory methods, 188–190
for Poisson distribution, 194–196
for predictions from regression lines, 

476–479
rank-correlation coefficients,  

533–537
of rate ratio, 788–789
rate ratio, 797
for regression parameters, 475–476
risk difference, 637–638
for risk ratio, 639, 644
of survival probabilities, 815–816

Interval scale, 338
Intraclass correlation coefficient, 609–

614. See also Correlation coefficient
definition, 610
interpretation of, 610
interval estimation, 610
as measure of reliability, 612
point estimation, 610
using the computer to estimate, 

613–614
Inverse normal function, 126

K
Kaplan-Meier estimator, 811–818

estimation of hazard function, 
817–818

interval estimation of survival 
probabilities, 814

treatment of censored data, 813–814
using the computer to obtain 

survival probabilities, 817
Kappa statistic, 431–436

acceptance and rejection regions, 
433

guidelines for evaluating, 434
p-value, 433–434
using the computer to estimate, 

435–436
Kruskal-Wallis test, 596–603

acceptance and rejection regions, 598
comparison of specific groups, 

601–603
critical values for, 889
p-value, 599
procedure, 597–598
rank assignment, 599
using the computer to perform, 

600–601

L
Large-sample test, 779–780
LEAD.DAT (Data Set), 32, 39, 207, 358, 

542, 625, 769
LEAD.DOC, 32
Least significant difference (LSD), 

561–567
Least-squares line, 461, 463
Left censoring, 814
Light smokers, 551
Linear combinations of random 

variables, 132–133
expected value of, 132–133
independent random variables, 133
variance of, 132–133

Linear contrast, 567–570
definition, 132
multiple-comparisons procedure, 

575–577
t test, 568–569
variance of, 132–133

Linear regression
F test for, 467–469, 469–472
interval estimation for, 475–481
simple, 467–475
standard deviation of residuals, 

482–483
standard errors for estimated 

parameters, 475–476
t test for, 472–475

Linear-regression methods, 457–539
assumptions, 481
dependent variable, 459
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F test for simple linear regression, 
467–472

independent variable, 459
interval estimates for regression 

parameters, 475–476
interval estimation, 475–481
interval estimation for predictions, 

476–479
method of least squares, 461–465
overview, 457
regression line, 458, 460
standard errors for estimated 

parameters, 475–476
t test for simple linear regression, 

472–475
using the computer to obtain 

confidence limits for predictions 
from, 479–481

Logistic regression
conditional, 694–698
interval estimation, 687
matched, 694–698
ordinal, 701–703
point estimation, 687
polychotomous, 698–701
residuals in, 688–692
sample size estimation, 703–705

Logit transformation logit (p), 674
Log-rank test, 819–825

acceptance and rejection regions, 
822

incidence rates, 820–821
procedure, 821–822
p-value, 822

Longitudinal data analysis, 733–743
in clinical trial setting, 735–738
interpretation of parameters, 734
measurement-error methods, 743–

752
Longitudinal study, 280
LSD (least significant difference), 

561–567

M
Mann-Whitney U test. See Wilcoxon 

rank-sum test
Mantel extension test, 669–672
Mantel-Haenszel test, 387, 659–673

acceptance and rejection regions, 
661

effect modification, 665–667
estimation in matched-pair studies, 

667–668
estimation of odds ratio for stratified 

data, 663–664
procedure, 660–661

p-value, 662
testing for trends in presence of 

confounding, 669–672
using the computer to perform, 

668–669
Masking problem, 315
Matched logistic regression, 694–698
Matched pair, 395–403

concordant, 396
discordant, 396
estimation of odds ratio, 667–668
two-sample test for binomial 

proportions, 395–403
type A discordant pair, 396
type B discordant pair, 396–397

Matched-pair design, 86
Mathematical statistics, 1
MAXCHG (FAIR test value), 148
MAXFWT (mean finger-wrist tapping 

score), 318, 519–526, 542,  
579–582, 625

McNemar’s test, 395–403
acceptance and rejection regions, 

398
for correlated proportions, 397, 399
exact test, 399–401
normal-theory test, 397–399
p-value, 398, 400
using the computer to perform, for 

correlated proportions, 402–403
Mean

arithmetic, 7–9, 14–16
geometric, 13–14
standard error of, 167–170

Mean deviation, 19
Mean finger-wrist tapping score 

(MAXFWT), 318, 519–526,  
579–582

Mean of distribution, 165–180
central-limit theorem, 171–173
confidence interval, 176–180
estimation of, 165–180
interval estimation, 173–174
one-sample test, 214–222,  

222–229
point estimation, 165–167
standard error of the mean, 167–170
t distribution, 174–180

Measurement-error methods, 743–752
measurement-error correction with 

gold-standard exposure, 744–748
measurement-error correction 

without gold-standard exposure, 
748–752

regression-calibration approach, 
746–747, 749–750
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Measures of effect for categorical data, 
637–647

odds ratio, 640–645
risk difference, 637–638
risk ratio, 638–640

Measures of location, 6–14
arithmetic mean, 7–9
geometric mean,13–14
median, 9–11
mode, 12–13

Measures of spread, 16–20
quantiles (percentiles), 17–18
range, 16–18
standard deviation, 18–20
variance, 18–20

Median, 9–11
Medical Research Council’s 1946 

National Survey of Health, 448
Meta-analysis, 705–710, 765

models, 709
random-effects model, 706–707
tests of homogeneity of odds ratios, 

708–710
Method of least squares, 461–465

corrected sum of cross products,  
462

corrected sum of squares, 462
estimation of least-squares lines, 463
least-squares line, 461
raw sum of cross products, 462
raw sum of squares, 462

MICE.DAT (Data Set), 626
MICE.DOC, 626
Minimum variance unbiased estimator, 

166
MINITAB package, 4, 159, 358–359, 

530–531, 702, 849–850
Minnesota Heart Study, 156
Missing data, 753–758
Mode, 12–13
Moderate smokers, 551
Multiple correlation, 527–529
Multiple imputation, 754
Multiple linear regression, 502–519. See 

also Simple linear regression
case study, 519–526
estimation of regression equation, 

502–505
goodness of fit, 510–518
hypothesis testing, 506–510
multiple correlation, 527–529
and one-way ANOVA, 582–586
partial correlation, 526–527
partial F test, 510
partial-regression coefficients, 510
partial-residual plot, 513–518

rank correlation, 529–533
standardized regression coefficient, 

505
Multiple logistic regression, 673–694

acceptance and rejection regions, 682
and contingency-table analysis, 

677–678
estimation of odds ratio for 

continuous independent variables, 
678–680

estimation of odds ratio for 
dichotomous independent 
variables, 674–675

goodness of fit, 688–694
hypothesis testing, 681–686
interval estimation, 687
model, 673–674
point estimation, 687
prediction with, 686–688
p-value, 682
regression parameters, 674–676
residuals in, 688–692

Multiplication law of probability, 
46–48

Multisample inference, 551–620
intraclass correlation coefficient, 

609–614
Kruskal-Wallis test, 596–603
mixed models, 614–618
one-way ANOVA, 552–589
random-effect one-way ANOVA, 

604–609
Mutually exclusive events, 44, 54

N
Negative confounder, 797, 805
Negatively skewed distribution, 11–12
NEPHRO.DAT (Data Set), 705, 765
NEPHRO.DOC, 765
NIFED.DAT (Data Set), 144, 207, 273, 

324
Nominal scale, 339
Noninhaling smokers, 551
Nonparametric statistical methods, 

338–365
case study, 358–359
chi-square goodness-of-fit test, 

425–431
Fisher’s exact test, 387–394
kappa statistic, 431–436
McNemar’s test, 395–403
permutation test, 359–364
R × C contingency tables, 413–424
sample size and power, 403–413
sign test, 340–345
Spearman rank-correlation, 530–533
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Wilcoxon rank-sum test, 352–358
Wilcoxon signed-rank test, 345–352

Nonsmokers, 551
Normal approximation

binomial distribution, 133–139
Poisson distribution, 139–141

Normal distribution, 118–121. See also 
Standard normal distribution

electronic tables, 125–127
NORMDIST function of Excel, 125, 

129–131
NORMINV function of Excel,  

129–130
one-sample test, 214–222, 222–229
probability-density function of, 122
pth percentile, 130
standard, 121–127
table, 874–877

Normal range, 125
Normal variable, standardization of, 128
Normal-theory methods, 188–190, 249–

251. See also Exact methods
McNemar’s test, 397–399
sign test, 340–345
two-sample test for binomial 

proportions, 373–377
Normal-theory test, 783–785
NORMDIST function, 125, 129–131
NORMINV function, 129–130
North Carolina Case-Control Study, 772
Null hypothesis, 211–213
Numerator degrees of freedom, 293
Nurses’ Health Study, 156, 278, 446, 

604, 763, 793, 859, 865
O
Observational study, 445
Observed contingency table, 379
Odds ratio, 640–645

chi-square test for homogeneity of, 
665–666

computer estimation, 645–647
disease-odds ratio, 641
exposure-odds ratio, 641
interval estimation for, 644
in meta-analysis, 708–710
and multiple logistic regression, 

675–676
odds in favor of success, 640
point estimation for, 644
probability of success, 640
test of homogeneity, 708–710

One-sample χ2 test for variance of 
normal distribution, 245–248

One-sample inference, 211–268
for binomial distribution, 249–259
exact methods, 252–254

general concept, 211–214
normal-theory methods, 249–251
one-sample test for mean of normal 

distribution, 215–229
one-sample test for variance of 

normal distribution, 245–248
for Poisson distribution, 259–265
power and sample-size estimation, 

256–257
power of test, 232–236
sample-size determination, 239–242
two-sided alternatives, 222–229

One-sample inference for incidence-rate 
date, 779–782

exact test, 780–781
large-sample test, 779–780

One-sample problem, 211
One-sample t test, 490–492

acceptance and rejection regions, 
492

for correlation coefficient, 490–492
p-value, 492
using the computer to perform, for 

correlation, 493
One-sample test

binomial, using the computer to 
perform, 251–252, 254–256, 
258–259

one-sided alternatives, 214–222
two-sided alternatives, 222–229
z test, 228–229

One-sample z test
acceptance and rejection regions, 495
for correlation coefficient, 493–496
p-value, 496
z transformation of r, 494

One-sided alternatives, 214–222
power of test, 232–236
sample-size determination, 239–242

One-sided confidence intervals,  
197–199

One-tailed test, 215
One-way ANCOVA (analysis of 

covariance), 586–589
One-way ANOVA (analysis of variance), 

552, 562. See also Two-way ANOVA 
(analysis of variance)

acceptance and rejection regions, 
556, 562

Bonferroni multiple-comparisons 
procedure, 570–575

case study, 579–589
comparison of specific groups, 

559–579
dummy variable, 582–583
F test, 553–557
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One-way ANOVA (Continued)
false-discovery rate, 576–579
linear contrast, 567–570
LSD procedure, 561–567
and multiple regression, 582–586
multiple-comparisons procedure for 

linear contrasts, 575–577
pooled estimate of variance, 560
p-value, 557, 562
random-effects model, 604–609
t-test based on pairs of groups, 

559–567
using the computer to perform, 

557–559
Ordinal data, 339
Ordinal logistic regression, 701–703
OTO.DAT (Data Set), 765
OTO.DOC, 765
Outliers, 312–318, 484
Outlying value, 31

P
Paired samples, 407–410
Paired t test, 281–285
Paired-sample design, 280
Parametric statistical methods, 338
Parametric survival analysis, 839–847
Partial correlation, 526–527
Partial-regression coefficients, 510
Partial-residual plot, 513–518
Passive smoking, 551
Pearson correlation coefficient,  

487–488
definition, 487
interpretation, 487–488
vs. population correlation 

coefficient, 488
vs. sample regression coefficient, 

488–490
Pearson residual, 688–692
Penetrance

complete, 72
reduced, 72

Percentiles, 17–18, 845–846, 851–854
Permutation test, 359–364
Permutations, 85–89, 359–364

tests, 359–364
using the computer to perform, test, 

362–364
Person-time data, 777–856

cumulative incidence, 777–779
incidence density, 778
for incidence-rate data, 782–790
Kaplan-Meier estimator, 811–818
log-rank test, 819–825

one-sample inference for incidence-
rate data, 779–782

parametric regression models for 
survival data, 847–854

parametric survival analysis, 839–847
power estimation for, 790–793
proportional-hazards model,  

825–835
sample-size estimation, 791–793
stratified, 794–795
survival analysis, 808–811
trend testing, 805–808

Person-year, 193
Physician’s Health Study, 412, 439, 447, 

636–637
PIRIFORM.DAT (Data Set), 148
Point estimates, 155
Point estimation. See also Estimation; 

Interval estimation
binomial distribution, 187–188
for incidence rates, 781
intraclass correlation coefficient, 610
mean of distribution, 165–167
multiple logistic regression, 687
for odds ratio, 644
Poisson distribution, 193–196
rate ratio, 788–789, 797
risk difference, 637–638
for risk ratio, 639
variance of distribution, 181–182

Poisson approximation, 104–106
Poisson distribution, 77, 98–101

electronic tables, 101–102
estimation for, 193–196
expected value of, 102–103
interval estimation, 194–196
normal approximation to, 139–141
one-sample inference, 259–265
point estimation, 193–194
Poisson tables, 101–102
variance of, 102–103

Poisson probabilities, 101–102
Poisson tables, 101–102
Poisson variable, 881
Polychotomous logistic regression, 

698–701
Pooled estimate of the variance, 287
Population, 4,  155–157
Population correlation coefficient, 488
Population variance, 82–84
Positive confounder, 655
Positively skewed distribution,11–12
Posterior probability, 61
Power estimation. See also Estimation

in clinical trial setting, 410–413
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for clustered binary data, 726–727
for comparing two binomial 

proportions, 403–413
comparing two means, 310–311
for comparison of two incidence 

rates, 790–791
for correlation coefficients, 499
for incidence rates, 804
for person-time data, 790–793
for proportional-hazards model, 

835–837
for stratified person-time data, 

803–805
using the computer for, 238,  

406–407
Power of test, 232–238
Predictive value negative (PV-), 55
Predictive value positive (PV+), 55
Prevalence, 63–64
Prevalence study, 635
Prior probability, 61
Probability, 42–65

addition law of, 48–50
Bayes’ rule, 57–60
Bayesian inference, 60–61
conditional, 50–55
definition, 43
event, 43
frequency definition of, 60–61
incidence, 63–64
multiplication law of, 46–48
mutually exclusive events, 44
notation, 44–46
posterior, 61
prevalence, 63–64
prior, 61
receiver operating characteristic 

curve, 61–63
sample space, 43
screening tests, 55–60
total-probability rule, 53–55

Probability distribution, 79–81
Probability model, 4
Probability-density function, 116
Probability-mass function, 79–81
PROC GENMOD, 728–733
PROC LIFETEST, 825
PROC MI, 755
PROC MIANALYZE, 755
PROC MIXED, 734–738
PROC TTEST, 305–306
Product-limit estimator, 811
Product-limit method, 818
Proportional Hazards Regression (SAS 

PHREG), 827–830, 862

Proportional odds ordinal logistic 
regression model, 701

Proportional-hazards model, 825–835
assumptions testing, 833–835
hazard ratio estimation for 

continuous independent variables, 
827

hazard ratio estimation for 
dichotomous independent 
variables, 826–827

power estimation for, 835–837
sample-size estimation for,  

837–839
Weibull survival model, 849

Proportional-mortality study, 253
Prospective study, 634
Pseudorandom numbers, 158
pth percentile, 17
PV- (predictive value negative), 55
PV+ (predictive value positive), 55
p-value, 217–219

chi-square goodness-of-fit test, 428
chi-square test for trend in binomial 

proportions, 420–421
exact method, 344–345
F test for equality of two variances, 

295–297
F test for one-way ANOVA, 555–556
Fisher’s exact test, 391–392
hypothesis testing in multiple linear 

regression, 508
kappa statistic, 433–434
log-rank test, 822
Mantel-Haenszel test, 662
McNemar’s test, 398, 400
multiple logistic regression, 682
normal-theory method, 340–343
normal-theory test, 376
one-sample binomial test (exact 

method), 253
one-sample t test for correlation 

coefficient, 492
one-sample t test for mean of normal 

distribution, 225
paired t test, 282
R × C contingency tables, 416
sign test (exact method), 344–345
sign test (normal-theory method), 

340–343, 343–345
simple linear-regression F test, 468
Spearman rank-correlation 

coefficient, 532
statistical significance of, 219
t test for comparison of pairs of 

groups in one-way ANOVA, 562
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p-value, (Continued)
two-sample inference for incidence-

rate data, 787
two-sample t test for independent 

samples with unequal variances, 
298–302

two-sample test for binomial 
proportions, 376

two-sample test for incidence rates 
(normal-theory method), 785

Yates-corrected chi-square test, 383

Q
Quantiles, 17–18

R
R program, 4, 393–394, 421–422, 480–

481, 498
using to perform paired t test, 284
t.test, 284

R × C contingency tables, 413–424
acceptance and rejection regions, 

416
chi-square test, 415–416
chi-square test for trend in binomial 

proportions, 418–421
definition, 413
expected table, 414–415
p-value, 416–417
test for association, 413–417
Wilcoxon rank-sum test, 422–424

R2, 470–471
Random assignment, 159
Random digits, 157, 878
Random effects one-way ANOVA 

(analysis of variance), 604–609
Random numbers, 156, 157
Random sample, 155
Random selection, 158
Random variables, 78

continuous, 78
cumulative-distribution function, 

117
discrete, 78
independent, 133
linear combinations of, 132–133
probability-density function, 116
standard deviation, 83

Random-effects one-way ANOVA 
(analysis of variance)

balanced case, 619
unbalanced case, 619

Randomization, 2, 161
Randomized clinical trials, 161–165

design features, 163–165

double blind, 164
single blind, 164
stratification, 163–164
unblinded, 164

Random-number tables, 157–161
Range, 16–18
Rank sum, 348
Rank-correlation coefficients, 529–533

acceptance and rejection regions, 
531

interval estimation for, 533–537
p-value, 532
Spearman, 530–533
t test for, 530

Ranking procedure, 347
Rate ratio, 787–789

chi-square test for homogeneity of, 
798–799

interval estimation, 788–789, 797
point estimation, 788–789, 797
stratified person-time data, 795–798

Ratio scale, 338
Raw sum of cross products, 462
Raw sum of squares, 462
Receiver operating characteristic (ROC) 

curve, 61–63
Recidivism rate, 192
Reduced penetrance, 72
Reference population, 156
Regression coefficient from first 

imputed data set, 756
Regression component, 465
Regression line, 458–460

estimated, 461, 463
fitting, 461–465
goodness of fit, 465–466, 481–485
inferences about parameters from, 

465–475
interval estimates for regression 

parameters, 475–476
interval estimation for predictions, 

476–479
least-squares line, 461
method of least squares, 461–465
predicted value, 464
predictions for individual 

observations, 477
regression component, 465
regression sum of squares, 466
residual component, 465
residual sum of squares, 467
slope and intercept of, 462
standard deviation of residuals, 

483–484
total sum of squares, 466
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two-sided 100% x (1 – α) confidence 
intervals, 475–476

Regression mean square, 467
Regression parameters, interval 

estimation for, 475–476
Regression sum of squares, 466
Rejection region, 215

Bonferroni multiple-comparisons 
procedure, 571

chi-square goodness-of-fit test, 428
chi-square test for R x C contingency 

tables, 416
chi-square test for trend in binomial 

proportions, 419
Dunn procedure, 602
F test for one-way ANOVA, 556
F test for simple linear regression,  

468
Fisher’s z test, 500
fixed-effects one-way ANOVA 

(analysis of variance), 556
hypothesis testing in multiple linear 

regression, 508
kappa statistic, 433
Kruskal-Wallis test, 598
log-rank test, 822
Mantel-Haenszel test, 661
McNemar’s test, 398
multiple logistic regression, 682
one-sample binomial test (normal-

theory method), 250
one-sample χ2 test for variance of 

normal distribution, 246
one-sample t test for correlation 

coefficient, 492
one-sample z test for correlation 

coefficient, 495
one-way ANOVA, 556, 562
R × C contingency tables, 416
rank-correlation coefficients, 531
sign test, 341
Spearman rank-correlation 

coefficient, 531
t test for comparison of pairs of 

groups in one-way ANOVA, 562
t test for multiple linear regression, 

508
t test for simple linear regression, 473
two-sample inference for incidence-

rate data, 784
two-sample test for binomial 

proportions (normal-theory test), 
375

two-sample test for incidence rates 
(normal-theory method), 784

two-sample t test for independent 
samples with equal variances, 288

Yates-corrected chi-square test, 383
z test, one-sample, 495
z test, two-sample, 500

Relative risk (RR), 51, 637
Reliability coefficient, 612
Reproducibility studies, 607–608
Rescaled sample, 15–16
Residual component, 465
Residual mean square, 467
Residual sum of squares, 467
Retrospective study, 634
Right censored data, 813
Risk difference, 637–638

computer estimation, 645–647
derivation of 100% × (1 – α) CI, 

758–761
interval estimation, 637
point estimation, 637

Risk ratio, 638–640
computer estimation, 645–647
definition, 637
delta method, 638–639
estimation for case-control studies, 

643
interval estimation, 639
point estimation, 639

ROC (receiver operating characteristic) 
curve, 61–63

Row effect, 591
Row margins, 378
RR (relative risk), 51, 637

S
Sample, 4,  155–157

bootstrap, 199
cluster, 156
independent, 403–406
median, 9–11
paired, 407–410
random, 155
regression coefficient, 488–490
space, 43
standard deviation. See Standard 

deviation variance. See Variance
Sample (Pearson) correlation 

coefficient, 485–490. See also 
Correlation coefficient

definition, 487
interpretation, 598–488
vs. population correlation 

coefficient, 488
vs. sample regression coefficient, 

488–490
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Sample-size estimation, 239–245. See 
also Interval estimation

based on CI width, 244–245
in clinical trial setting, 410–413
for clustered binary data, 726–727
for comparing two binomial 

proportions, 403–413
for comparison of two incidence 

rates, 792
for correlation coefficients, 499
for cross-over design, 719–721
for equivalence studies, 711–712
for incidence-rate data, 801–802
independent samples, 403–406, 

410–411
for logistic regression, 703–705
one-sided alternatives, 239–242
paired samples, 407–410
and power, 256–257
for proportional-hazards model, 

837–839
for stratified person-time data, 800–803
two-sample inference, 307–309
two-sided alternatives, 242–243
using the computer to, 406–407

Sampling distribution, 165–166
SAS, 4, 24–26, 305–306
SAS FREQ procedure, 24–26
SAS General Linear Model procedure 

(SAS GLM), 591–594, 608–609
SAS PHREG (Proportional Hazards 

Regression), 827–830
SAS PROC GENMOD program,  

728–733
SAS PROC LOGISTIC program,  

678–679
SAS PROC PHREG program, 696–697
SAS PROC REG program, 503–504
SAS UNIVARIATE procedure, 28, 30
Sattherwaite’s method, 299–300
Scatter plot, 5, 7
Scheffé’s multiple-comparison 

procedure, 575–577
Screening tests, 55–56

false negative, 56
false positive, 56
predictive value, 55
sensitivity of symptom, 56
specificity of symptom, 56

SEER Cancer Registry, 43, 73–74, 278, 
440–441

Sensitivity of symptom, 56
SEXRAT.DAT (Data Set), 110, 206, 273, 

447
SHEP (Systolic Hypertension in the 

Elderly Program), 161–162

Sign test, 340–345
acceptance and rejection regions, 341
exact method, 344–345
normal-theory method, 340–343
p-value, 341–342
using the computer to perform 

(normal theory method), 343–345
Significance level, 214
Simple linear regression. See also 

Multiple linear regression
F test for, 467–472
standard errors for estimated 

parameters, 475–476
t test for, 472–475

Simple random sample, 155
Single blind, 164
SMOKE.DAT (Data Set), 109–110, 367, 

809, 827–828, 858
Spearman rank-correlation coefficient, 

530–533
acceptance and rejection regions, 

531
interval estimation for, 534
p-value, 532
t test for, 530
two-tailed critical values for, 888

Specificity of symptom, 56
Spread, 16
SPSS, 4
Standard deviation, 18–20

properties of, 20–22
of random variable, 83

Standard error (se), 168
Standard error of the mean (sem), 

167–170
Standard extreme value distribution, 

848
Standard normal distribution,  

121–127. See also Normal 
distribution

(100 × u)th percentile, 126
cumulative-distribution function, 

122–123
electronic tables, 125–127
normal tables, 123–125
pth percentile, 130
symmetry properties, 123–124

Standardization, 656–658
age-standardized risk, 657
direct, 658
of normal variable, 128

Standardized morbidity ratio (SMR), 
196, 262

Standardized mortality ratio, 261–262
Standardized regression coefficient (bs), 

505
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Stata, 4, 254–256, 291, 303
Statistics, 1, 4
Stem-and-leaf plots, 27–29
Step function, 84
Strata, 654
Stratification, 163–164, 654
Stratified person-time data

estimation of rate ratio, 795–798
homogeneity of rate ratio, 798–799
hypothesis testing, 793–795
inference for, 793–800
power estimation for, 803–805
sample-size determination, 800–803

STRIP Study (Special Turku Coronary 
Risk Factor Intervention Project 
for Children), 543

Studentized residuals, 482–484,  
510–516

Student’s t distribution, 174–180
Study design, 634–637

case-control study, 634
cohort study, 634
cross-sectional study, 635
prevalence study, 635
prospective study, 634
retrospective study, 634

Study population, 156
Survival analysis, 808–811

hazard function, 810
hazard rates, 810

Survival function, 810, 818
Survival probability, 810
Swiss Analgesic Study, 330
SWISS.DAT (Data Set), 330, 625, 771, 

859
SWISS.DOC, 330
Symmetric distribution, 11–12
Systolic Hypertension in the Elderly 

Program (SHEP), 161–162

T
t distribution, 174–180, 879
t test

acceptance and rejection regions, 
473, 508

for comparison of pairs of groups, 
559–567

hypothesis testing in multiple linear 
regression, 508

for linear contrasts in one-way 
ANOVA, 568–569

for multiple linear regression, 508
one-sample, for correlation 

coefficients, 490–492
for simple linear regression,  

472–475

Spearman rank-correlation 
coefficient, 530

using the computer for two-sample, 
302

Tables
2 × 2 contingency tables, 380–382
binomial, 91–93
binomial distribution, 91–93
chi-square distribution, 880
confidence limits for expectation of 

Poisson variable, 881
critical values for standardized 

statistic, 890
electronic, 93–95
exact binomial probabilities,  

867–871
exact Poisson probabilities, 871–873
expected, 379, 414–415
Extreme Studentized Deviate outlier 

statistic, 884
Fisher’s z transformation, 887
Kruskal-Wallis test, 889
normal distribution, 122–123, 874–

877
observed, 379
percentage of F distribution, 882–883
Poisson, 101–102
Poisson distribution, 101–102
Poisson variable, 881
R × C contingency tables, 413–424
random digits, 878
random-number, 2, 157–161
standard normal distribution,  

123–125
t distribution, 879
two-tailed critical values for 

Spearman rank-correlation 
coefficient, 888

two-tailed critical values for 
Wilcoxon rank-sum test, 885–886

two-tailed critical values for 
Wilcoxon signed-rank test, 884

Target population, 156
TDIST function, 218–220
TEAR.DAT (Data Set), 276, 369, 628
TEAR.DOC, 276
TEMPERAT.DAT, 624
TENNIS1.DAT (Data Set), 445, 701, 766
TENNIS1.DOC, 445
TENNIS2.DAT (Data Set), 327, 365, 713, 

716, 767
TENNIS2.DOC, 327
Test for homogeneity of binomial 

proportions, 378
Test of association, 379
Test of independence, 379
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Test statistic, 216
TINV function, 217
Total sum of squares, 466, 554
Total-probability rule, 53–55
Translated sample, 14–15
Treatment efficacy, assessment of, 

713–717
Trend, testing for, 805–808
Trimodal distribution, 12
True mean difference, 4
True state of nature, 214
Tukey approach, 617
Two-sample hypothesis-testing 

problem, 279
Two-sample inference, 279–320

case study, 305–307
comparison of means from two 

independent samples, 290–292
equality of two variances, 292–298
estimation of power, 310–311
estimation of sample size, 307–309
F test, 295–297
interval estimation, 285–286, 290–292
outliers, 312–318
paired t test, 281–285
two-sample t test for independent 

samples with equal variances, 
286–290

two-sample t test for independent 
samples with unequal variances, 
298–302

using the computer, estimating 
power for comparing two means, 
311–312

Two-sample inference for incidence-rate 
data, 782–790

acceptance and rejection regions, 784
exact test, 786–787
hypothesis testing, 782–783
normal-theory test, 783–785
p-value, 785, 787
rate ratio, 787–789

Two-sample problem, 211
Two-sample test for binomial

proportions, 373–387
acceptance and rejection regions, 375
clustered data, 722–723
contingency-table method, 377–379
equal number of sites per individual, 

725–726
for matched-pair data, 395–403
normal-theory method, 373–377
p-value, 376

Two-sided alternatives, 222–229
confidence interval, 248

power of test, 236–238
sample-size determination, 242–243

Two-tailed critical values Spearman 
rank-correlation coefficient, 888

Wilcoxon rank-sum test, 885–886
Wilcoxon signed-rank test, 884

Two-tailed test, 223
Two-way ANCOVA (analysis of 

covariance), 594–596
Two-way ANOVA (analysis of variance), 

589–596. See also One-way ANOVA 
(analysis of variance)

column effect, 591
definition, 589
error term, 591
fixed effect, 615
general model, 590
hypothesis testing, 591–594
interaction between two variables, 

590
interaction effect, 591
random effect, 615
row effect, 591

Type I error, 213–214
Type II error, 213–214

U
Unbiased estimator, 181
Unblinded clinical trial, 164
Unimodal distribution, 12
Unmatched study design, 87

V
VALID.DAT (Data Set), 38, 146, 206, 

207, 273, 541, 544, 768
Variability, 16
Variables

confounding, 653
continuous random, 78, 118
dependent, 459
discrete random, 78, 82–84
disease, 634
dummy, 519, 582–583
exposure, 634
independent, 133, 459
normal, 128
Poisson, 881
random, 78, 83, 116–117, 132–133

Variance, 18–20
of binomial distribution, 96–97
of continuous random variable, 118
of discrete random variable, 82–84
estimation of, 181–187
of hypergeometric distribution, 

389–390
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of linear combinations of random 
variables, 132–133

of Poisson distribution, 102–103
pooled estimate of, 287
population, 83
properties of, 20–22

Variance of normal distribution, 181–187
chi-square distribution, 182–185
interval estimation, 185–187
point estimation, 181–182

Variance-covariance matrix, 585
Variance-stabilizing transformation, 

482

W
WALES.DAT (Data Set), 548, 774
WALES.DOC, 548
Washout period, 713
Weibull survival model, 840–847

definition, 840
estimation of parameters, 841–845
estimation of percentiles, 845–846, 

851–854
goodness of fit, 846–847
hazard functions of Weibull 

distribution, 841
proportional hazards model, 849

Wilcoxon rank-sum test, 352–358
and chi-square test for trend, 422–

424
permutation tests, 359–364
p-value, 355
ranking procedure, 353–354
two-tailed critical values for, 885–886
using the computer to perform, 

356–358

Wilcoxon signed-rank test, 345–352
p-value, 349
ranking procedure, 347–348
two-tailed critical values for, 884
using the computer to perform, 

351–352
Within mean square, 555, 607
Within sum of squares, 554–555
Within-group variability, 553–554
Woburn study, 193–194
Women’s Health Initiative, 793
Women’s Health Study, 772
Woolf procedure, 644, 758–759

X
χ2. See Chi-square test

Y
Yates-corrected chi-square test, 382–386

for 2 × 2 contingency tables, 382
acceptance and rejection regions, 383
p-value, 383

Z
z test, one-sample, 228

acceptance and rejection regions, 
495

for correlation coefficient, 493–496
p-value, 496

z test, two-sample, 499–501
acceptance and rejection regions, 

500
for comparing two correlation 

coefficients, 500
p-value, 501

z transformation, 494
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efficacy of a dental-education program 
in preventing the progression of 
periodontal disease: Problems 9.1–9.3, 
365; Table 9.9, 365

estimation of the frequency of tooth loss 
among male health professionals: 
Problems 4.86–4.88, 112;  
Table 4.20, 112

longitudinal study of caries lesions on the 
exposed roots of teeth: Example 13.65, 
723; Table 13.33, 724; Example 13.68, 
728; Table 13.34, 729–730; Example 
13.69, 730: Table 13.35, 731–732

DERMATOLOGY

comparison of two ointments in preventing 
redness on exposure to sunlight: 
Example 9.7, 340; Examples 9.8–9.9, 
343–344; Example 9.11, 345; Table 
9.1, 346; Example 9.12, 347; Examples 
9.13–9.14, 349–350; Example 9.16, 
351

comparison of vidabrine vs. placebo 
in treating recurrent herpes labialis: 
Example 13.64, 721

DIABETES

association between ethnicity and 
diabetes: Review Question 3B.2, 55

association between ethnicity and HgbA1c 
among diabetes patients: Review 
Question 12B.3, 589

clinical trial among subjects with impaired 
glucose tolerance in the Diabetes 
Prevention Study: Problems 8.121–
8.124, 331; Table 8.30, 331

effect of compliance with insulin on 
growth in boys with type I diabetes: 
Problems 5.89–5.91, 149; Problems 
8.139–8.141, 333; Problems 
9.45–9.48, 368–369; Table 9.15, 
369; Problems 11.92–11.95, 546; 
Table 11.28, 546; Problems 11.100–
11.102, 547

effect of the insulin pump on HgAlc levels 
among diabetics: Problems 8.150–
8.153, 334; Table 8.36, 334

genetic profile of patients with type I 
diabetes: Problems 12.72–12.73, 629; 
Table 12.44, 629

incidence rates of blindness among 
insulin-dependent diabetics: Problems 
4.59–4.63, 110–111

long-term trends in incidence of type 
II diabetes in Rochester, Minnesota: 
Problems 11.89–11.91, 546;  
Table 11.27, 546

plasma-glucose levels in sedentary people: 
Problems 7.9–7.11, 269

probability of type II diabetes mellitus (DM) 
among 40- to 59-year-olds:  Review 
Question 3B, 55; Review Questions 
3D.3–3D.4, 60

results from a weight loss trial among 
diabetics: Problems 5.117–5.119, 
151–152

results from a weight loss trial among 
women with gestational diabetes 
mellitus (GDM): Problems 5.53–5.57, 
145–146 

sample of values of hemoglobin A1c 
(HgbA1c) obtained from a single 
diabetic patient: Review Questions 
6B.4–6B.5, 170–171; Review Question 
6C.2, 180

selection of patients for a treatment trial 
comparing an oral hypoglycemic agent 
with standard insulin therapy:  
Example 6.15, 158

side effects of insulin-pump therapy: 
Problems 10.27–10.28, 441; Table 
10.26, 441

EMERGENCY MEDICINE

Incidence of in-flight medical emergency 
(IFM) on commercial flights:  Problems 
4.96–4.98, 113

ENDOCRINOLOGY

age at onset of spermatozoa in urine 
samples of preadolescent boys: Table 
10.28, 443; Problems 10.47–10.50, 444

change in bone density over 7 years after 
treatment with alendronate: Problems 
11.79–11.84, 544–545; Tables 
11.24–11.25, 544–545

comparison of bone loss between 
alendronate- and placebo-treated 
patients: Problems 5.68–5.70, 147

effect of calcium and estrogen 
supplementation on bone loss: Problems 
12.31–12.34, 624; Table 12.36, 624

effect of cod liver oil supplementation in 
childhood to bone density in middle 
age: Problems 12.78–12.81, 629–630; 
Tables 12.46–12.47, 629–630

effect of low-fat diet on estrogen 
metabolism: Problems 9.61–9.64, 370; 
Table 9.17, 370

effect of low-fat diet on hormone levels 
in postmenopausal women: Problems 
8.99–8.102, 328; Table 8.25, 328

effect of obesity on hormonal profile and 
impact on breast-cancer risk in women: 
Problems 11.96–11.99, 547

effect of raloxifene in preventing fractures 
among postmenopausal women: 
Problems 13.80–13.84, 769–770;  
Table 13.53, 769

effects of tobacco use on bone density in 
middle-aged women: Case Study 2, 2.10, 
32; Problems 2.38–2.46, 40; Problems 
4.74–4.79, 111–112; Case Study 6.6, 
180; Problems 6.86–6.87, 208; Review 
Question 7B.1, 245; Example 7.64, 265; 
Problems 7.79–7.80, 274;  

Problems 9.39–9.40, 368;  
Problems 11.64–11.71, 544; Review 
Question 13B.1, 658

hypothyroxinemia as a cause of 
subsequent motor and cognitive 
abnormalities in premature infants: 
Problems 11.49–11.53, 542–543; 
Tables 11.21–11.22, 543

pilot study for the prevention of fractures: 
Problems 7.105–7.107, 277

plasma hormones as risk factors for 
postmenopausal breast cancer: 
Example 13.46, 694; Example 13.47, 
696; Table 13.27, 697–698; Example 
13.75, 748; Example 13.76, 750; 
Problems 13.73–13.76, 768–769; 
Tables 13.51–13.52, 769

relationship between calcium content of 
drinking water and the rate of fractures: 
Problems 13.15–13.18, 763;  
Table 13.44, 763

reproducibility of plasma hormones in split 
blood samples: Example 12.31, 604; 
Table 12.20, 604; Examples 12.32–
12.34, 606–608; Table 12.21, 606; 
Table 12.23, 608; Example 12.36, 609; 
Example 12.37, 611; Example 12.39, 
613; Problems 12.35–36, 624; Table 
12.37, 624; Problem 12.55, 626

ENVIRONMENTAL HEALTH

arsenic exposure as a risk for 
nonmelonoma skin cancer: Review 
Question 13C.2, 672; Tables 13.16–
13.17, 672–673

effect of exposure to anesthetic gases on 
cancer incidence: Problems 6.33–6.35, 
204–205

effect of nuclear-power plants on birth 
defects: Problems 4.48–4.50, 109

effect of occupational exposure to 2,4,5-T 
herbicide on pulmonary function: 
Problems 7.93–7.95, 275

incidence of childhood leukemia in 
Woburn, Massachusetts: Examples 
6.51–6.56, 193–195

measurement of exposure to low levels 
of radiation among shipyard workers: 
Example 4.5, 78

projected health effects of chronic exposure 
to low levels of lead in young children: 
Case Study 1: 2.9, 32; Problems 2.31–
2.32, 39; Problems 6.67–6.69, 207; 
Case Study 8.8, Example 8.22, 305; 
Tables 8.7–8.9, 305–307; Examples 
8.30–8.37, 313–317; Tables 8.10–8.12, 
317–318; Problems 8.85–8.87, 327; 
Case Study 9.5, Tables 9.4–9.5, 358–
359; Case Study 11.10, 519; Example 
11.55, 520; Tables 11.11–11.12, 
522–523; Table 11.13, 527;  Problems 
11.46–11.48, 542; Case Study 12.5, 
579; Tables 12.7–12.13, 581–588; 
Examples 12.21–12.22, 585–587; 

INDEX OF APPLICATIONS (continued)
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Problems 12.40–12.41, 624–625; 
Problems 12.44–12.46, 625; Problems 
13.77–13.79, 769

relationship between daily particulate air 
pollution and mortality in Steubenville, 
Ohio: Problem 5.58, 146

relationship between emergency-room 
admissions and level of pollution : 
Problems 4.67–4.70, 111

relationship between pollution levels and 
heart-attack rates: Problems 5.92–5.94, 
149; Table 5.4, 149

variation in temperature within a 
household: Problems 12.37–12.39, 
624; Table 12.38, 624

EPIDEMIOLOGY

experiment to test potency of drug on rats:  
Problems 4.42–4.47, 109 

feasibility of a national random digit dialing 
cell phone survey among young adults:  
Problems 4.99–4.100, 113

selection of random samples for serum 
testing from participants in the Nurses’ 
Health Study 3: Example 6.10, 156

GASTROENTEROLOGY

comparison of two treatments for duodenal 
ulcer: Problems 10.8–10.12, 439

random assignment of treatments for 
a clinical trial for duodenal ulcer: 
Problems 6.1–6.4, 203

relationship between protein concentration 
of duodenal secretions and pancreatic 
function in cystic fibrosis: Problems 
12.42–12.43, 625; Table 12.39, 625

GENETICS

comparison of HDL cholesterol levels 
between ID, DD, and II genotypes: 
Problems 8.56–8.61, 325; Table 8.19, 
325

dominant, recessive, and sex-linked mode 
of inheritance: Problems 3.32–3.49, 
66–67

genetic counseling for families with 
dominant disease: Problems 3.104–
3.107, 72

genetic effects on cholesterol levels: 
Problems 8.49–8.52, 324; Table 8.17, 
324

genetic factors modulating the effect 
of cigarette smoking on renal-cell 
carcinoma: Problems 10.101–10.103, 
450; Tables 10.41–10.42, 450

genetic markers for coronary heart 
disease: Review Question 14B.2, 790

genetic markers for breast cancer: 
Examples 14.4–14.8, 779–782

genetic profile of patients with type I 
diabetes: Problems 12.72–12.73, 629; 
Table 12.44, 629

genetics of macular degeneration: 
Problems 5.120–5.122, 152; Table 5.8, 
152; 

genetics of phenylketonuria: Problems 
6.110–6.116, 210

hypertension screening in the home:  
Examples 3.12–3.14, 46–47

nested case-control study to assess SNPs 
associated with cardiovascular disease: 
Example 12.19–12.20, 577–578; 
Tables 12.5–12.6, 578–579

objective measurement of maternal 
smoking comparing serum cotinine 
levels in newborns’ umbilical cord 
blood:  Problems 3.64–3.67, 68;  
Table 3.9, 68

patterns in sex-ratio data: Problem 4.53, 
110; Table 4.18, 110; Problem 6.59, 206

prevalence of birth defects in a population: 
Problems 3.115–3.117, 72

sequencing of ribosomal 5S RNA: 
Problems 7.21–7.25, 269–270

GYNECOLOGY

effect of contraceptive method on fertility: 
Example 8.6, 284; Example 8.8, 286

relationship between IUD use and 
infertility: Problems 13.1–13.7, 762

sample of time intervals between 
successive menstrual periods: Example 
2.7, 12; Table 2.4, 12; Example 2.11, 
14; Table 2.6, 15; Example 2.21, 21;

test of a home pregnancy test-kit: 
Problems 3.83–3.86, 70

use of basal body temperature to estimate 
the exact day of ovulation: Example 
6.24, 170; Example 6.33, 178;  
Examples 6.35–6.36, 179; Example 
6.38, 181

HEALTH PROMOTION

accuracy of daughter’s report of maternal 
smoking during pregnancy: Problems 
3.141–3.144, 75; Table 3.23, 75

effect of fiber intake on weight gain in 
women: Review Questions 10D.1–
10D.2, 413

effect of quitting smoking on weight gain in 
middle-aged women: Problems 8.129–
8.133, 331–332; Table 8.32, 332

effect of walking on a treadmill on heart 
rate: Review Question 8A.2, 285; 
Problems 8.154–8.157, 334;  
Tables 8.37–8.38, 335

gender differences in weight perception 
among adolescents: Problems 10.97–
10.100, 449–450; Table 10.40, 450

influence of retirement on level of physical 
activity among elderly women in the 
ARIC study: Problems 8.125–8.128, 
331; Table 8.31, 331

obesity among high-school students: 
Review Questions 7C.1–3, 259

relationship between ethnicity and obesity 
among women: Problems 10.114–
10.115, 451–452

relationship between time to quitting 
smoking and total mortality: Problems 
14.48–14.52, 861; Table 14.35, 861

risk factors influencing success of 
smoking-cessation programs: Problems 
4.51–4.52, 109–110; Table 4.17, 
110; Problems 9.26–9.30, 367–368; 
Example 14.26, 809; Table 14.11, 809; 
Example 14.27, 809; Example 14.29, 
811; Example 14.34, 819; Tables 
14.14–14.17, 820; Example 14.35, 823; 
Example 14.37, 827; Table 14.19, 828; 
Problems 14.7–14.11, 858; Table 14.32, 
858

smoking cessation as a preventive 
measure for heart disease:  
Example 6.50, 192

success rate of experimental weight-loss  
program: Review Questions 6E.1–6E.2, 
193

summary of tie for running 1 mile each 
week for 18 weeks:  Problems 
2.8–2.12, 36–37; Table 2.14, 36

HEALTH SERVICES 
ADMINISTRATION

comparison of length of stay in two 
different hospitals for patients with the 
same diagnosis: Problems 9.7–9.8, 
365; Table 9.10, 365

reproducibility of designation of medical 
malpractice: Problems 10.51–10.52, 
444; Table 10.29, 444

HEMATOLOGY

Comparison of IGF-11 levels measured in 
serum vs. plasma: Problems 8.134–
8.135, 332; Table 8.33, 332

hematologic data for patients with aplastic 
anemia: Problems 11.1–11.8, 540; 
Table 11.17, 540

HEPATIC DISEASE

effect of different hormones on pancreatic 
and biliary secretions in laying hens: 
Problems 8.70–8.74, 326; Table 
8.22, 326; Problems 9.32–9.35, 368; 
Problems 10.37–10.41, 442; Problems 
11.37–11.38, 542; Problems 12.27–
12.30, 624; Problems 13.43–13.46, 
766–767

relationship of hepatoma to cirrhosis of the 
liver: Problems 5.50–5.52, 145

HOSPITAL EPIDEMIOLOGY

association between amount of sleep 
among medical house staff and medical 
errors: Problems 7.98–7.100, 276
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comparison of duration of hospital stay 
by antibiotic use: Example 8.18, 297; 
Examples 8.20–8.21, 302–303

deaths due to heart failure: Review 
Question 5C.4, 141

distribution of number of admissions to the 
emergency room: Problems 4.89–4.91, 
113

relationship between adverse events and 
mortality during hospital stay: Problems 
10.63–10.64, 445–446

HYPERTENSION

active-control designs for testing new 
antihypertensive agents: Problems 
13.36–13.38, 766

assessing the effect of observer training 
on measurement of blood pressure: 
Problems 5.10–5.11, 142

assessment of antihypertension drug 
treatment to reduce stroke risk among 
elderly people with isolated systolic 
hypertension (SHEP study): Example 
6.17, 161; Table 6.4, 162; Example 
6.19, 164

association between glaucoma and 
hypertension: Problems 6.25–6.26, 204

association between left ventricular 
hypertrophy and hypertension: Review 
Question 13B.2, 658; Table 13.10, 658

cardiovascular-reactivity measures: 
Problems 3.76–3.78, 69; Table 3.11, 
69; Problems 11.31–11.33, 541

comparison of an arteriosonde blood-
pressure machine with the standard 
cuff: Example 6.39, 182; Table 6.6, 182; 
Example 6.42, 186; Example 6.64, 200; 
Table 6.8, 200;  Example 7.46, 245; 
Example 7.47, 247; Table 7.2, 248

comparison of blood pressure between 
Caucasian and African-American girls 
in the Bogalusa Heart Study:  Review 
Question 8B.2, 304; Tables 8.5–8.6, 
304

comparison of the blood-pressure levels 
by study group and sex: Problems 
12.62–12.63, 626–627; Tables 
12.41–12.42, 627–628

comparison of the blood-pressure levels 
of vegetarians and nonvegetarians: 
Examples 12.23–12.24, 589–590; 
Table 12.14, 590; Table 12.15, 593; 
Example 12.25, 594;  Table 12.16, 
595

comparison of plasma-aldosterone levels 
between black and white children: 
Problems 5.47–5.49, 145; Problems 
9.73–9.77, 371; Table 9.19, 371

comparison of the random-zero machine 
and the standard cuff: Problems 
9.22–9.25, 367; Tables 9.13–9.14, 367

contribution of endothelin to blood-
pressure regulation: Problems 11.60–
11.63, 544; Table 11.23, 544

difference in prevalence of hypertension by 
ethnic group: Problems 5.123–5.125, 
152; Review Question 10E.3, 425; 
Problems 13.88–13.92, 770; Tables 
13.54–13.56, 770

distribution of blood pressure among 
Samoans: Example 6.5, 155

distribution of diastolic blood pressure 
in 35- to 44-year-old men: Examples 
5.2–5.3, 115–116; Examples 5.6–5,7, 
118; Example 5.10, 120; Example 5.20, 
127; Example 5.24, 131; Example 
6.3–6.4, 154

distribution of diastolic blood pressure 
in the HDFP program: Examples 
10.46–10.47, 426; Table 10.20, 426; 
Examples 10.48–10.49, 428–429

effect of dietary pattern on blood pressure: 
Problems 8.117–8.120, 330–331; 
Table 8.29, 330

effect of body position on level of blood 
pressure: Table 2.16, 38; Problems 
2.19–2.22, 37

effect of postmenopausal hormones on 
blood pressure: Example 13.63, 719; 
Problems 13.55–13.61, 767; Table 
13.49, 767

effectiveness of hypertension-treatment 
programs: Problems 4.30–4.32, 108; 
Example 6.12, 157; Example 6.14, 158; 
Problems 6.40–6.46, 205

effectiveness of ingestion of linoleic acid 
on blood pressure: Problems 9.17–
9.21, 366; Table 9.12, 366

effectiveness of stress management in 
reducing blood pressure: Problems 
8.94–8.98, 328

efficacy of treatment for hypertension 
based on home blood-pressure 
readings: Problems 6.97–6.101, 208; 
Table 6.14, 208; Problems 6.104–
6.107, 209; Table 6.15, 209

association between SBP and BMI, height, 
region, occupation: Problems 13.122–
13.125, 774

evaluation of an automated blood-pressure 
machine: Table 1.1, 3; Example 3.26, 
58; Examples 3.29–3.31, 61;  
Example 10.27, 399; Tables 10.14–
10.15, 401; Problems 12.9–12.11, 
621; Table 12.31, 622

familial blood-pressure relationships: 
Problems 5.17–5.20, 142–143; Table 
5.1, 142; Example 11.2, 457; Example 
11.41, 499; Problems 11.112–11.113, 
548

hypertension screening in the home:  
Examples 3.12–3.14, 46–47

judging the effectiveness of 
antihypertensive medication: Problems 
5.65–5.67, 146–147

mean systolic blood pressure (SBP) by 
sleep status of infants:  Example 8.12, 
291; Table 8.3, 291

mutual exclusivity of normotensive diastolic 
blood pressure (DBP) and borderline 
DBP: Examples 3.6–3.11, 44–46

nonpharmacologic therapies for 
hypertension: Problems 12.14–12.17, 
622; Table 12.33, 622

norms for high blood pressure in children: 
Problems 11.13–11.18, 540; Table 
11.18, 540

prevalence of hypertension in the U.S. 
population: Example 3.35, 64

probability of a hypertensive household:  
Example 3.17, 50

relationship between 24-hour urinary Na 
and estimated 24-hour urinary Na:  
Problems 11.25–11.30, 541;  
Table 11.20, 541

relationship between birthweight and infant 
blood pressure: Example 13.3, 635

relationship between blood lead and blood 
pressure: Problems 13.26–13.28, 765

relationship between obesity and 
hypertension: Review Question 10E.4, 
425; Example 11.52, 509; Review 
Question 13A.1, 647; Problems 
13.85–13.87, 770

relationship between salt-taste and/or 
sugar-taste response to blood pressure 
in children: Problems 6.56–6.58, 205–
206; Problems 8.75–8.76, 326–327; 
Problems 10.130–10.134, 453;  
Table 10.46, 453; Problems 11.44–
11.45, 542

relationship between the use of oral 
contraceptives and level of blood 
pressure in women: Example 8.2, 279; 
Table 8.1, 281; Example 8.5, 283;  
Table 8.2, 284; Example 8.7, 286; 
Example 8.9, 286; Examples 8.10–8.11, 
289–290; Examples 8.23–8.25, 
307–308; Example 8.27–8.28, 310

reliability of blood-pressure measurements: 
Example 12.35, 608; Example 12.38, 
612; Problems 12.18–12.19, 623; 
Table 12.34, 623

risk factors for newborn blood-pressure 
measurements: Examples 11.43–
11.49.,502–506; Tables 11.8–11.9, 
503–504; Examples 11.50–11.52, 509; 
Example 11.53, 510; Example 11.54, 
515; Table 11.10, 521; Example 11.56, 
527; Example 11.57, 529

testing of new antihypertensive agents: 
Example 4.4, 78, Examples 4.6–4.7, 79; 
Tables 4.1–4.2, 79–80; Example 4.9, 
81; Example 4.11, 82; Example 7.23, 
226; Problems 7.28–7.29, 270

INFECTIOUS DISEASE

allergic-reaction rates: Problems 14.22–
14.24, 859

attack rate for influenza by age and 
treatment group:  Problems 3.28–3.30, 
66; Tables 3.7, 66
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clustering of gonorrhea cases in central 
cities: Problem 4.23, 108

comparison of efficacy of 2 antibiotics: 
Problems 3.109–3.110, 72

comparison of vidabrine vs. placebo 
in treating recurrent herpes labialis: 
Example 13.64, 721

differences in effectiveness and toxicity 
of aminoglycoside antibiotics: Example 
6.18, 163; Problems 13.29–13.31, 765

distribution of annual number of polio 
deaths: Example 4.39, 102; Table 4.10, 
102; Example 10.3, 373

distribution of annual number of typhoid-
fever deaths: Example 4.33, 98; 
Example 4.35, 99; Example 4.38, 101; 
Table 4.9, 102

distribution of MIC of penicillin G for N. 
gonorrhoeae: Table 2.5, 13;  
Example 2.10, 14

distribution of number of eosinophils in 100 
white-blood cells: Problem 5.25, 143

distribution of number of lymphocytes in 
white-blood cells: Example 4.28, 91; 
Example 5.9, 119; Problems 5.26–5.28, 
143

distribution of number of neutrophils in 
white-blood cells: Example 4.15, 85; 
Examples 4.25–4.26, 90; Example 4.30, 
93; Example 5.1, 115;  Example 5.29, 
135; Examples 5.31–5.32, 136; Problems 
5.29–5.30, 143; Example 6.1, 154

distribution of time to onset of AIDS 
following seroconversion among 
hemophiliacs: Problems 6.64–6.66, 
206–207; Table 6.13, 206

distribution of white-blood-cell count: 
Problems 9.9–9.10, 365

effect of aspirin in preventing ototoxicity 
among patients receiving gentamicin: 
Problems 10.119–10.122, 452

effect of different fluoroquinolones on 
corneal sensitivity: Problems 12.87–
12.89, 631; Table 12.50, 631

effectiveness of different smallpox 
vaccines: Tables 10.38–10.39, 449; 
Problems 10.93–10.96, 449

evaluation of relationships of sexual activity 
patterns with incidence of HIV in South 
Africa: Table 7.11, 274; Problems 
7.81–7.85, 275

incidence of H1N1 influenza in Australia 
and New Zealand: Problems 14.72–
14.75, 864; Table 14.38, 864

incidence rate of influenza among high-
school students: Problems 14.32–
14.36, 860

prevalence of HIV-positive people in a low-
income census tract: Example 6.6, 155

probability of influenza among grade-school 
students:  Problems 4.9–4.13, 107

proportion of HIV-positive males 
developing AIDS over next two years:  
Review Question 3E.2, 64

proportion of students suffering from hay 
fever:  Review Question 3E.1, 64

red-wine intake to prevent the common 
cold: Review Question 13E.2, 694; 
Table 13.26, 694

relationship between the use of oral 
contraceptives and bacteriuria: Example 
13.24, 656; Table 13.8, 656; Example 
13.25, 657; Problems 13.9–13.14, 763

reproducibility of assessment of 
generalized lymphadenopathy among 
people at high risk for AIDS: Problems 
8.39–8.443, 323–324; Table 8.15, 
323; Problem 9.41, 368

retrospective chart review of patients in a 
Pennsylvania hospital: Table 2.13, 36; 
Problems 2.1–2.7, 35–36; Example 
6.63, 199; Example 6.65, 201; Table 
6.9, 201; Problems 6.11–6.17, 203; 
Review Question 12C.4, 596

risk factors for Chlamydia trachomatis: 
Example 13.36, 673; Table 13.18, 675; 
Example 13.38, 676; Example 13.40, 
680; Example 13.41, 681

risk factors for HIV infection among 
intravenous drug users: Problems 
4.54–4.58, 110

sample of admission white-blood counts 
in a Pennsylvania hospital: Example 2.6, 
10; Table 2.3, 10

screening of newborns for HIV virus 
in five Massachusetts hospitals: 
Problems 4.14–4.22, 107–108;  
Table 4.15, 107; 

side effects of a flu vaccine: Example 4.32, 
94; Table 4.7, 95

side effects of a polio-immunization 
campaign in Finland: Example 4.42, 
105; Table 4.13, 105; Review Question 
10F.2, 431

validation study of accuracy of assessment 
of hospital-acquired infection among 
coronary-bypass patients: Problems 
3.111–3.114, 72

MENTAL HEALTH

Alzheimer’s-disease prevalence: Problems 
3.16–3.27, 65–66; Tables 3.5–3.6, 
65–66 

comparison of physician and spouse 
reports for diagnosing schizophrenia: 
Problems 10.107–10.110, 451

effect of physical activity on cognitive 
function among adults at high risk 
for Alzheimer’s disease: Problems 
8.77–8.80, 327; Table 8.23, 327

effect of widowhood on mortality: 
Problems 10.32–10.36, 442; Table 
10.27, 442; Problems 13.24–13.25, 
764; Problem 13.106, 771

evaluation of a Mental Function Index to 
identify people with early signs of senile 
dementia: Problems 12.12–12.13, 622; 
Table 12.32, 622

matched-pair study for schizophrenia: 
Examples 4.16–4.17, 86; Example 4.19, 
87

unmatched study for schizophrenia:  
Example 4.20, 87

use of APOE gene to diagnose 
Alzheimer’s disease: Problems 3.97–
3.100, 70; Tables 3.15–3.16, 71

use of Chinese Mini-Mental Status Test to 
identify people with dementia in China: 
Problems 3.87–3.92, 70; Table 3.13, 
70

use of vitamin E supplementation to 
prevent Alzheimer’s disease: Review 
Question 9B.2, 359; Example 9.24, 362

MICROBIOLOGY

pod weight of plants inoculated with 
nitrogen-fixing bacteria vs. uninoculated 
plants: Table 2.20, 40; Problems 2.35–
2.37, 39–40; Problems 8.110–8.114, 
329–330; Table 8.28, 330; Problems 
9.42–9.44, 368

quality control for susceptibility testing: 
Problems 6.18–6.22, 203; Table 6.11, 
204

NEUROLOGY

changes in symptoms in clinical trial of 
Parkinson’s disease patients: Problems 
8.161–8.163, 335

risk of cancer among patients with cystic 
fibrosis: Problems 5.62–5.64, 146

NUTRITION

association between high salt intake and 
cause of death: Examples 10.17–10.18, 
387–388; Table 10.8, 388; Examples 
10.20–10.21, 391–392; Example 
10.22, 394

calcium intake in low-income populations: 
Problems 8.2–8.13, 321–322

comparison of the blood-pressure levels 
of vegetarians and nonvegetarians: 
Examples 12.23–12.24, 589–590; 
Table 12.14, 590; Table 12.15, 593; 
Example 12.25, 594;  Table 12.16, 595

comparison of protein intake among 
postmenopausal vegetarians and 
nonvegetarians: Problems 12.1–12.5, 
621; Table 12.29, 621

comparison of dietary vitamin C intake 
between smokers and non-smokers: 
Problems 8.168–8.172, 336;  
Table 8.40, 336

distribution of total carbohydrate intake in 
boys: Problems 5.6–5.9, 142

effect of cod liver oil supplementation in 
childhood to bone density in middle 
age: Problems 12.78–12.81, 629–630; 
Tables 12.46–12.47, 629–630
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estimated daily consumption diet 
record using two methods of dietary 
assessment:  Problems 6.60–6.63, 206

iron-deficiency anemia in low-income 
populations: Problems 7.35–7.42, 
270–271

prevalence of bladder cancer in rats 
fed a high-saccharin diet: Examples 
6.48–6.49, 190–191; Table 6.7, 192

protective effect of vitamin A or vitamin E 
vs. cancer: Example 2.1, 5; Examples 
10.29–10.30, 403–404; Example 
10.32, 406

recall of pre-school diet of their children 
by 70–79 year-old women: Problems 
11.118–11.121, 549–550; Table 11.36, 
550

relationship between breast-cancer 
incidence and dietary-fat intake: 
Example 13.73, 743; Tables 13.38–
13.39, 744; Example 13.74, 747; 
Problems 13.68–13.72, 768

relationship of dietary intake assessed 
by food-frequency questionnaire vs. 
the diet record: Problems 2.26–2.30, 
38–39; Table 2.18, 39; Problems 
5.59–5.61, 146; Problems 7.65–7.66, 
273; Problems 11.34–11.35, 541–542; 
Problems 11.72–11.78, 544

reproducibility of a food-frequency 
questionnaire: Example 10.9, 379;  
Table 10.3, 379; Examples 10.50–
10.51, 431–432; Table 10.21, 432; 
Example 10.52–10.53, 434–435

serum-cholesterol levels in healthy 
participants: Problems 7.60–7.64, 
272–273; Table 7.7, 272

validation of a dietary questionnaire 
administered over the Internet: 
Examples 11.39–11.40, 499

vitamin E intake in a clinical trial of 
nutritional supplements:  Review 
Question 12D.3, 603; Table 12.19, 604

OBSTETRICS

accuracy of daughter’s report of maternal 
smoking during pregnancy: Problems 
3.141–3.144, 75; Table 3.23, 75

Apgar score: Examples 11.58–11.59, 
529–530; Tables 11.14–11.15, 529; 
Table 11.16, 531; Example 11.60, 532; 
Example 11.62, 535

association between socioeconomic status 
and birth defects: Problems 4.92–4.95, 
113; Table 4.21, 113

association with the incidence of 
side effects of erythromycin during 
pregnancy: Problem 7.27, 270

cigarette smoking and low-birthweight 
deliveries: Problems 5.111–5.112, 151; 
Table 5.6, 151

distribution of birthweights in the general 
population: Example 5.5, 117;  
Example 6.8, 155

distribution of birthweights in the Nurses’ 
Health Study:  Problems 5.109–5.110, 
151; Table 5.5, 151

estriol levels in pregnant women as an 
indicator of a low-birthweight fetus: 
Example 11.1, 457; Example 11.3, 458; 
Table 11.1, 459; Examples 11.4–11.5, 
459; Example 11.8–11.11, 463–464; 
Example 11.12, 469; Table 11.3, 469; 
Example 11.13–11.14, 470; Example 
11.16, 473; Table 11.6, 474; Examples 
11.17–11.18, 475–476; Example 
11.28, 488; Example 11.30, 490; 
Example 11.38, 498

objective measurement of maternal 
smoking comparing serum cotinine 
levels in newborns’ umbilical cord 
blood:  Problems 3.64–3.67, 68;  
Table 3.9, 68

proportion of women of childbearing age 
giving birth in the past year:  
Example 3.2, 43; Table 3.1, 43

relationship between birthweight and 
gestational age: Problems 3.50–3.52, 
67; Table 3.8, 67

relationship between low socioeconomic 
status and low birthweight:  
Examples 7.2–7.4, 211–213;  
Example 7.6, 213; Examples 7.10–
7.12, 216–217; Example 7.14, 219; 
Example 7.16–7.17, 220; Example 
7.19, 222; Example 7.30, 233; 
Example 7.33, 235; Example 7.35, 
236; Examples 7.38–7.39, 240–241; 
Example 7.41, 241; Example 8.1, 279

results from a weight loss trial among 
women with gestational diabetes 
mellitus (GDM): Problems 5.53–5.57, 
145–146

results from infertility gene study:  Example 
7.50, 251; Table 7.3, 252

sample of birthweights from 100 
consecutive deliveries: Tables 2.9–2.10, 
24–25; Table 2.12, 26; Example 2.24, 
30; Review Question 11B.2, 490; 
Review Question 11C.2, 502

sample of birthweights from 1000 
consecutive deliveries: Example 6.16, 
159; Tables 6.2–6.3, 160–161; 
Examples 6.22–6.23, 168–169; 
Example 6.25, 171; Example 6.27, 171; 
Example 6.28, 173; Example 6.32, 177; 
Problems 6.52–6.55, 205

sample of birthweights from a San Diego 
hospital: Table 2.1, 8; Examples 2.3–2.5, 
8–9; Table 2.2, 10; Example 2.12, 15; 
Example 2.14, 17; Example 2.16, 17; 
Table 2.7, 18; Examples 2.22–2.23, 
22–23

screening tests for Down’s syndrome: 
Problems 10.123–10.126, 452; Table 
10.44, 452

variability of an assay for M. hominis 
mycoplasma: Problems 6.36–6.39, 205

OCCUPATIONAL HEALTH

excess cancer deaths in nuclear-power-
plant workers: Examples 7.51–7.52, 
253–254

incidence of bladder cancer among workers 
in the tire industry: Problem 6.75, 207

incidence of bladder cancer and Hodgkin’s 
disease among rubber workers: 
Examples 7.57–7.63, 259–264;  
Table 7.4, 262

incidence of stomach cancer among workers 
in the tire industry: Problem 6.76, 207

mortality experience of workers exposed 
to waste disposal during the Manhattan 
Project: Problems 7.48–7.51, 271

mortality experience of workers with 
exposure to EDB: Example 4.40, 103; 
Table 4.11, 103; Example 6.57, 196

proportion of lung-cancer deaths in 
chemical-plant workers: Problems 
7.30–7.34, 270

OPHTHALMOLOGY

association between body mass index and 
AMD: Problems 13.109–13.110, 772; 
Table 13.59, 772

association between cigarette smoking 
and glaucoma: Review Questions 
14C.1–14C.3, 800; Table 14.7, 800; 
Review Questions 14D.1–14D.2, 805

association between ethnic origin and 
genetic type in retinitis pigmentosa: 
Problem 10.15, 439

association between glaucoma and 
hypertension: Problems 6.25–6.26, 204

change in electroretinogram (ERG) 
amplitude following surgery for patients 
with retinitis pigmentosa: Review 
Question 9A.5, 352; Table 9.2, 352

change in serum retinol and serum 
triglycerides after taking high doses of 
vitamin A among retinitis-pigmentosa 
patients: Problems 10.68–10.70, 446; 
Tables 10.31–10.32, 446; Problems 
10.71–10.73, 447

change in visual field in retinitis 
pigmentosa patients: Problems 
11.103–11.106, 547; Table 11.29, 
547; Problems 14.68–14.71, 863–864

comparison of eye drops in preventing 
redness and itching in people with hay 
fever: Example 9.10, 344

comparison of lens photographs of 
cataractous and normal eyes: Problems 
8.28–8.30, 322; Table 8.14, 323

comparison of mean ERG amplitude 
among patients with different genetic 
types of retinitis pigmentosa: Problems 
8.89–8.93, 328; Table 8.24, 328

comparison of Sorbinil vs. placebo for 
the prevention of diabetic retinopathy: 
Problems 10.147–10.152, 454–455; 
Table 10.49, 455

INDEX OF APPLICATIONS (continued)
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