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PREFACE

This introductory-level biostatistics text is designed for upper-level undergraduate
or graduate students interested in medicine or other health-related areas. It requires
no previous background in statistics, and its mathematical level assumes only a
knowledge of algebra.

Fundamentals of Biostatistics evolved from notes that I have used in a biostatistics
course taught to Harvard University undergraduates, Harvard Medical School, and
Harvard School of Public Health students over the past 30 years. I wrote this book
to help motivate students to master the statistical methods that are most often used
in the medical literature. From the student’s viewpoint, it is important that the
example material used to develop these methods is representative of what actually
exists in the literature. Therefore, most of the examples and exercises in this book
are based either on actual articles from the medical literature or on actual medi-
cal research problems I have encountered during my consulting experience at the
Harvard Medical School.

The Approach

Most introductory statistics texts either use a completely nonmathematical, cookbook
approach or develop the material in a rigorous, sophisticated mathematical frame-
work. In this book, however, I follow an intermediate course, minimizing the amount
of mathematical formulation but giving complete explanations of all important
concepts. Every new concept in this book is developed systematically through com-
pletely worked-out examples from current medical research problems. In addition, I
introduce computer output where appropriate to illustrate these concepts.

I initially wrote this text for the introductory biostatistics course. However, the
field has changed dramatically over the past 30 years; because of the increased power
of newer statistical packages, we can now perform more sophisticated data analyses
than ever before. Therefore, a second goal of this text is to present these new tech-
niques at an introductory level so that students can become familiar with them without
having to wade through specialized (and, usually, more advanced) statistical texts.

To differentiate these two goals more clearly, I included most of the content for
the introductory course in the first 12 chapters. More advanced statistical techniques
used in recent epidemiologic studies are covered in Chapter 13, “Design and Analysis
Techniques for Epidemiologic Studies,” and Chapter 14, “Hypothesis Testing:
Person-Time Data.”

xXiii
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Xiv Preface

Changes in the Eighth Edition

For this edition, I have added three new sections and added new content to three
other sections. Features new to this edition include the following:

The data sets are now available on the book’s Companion Website at www
.cengage.com/statistics/rosner in an expanded set of formats, including Excel,
Minitab®, SPSS, JMP, SAS, Stata, R, and ASCII formats.
Data and medical research findings in Examples have been updated.
New or expanded coverage of the followings topics has been added:
The Bootstrap (Section 6.11)
One-sample inference for the Binomial Distribution (Section 7.9)
Permutation Tests (Section 9.6)
Sample size estimation for logistic regression (Section 13.9)
Estimation of survival curves: The Kaplan-Meier Estimator (Section 14.9)

Derivation of selected formulas (Sections 7.12, 8.11, 10.9, 11.14, 12.11,
13.17, 14.15)

The new sections and the expanded sections for this edition have been indicated by
an asterisk in the table of contents.

Exercises

This edition contains 1,490 exercises; 171 of these exercises are new. Data and medical
research findings in the problems have been updated where appropriate. All problems
based on the data sets are included. Problems marked by an asterisk (*) at the end of
each chapter have corresponding brief solutions in the answer section at the back of
the book. Based on requests from students for more completely solved problems, ap-
proximately 600 additional problems and complete solutions are presented in the
Study Guide available on the Companion Website accompanying this text. In addition,
approximately 100 of these problems are included in a Miscellaneous Problems section
and are randomly ordered so that they are not tied to a specific chapter in the book.
This gives the student additional practice in determining what method to use in what
situation. Complete instructor solutions to all exercises are available at the instructor
companion website at cengage.com/statistics/rosner.

Computation Method

The method of handling computations is similar to that used in the seventh edi-
tion. All intermediate results are carried to full precision (10+ significant digits),
even though they are presented with fewer significant digits (usually 2 or 3) in the
text. Thus, intermediate results may seem inconsistent with final results in some
instances; this, however, is not the case.

Organization

Fundamentals of Biostatistics, Eighth Edition, is organized as follows.

Chapter 1 is an introductory chapter that contains an outline of the develop-
ment of an actual medical study with which I was involved. It provides a unique
sense of the role of biostatistics in medical research.

Chapter 2 concerns descriptive statistics and presents all the major numeric and
graphic tools used for displaying medical data. This chapter is especially important

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Preface XV

for both consumers and producers of medical literature because much information
is actually communicated via descriptive material.

Chapters 3 through 5 discuss probability. The basic principles of probability are
developed, and the most common probability distributions—such as the binomial
and normal distributions—are introduced. These distributions are used extensively
in later chapters of the book. The concepts of prior probability and posterior prob-
ability are also introduced.

Chapters 6 through 10 cover some of the basic methods of statistical inference.

Chapter 6 introduces the concept of drawing random samples from popula-
tions. The difficult notion of a sampling distribution is developed and includes an
introduction to the most common sampling distributions, such as the t and chi-
square distributions. The basic methods of estimation, including an extensive discus-
sion of confidence intervals, are also presented. In addition, the bootstrap method for
obtaining confidence limits is introduced for the first time.

Chapters 7 and 8 contain the basic principles of hypothesis testing. The most
elementary hypothesis tests for normally distributed data, such as the t test, are also
fully discussed for one- and two-sample problems.

Chapter 9 covers the basic principles of nonparametric statistics. The assump-
tions of normality are relaxed, and distribution-free analogues are developed for the
tests in Chapters 7 and 8. The technique of permutation testing, which is widely used in
genetic studies, is introduced for the first time.

Chapter 10 contains the basic concepts of hypothesis testing as applied to cat-
egorical data, including some of the most widely used statistical procedures, such as
the chi-square test and Fisher’s exact test.

Chapter 11 develops the principles of regression analysis. The case of simple lin-
ear regression is thoroughly covered, and extensions are provided for the multiple-
regression case. Important sections on goodness-of-fit of regression models are also
included. Also, rank correlation is introduced, including methods for obtaining
confidence intervals for rank correlation.

Chapter 12 introduces the basic principles of the analysis of variance (ANOVA).
The one-way analysis of variance fixed- and random-effects models are discussed.
In addition, two-way ANOVA, the analysis of covariance, and mixed effects mod-
els are covered. Finally, we discuss nonparametric approaches to one-way ANOVA.
Multiple comparison methods including material on the false discovery rate are also
provided.

Chapter 13 discusses methods of design and analysis for epidemiologic studies.
The most important study designs, including the prospective study, the case-control
study, the cross-sectional study, and the cross-over design are introduced. The con-
cept of a confounding variable—that is, a variable related to both the disease and
the exposure variable—is introduced, and methods for controlling for confound-
ing, which include the Mantel-Haenszel test and multiple-logistic regression, are
discussed in detail. Extensions to logistic regression models, including conditional
logistic regression, polytomous logistic regression, and ordinal logistic regression, are
discussed. Methods of estimation of sample size for logistic regression models are provided
for the first time. This discussion is followed by the exploration of topics of current
interest in epidemiologic data analysis, including meta-analysis (the combination
of results from more than one study); correlated binary data techniques (techniques
that can be applied when replicate measures, such as data from multiple teeth from
the same person, are available for an individual); measurement error methods (use-
ful when there is substantial measurement error in the exposure data collected);
equivalence studies (whose objective it is to establish bioequivalence between two
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Xxvi Preface

treatment modalities rather than that one treatment is superior to the other); and
missing-data methods for how to handle missing data in epidemiologic studies.
Longitudinal data analysis and generalized estimating equation (GEE) methods are
also briefly discussed.

Chapter 14 introduces methods of analysis for person-time data. The methods
covered in this chapter include those for incidence-rate data, as well as several meth-
ods of survival analysis: the Kaplan-Meier survival curve estimator, the log-rank test,
and the proportional-hazards model. Methods for testing the assumptions of the
proportional-hazards model have also been included. Parametric survival analysis
methods are also discussed.

Throughout the text—particularly in Chapter 13—I discuss the elements of
study designs, including the concepts of matching; cohort studies; case-control
studies; retrospective studies; prospective studies; and the sensitivity, specificity,
and predictive value of screening tests. These designs are presented in the context
of actual samples. In addition, Chapters 7, 8, 10, 11, 13, and 14 contain specific
sections on sample-size estimation for different statistical situations.

There have been two important organizational changes in the presentation of
material in the text. First, the derivation of more complex formulas have either been
moved after the statement of an equation or to separate derivation sections at the
end of the chapter, to enable students to access the main results in the equations
more immediately. Second, there are numerous subsections entitled “Using the
Computer to Perform a Specific Test” to more clearly highlight use of the computer
to implement many of the methods in the text.

A flowchart of appropriate methods of statistical inference (see pages 895-900)
is a handy reference guide to the methods developed in this book. Page references
for each major method presented in the text are also provided. In Chapters 7 and 8
and Chapters 10-14, I refer students to this flowchart to give them some perspective
on how the methods discussed in a given chapter fit with all the other statistical
methods introduced in this book.

In addition, I have provided an index of applications, grouped by medical spe-
cialty, summarizing all the examples and problems this book covers.

Finally, we provide for the first time, an index of computer software to more clearly
identify the computer commands in specific computer packages that are featured in the text.
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General Overview

Statistics is the science whereby inferences are made about specific random phe-
nomena on the basis of relatively limited sample material. The field of statistics
has two main areas: mathematical statistics and applied statistics. Mathematical
statistics concerns the development of new methods of statistical inference and
requires detailed knowledge of abstract mathematics for its implementation.
Applied statistics involves applying the methods of mathematical statistics to spe-
cific subject areas, such as economics, psychology, and public health. Biostatistics
is the branch of applied statistics that applies statistical methods to medical and bio-
logical problems. Of course, these areas of statistics overlap somewhat. For example,
in some instances, given a certain biostatistical application, standard methods do
not apply and must be modified. In this circumstance, biostatisticians are involved
in developing new methods.

A good way to learn about biostatistics and its role in the research process is to
follow the flow of a research study from its inception at the planning stage to its com-
pletion, which usually occurs when a manuscript reporting the results of the study
is published. As an example, I will describe one such study in which I participated.

A friend called one morning and in the course of our conversation mentioned
that he had recently used a new, automated blood-pressure measuring device of the
type seen in many banks, hotels, and department stores. The machine had measured
his average diastolic blood pressure on several occasions as 115 mm Hg; the highest
reading was 130 mm Hg. [ was very worried, because if these readings were accurate,
my friend might be in imminent danger of having a stroke or developing some other
serious cardiovascular disease. I referred him to a clinical colleague of mine who,
using a standard blood-pressure cuff, measured my friend’s diastolic blood pressure
as 90 mm Hg. The contrast in readings aroused my interest, and I began to jot down
readings from the digital display every time I passed the machine at my local bank.
I got the distinct impression that a large percentage of the reported readings were in
the hypertensive range. Although one would expect hypertensive individuals to be
more likely to use such a machine, I still believed that blood-pressure readings from
the machine might not be comparable with those obtained using standard methods
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CHAPTER 1 General Overview

of blood-pressure measurement. [ spoke with Dr. B. Frank Polk, a physician at Harvard
Medical School with an interest in hypertension, about my suspicion and succeeded
in interesting him in a small-scale evaluation of such machines. We decided to send
a human observer, who was well trained in blood-pressure measurement techniques,
to several of these machines. He would offer to pay participants 50¢ for the cost of
using the machine if they would agree to fill out a short questionnaire and have
their blood pressure measured by both a human observer and the machine.

At this stage we had to make several important decisions, each of which proved
vital to the success of the study. These decisions were based on the following
questions:

(1) How many machines should we test?
(2) How many participants should we test at each machine?

(3) In what order should we take the measurements? That is, should the human
observer or the machine take the first measurement? Under ideal circumstances
we would have taken both the human and machine readings simultaneously,
but this was logistically impossible.

(4) What data should we collect on the questionnaire that might influence the
comparison between methods?

(5) How should we record the data to facilitate computerization later?

(6) How should we check the accuracy of the computerized data?
We resolved these problems as follows:

(1) and (2) Because we were not sure whether all blood-pressure machines were
comparable in quality, we decided to test four of them. However, we wanted to
sample enough subjects from each machine so as to obtain an accurate comparison
of the standard and automated methods for each machine. We tried to predict how
large a discrepancy there might be between the two methods. Using the methods of
sample-size determination discussed in this book, we calculated that we would need
100 participants at each site to make an accurate comparison.

(3) We then had to decide in what order to take the measurements for each
person. According to some reports, one problem with obtaining repeated blood-
pressure measurements is that people tense up during the initial measurement, yield-
ing higher blood-pressure readings. Thus we would not always want to use either the
automated or manual method first, because the effect of the method would get con-
fused with the order-of-measurement effect. A conventional technique we used here
was to randomize the order in which the measurements were taken, so that for any
person it was equally likely that the machine or the human observer would take the
first measurement. This random pattern could be implemented by flipping a coin or,
more likely, by using a table of random numbers similar to Table 4 of the Appendix.

(4) We believed that the major extraneous factor that might influence the results
would be body size (we might have more difficulty getting accurate readings from
people with fatter arms than from those with leaner arms). We also wanted to get
some idea of the type of people who use these machines. Thus we asked questions
about age, gender, and previous hypertension history.

(5) To record the data, we developed a coding form that could be filled out on
site and from which data could be easily entered into a computer for subsequent
analysis. Each person in the study was assigned a unique identification (ID) number
by which the computer could identify that person. The data on the coding forms
were then keyed and verified. That is, the same form was entered twice and the two
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General Overview 3

records compared to make sure they were the same. If the records did not match, the
form was re-entered.

(6) Checking each item on each form was impossible because of the large
amount of data involved. Instead, after data entry we ran some editing programs
to ensure that the data were accurate. These programs checked that the values for
individual variables fell within specified ranges and printed out aberrant values for
manual checking. For example, we checked that all blood-pressure readings were at
least 50 mm Hg and no higher than 300 mm Hg, and we printed out all readings
that fell outside this range. We also ran programs to detect outliers as discussed later
in this book.

After completing the data-collection, data-entry, and data-editing phases, we
were ready to look at the results of the study. The first step in this process is to get
an impression of the data by summarizing the information in the form of several
descriptive statistics. This descriptive material can be numeric or graphic. If numeric,
it can be in the form of a few summary statistics, which can be presented in tabular
form or, alternatively, in the form of a frequency distribution, which lists each value
in the data and how frequently it occurs. If graphic, the data are summarized pictori-
ally and can be presented in one or more figures. The appropriate type of descriptive
material to use varies with the type of distribution considered. If the distribution is
continuous—that is, if there is essentially an infinite number of possible values, as
would be the case for blood pressure—then means and standard deviations may be
the appropriate descriptive statistics. However, if the distribution is discrete—that
is, if there are only a few possible values, as would be the case for gender—then
percentages of people taking on each value are the appropriate descriptive measure.
In some cases both types of descriptive statistics are used for continuous distribu-
tions by condensing the range of possible values into a few groups and giving the
percentage of people that fall into each group (e.g., the percentages of people who
have blood pressures between 120 and 129 mm Hg, between 130 and 139 mm Hg,
and so on).

In this study we decided first to look at mean blood pressure for each method at
each of the four sites. Table 1.1 summarizes this information [1].

You may notice from this table that we did not obtain meaningful data from
all 100 people interviewed at each site. This was because we could not obtain valid
readings from the machine for many of the people. This problem of missing data is
very common in biostatistics and should be anticipated at the planning stage when
deciding on sample size (which was not done in this study).

TABLE 1.1 Mean blood pressures and differences between machine
and human readings at four locations

Systolic blood pressure (mm Hg)

Machine Human Difference
Number Standard Standard Standard
Location of people Mean deviation Mean deviation Mean deviation
A 98 1425 21.0 142.0 18.1 0.5 11.2
B 84 1341 225 133.6 23.2 0.5 121
C 98 147.9 20.3 133.9 18.3 14.0 11.7
D 62 135.4 16.7 128.5 19.0 6.9 13.6

Source: Based on the American Heart Association, Inc.
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4 CHAPTER 1  General Overview

Our next step in the study was to determine whether the apparent differences in
blood pressure between machine and human measurements at two of the locations
(C, D) were “real” in some sense or were “due to chance.” This type of question falls
into the area of inferential statistics. We realized that although there was a differ-
ence of 14 mm Hg in mean systolic blood pressure between the two methods for
the 98 people we interviewed at location C, this difference might not hold up if we
interviewed 98 other people at this location at a different time, and we wanted to
have some idea as to the error in the estimate of 14 mm Hg. In statistical jargon,
this group of 98 people represents a sample from the population of all people who
might use that machine. We were interested in the population, and we wanted to
use the sample to help us learn something about the population. In particular, we
wanted to know how different the estimated mean difference of 14 mm Hg in our
sample was likely to be from the true mean difference in the population of all peo-
ple who might use this machine. More specifically, we wanted to know if it was still
possible that there was no underlying difference between the two methods and that
our results were due to chance. The 14-mm Hg difference in our group of 98 people
is referred to as an estimate of the true mean difference (d) in the population. The
problem of inferring characteristics of a population from a sample is the central con-
cern of statistical inference and is a major topic in this text. To accomplish this aim,
we needed to develop a probability model, which would tell us how likely it is that
we would obtain a 14-mm Hg difference between the two methods in a sample of
98 people if there were no real difference between the two methods over the entire
population of users of the machine. If this probability were small enough, then we
would begin to believe a real difference existed between the two methods. In this
particular case, using a probability model based on the ¢ distribution, we concluded
this probability was less than 1 in 1000 for each of the machines at locations C and D.
This probability was sufficiently small for us to conclude there was a real difference
between the automatic and manual methods of measuring blood pressure for two of
the four machines tested.

We used a statistical package to perform the preceding data analyses. A package
is a collection of statistical programs that describe data and perform various statisti-
cal tests on the data. Currently the most widely used statistical packages are SAS,
SPSS, Stata, R, MINITAB, and Excel.

The final step in this study, after completing the data analysis, was to compile
the results in a publishable manuscript. Inevitably, because of space considerations,
we weeded out much of the material developed during the data-analysis phase and
presented only the essential items for publication.

This review of our blood-pressure study should give you some idea of what
medical research is about and the role of biostatistics in this process. The material in
this text parallels the description of the data-analysis phase of the study. Chapter 2
summarizes different types of descriptive statistics. Chapters 3 through 5 present
some basic principles of probability and various probability models for use in later
discussions of inferential statistics. Chapters 6 through 14 discuss the major topics
of inferential statistics as used in biomedical practice. Issues of study design or data
collection are brought up only as they relate to other topics discussed in the text.
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Descriptive Statistics

21 INTRODUCTION

The first step in looking at data is to describe the data at
hand in some concise way. In smaller studies this step can be
accomplished by listing each data point. In general, however,
this procedure is tedious or impossible and, even if it were
possible, would not give an overall picture of what the data
look like.

Cancer, Nutrition Some investigators have proposed that consumption of vitamin A
prevents cancer. To test this theory, a dietary questionnaire might be used to collect
data on vitamin-A consumption among 200 hospitalized cancer patients (cases) and
200 controls. The controls would be matched with regard to age and gender with the
cancer cases and would be in the hospital at the same time for an unrelated disease.
What should be done with these data after they are collected?

Before any formal attempt to answer this question can be made, the vitamin-A
consumption among cases and controls must be described. Consider Figure 2.1. The
bar graphs show that the controls consume more vitamin A than the cases do, par-
ticularly at consumption levels exceeding the Recommended Daily Allowance (RDA).

Pulmonary Disease Medical researchers have often suspected that passive smokers—
people who themselves do not smoke but who live or work in an environment in
which others smoke—might have impaired pulmonary function as a result. In 1980
a research group in San Diego published results indicating that passive smokers did
indeed have significantly lower pulmonary function than comparable nonsmokers
who did not work in smoky environments [1]. As supporting evidence, the authors
measured the carbon-monoxide (CO) concentrations in the working environments
of passive smokers and of nonsmokers whose companies did not permit smoking in
the workplace to see if the relative CO concentration changed over the course of the
day. These results are displayed as a scatter plot in Figure 2.2.

Figure 2.2 clearly shows that the CO concentrations in the two working environ-
ments are about the same early in the day but diverge widely in the middle of the
day and then converge again after the workday is over at 7 p.m.

Graphic displays illustrate the important role of descriptive statistics, which
is to quickly display data to give the researcher a clue as to the principal trends in
the data and suggest hints as to where a more detailed look at the data, using the
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FIGURE 2.1 Daily vitamin-A consumption among cancer cases and controls
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methods of inferential statistics, might be worthwhile. Descriptive statistics are also
crucially important in conveying the final results of studies in written publications.
Unless it is one of their primary interests, most readers will not have time to criti-
cally evaluate the work of others but will be influenced mainly by the descriptive
statistics presented.

What makes a good graphic or numeric display? The main guideline is that
the material should be as self-contained as possible and should be understandable
without reading the text. These attributes require clear labeling. The captions, units,
and axes on graphs should be clearly labeled, and the statistical terms used in tables
and figures should be well defined. The quantity of material presented is equally
important. If bar graphs are constructed, then care must be taken to display neither
too many nor too few groups. The same is true of tabular material.

Many methods are available for summarizing data in both numeric and graphic
form. In this chapter these methods are summarized and their strengths and weak-
nesses noted.

2.2 MEASURES OF LOCATION

The basic problem of statistics can be stated as follows: Consider a sample of data

X , X, where x, corresponds to the first sample point and x, corresponds to the

IE n
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FIGURE 2.2 Mean carbon-monoxide concentration (* standard error) by time of day as measured
in the working environment of passive smokers and in nonsmokers who work in a
nonsmoking environment
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nth sample point. Presuming that the sample is drawn from some population P,
what inferences or conclusions can be made about P from the sample?

Before this question can be answered, the data must be summarized as succinctly
as possible; this is because the number of sample points is often large, and it is easy
to lose track of the overall picture when looking at individual sample points. One
type of measure useful for summarizing data defines the center, or middle, of the
sample. This type of measure is a measure of location.

The Arithmetic Mean

How to define the middle of a sample may seem obvious, but the more you think
about it, the less obvious it becomes. Suppose the sample consists of the birth-
weights of all live-born infants born at a private hospital in San Diego, California,
during a 1-week period. This sample is shown in Table 2.1.

One measure of location for this sample is the arithmetic mean (colloqui-
ally called the average). The arithmetic mean (or mean or sample mean) is usually
denoted by x.
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8 CHAPTER 2 Descriptive Statistics

TABLE 2.1 Sample of birthweights (g) of live-born infants born at a private hospital in San Diego,
California, during a 1-week period

i X, i X, i X i X,

1 3265 6 3323 11 2581 16 2759
2 3260 7 3649 12 2841 17 3248
3 3245 8 3200 13 3609 18 3314
4 3484 9 3031 14 2838 19 3101
5 4146 10 2069 15 3541 20 2834

DEFINITION 2.1  The arithmetic mean is the sum of all the observations divided by the number of
observations. It is written in statistical terms as

_ 1
X—le:l‘xi

The sign X (sigma) in Definition 2.1 is a summation sign. The expression

X

n

i=1

is simply a short way of writing the quantity (x; +x, +---+x,).
If a and b are integers, where a < b, then

b
2%
i=a

means X, + X, +---+X,.

b . . . . .
If a = b, then Zi:axi =Xx,. One property of summation signs is that if each term in
the summation is a multiple of the same constant ¢, then ¢ can be factored out from
the summation; that is,

(3]
i-1 i1
3 3 3 3
find ¥x % DX 2%
= =

Solution:

3 3
Y x=2+5-4=3 Y x,=5-4=1
i=1 i=2

3 3
X} =4+25+16=45 Y 2x =2 x=6
i=1 i=1

3
=1

It is important to become familiar with summation signs because they are used
extensively throughout the remainder of the text.
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2.2  Measures of Location 9

OS] What is the arithmetic mean for the sample of birthweights in Table 2.1?
X =(3265+3260+---+2834)/20 =3166.9 g

The arithmetic mean is, in general, a very natural measure of location. One
of its main limitations, however, is that it is oversensitive to extreme values. In
this instance, it may not be representative of the location of the great majority
of sample points. For example, if the first infant in Table 2.1 happened to be a
premature infant weighing 500 g rather than 3265 g, then the arithmetic mean
of the sample would fall to 3028.7 g. In this instance, 7 of the birthweights would
be lower than the arithmetic mean, and 13 would be higher than the arithmetic
mean. It is possible in extreme cases for all but one of the sample points to be on
one side of the arithmetic mean. In these types of samples, the arithmetic mean
is a poor measure of central location because it does not reflect the center of the
sample. Nevertheless, the arithmetic mean is by far the most widely used measure
of central location.

The Median

An alternative measure of location, perhaps second in popularity to the arithmetic
mean, is the median or, more precisely, the sample median.

Suppose there are n observations in a sample. If these observations are ordered
from smallest to largest, then the median is defined as follows:

DEFINITION 2.2 The sample median is
(1) The (n—ﬂ]th largest observation if n is odd

(2) The average of the (gjth and [§+ljth largest observations if n is even

The rationale for these definitions is to ensure an equal number of sample points
on both sides of the sample median. The median is defined differently when # is
even and odd because it is impossible to achieve this goal with one uniform defini-
tion. Samples with an odd sample size have a unique central point; for example,
for samples of size 7, the fourth largest point is the central point in the sense that
3 points are smaller than it and 3 points are larger. Samples with an even sample size
have no unique central point, and the middle two values must be averaged. Thus,
for samples of size 8 the fourth and fifth largest points would be averaged to obtain
the median, because neither is the central point.

O ABselcl s Compute the sample median for the sample in Table 2.1.

Solution: First, arrange the sample in ascending order:

2069, 2581, 2759, 2834, 2838, 2841, 3031, 3101, 3200, 3245, 3248, 3260, 3265,
3314, 3323, 3484, 3541, 3609, 3649, 4146

Because n is even,

Sample median = average of the 10th and 11th largest observations
=(3245 +3248)/2=3246.5g
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10 CHAPTER 2 Descriptive Statistics

We can also use a computer package to compute the mean and median. We
have used the computer package R for this purpose. We first enter the data from
Table 2.1 into a spreadsheet and save it as a text file with the names of the variables
(in this case two variables called id and birthwt) in the first row. We then read the
data into R using the read.xlsx command and assign the data set the name bwt.
We then use the attach command to refer to the variables in the data set by name.
We also use the names command to determine what the names are in the data set.
Finally, we use the mean and median commands to compute the arithmetic mean
and the median, respectively. The results are given in Table 2.2.

TABLE 2.2 Use of R to compute the mean and median for the birthweight data in Table 2.1

> bwt<-read.xlsx (“E:/Rosner/DataCh2/fob.8thedition.
table2.1.x1lsx”,2, header=TRUE)

> attach (bwt)

> names (bwt)

[1] “ia~ “birthwt”
> birthwt

[1] 3265 3260 3245 3484 4146 3323 3649 3200 3031 2069 2581 2841
3609 2838 3541

[16] 2759 3248 3314 3101 2834
> mean (birthwt)

[1] 3166.9

> median (birthwt)

[1] 3246.5

EXAMPLE 2.6 Infectious Disease Consider the data set in Table 2.3, which consists of white-blood
counts taken upon admission of all patients entering a small hospital in Allentown,
Pennsylvania, on a given day. Compute the median white-blood count.

TABLE 2.3 Sample of admission white-blood counts
(x 1000) for all patients entering a hospital
in Allentown, Pennsylvania, on a given day

i X i X,
1 7 6 3
2 35 7 10
3 5 8 12
4 9 9 8
5 8

Solution: First, order the sample as follows: 3, 5, 7, 8, 8, 9, 10, 12, 35. Because n is
odd, the sample median is given by the fifth largest point, which equals 8 or 8000
on the original scale.

The main strength of the sample median is that it is insensitive to very large
or very small values. In particular, if the second patient in Table 2.3 had a white
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2.2  Measures of Location 11

count of 65,000 rather than 35,000, the sample median would remain unchanged,
because the fifth largest value is still 8000. Conversely, the arithmetic mean would
increase dramatically from 10,778 in the original sample to 14,111 in the new sample.
The main weakness of the sample median is that it is determined mainly by the
middle points in a sample and is less sensitive to the actual numeric values of the
remaining data points.

Comparison of the Arithmetic Mean and the Median

If a distribution is symmetric, then the relative position of the points on each side
of the sample median is the same. An example of a distribution that is expected to
be roughly symmetric is the distribution of systolic blood-pressure measurements
taken on all 30- to 39-year-old factory workers in a given workplace (Figure 2.3a).

If a distribution is positively skewed (skewed to the right), then points above
the median tend to be farther from the median in absolute value than points below
the median. An example of a positively skewed distribution is that of the number of
years of oral contraceptive (OC) use among a group of women ages 20 to 29 years
(Figure 2.3b). Similarly, if a distribution is negatively skewed (skewed to the left),
then points below the median tend to be farther from the median in absolute value
than points above the median. An example of a negatively skewed distribution is
that of relative humidities observed in a humid climate at the same time of day over
a number of days. In this case, most humidities are at or close to 100%, with a few
very low humidities on dry days (Figure 2.3c¢).

FIGURE 2.3 Graphic displays of (a) symmetric, (b) positively skewed, and (c) negatively skewed distributions
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12 CHAPTER 2 Descriptive Statistics

In many samples, the relationship between the arithmetic mean and the
sample median can be used to assess the symmetry of a distribution. In particular,
for symmetric distributions the arithmetic mean is approximately the same as the
median. For positively skewed distributions, the arithmetic mean tends to be larger
than the median; for negatively skewed distributions, the arithmetic mean tends to
be smaller than the median.

The Mode

Another widely used measure of location is the mode.

DEFINITION 2.3 The mode is the most frequently occurring value among all the observations in a
sample.

Gynecology Consider the sample of time intervals between successive menstrual
periods for a group of 500 college women age 18 to 21 years, shown in Table 2.4. The
frequency column gives the number of women who reported each of the respective
durations. The mode is 28 because it is the most frequently occurring value.

TABLE 2.4  Sample of time intervals between successive menstrual periods (days)
in college-age women

Value Frequency Value Frequency Value Frequency
24 5 29 96 34 7
25 10 30 63 35 3
26 28 31 24 36 2
27 64 32 9 37 1
28 185 33 2 38 1

VRS el Compute the mode of the distribution in Table 2.3.

Solution: The mode is 8000 because it occurs more frequently than any other white-
blood count.

Some distributions have more than one mode. In fact, one useful method of
classifying distributions is by the number of modes present. A distribution with one
mode is called unimodal; two modes, bimodal; three modes, trimodal; and so
forth.

DB s =il Compute the mode of the distribution in Table 2.1.

Solution: There is no mode, because all the values occur exactly once.

Example 2.9 illustrates a common problem with the mode: It is not a useful
measure of location if there is a large number of possible values, each of which
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2.2  Measures of Location 13

occurs infrequently. In such cases the mode will be either far from the center of the
sample or, in extreme cases, will not exist, as in Example 2.9.

The Geometric Mean

Many types of laboratory data, specifically data in the form of concentrations of
one substance in another, as assessed by serial dilution techniques, can be expressed
either as multiples of 2 or as a constant multiplied by a power of 2; that is, outcomes
can only be of the form 2%, k=0, 1, . . ., for some constant c. For example, the data
in Table 2.5 represent the minimum inhibitory concentration (MIC) of penicillin
G in the urine for N. gonorrhoeae in 74 patients [2]. The arithmetic mean is not
appropriate as a measure of location in this situation because the distribution is
very skewed.

However, the data do have a certain pattern because the only possible values
are of the form 2%(0.03125) for k =0, 1, 2, . . . . One solution is to work with the
distribution of the logs of the concentrations. The log concentrations have the prop-
erty that successive possible concentrations differ by a constant; that is, log(2¥!c)
—log(2%) =1og(2¥!) + log ¢ — log(2¥) —log c=(k + 1) log 2 — k log 2 =1og 2. Thus the
log concentrations are equally spaced from each other, and the resulting distribu-
tion is now not as skewed as the concentrations themselves. The arithmetic mean
can then be computed in the log scale; that is,

TABLE 2.5 Distribution of minimum inhibitory concentration (MIC)
of penicillin G for N. gonorrhoeae

Concentration (ug/mL) Frequency Concentration (ug/mL) Frequency
0.03125 = 2°(0.03125) 21 0.250 = 2%(0.03125) 19
0.0625 =2'(0.03125) 6 0.50 =2%0.03125) 17
0.125 =2%0.03125) 8 1.0 =2%0.03125) 3

Source: Based on JAMA, 220, 205-208, 1972.
1 n
logx = ;Zlogxi
i=1

and used as a measure of location. However, it is usually preferable to work in the
original scale by taking the antilogarithm of logx to form the geometric mean,
which leads to the following definition:

DEFINITION 2.4  The geometric mean is the antilogarithm of log x, where

logx = 1210gxi
nia

Any base can be used to compute logarithms for the geometric mean. The geometric
mean is the same regardless of which base is used. The only requirement is that the
logs and antilogs in Definition 2.4 should be in the same base. Bases often used in
practice are base 10 and base e.
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14 CHAPTER 2 Descriptive Statistics

|5, A =il Infectious Disease  Compute the geometric mean for the sample in Table 2.5.

Solution: (1) For convenience, use base 10 to compute the logs and antilogs in this
example.
(2) Compute

— [211 0.03125) + 61 0.0625) + 81 0.125
Tog x = 081 ( ) 0810 ( ) 0g1o( ) 4= _0.846
+ 1910g;,(0.250) + 1710g;,(0.50) + 3log,,(1.0)

(3) The geometric mean = the antilogarithm of —-0.846 = 108 = (0.143.

Similarly, we can also perform these computations in R as follows

> mic<-na.omit (read.xlsx (“E:/Rosner/DataCh2/fob.8thedition.
table2.4.x1lsx”,1, header=TRUE))

> names (mic)

[1] “Concentration” “Frequency”

> logs<-sum(mic$Frequency*logl0 (micsSConcentration)) /
sum (mic$Frequency)

> geo _mean=10"logs

> geo_mean

[1] 0.1425153

2.3 SOME PROPERTIES OF THE ARITHMETIC MEAN

Consider a sample x,, . . ., x,, which will be referred to as the original sample. To
create a translated sample x, +¢, ..., x, + ¢, add a constant ¢ to each data point.
Lety,=x,+¢ i=1,...,n Suppose we want to compute the arithmetic mean of the

translated sample. We can show that the following relationship holds:

i

EQUATION 2.1 If vi=x,+¢, i=1,...,n
then y=X+c

Therefore, to find the arithmetic mean of the y’s, compute the arithmetic mean of
the x’s and add the constant c.

This principle is useful because it is sometimes convenient to change the
“origin” of the sample data—that is, to compute the arithmetic mean after the trans-
lation and then transform back to the original origin.

To compute the arithmetic mean of the time interval between menstrual periods in
Table 2.4, it is more convenient to work with numbers that are near zero than with
numbers near 28. Thus, a translated sample might first be created by subtracting
28 days from each outcome in Table 2.4. The arithmetic mean of the translated
sample could then be found and 28 added to get the actual arithmetic mean. The
calculations are shown in Table 2.6.
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2.3  Some Properties of the Arithmetic Mean 15

TABLE 2.6 Translated sample for the duration between successive menstrual
periods in college-age women

Value Frequency Value Frequency Value Frequency
-4 5 1 96 6 7
-3 10 2 63 7 3
-2 28 3 24 8 2
-1 64 4 9 9 1
0 185 5 2 10 1

Note:y =[(-4)(5) + (-3)(10) + ... + (10)(1)]/500 = 0.54
X =y +28=0.54 + 28 =28.54 days

Similarly, systolic blood-pressure scores are usually between 100 and 200.
Therefore, to obtain the mean of the original sample, it is easier to subtract 100 from
each blood-pressure score, find the mean of the translated sample, and add 100.

What happens to the arithmetic mean if the units or scale being worked with
changes? A rescaled sample can be created:

y,i=cx, i=1,...,n

The following result holds:

EQUATION 2.2 If Vvi=cx,i=1,...,n

then y=cx

Therefore, to find the arithmetic mean of the y’s, compute the arithmetic mean of
the x’s and multiply it by the constant c.

| O iRs el Express the mean birthweight for the data in Table 2.1 in ounces rather than grams.

Solution: We know that 1 oz =28.35 g and that X = 3166.9g. Thus, if the data were
expressed in terms of ounces,

y= L(3166.9) =111.71 oz

1
€=2835 2835

Sometimes we want to change both the origin and the scale of the data at the
same time. To do this, apply Equations 2.1 and 2.2 as follows:

EQUATION 2.3 Let x,, . . ., x, be the original sample of data and let y,=cx, + ¢, i=1,...,n
represent a transformed sample obtained by multiplying each original sample
point by a factor ¢, and then shifting over by a constant c,.

If Vi=cx,+¢, i=1,...,n

then y=cXx+c,
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16 CHAPTER 2 Descriptive Statistics

iR e If we have a sample of temperatures in °C with an arithmetic mean of 11.75°C, then
what is the arithmetic mean in °F?

Solution: Let y, denote the °F temperature that corresponds to a °C temperature of x,.
The required transformation to convert the data to °F would be

yi:%xi+32, i=1,... N

so the arithmetic mean would be

y= %(11.75)+32 =53.15°F

24 MEASURES OF SPREAD

Consider Figure 2.4, which represents two samples of cholesterol measurements,
each on the same person, but using different measurement techniques. The samples
appear to have about the same center, and whatever measure of central location is
used is probably about the same in the two samples. In fact, the arithmetic means
are both 200 mg/dL. Visually, however, the two samples appear radically different.
This difference lies in the greater variability, or spread, of the Autoanalyzer method
relative to the Microenzymatic method. In this section, the notion of variability is
quantified. Many samples can be well described by a combination of a measure of
location and a measure of spread.

The Range

Several different measures can be used to describe the variability of a sample. Per-
haps the simplest measure is the range.

DEFINITION 2.5 The range is the difference between the largest and smallest observations in a sample.

FIGURE 2.4 Two samples of cholesterol measurements on a given person using the Autoanalyzer
and Microenzymatic measurement methods

X =200
I
I
I
I
I
I
f Autoanalyzer method
177 193 1951 209 226 (mg/dL)
I
I
I
I
I
4 Microenzymatic method
192 197/} 202 209 (mg/dL)

I

200 !
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2.4  Measures of Spread 17

|2 O iRs el The range in the sample of birthweights in Table 2.1 is

4146 — 2069 =2077 g

s i Compute the ranges for the Autoanalyzer- and Microenzymatic-method data in
Figure 2.4, and compare the variability of the two methods.

Solution: The range for the Autoanalyzer method = 226 — 177 = 49 mg/dL. The
range for the Microenzymatic method = 209 — 192 = 17 mg/dL. The Autoanalyzer
method clearly seems more variable.

One advantage of the range is that it is very easy to compute once the sample
points are ordered. One striking disadvantage is that it is very sensitive to extreme
observations. Hence, if the lightest infant in Table 2.1 weighed 500 g rather than
2069 g, then the range would increase dramatically to 4146 — 500 = 3646 g. Another
disadvantage of the range is that it depends on the sample size (). That is, the larger
n is, the larger the range tends to be. This complication makes it difficult to compare
ranges from data sets of differing size.

Quantiles

Another approach that addresses some of the shortcomings of the range in quantify-
ing the spread in a data set is the use of quantiles or percentiles. Intuitively, the pth
percentile is the value V, such that p percent of the sample points are less than or
equal to V . The median, being the 50th percentile, is a special case of a quantile. As
was the case for the median, a different definition is needed for the pth percentile,
depending on whether or not np/100 is an integer.

DEFINITION 2.6 The pth percentile is defined by

(1) The (k + 1)th largest sample point if np/100 is not an integer (where k is the
largest integer less than np/100).

(2) The average of the (np/100)th and (np/100 + 1)th largest observations if np/100
is an integer.

Percentiles are also sometimes called quantiles.

The spread of a distribution can be characterized by specifying several percen-
tiles. For example, the 10th and 90th percentiles are often used to characterize
spread. Percentiles have the advantage over the range of being less sensitive to
outliers and of not being greatly affected by the sample size (n).

SO idRs el Compute the 10th and 90th percentiles for the birthweight data in Table 2.1.
Solution: Because 20 x .1 =2 and 20 x .9 = 18 are integers, the 10th and 90th percen-
tiles are defined by

10th percentile: average of the second and third largest values
=(2581+2759)/2=2670g

90th percentile: average of the 18th and 19th largest values
=(3609 + 3649)/2=3629 g

We would estimate that 80% of birthweights will fall between 2670 g and 3629 g,
which gives an overall impression of the spread of the distribution.
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18 CHAPTER 2 Descriptive Statistics

EXAMPLE 2.17 Compute the 20th percentile for the white-blood-count data in Table 2.3.

Solution: Because np/100 = 9 x .2 = 1.8 is not an integer, the 20th percentile is
defined by the (1 + 1)th largest value = second largest value = 5000.

To compute percentiles, the sample points must be ordered. This can be difficult
if n is even moderately large. An easy way to accomplish this is to use a stem-
and-leaf plot (see Section 2.8) or a computer program.

We have used the quantile function of R to compute the 10th and 90th percen-
tiles of the birthweight data in Table 2.1 and the 20th percentile of the white count
data in Table 2.3. The results are presented below in Table 2.7.

TABLE 2.7 Use of R to compute sample quantiles in Examples 2.16 and 2.17

> quantile (birthwt,probs = c(0.1, 0.9),na.rm = TRUE, type = 2)
10% 90%
2670 3629
> quantile (white.count, probs = 0.2, na.rm = TRUE, type = 2)
20%

5

The results are the same as those in Examples 2.16 and 2.17. The option na.rm =
TRUE means that missing values are excluded from calculating quantiles. Note that
there are several (9) different algorithms available in R for calculating quantiles that
are obtained by specifying type =1, . .. , type = 9. The type = 2 option is, in my
opinion, the most common and agrees with Definition 2.6.

There is no limit to the number of percentiles that can be computed. The most
useful percentiles are often determined by the sample size and by subject-matter
considerations. Frequently used percentiles are tertiles (33rd and 67th percentiles),
quartiles (25th, 50th, and 75th percentiles), quintiles (20th, 40th, 60th, and 80th per-
centiles), and deciles (10th, 20th, . . ., 90th percentiles). It is almost always instruc-
tive to look at some of the quantiles to get an overall impression of the spread and
the general shape of a distribution.

The Variance and Standard Deviation

The main difference between the Autoanalyzer- and Microenzymatic-method data
in Figure 2.4 is that the Microenzymatic-method values are closer to the center of
the sample than the Autoanalyzer-method values. If the center of the sample is
defined as the arithmetic mean, then a measure that can summarize the difference
(or deviations) between the individual sample points and the arithmetic mean is
needed; that is,

X=X, Xy =X, ..., X, — X
One simple measure that would seem to accomplish this goal is
n —
21‘:1 (x; %)

n

d=

Unfortunately, this measure will not work, because of the following principle:
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2.4  Measures of Spread 19

EQUATION 2.4 The sum of the deviations of the individual observations of a sample about the
sample mean is always zero.

SN idns el Compute the sum of the deviations about the mean for the Autoanalyzer- and
Microenzymatic-method data in Figure 2.4.

Solution: For the Autoanalyzer-method data,

d= (177 - 200) + (193 — 200) + (195 — 200) + (209 — 200) + (226 — 200)
=-23-7-5+9+26=0

For the Microenzymatic-method data,

d= (192 - 200) + (197 — 200) + (200 — 200) + (202 — 200) + (209 — 200)
=8-3+0+2+9=0

Thus, d does not help distinguish the difference in spreads between the two methods.
A second possible measure is

n
Yix-Xl/n
i=1

which is called the mean deviation. The mean deviation is a reasonable measure
of spread but does not characterize the spread as well as the standard deviation
(see Definition 2.8) if the underlying distribution is bell-shaped.

A third idea is to use the average of the squares of the deviations from the sam-
ple mean rather than the deviations themselves. The resulting measure of spread,
denoted by s?, is

2 _ 2?:1(xi _)_‘)2

n

N

The more usual form for this measure is with n — 1 in the denominator rather than
n. The resulting measure is called the sample variance (or variance).

DEFINITION 2.7 The sample variance, or variance, is defined as follows:

2 2?:1(xi _)_‘)2

N
n-1

A rationale for using n — 1 in the denominator rather than » is presented in the
discussion of estimation in Chapter 6.
Another commonly used measure of spread is the sample standard deviation.

DEFINITION 2.8 The sample standard deviation, or standard deviation, is defined as follows:

n =12
> i (X =X) -
—=——— = /sample variance

n-1

i Es el Compute the variance and standard deviation for the Autoanalyzer- and
Microenzymatic-method data in Figure 2.4.
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Solution: Autoanalyzer Method
= [(177— 200’ +(193-200)" + (195-200)" + (209-200)" + (226 -200)’ J /4
=(529+49+25+81+676)/4=1360/4 =340
s=+/340 =18.4
Microenzymatic Method
§? = [(192 -200) + (197 -200)" + (200 —200)* +(202 —200)* +(209 - 200)2} /4
=(64+9+0+4+81)/4=158/4=39.5

§=+39.5=63

Thus the Autoanalyzer method has a standard deviation roughly three times as large
as that of the Microenzymatic method.

s il Use Microsoft Excel to compute the mean and standard deviation for the Autoana-
lyzer and Microenzymatic-method data in Figure 2.4.

Solution: We enter the Autoanalyzer and Microenzymatic data in cells B3-B7 and
C3-C7, respectively. We then use the Average and StDev functions to evaluate the
mean and standard deviation as follows:

Autoanalyzer Microenzymatic
Method Method
177 192
193 197
195 200
209 202
226 209
Average 200 200
StDev 18.4 6.3

In Excel, if we make B8 the active cell and type = Average(B3:B7) in that cell,
then the mean of the values in cells B3, B4, . . ., B7 will appear in cell B8. Similarly,
specifying = Stdev(B3:B7) will result in the standard deviation of the Autoanalyzer
Method data being placed in the active cell of the spreadsheet.

25 SOME PROPERTIES OF THE VARIANCE
AND STANDARD DEVIATION

The same question can be asked of the variance and standard deviation as of the
arithmetic mean: namely, how are they affected by a change in origin or a change in

the units being worked with? Suppose there is a sample x, . . ., x, and all data points
in the sample are shifted by a constant ¢; that is, a new sample y,, . . ., y, is created
such thaty, =x,+¢,i=1,...,n

In Figure 2.5, we would clearly expect the variance and standard deviation to
remain the same because the relationship of the points in the sample relative to one
another remains the same. This property is stated as follows:
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FIGURE 2.5 Comparison of the variances of two samples, where one sample has an origin shifted
relative to the other

x sample

*
*
»
A

AKX

y—r—r—> ¥ y sample

EQUATION 2.5 Suppose there are two samples

X X, and  p,...,p,

Do
wherey, =x,+¢, i=1,...,n
If the respective sample variances of the two samples are denoted by
s?and s?

y

2 _ ¢2
then s’ =sZ

O iRs el Compare the variances and standard deviations for the menstrual-period data in
Tables 2.4 and 2.6.

Solution: The variance and standard deviation of the two samples are the same
because the second sample was obtained from the first by subtracting 28 days from
each data value; that is,

y,=x,—28

Suppose the units are now changed so that a new sample, y, . .., y,, is created
such thaty,=cx,i=1, ..., n. The following relationship holds between the variances
of the two samples.

EQUATION 2.6 Suppose there are two samples

X X, and  p,...,p,

oo
where y=cx, i=1,...,n ¢>0

Then s>=c? s =cs,
This can be shown by noting that

2 2,11(}/1' -y _ 2?:1(Cxi —cx)?

S, =

Y n-1 n-1
2l =P ¥ A - %7
n-1 n-1
n —
- CZZi:l(Xi_X)Z _ 2.2
= =Sy
n-1
s, =yc%sy =cs,
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|G iRs el Compute the variance and standard deviation of the birthweight data in Table 2.1 in
both grams and ounces.

Solution: The original data are given in grams, so first compute the variance and
standard deviation in these units.

2 (3265 3166.9)% +---+ (2834 — 3166.9)>
19
=3,768,147.8/19 = 198,323.6 g>
s=4453 g

To compute the variance and standard deviation in ounces, note that

1

10z=2835g or Vi =g 35 ki

Thus, s?(oz) = s%(g) =246.8 0z”

352

s(oz) = s(g)=15.70z

28.35

Thus, if the sample points change in scale by a factor of ¢, the variance changes
by a factor of ¢? and the standard deviation changes by a factor of c. This relation-
ship is the main reason why the standard deviation is more often used than the
variance as a measure of spread: the standard deviation and the arithmetic mean
are in the same units, whereas the variance and the arithmetic mean are not. Thus,
as illustrated in Examples 2.12 and 2.22, both the mean and the standard deviation
change by a factor of 1/28.35 in the birthweight data of Table 2.1 when the units are
expressed in ounces rather than in grams.

The mean and standard deviation are the most widely used measures of location
and spread in the literature. One of the main reasons for this is that the normal (or
bell-shaped) distribution is defined explicitly in terms of these two parameters, and
this distribution has wide applicability in many biological and medical settings. The
normal distribution is discussed extensively in Chapter S.

26 THE COEFFICIENT OF VARIATION

It is useful to relate the arithmetic mean and the standard deviation to each other
because, for example, a standard deviation of 10 means something different concep-
tually if the arithmetic mean is 10 versus if it is 1000. A special measure, the coef-
ficient of variation, is often used for this purpose.

DEFINITION 2.9 The coefficient of variation (CV) is defined by

100% x (s/x)

This measure remains the same regardless of what units are used because if the units
change by a factor ¢, then both the mean and standard deviation change by the
factor ¢; while the CV, which is the ratio between them, remains unchanged.
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2.6  The Coefficient of Variation 23

s ek Compute the coefficient of variation for the data in Table 2.1 when the birthweights
are expressed in either grams or ounces.

Solution: CV =100% x (s/x) =100% x (445.3g/3166.9g) =14.1%
If the data were expressed in ounces, then

CV=100% x (15.7 0z/111.71 0z) = 14.1%

The CV is most useful in comparing the variability of several different samples,
each with different arithmetic means. This is because a higher variability is usually
expected when the mean increases, and the CV is a measure that accounts for this
variability. Thus, if we are conducting a study in which air pollution is measured at
several sites and we wish to compare day-to-day variability at the different sites, we
might expect a higher variability for the more highly polluted sites. A more accurate
comparison could be made by comparing the CVs at different sites than by compar-
ing the standard deviations.

The CV is also useful for comparing the reproducibility of different variables.
Consider, for example, data from the Bogalusa Heart Study, a large study of cardio-
vascular risk factors in children [3] that began in the 1970s and continues up to the
present time.

At approximately 3-year intervals, cardiovascular risk factors such as blood pres-
sure, weight, and cholesterol levels were measured for each of the children in the
study. In 1978, replicate measurements were obtained for a subset of the children
a short time apart from regularly scheduled risk factor measurements. Table 2.8
presents reproducibility data on a selected subset of cardiovascular risk factors. We
note that the CV ranges from 0.2% for height to 10.4% for HDL cholesterol. The
standard deviations reported here are within-subject standard deviations based on
repeated assessments of the same child. Details on how within- and between-subject
variations are computed are covered in Chapter 12 in the discussion of the random-
effects analysis-of-variance model.

TABLE 2.8 Reproducibility of cardiovascular risk factors in children,
Bogalusa Heart Study, 1978-1979

n Mean sd CV (%)
Height (cm) 364 142.6 0.31 0.2
Weight (kg) 365 395 0.77 1.9
Triceps skin fold (mm) 362 15.2 0.51 3.4
Systolic blood pressure (mm Hg) 337 104.0 4.97 4.8
Diastolic blood pressure (mm Hg) 337 64.0 4.57 7.1
Total cholesterol (mg/dL) 395 160.4 3.44 2.1
HDL cholesterol (mg/dL) 349 56.9 5.89 10.4

REVIEW QUESTIONS 2A

When is it appropriate to use the arithmetic mean as opposed to the median?

2 How does the geometric mean differ from the arithmetic mean? For what type of
data is the geometric mean used?

3 What is the difference between the standard deviation and the CV? When is it
appropriate to use each measure?
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2.7 GROUPED DATA

Sometimes the sample size is too large to display all the raw data. Also, data are
frequently collected in grouped form because the required degree of accuracy to
measure a quantity exactly is often lacking due either to measurement error or
to imprecise patient recall. For example, systolic blood-pressure measurements
taken with a standard cuff are usually specified to the nearest 2 mm Hg because
assessing them with any more precision is difficult using this instrument. Thus, a
stated measurement of 120 mm Hg may actually imply that the reading is some
number 2119 mm Hg and <121 mm Hg. Similarly, because dietary recall is gener-
ally not very accurate, the most precise estimate of fish consumption might take
the following form: 2-3 servings per day, 1 serving per day, 5-6 servings per week,
2-4 servings per week, 1 serving per week, <1 serving per week and >1 serving per
month, never.

Consider the data set in Table 2.9, which represents the birthweights from 100
consecutive deliveries at a Boston hospital. Suppose we wish to display these data for
publication purposes. How can we do this? The simplest way to display the data is to
generate a frequency distribution using a statistical package.

DEFINITION 2.10 A frequency distribution is an ordered display of each value in a data set together
with its frequency, that is, the number of times that value occurs in the data set.
In addition, the percentage of sample points that take on a particular value is also
typically given.

A frequency distribution of the sample of 100 birthweights in Table 2.9, generated
using the SAS package, is displayed in Table 2.10.

The SAS FREQ procedure provides the Frequency, relative frequency (Percent),
Cumulative Frequency, and Cumulative Percent for each birthweight present
in the sample. For any particular birthweight b, the Cumulative Frequency is
the number of birthweights in the sample that are less than or equal to b. The
Percent = 100 x Frequency/n, whereas Cumulative Percent = 100 x Cumulative
Frequency/n = the percentage of birthweights less than or equal to b.

TABLE 2.9 Sample of birthweights (0z) from 100 consecutive deliveries at a Boston hospital

58 118 92 108 132 32 140 138 96 161
120 86 115 118 95 83 112 128 127 124
123 134 94 67 124 155 105 100 112 141
104 132 98 146 132 93 85 94 116 113
121 68 107 122 126 88 89 108 115 85
111 121 124 104 125 102 122 137 110 101
91 122 138 99 115 104 98 89 119 109
104 115 138 105 144 87 88 103 108 109
128 106 125 108 98 133 104 122 124 110
133 115 127 135 89 121 112 135 115 64
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TABLE 2.10 Frequency distribution of the birthweight data
on Table 2.9 using the FREQ procedure of SAS

Cumulative Cumulative

Birthweight Frequency Percent Frequency Percent
32 1 1.00 1 1.00
58 1 1.00 2 2.00
64 1 1.00 3 3.00
67 1 1.00 4 4.00
68 1 1.00 5 5.00
83 1 1.00 6 6.00
85 2 2.00 8 8.00
86 1 1.00 9 9.00
87 1 1.00 10 10.00
88 2 2.00 12 12.00
89 3 3.00 15 15.00
91 1 1.00 16 16.00
92 1 1.00 17 17.00
93 1 1.00 18 18.00
94 2 2.00 20 20.00
95 1 1.00 21 21.00
96 1 1.00 22 22.00
98 3 3.00 25 25.00
99 1 1.00 26 26.00

100 1 1.00 27 27.00

101 1 1.00 28 28.00

102 1 1.00 29 29.00

103 1 1.00 30 30.00

104 5 5.00 35 35.00

105 2 2.00 37 37.00

106 1 1.00 38 38.00

107 1 1.00 39 39.00

108 4 4.00 43 43.00

109 2 2.00 45 45.00

110 2 2.00 47 47.00

111 1 1.00 48 48.00

112 3 3.00 51 51.00

113 1 1.00 52 52.00

115 6 6.00 58 58.00

116 1 1.00 59 59.00

118 2 2.00 61 61.00

119 1 1.00 62 62.00

120 1 1.00 63 63.00

121 3 3.00 66 66.00

122 4 4.00 70 70.00

123 1 1.00 71 71.00

124 4 4.00 75 75.00

125 2 2.00 77 77.00

126 1 1.00 78 78.00

127 2 2.00 80 80.00

128 2 2.00 82 82.00

132 3 3.00 85 85.00

133 2 2.00 87 87.00

134 1 1.00 88 88.00

135 2 2.00 90 90.00

137 1 1.00 91 91.00

138 3 3.00 94 94.00

140 1 1.00 95 95.00

141 1 1.00 96 96.00

144 1 1.00 97 97.00

146 1 1.00 98 98.00

155 1 1.00 99 99.00

161 1 1.00 100 100.00
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26 CHAPTER 2 Descriptive Statistics

If the number of unique sample values is large, then a frequency distribution
may still be too detailed a summary for publication purposes. Instead, the data could
be grouped into broader categories. Here are some general instructions for categoriz-
ing the data:

(1) Subdivide the data into k intervals, starting at some lower bound y, and ending
at some upper bound y, .

(2) The first interval is from y, inclusive to y, exclusive; the second interval is from y,
inclusive to y, exclusive; . . . ; the kth and last interval is from y, inclusive to y,, ex-
clusive. The rationale for this representation is to make certain the group intervals
include all possible values and do not overlap. In some published work, grouped
data are presented, but the group boundaries are ambiguous (e.g., 0-5, 5-10, etc.).

(3) The group intervals are generally chosen to be equal, although the appropriateness
of equal group sizes should be dictated more by subject-matter considerations.
Thus, equal intervals might be appropriate for the blood-pressure or birthweight
data but not for the dietary-recall data, where the nature of the data dictates
unequal group sizes corresponding to how most people remember what they eat.

(4) A count is made of the number of units that fall in each interval, which is
denoted by the frequency within that interval.

(5) Finally, the group intervals and their frequencies, f, are then displayed concisely
in a table such as Table 2.11.

For example, the raw data in Table 2.10 might be displayed in grouped form as
shown in Table 2.12.

TABLE 2.11 General layout of grouped data

Group interval Frequency
Y, $x<y, f,
Y, Sx<y, f,
VS X<y f

Ve SX< Y f,

TABLE 2.12 Grouped frequency distribution of the birthweight (0z) from 100 consecutive deliveries

The FREQ Procedure

Cumulative Cumulative

Group_interval Frequency Percent Frequency Percent
295<x<695 5 5.00 5 5.00

69.5<x<895 10 10.00 15 15.00
89.5<x<995 11 11.00 26 26.00
99.5<x<109.5 19 19.00 45 45.00
109.5<x<119.5 17 17.00 62 62.00
119.5<x<129.5 20 20.00 82 82.00
120.5<x<139.5 12 12.00 94 94.00
139.5<x<169.5 6 6.00 100 100.00
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28 GRAPHIC METHODS

In Sections 2.1 through 2.7 we concentrated on methods for describing data in
numeric and tabular form. In this section, these techniques are supplemented
by presenting certain commonly used graphic methods for displaying data. The
purpose of using graphic displays is to give a quick overall impression of data, which
is sometimes difficult to obtain with numeric measures.

Bar Graphs

One of the most widely used methods for displaying grouped data is the bar graph.

A bar graph can be constructed as follows:

(1) The data are divided into a number of groups using the guidelines provided
in Section 2.7.

(2) For each group, a rectangle is constructed with a base of a constant width
and a height proportional to the frequency within that group.

(3) The rectangles are generally not contiguous and are equally spaced from
each other.

A bar graph of daily vitamin-A consumption among 200 cancer cases and 200 age-
and gender-matched controls was shown in Figure 2.1.

Stem-and-Leaf Plots

Two problems with bar graphs are that (1) the definition of the groups is somewhat
arbitrary and (2) the sense of what the actual sample points are within the respective
groups is lost. One type of graphic display that overcomes these problems is the stem-
and-leaf plot.

A stem-and-leaf plot can be constructed as follows:

(1) Separate each data point into a stem component and a leaf component, re-
spectively, where the stem component consists of the number formed by all
but the rightmost digit of the number, and the leaf component consists of
the rightmost digit. Thus, the stem of the number 483 is 48, and the leaf is 3.

(2) The smallest stem in the data set is displayed in the upper left-hand corner of
the plot.

(3) The second stem, which equals the first stem + 1 is displayed, below the
first stem.

(4) The procedure in step 3 is repeated until the largest stem in the data set is
reached.

(5) A vertical bar is found to the right of the column of stems.

(6) For each number in the data set, the appropriate stem is found and the
leaves are displayed to the right of the vertical bar.

The collection of leaves thus formed takes on the general shape of the distribution
of the sample points. Furthermore, the actual sample values are preserved and yet
there is a grouped display for the data, which is a distinct advantage over a bar graph.
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28 CHAPTER 2 Descriptive Statistics

FIGURE 2.6 Stem-and-leaf plot for the birthweight data (0z) in Table 2.9 using R
> stem.leaf(bwt$birthweight, unit=1, trim.outliers=FALSE)

112: represents 12

leaf unit: 1
n: 100
1 3 2
4
2 5 8
5 6 478
7
15 8 3556788999
26 9 12344568889
45 10 | 0123444445567888899
17) 11 | 00122235555556889
38 12 | 01112222344445567788
18 13 | 222334557888
6 14 | 0146
2 15| S5
1 16 | 1

Finally, it is also easy to compute the median and other quantiles from a stem-and-
leaf plot. Figure 2.6 presents a stem-and-leaf plot using R for the birthweight data
in Table 2.9. Thus, the point 518 represents 58, 1118 represents 118, and so forth.
Notice how this plot gives an overall feel for the distribution without losing the
individual values. Also, the cumulative frequency count from either the lowest or
the highest value is given in the first column. For the 11 stem, the absolute count is
given in parentheses (17) instead of the cumulative total because the highest or low-
est value would exceed 50% (50).

In some variations of stem-and-leaf plots, the leaf can consist of more than one
digit. This might be appropriate for the birthweight data in Table 2.1 because the
number of three-digit stems required would be very large relative to the number of
data points. In this case, the leaf would consist of the rightmost two digits and the
stem the leftmost two digits, and the pairs of digits to the right of the vertical bar
would be underlined to distinguish between two different leaves. The stem-and-leaf
display for the data in Table 2.1 is shown in Figure 2.7.

Another common variation on the ordinary stem-and-leaf plot if the number of
leaves is large is to allow more than one line for each stem. Similarly, one can posi-
tion the largest stem at the top of the plot and the smallest stem at the bottom of
the plot. In Figure 2.8 some graphic displays using the SAS UNIVARIATE procedure
illustrate this technique.

Notice that each stem is allowed two lines, with the leaves from 5 to 9 on the upper
line and the leaves from O to 4 on the lower line. Furthermore, the leaves are ordered
on each line, and a count of the number of leaves on each line is given under the #
column to allow easy computation of the median and other quantiles. Thus, the num-
ber 7 in the # column on the upper line for stem 12 indicates there are 7 birthweights
from 125 to 129 oz in the sample, whereas the number 13 indicates there are 13 birth-
weights from 120 to 124 oz. Finally, a multiplication factor (m) at the bottom of the
display allows for representing decimal numbers in stem-and-leaf form. In particular, if
no m is present, then it is assumed all numbers have the actual value stem.leaf; whereas
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FIGURE 2.7 Stem-and-leaf plot for the birthweight data (g) in Table 2.1

20 | 69

21

22

23

24

25 | 81
26

27 | 59
28 | 413834
29

30 | 31

31| 01
32 | 65604500 48
33 | 2314
34 | 84

35 | 41
36 | 4909
37

38

39

40

41 | 46

if m is present, then the actual value of the number is assumed to be stem.leaf x 10™.
Thus, for example, because the multiplication factor is 10!, the value 6 | 4 on the
stem-and-leaf plot represents the number 6.4 x 10' = 64 oz.

Box Plots

In the section beginning on page 6 we discussed the comparison of the arithmetic
mean and the median as a method for looking at the skewness of a distribution.
This goal can also be achieved by a graphic technique known as the box plot. A box
plot uses the relationships among the median, upper quartile, and lower quartile to
describe the skewness of a distribution.

The upper and lower quartiles can be thought of conceptually as the approxi-
mate 75th and 25th percentiles of the sample—that is, the points 3/4 and 1/4 along
the way in the ordered sample.

How can the median, upper quartile, and lower quartile be used to judge the
symmetry of a distribution?

(1) If the distribution is symmetric, then the upper and lower quartiles should be
approximately equally spaced from the median.

(2) If the upper quartile is farther from the median than the lower quartile, then the
distribution is positively skewed.

(3) If the lower quartile is farther from the median than the upper quartile, then the
distribution is negatively skewed.
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These relationships are illustrated graphically in a box plot. In Figure 2.8 the top
of the box corresponds to the upper quartile, whereas the bottom of the box cor-
responds to the lower quartile. A horizontal line is also drawn at the median value.
Furthermore, in the SAS implementation of the box plot, the sample mean is indi-
cated by a + sign distinct from the edges of the box.

| NN Rs el What can we learn about the symmetry properties of the distribution of birthweights
from the box plot in Figure 2.8?

Solution: In Figure 2.8, because the lower quartile is farther from the median than
the upper quartile, the distribution is slightly negatively skewed. This pattern is true
of many birthweight distributions.

In addition to displaying the symmetry properties of a sample, a box plot
can also be used to visually describe the spread of a sample and can help identify

FIGURE 2.8 Stem-and-leaf and box plot for the birthweight data in Table 2.9 as generated by the
SAS Univariate Procedure

The UNIVARIATE Procedure
Variable: birthweight (birthweight)

Stem Leaf # Boxplot
16 | 1 1 |
15 | 5 1 |
15 |
14 | 6 1 |
14 | 014 3 |
13 | 557888 6 |
13 | 222334 6 |
12 | 5567788 7 |
12 | 0111222234444 13 PR +
11 | 5555556889 10 | |
11 | 0012223 7 oot
10 | 5567888899 10 | |
10 | 012344444 9 ! |
9 | 568889 6 R i
9 | 12344 5 |
8 | 556788999 9 |
8 | 3 1 |
7 |
7 |
6 78 2 |
6 | 4 1 |
S 8 1 0
5
4
4
3
3 2 1 0
R e e

Multiply Stem.Leaf by 10**+1
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possible outlying values—that is, values that seem inconsistent with the rest of
the points in the sample. In the context of box plots, outlying values are defined
as follows:

DEFINITION 2.11  An outlying value is a value x such that either

(1) x> upper quartile + 1.5 x (upper quartile — lower quartile) or

(2) x <lower quartile — 1.5 x (upper quartile — lower quartile)

DEFINITION 2.12  An extreme outlying value is a value x such that either

(1) x> upper quartile + 3.0 x (upper quartile — lower quartile) or

(2) x <lower quartile — 3.0 x (upper quartile — lower quartile)

The box plot is then completed by

(1) Drawing a vertical bar from the upper quartile to the largest nonoutlying value
in the sample

(2) Drawing a vertical bar from the lower quartile to the smallest nonoutlying value
in the sample

(3) Individually identifying the outlying and extreme outlying values in the sample
by zeroes (0) and asterisks (*), respectively

s el Using the box plot in Figure 2.8, comment on the spread of the sample in Table 2.9
and the presence of outlying values.

Solution: It can be shown from Definition 2.6 that the upper and lower quartiles are
124.5 and 98.5 oz, respectively. Hence, an outlying value x must satisty the following
relations:

x>124.5+1.5%x(124.5-98.5) =124.5+39.0=163.5
or x<98.5-1.5x(124.5-98.5)=98.5-39.0=59.5

Similarly, an extreme outlying value x must satisty the following relations:

x>124.5+3.0x (124.5 - 98.5) =124.5 + 78.0 = 202.5
or x<98.5-3.0x(124.5-98.5)=98.5-78.0=20.5

Thus, the values 32 and 58 oz are outlying values but not extreme outlying values.
These values are identified by 0’s on the box plot. A vertical bar extends from 64 oz
(the smallest nonoutlying value) to the lower quartile and from 161 oz (the largest
nonoutlying value = the largest value in the sample) to the upper quartile. The
accuracy of the two identified outlying values should probably be checked.

The methods used to identify outlying values in Definitions 2.11 and 2.12
are descriptive and unfortunately are sensitive to sample size, with more outliers
detected for larger sample sizes. Alternative methods for identifying outliers based
on a hypothesis-testing framework are given in Chapter 8.

Many more details on stem-and-leaf plots, box plots, and other exploratory data
methods are given in Tukey [4].
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32 CHAPTER 2 Descriptive Statistics

REVIEW QUESTIONS 2B

What is a stem-and-leaf plot? How does it differ from a bar graph?

2 Consider the bar graph in Figure 2.1. Is it possible to construct a stem-and-leaf plot
from the data presented? If so, construct the plot.

=
w
>
w
24

3 Consider the stem-and-leaf plot in Figure 2.6. Is it possible to construct a bar graph
from the data presented? If so, construct the plot.

4 What is a box plot? What additional information does this type of display give that
is not available from either a bar graph or stem-and-leaf plot?

29 CASE STUDY 1: EFFECTS OF LEAD EXPOSURE
ON NEUROLOGICAL AND PSYCHOLOGICAL
FUNCTION IN CHILDREN

The effects of exposure to lead on the psychological and neurological well-being of

children were studied [5]. Complete raw data for this study are in Data Set LEAD.

DAT, and documentation for this file is in Data Set LEAD.DOC. Dr. Philip Landrigan,

Mount Sinai Medical Center, New York City, provided this data set. All data sets can be
lll accessed at www.cengagebrain.com.

In summary, blood levels of lead were measured in a group of children
who lived near a lead smelter in El Paso, Texas. Forty-six children with blood-lead
levels > 40 ug/mL were identified in 1972 (a few children were identified in 1973);
this group is defined by the variable GROUP = 2. A control group of 78 children were
also identified who had blood-lead levels < 40 ug/mL in 1972 and 1973; this group
is defined by the variable GROUP = 1. All children lived close to the lead smelter.

Two important outcome variables were studied: (1) the number of finger-wrist
taps in the dominant hand (a measure of neurological function) and (2) the Wechsler
full-scale 1Q score. To explore the relationship of lead exposure to the outcome vari-
ables, we used MINITAB to obtain box plots for these two variables for children in
the exposed and control groups. These box plots are shown in Figures 2.9 and 2.10,
respectively. Because the dominant hand was not identified in the database, we used
the larger of the finger-wrist tapping scores for the right and left hand as a proxy for
the number of finger-wrist taps in the dominant hand.

We note that although there is considerable spread within each group, both
finger-wrist tapping scores (MAXFWT) and full-scale 1Q scores (IQF) seem slightly
lower in the exposed group than in the control group. We analyze these data in more
detail in later chapters, using f tests, analysis of variance, and regression methods.

210 CASE STUDY 2: EFFECTS OF TOBACCO USE
ON BONE-MINERAL DENSITY IN MIDDLE-AGED
WOMEN

A twin study was performed on the relationship between bone density and cigarette
consumption [6]. Forty-one pairs of middle-aged female twins who were discordant

for tobacco consumption (had different smoking histories) were enrolled in a study
in Australia and invited to visit a hospital in Victoria, Australia, for a measurement

[1ll Data set available
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FIGURE 2.9 Number of finger—wrist taps in the FIGURE 2.10 Wechsler full-scale IQ. scores
dominant hand for exposed and control for exposed and control
groups, El Paso Lead Study groups, El Paso Lead Study
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of bone density. Additional information was also obtained from the participants via
questionnaire, including details of tobacco use; alcohol, coffee, and tea consump-
tion; intake of calcium from dairy products; menopausal, reproductive, and fracture
history; use of oral contraceptives or estrogen replacement therapy; and assessment
of physical activity. Dr. John Hopper, University of Melbourne, School of Popula-
tion Health, Australia, provided the data set for this study, which is available at

Wl www.cengagebrain.com under the file name BONEDEN.DAT with documentation
in BONEDEN.DOC.

Tobacco consumption was expressed in terms of pack-years. One pack-year is
defined as 1 pack of cigarettes per day (usually about 20 cigarettes per pack) con-
sumed for 1 year. One advantage of using twins in a study such as this is that genetic
influences on bone density are inherently controlled for. To analyze the data, the
investigators first identified the heavier- and lighter-smoking twins in terms of pack-
years. The lighter-smoking twin usually had 0 pack-years (indicating she had never
smoked) or occasionally either smoked very few cigarettes per day and/or smoked
for only a short time. The researchers then looked at the difference in bone-mineral
density (BMD) (calculated by subtracting the BMD in the lighter-smoking twin from
the BMD in the heavier-smoking twin, expressed as a percentage of the average bone
density of the twins) as a function of the difference in tobacco use (calculated as
pack-years for the heavier-smoking twin minus pack-years for the lighter-smoking
twin). BMD was assessed separately at three sites: the femoral shaft (femur), the
femoral neck (hip), and the lumbar spine (lower back). A scatter plot showing the
relationship between the difference in BMD versus the difference in tobacco use is
given in Figure 2.11.

Note that for the lumbar spine an inverse relationship appears between the dif-
ference in BMD and the difference in tobacco use (a downward trend). Virtually all
the differences in BMD are below 0, especially for twins with a large difference in
tobacco use (230 pack-years), indicating that the heavier-smoking twin had a lower
BMD than the lighter-smoking twin. A similar relationship holds for BMD in the
femoral neck. Results are less clear for the femoral shaft.

[1ll Data set available
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FIGURE 2.11  Within-pair differences in bone density at the femoral shaft, femoral neck,
and lumbar spine as a function of within-pair differences in pack-years of
tobacco use in 41 pairs of female twins. Monozygotic (identical) twins are
represented by solid circles and dizygotic (fraternal) twins by open circles.
The difference in bone density between members of a pair is expressed as
the percentage of the mean bone density for the pair.
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Source: Based on “The bone density of female twins discordant for tobacco use,”
by J. H. Hopper and E. Seeman, 1994, The New England Journal of Medicine, 330,
387-392.

This is a classic example of a matched-pair study, which we discuss in detail begin-
ning in Chapter 8. For such a study, the exposed (heavier-smoking twin) and control
(lighter-smoking twin) are matched on other characteristics related to the outcome
(BMD). In this case, the matching is based on having similar genes. We analyze this
data set in more detail in later chapters, using methods based on the binomial distri-
bution, t tests, and regression analysis.
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211 OBTAINING DESCRIPTIVE STATISTICS
ON THE COMPUTER

Numerous statistical packages can be used to obtain descriptive statistics as well as
for other statistical functions used in probability, estimation, and hypothesis testing
that are covered later in this book. Detailed explanations for how to use Microsoft

il Excel to perform these functions can be found at www.cengagebrain.com. Read the
first chapter at www.cengagebrain.com for details on obtaining descriptive statistics
using Excel. Functions available include Average (for the arithmetic mean), Median
(for the median), Stdev (for the standard deviation), Var (for the variance), Geo-
Mean (for the geometric mean), and Percentile (for obtaining arbitrary percentiles
from a sample).

212 SUMMARY

This chapter presented several numeric and graphic methods for describing data.
These techniques are used to

(1) quickly summarize a data set

>
(2 4
<
>3
=
o
(%2}

(2) present results to others

In general, a data set can be described numerically in terms of a measure of
location and a measure of spread. Several alternatives were introduced, including
the arithmetic mean, median, mode, and geometric mean, as possible choices
for measures of location, and the standard deviation, quantiles, and range as
possible choices for measures of spread. Criteria were discussed for choosing the
appropriate measures in particular circumstances. Several graphic techniques for
summarizing data, including traditional methods, such as the bar graph, and more
modern methods characteristic of exploratory data analysis (EDA), such as the
stem-and-leaf plot and box plot, were introduced.

How do the descriptive methods in this chapter fit in with the methods of statis-
tical inference discussed later in this book? Specifically, if, based on some prespeci-
fied hypotheses, some interesting trends can be found using descriptive methods,
then we need some criteria to judge how “significant” these trends are. For this
purpose, several commonly used probability models are introduced in Chapters 3
through 5 and approaches for testing the validity of these models using the methods
of statistical inference are explored in Chapters 6 through 14.

PROBLEMS

Infectious Disease MINITAB-readable format, Excel-readable format, SAS-
readable format, SPSS-readable format, and Stata-readable

The data in Table 2.13 are a sample from a larger data set ;
format, and as a text file (R-readable format).

collected on people discharged from a selected Penn-
sylvania hospital as part of a retrospective chart review of
antibiotic usage in hospitals [7]. The data are also given
in Data Set HOSPITAL.DAT with documentation in HOS-
lill PITAL.DOC at www.cengagebrain.com. Each data set at 2.2 Compute the standard deviation and range for the
www.cengagebrain.com is available in six formats: ASCIl,  duration of hospitalization for the 25 patients.

2.1 Compute the mean and median for the duration of
hospitalization for the 25 patients.

[1ll Data set available
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TABLE 2.13 Hospital-stay data

Duration First
of Sex temp.

ID hospital 1=M following

no. stay Age 2=F admission
1 5 30 2 99.0
2 10 73 2 98.0
3 6 40 2 99.0
4 11 47 2 98.2
5 5 25 2 98.5
6 14 82 1 96.8
7 30 60 1 99.5
8 11 56 2 98.6
9 17 43 2 98.0
10 3 50 1 98.0
11 9 59 2 97.6
12 3 4 1 97.8
13 8 22 2 99.5
14 8 33 2 98.4
15 5 20 2 98.4
16 5 32 1 99.0
17 7 36 1 99.2
18 4 69 1 98.0
19 3 47 1 97.0
20 7 22 1 98.2
21 9 11 1 98.2
22 11 19 1 98.6
23 11 67 2 97.6
24 9 43 2 98.6
25 4 41 2 98.0

First Received
WBC Received bacterial

(x 10%) antibiotic? culture? Service
following 1 =yes 1 =yes 1 = med.
admission 2 =no 2 =no 2 = surg.

8 2 2 1

5 2 1 1

12 2 2 2

4 2 2 2

11 2 2 2

6 1 2 2

8 1 1 1

7 2 2 1

7 2 2 1

12 2 1 2

7 2 1 1

3 2 2 2

11 1 2 2

14 1 1 2

11 2 1 2

9 2 2 2

6 1 2 2

6 2 2 2

5 1 2 1

6 2 2 2

10 2 2 2

14 1 2 2

4 2 2 1

5 2 2 2

5 2 2 1

2.3 It is of clinical interest to know if the duration of hos-
pitalization is affected by whether a patient has received
antibiotics. Answer this question descriptively using either
numeric or graphic methods.

Suppose the scale for a data set is changed by multiplying
each observation by a positive constant.

*2.4 What is the effect on the median?

*2.5 What is the effect on the mode?

*2.6 What is the effect on the geometric mean?
*2.7 What is the effect on the range?

*Asterisk indicates that the answer to the problem is given in
the Answer Section at the back of the book.

Health Promotion

A man runs 1 mile approximately once per weekend. He re-
cords his time over an 18-week period. The individual times
and summary statistics are given in Table 2.14.
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2.8 What is the mean 1 mile running time over 18 weeks?

2.9 What is standard deviation of the 1 mile running time
over 18 weeks?

TABLE 2.14 One mile running time for an individual,
over 18 weeks

WK Time (min)(x,) WK Time (min)(x,)
1 12.80 10 11.57
2 12.20 11 11.73
3 12.25 12 12.67
4 12.18 13 11.92
5 11.53 14 11.67
6 12.47 15 11.80
7 12.30 16 12.33
8 12.08 17 12.55
9 11.72 18 11.83




Suppose we construct a new variable called time_100 =
100 x time (e.g., for week 1, time_100 = 1280).

2.10 What is the mean and standard deviation of time_1007?

2.11 Construct a stem and leaf plot of time_100 using the
first 3 most significant digits for the stem and the least sig-
nificant digit for the leaf. So, for week 1, time_100 = 1280
which has a stem = 128 and a leaf = 0.

2.12 Suppose the man does not run for 6 months over the
winter due to snow on the ground. He resumes running
once a week in the spring and records a running time =
12.97 minutes in his first week of running in the spring.

Is this an outlying value relative to the distribution of running
times recorded the previous year in Table 2.14? Why or
why not?

Hint: Construct a Box plot based on the data in Table 2.14,
and assess whether this new point is an outlier based on
Definition 2.11.

Cardiovascular Disease

The data in Table 2.15 are a sample of cholesterol levels
taken from 24 hospital employees who were on a standard
American diet and who agreed to adopt a vegetarian diet
for 1 month. Serum-cholesterol measurements were made
before adopting the diet and 1 month after. The data are

lull available at cholesterol.xls at www.cengagebrain.com.
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*2.13 Compute the mean change in cholesterol.

*2.14 Compute the standard deviation of the change in
cholesterol levels.

2.15 Construct a stem-and-leaf plot of the cholesterol
changes.

*2.16 Compute the median change in cholesterol.

2.17 Construct a box plot of the cholesterol changes to the
right of the stem-and-leaf plot.

2.18 Some investigators believe that the effects of diet
on cholesterol are more evident in people with high rather
than low cholesterol levels. If you split the data in Table 2.15
according to whether baseline cholesterol is above or
below the median, can you comment descriptively on this
issue?

Hypertension

In an experiment that examined the effect of body position on
blood pressure [8], 32 participants had their blood pressures
measured while lying down with their arms at their sides
and again standing with their arms supported at heart level.
The data are given in Table 2.16. They are also available at
www.cengagebrain.com.

[1ll Data set available
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TABLE 2.15 Serum-cholesterol levels (mg/dL) before
and after adopting a vegetarian diet

Subject Before After Difference*
1 195 146 49
2 145 155 -10
3 205 178 27
4 159 146 13
5 244 208 36
6 166 147 19
7 250 202 48
8 236 215 21
9 192 184 8

10 224 208 16

11 238 206 32

12 197 169 28

13 169 182 -13

14 158 127 31

15 151 149 2

16 197 178 19

17 180 161 19

18 222 187 35

19 168 176 -8

20 168 145 23

21 167 154 13

22 161 153 8

23 178 137 41

24 137 125 12

*Before — after.

2.19 Compute the arithmetic mean and median for the dif-
ference in systolic and diastolic blood pressure, respectively,
taken in different positions (recumbent minus standing).

2.20 Construct stem-and-leaf and box plots for the differ-
ence scores for each type of blood pressure.

2.21 Based on your answers to Problems 2.19 and 2.20,
comment on the effect of body position on the levels of
systolic and diastolic blood pressure.

2.22 Orthostatic hypertension is sometimes defined based
on an unusual change in blood pressure after changing
position. Suppose we define a normal range for change in
systolic blood pressure (SBP) based on change in SBP
from the recumbent to the standing position in Table 2.16
that is between the upper and lower decile. What should
the normal range be?

Pulmonary Disease

Forced expiratory volume (FEV) is an index of pulmonary func-
tion that measures the volume of air expelled after 1 second of

Ll constant effort. Data set FEV.DAT at www.cengagebrain.com.
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TABLE 2.16 Effect of position on blood pressure

TABLE 2.17 Format for FEV.DAT

Blood pressure (mm Hg)

Recumbent, Standing,
Participant arm at side arm at heart level
B.R.A. 997 71° 1052 79°
J.A.B. 126 74 124 76
F. L. B. 108 72 102 68
V. P.B. 122 68 114 72
M. F. B. 104 64 96 62
E. H. B. 108 60 96 56
G. C. 116 70 106 70
M. M. C. 106 74 106 76
T.JF 118 82 120 90
R.R. F. 92 58 88 60
C.R.F. 110 78 102 80
E.W.G. 138 80 124 76
T.F. H. 120 70 118 84
E.J. H. 142 88 136 90
H.B. H. 118 58 92 58
R. T.K. 134 76 126 68
W.E. L. 118 72 108 68
R. L. L. 126 78 114 76
H.S. M. 108 78 94 70
V. J. M. 136 86 144 88
R. H. P. 110 78 100 64
R.C.R. 120 74 106 70
JLAR 108 74 94 74
A KR 132 92 128 88
T.H.S. 102 68 96 64
O.E. S. 118 70 102 68
R.E. S. 116 76 88 60
E.C.T. 118 80 100 84
JHT. 110 74 96 70
F.P. V. 122 72 118 78
P. F. W. 106 62 94 56
W. J. W. 146 90 138 94

2Systolic blood pressure

bDiastolic blood pressure

Source: C. E. Kossman (1946), “Relative importance of certain variables in
the clinical determination of blood pressure,” American Journal of Medicine, 1,
464-467.

contains determinations of FEV in 1980 on 654 children
ages 3 through 19 who were seen in the Childhood Respira-
tory Disease (CRD) Study in East Boston, Massachusetts.
These data are part of a longitudinal study to follow the
change in pulmonary function over time in children [9].

[1ll Data set available
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Column Variable Format or code
1-5 ID number
7-8 Age (years)
10-15 FEV (liters) X XXX
17-20 Height (inches) XX.X
22 Sex 0 = female/1 = male
24 Smoking status 0 = noncurrent smoker/

1 = current smoker

The data in Table 2.17 are available for each child.

2.23 For each variable (other than ID), obtain appropriate
descriptive statistics (both numeric and graphic).

2.24 Use both numeric and graphic measures to assess
the relationship of FEV to age, height, and smoking status.
(Do this separately for boys and girls.)

2.25 Compare the pattern of growth of FEV by age for boys
and girls. Are there any similarities? Any differences?

Hint: Compute the mean FEV by age group (3—4/5-9/10—
14/15-19) separately for boys and girls and plot the mean
FEV by age.

Nutrition

The food-frequency questionnaire (FFQ) is an instrument
often used in dietary epidemiology to assess consump-
tion of specific foods. A person is asked to write down the
number of servings per day typically eaten in the past year
of over 100 individual food items. A food-composition table
is then used to compute nutrient intakes (protein, fat, etc.)
based on aggregating responses for individual foods. The
FFQ is inexpensive to administer but is considered less
accurate than the diet record (DR) (the gold standard of
dietary epidemiology). For the DR, a participant writes down
the amount of each specific food eaten over the past week
in a food diary and a nutritionist using a special computer
program computes nutrient intakes from the food diaries.
This is a much more expensive method of dietary recording.
To validate the FFQ, 173 nurses participating in the Nurses’
Health Study completed 4 weeks of diet recording about
equally spaced over a 12-month period and an FFQ at the
end of diet recording [10]. Data are presented in data set

lll VALID.DAT at www.cengagebrain.com for saturated fat,

total fat, total alcohol consumption, and total caloric intake
for both the DR and FFQ. For the DR, average nutrient in-
takes were computed over the 4 weeks of diet recording.
Table 2.18 shows the format of this file.

2.26 Compute appropriate descriptive statistics for each
nutrient for both DR and FFQ, using both numeric and
graphic measures.
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TABLE 2.18 Format for VALID.DAT

Variable Format or code
ID number XXXXX. XX
Saturated fat—DR (g) XXXXX.XX
Saturated fat—FFQ (g) XXXXX. XX
Total fat—DR (g) XXXXX. XX
Total fat—FFQ (g) XXXXX. XX
Alcohol consumption—DR (0z) XXXXX.XX
Alcohol consumption—FFQ (0z) XXXXX. XX
Total calories—DR (K-cal) XXXXXX. XX
Total calories—FFQ (K-cal) XXXXXX. XX

2.27 Use descriptive statistics to relate nutrient intake for
the DR and FFQ. Do you think the FFQ is a reasonably ac-
curate approximation to the DR? Why or why not?

2.28 A frequently used method for quantifying dietary intake
is in the form of quintiles. Compute quintiles for each nutri-
ent and each method of recording, and relate the nutrient
composition for DR and FFQ using the quintile scale. (That
is, how does the quintile category based on DR relate to the
quintile category based on FFQ for the same individual?)
Do you get the same impression about the concordance
between DR and FFQ using quintiles as in Problem 2.27, in
which raw (ungrouped) nutrient intake is considered?

In nutritional epidemiology, it is customary to assess nutrient
intake in relation to total caloric intake. One measure used
to accomplish this is nutrient density, which is defined as
100% x (caloric intake of a nutrient/total caloric intake). For
fat consumption, 1 g of fat is equivalent to 9 calories.

2.29 Compute the nutrient density for total fat for the DR
and FFQ, and obtain appropriate descriptive statistics for
this variable. How do they compare?

2.30 Relate the nutrient density for total fat for the DR
versus the FFQ using the quintile approach in Problem
2.28. Is the concordance between total fat for DR and FFQ
stronger, weaker, or the same when total fat is expressed in
terms of nutrient density as opposed to raw nutrient?

Environmental Health, Pediatrics

In Section 2.9, we described Data Set LEAD.DAT (at www
.cengagebrain.com) concerning the effect of lead exposure
on neurological and psychological function in children.

2.31 Compare the exposed and control groups regarding
age and gender, using appropriate numeric and graphic
descriptive measures.

2.32 Compare the exposed and control groups regarding
verbal and performance 1Q, using appropriate numeric and
graphic descriptive measures.

[1ll Data set available
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Cardiovascular Disease

Activated-protein-C (APC) resistance is a serum marker that
has been associated with thrombosis (the formation of blood
clots often leading to heart attacks) among adults. A study as-
sessed this risk factor among adolescents. To assess the re-
producibility of the assay, a split-sample technique was used
in which a blood sample was provided by 10 people; each
sample was split into two aliquots (sub-samples), and each
aliquot was assessed separately. Table 2.19 gives the results.

TABLE 2.19 APC resistance split-samples data

Sample number A B A-B
1 2.22 1.88 0.34
2 3.42 3.59 -0.17
3 3.68 3.01 0.67
4 2.64 2.37 0.27
5 2.68 2.26 0.42
6 3.29 3.04 0.25
7 3.85 3.57 0.28
8 2.24 2.29 —0.05
9 3.25 3.39 -0.14

10 3.30 3.16 0.14

2.33 To assess the variability of the assay, the investigators
need to compute the coefficient of variation. Compute the
coefficient of variation (CV) for each subject by obtaining
the mean and standard deviation over the 2 replicates for
each subject.

2.34 Compute the average CV over the 10 subjects as an
overall measure of variability of the assay. In general, a CV of
<10% is considered excellent, 210% and <20% is consid-
ered good, 220% and <30% is considered fair, and >30%
is considered poor.

How would you characterize the reliability of the APC assay
based on these criteria?

Microbiology

A study was conducted to demonstrate that soy beans in-
oculated with nitrogen-fixing bacteria yield more and grow
adequately without expensive environmentally deleterious
synthesized fertilizers. The trial was conducted under con-
trolled conditions with uniform amounts of soil. The initial hy-
pothesis was that inoculated plants would outperform their
uninoculated counterparts. This assumption is based on the
facts that plants need nitrogen to manufacture vital proteins
and amino acids and that nitrogen-fixing bacteria would
make more of this substance available to plants, increasing
their size and yield. There were 8 inoculated plants (/) and 8
uninoculated plants (U). The plant yield as measured by pod
weight for each plant is given in Table 2.20.

2.35 Compute appropriate descriptive statistics for / and
U plants.
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TABLE 2.20 Pod weight (g) from inoculated (/)
and uninoculated (U) plants

Sample number / U

1 1.76 0.49
2 1.45 0.85
3 1.08 1.00
4 1.583 1.54
5 2.34 1.01
6 1.96 0.75
7 1.79 2.11
8 1.21 0.92

Note: The data for this problem were supplied by David Rosner.

2.36 Use graphic methods to compare the two groups.

2.37 What is your overall impression concerning the pod
weight in the two groups?

Endocrinology
In Section 2.10, we described Data Set BONEDEN.DAT

luli (at www.cengagebrain.com) concerning the effect of

tobacco use on BMD.

2.38 For each pair of twins, compute the following for the
lumbar spine:

A =BMD for the heavier-smoking twin — BMD for the
lighter-smoking twin = x, — x,
B = mean BMD for the twinship = (x, + x,)/2
C =100% x (A/B)
Derive appropriate descriptive statistics for C over the
entire study population.

2.39 Suppose we group the twin pairs according to the
difference in tobacco use expressed in 10 pack-year

groups (0-9.9 pack-years/10—19.9 pack-years/20-29.9
pack-years/30—-39.9 pack-years/40+ pack-years). Com-
pute appropriate descriptive statistics, and provide a scat-
ter plot for C grouped by the difference in tobacco use in
pack-years.

2,40 What impression do you have of the relationship be-
tween BMD and tobacco use based on Problem 2.397?

2.41-2.43 Answer Problems 2.38-2.40 for BMD for the
femoral neck.

2.44-2.46 Answer Problems 2.38-2.40 for BMD for the
femoral shaft.

Cardiovascular Disease

The Left Ventricular Mass Index (LVMI) is a measure of the
enlargement of the left side of the heart and is expressed
in the units (gm/ht(m)27). High values may predict subse-
quent cardiovascular disease in children as they get older
(Urbina et al., [11]). A study is performed to relate the level
of LVMI to blood pressure category in children and ado-
lescents age 10—18. The bp level of children was catego-
rized as either Normal (bpcat = 1 or bp percentile < 80%
for a given age, gender, and height), Pre-Hypertensive
(bpcat = 2 or bp percentile > 80% and bp percentile
< 90%), or Hypertensive (bpcat = 3 or bp percentile >
90%). The data are available in the data set LVM.XLS at
www.cengagebrain.com

2.47 What is the arithmetic mean of LVMI by blood pres-
sure group?

2.48 What is the geometric mean of LVMI by blood pres-
sure group?

2.49 Provide a box plot of LVMI by blood pressure group.
2.50 Based on the box plot, does the arithmetic mean or

the geometric mean provide a more appropriate measure of
location for this type of data?
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INTRODUCTION

Chapter 2 outlined various techniques for concisely describ-
ing data. But we usually want to do more with data than just
describe them. In particular, we might want to test certain
specific inferences about the behavior of the data.

Cancer One theory concerning the etiology of breast cancer states that women in
a given age group who give birth to their first child relatively late in life (after age 30)
are at greater risk for eventually developing breast cancer over some time period ¢
than are women who give birth to their first child early in life (before age 20). Be-
cause women in upper social classes tend to have children later, this theory has been
used to explain why these women have a higher risk of developing breast cancer
than women in lower social classes. To test this hypothesis, we might identify 2000
postmenopausal women from a particular census tract who are currently ages 45-54
and have never had breast cancer, of whom 1000 had their first child before the age
of 20 (call this group A) and 1000 after the age of 30 (group B). These 2000 women
might be followed for 5 years to assess whether they developed breast cancer during
this period. Suppose there are four new cases of breast cancer in group A and five
new cases in group B.

Is this evidence enough to confirm a difference in risk between the two groups?
Most people would feel uneasy about concluding that on the basis of such a limited
amount of data.

Suppose we had a more ambitious plan and sampled 10,000 postmenopausal
women each from groups A and B and at follow-up found 40 new cases in group A
and 50 new cases in group B and asked the same question. Although we might be
more comfortable with the conclusion because of the larger sample size, we would
still have to admit that this apparent difference in the rates could be due to chance.

The problem is that we need a conceptual framework to make these decisions
but have not explicitly stated what the framework is. This framework is provided by
the underlying concept of probability. In this chapter, probability is defined and
some rules for working with probabilities are introduced. Understanding probability
is essential in calculating and interpreting p-values in the statistical tests of subse-
quent chapters. It also permits the discussion of sensitivity, specificity, and predic-
tive values of screening tests in Section 3.7.
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3.2 DEFINITION OF PROBABILITY

Obstetrics The data in Table 3.1 provide the proportion of women of childbearing
age (ages 15-44) who have given birth in the past year by marital status and time
period. [1] It appears that the birth rate has been declining over time for married
women but increasing over time for unmarried women. However, these are empirical
probabilities based on a finite amount of data. In principle, the sample size could be
expanded indefinitely and a more precise estimate of the probability obtained.

TABLE 3.1 Proportion of women of childbearing age who have given birth in the past year

Year Unmarried Married
1980 0.029 0.097
1990 0.044 0.093
2000 0.044 0.087
2010 0.048 0.084

This principle leads to the following definition of probability:

DEFINITION 3.1  The sample space is the set of all possible outcomes. In referring to probabilities of
events, an event is any set of outcomes of interest. The probability of an event is
the relative frequency of this set of outcomes over an indefinitely large (or infinite)
number of trials.

Pulmonary Disease The tuberculin skin test is a routine screening test used to detect
tuberculosis. The results of this test can be categorized as either positive, negative, or
uncertain. If the probability of a positive test is .1, it means that if a large number of
such tests were performed, about 10% would be positive. The actual percentage of
positive tests will be increasingly close to .1 as the number of tests performed increases.

DN iAbs <ol Cancer The probability of developing breast cancer over 40 years in 30-year-old
women who have never had breast cancer is approximately 1/11. This probability

means that over a large sample of 30-year-old women who have never had breast
cancer, approximately 1 in 11 will develop the disease by age 70, with this proportion
becoming increasingly close to 1 in 11 as the number of women sampled increases.

In real life, experiments cannot be performed an infinite number of times.
Instead, probabilities of events are estimated from the empirical probabilities
obtained from large samples (as in Examples 3.2-3.4). In other instances, theoretical-
probability models are constructed from which probabilities of many different kinds
of events can be computed. An important issue in statistical inference is to compare
empirical probabilities with theoretical probabilities—that is, to assess the goodness-
of-fit of probability models. This topic is covered in Section 10.7.

OV Bs i s Cancer  The probability of developing stomach cancer over a 1-year period in
45- to 49-year-old women, based on SEER Tumor Registry data from 2002 to 2006,

is 3.7 per 100,000 [2]. Suppose we have studied cancer rates in a small group of U.S.
nurses over this period and want to compare how close the rates from this limited
sample are to the tumor-registry figures. The value 3.7 per 100,000 would be the best
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estimate of the probability before collecting any data, and we would then see how
closely our new sample data conformed with this probability.

From Definition 3.1 and from the preceding examples, we can deduce that prob-
abilities have the following basic properties:

EQUATION 3.1 (1) The probability of an event E, denoted by Pr(E), always satisfies O < Pr(E) < 1.

(2) If outcomes A and B are two events that cannot both happen at the same
time, then Pr(A or B occurs) = Pr(A) + Pr(B).

Hypertension Let A be the event that a person has normotensive diastolic blood-
pressure (DBP) readings (DBP < 90), and let B be the event that a person has border-
line DBP readings (90 < DBP < 95). Suppose that Pr(A) = .7, and Pr(B) = .1. Let Z be
the event that a person has a DBP < 95. Then

Pr(Z)=Pr(A)+Pr(B)=.8

because the events A and B cannot occur at the same time.

DEFINITION 3.2  Two events A and B are mutually exclusive if they cannot both happen at the same
time.

Thus the events A and B in Example 3.6 are mutually exclusive.

EXAMPLE 3.7

Hypertension Let X be DBP, C be the event X > 90, and D be the event 75 < X < 100.
Events C and D are not mutually exclusive, because they both occur when 90 < X < 100.

3.3 SOME USEFUL PROBABILISTIC NOTATION

DEFINITION 3.3  The symbol { } is used as shorthand for the phrase “the event.”

DEFINITION 3.4 A u Bis the event that either A or B occurs, or they both occur.

Figure 3.1 diagrammatically depicts A U B both for the case in which A and B are
and are not mutually exclusive.

EXAMPLE 3.8

Hypertension Let events A and B be defined as in Example 3.6: A = {X < 90},
B=1{90 < X <95}, where X = DBP. Then A U B = {X < 95}.

EXAMPLE 3.9 Hypertension Let events C and D be defined as in Example 3.7:

C={X290} D={75<X<100}

Then C U D = {X > 75}
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FIGURE 3.1 Diagrammatic representation of A U B: (a) A, B mutually exclusive;
(b) A, B not mutually exclusive

B
A U B shaded
(@
A
\ B
A U B shaded
(b)

DEFINITION 3.5 A n B is the event that both A and B occur simultaneously. A n B is depicted dia-
grammatically in Figure 3.2.

EXAMPLE 3.10 Hypertension Let events C and D be defined as in Example 3.7; that is,
C={X=290} D={75<X <100}
Then C n D =1{90 < X <100}
Notice that A n B is not well defined for events A and B in Example 3.6 because

both A and B cannot occur simultaneously. This is true for any mutually exclusive
events.

FIGURE 3.2 Diagrammatic representation of A N B

A N B shaded
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FIGURE 3.3 Diagrammatic representation of A

DEFINITION 3.6 A is the event that A does not occur. It is called the complement of A. Notice that
Pr(A) =1-Pr(A), because A occurs only when A does not occur. Event A is dia-
grammed in Figure 3.3.

EXAMPLE 3.11 Hypertension Let events A and C be defined as in Examples 3.6 and 3.7; that is,
A={X <90} C={X=>90}

Then C = A, because C can only occur when A does not occur. Notice that

Pr(C)=Pr(A)=1-7=23

Thus, if 70% of people have DBP < 90, then 30% of people must have DBP > 90.

34 THE MULTIPLICATION LAW OF PROBABILITY

In the preceding section, events in general were described. In this section, certain
specific types of events are discussed.

s i Hypertension, Genetics  Suppose we are conducting a hypertension-screening pro-
gram in the home. Consider all possible pairs of DBP measurements of the mother

and father within a given family, assuming that the mother and father are not
genetically related. This sample space consists of all pairs of numbers of the form
(X, Y) where X > 0, Y > 0. Certain specific events might be of interest in this context.
In particular, we might be interested in whether the mother or father is hypertensive,
which is described, respectively, by events A = {mother’s DBP > 90}, B = {father’s DBP
> 90}. These events are diagrammed in Figure 3.4.

Suppose we know that Pr(A) = .1, Pr(B) = .2. What can we say about Pr(A N B) =
Pr(mother’s DBP > 90 and father’s DBP > 90) = Pr(both mother and father are
hypertensive)? We can say nothing unless we are willing to make certain
assumptions.

DEFINITION 3.7 Two events A and B are called independent events if

Pr(AnB)=Pr(A)x Pr(B)
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FIGURE 3.4 Possible diastolic blood-pressure measurements
of the mother and father within a given family

Father’s DBP

90

0 90 Mother’s DBP
[ ] =eventA ={mother’s DBP > 90}

[ ] =eventB={father’s DBP > 90}

[[] =eventA N B={both DBP > 90}

O idRs i Hypertension, Genetics  Compute the probability that both mother and father are
hypertensive if the events in Example 3.12 are independent.

Solution: If A and B are independent events, then

Pr(AnB)=Pr(A)x Pr(B)=.1(.2) =.02

One way to interpret this example is to assume that the hypertensive status of the
mother does not depend at all on the hypertensive status of the father. Thus, if these
events are independent, then in 10% of all households where the father is hypertensive
the mother is also hypertensive, and in 10% of all households where the father is not
hypertensive the mother is hypertensive. We would expect these two events to be inde-
pendent if the primary determinants of elevated blood pressure were genetic. However, if
the primary determinants of elevated blood pressure were, to some extent, environmen-
tal, then we would expect the mother would be more likely to have elevated blood pres-
sure (A true) if the father had elevated blood pressure (B true) than if the father did not
have elevated blood pressure (B not true). In this latter case the events would not be inde-
pendent. The implications of this lack of independence are discussed later in this chapter.

If two events are not independent, then they are said to be dependent.

DEFINITION 3.8 Two events A, B are dependent if

Pr(AnB) = Pr(A)x Pr(B)

Example 3.14 is a classic example of dependent events.

EXAMPLE 3.14 Hypertension, Genetics Consider all possible DBP measurements from a mother
and her first-born child. Let

A={mother’sDBP 290} B = {first-bornchild’sDBP >80}
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Suppose Pr(An B)=.05 Pr(A) =.1 Pr(B)=.2
Then Pr(A n B) =.05 > Pr(A) x Pr(B) = .02

and the events A, B would be dependent.

This outcome would be expected because the mother and first-born child both
share the same environment and are genetically related. In other words, the first-
born child is more likely to have elevated blood pressure in households where the
mother is hypertensive than in households where the mother is not hypertensive.

RS il Sexually Transmitted Disease  Suppose two doctors, A and B, test all patients com-
ing into a clinic for syphilis. Let events A* = {doctor A makes a positive diagnosis}

and B* = {doctor B makes a positive diagnosis}. Suppose doctor A diagnoses 10% of
all patients as positive, doctor B diagnoses 17% of all patients as positive, and both
doctors diagnose 8% of all patients as positive. Are the events A*, B* independent?

Solution: We are given that
Pr(A*)=1  Pr(B*)=.17  Pr(A*nB*)=.08
Thus, Pr(A* A B*)=.08 > Pr(A")x Pr(B*)=.1(.17) = 017

and the events are dependent. This result would be expected because there should be
a similarity between how two doctors diagnose patients for syphilis.

Definition 3.7 can be generalized to the case of k(>2) independent events. This is
often called the multiplication law of probability.

EQUATION 3.2 Multiplication Law of Probability
IfA, ..., A, are mutually independent events,
then Pr(A, A, n...0 A )=Pr(A )xPr(A,)x...x Pr(A,)

35 THE ADDITION LAW OF PROBABILITY

We have seen from the definition of probability that if A and B are mutually ex-
clusive events, then Pr(A U B) = Pr(A) + Pr(B). A more general formula for Pr(A U B)
can be developed when events A and B are not necessarily mutually exclusive. This
formula, the addition law of probability, is stated as follows:

EQUATION 3.3 Addition Law of Probability
If A and B are any events,
then Pr(A U B) = Pr(A) + Pr(B) — Pr(A n B)

This principle is diagrammed in Figure 3.5. Thus, to compute Pr(A U B), add the
probabilities of A and B separately and then subtract the overlap, which is Pr(A N B).
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FIGURE 3.5 Diagrammatic representation of the addition law of probability

A~ B
-4
-5
E-Ans

O Es S Sexually Transmitted Disease  Consider the data in Example 3.15. Suppose a patient
is referred for further lab tests if either doctor A or B makes a positive diagnosis.
What is the probability that a patient will be referred for further lab tests?

Solution: The event that either doctor makes a positive diagnosis can be represented
by A* U B*. We know that

Pr(A*)=1  Pr(B")=17  Pr(A"nB*)=.08
Therefore, from the addition law of probability,

pr(A* uB*): Pr(A+)+Pr(B+)—Pr(A+ mB+)= 1+.17-.08=.19

Thus, 19% of all patients will be referred for further lab tests.

Special cases of the addition law are of interest. First, if events A and B are mutu-
ally exclusive, then Pr(A n B) = 0 and the addition law reduces to Pr(A U B) = Pr(A) +
See page 44 for Pr(B). This property is given in Equation 3.1 for probabilities over any two mutu-
EQUATION 3.1 ally exclusive events. Second, if events A and B are independent, then by definition
Pr(A n B) = Pr(A) x Pr(B) and Pr(A U B) can be rewritten as Pr(A) + Pr (B) — Pr(A) x

Pr(B). This leads to the following important special case of the addition law.

EQUATION 3.4 Addition Law of Probability for Independent Events
If two events A and B are independent, then

Pr(AUB) = Pr(A)+Pr(B)x[1-Pr(A)]

This special case of the addition law can be interpreted as follows: The event A U B
can be separated into two mutually exclusive events: {4 occurs} and {B occurs and
A does not occur}. Furthermore, because of the independence of A and B, the prob-
ability of the latter event can be written as Pr(B) x [1 — Pr(A)]. This probability is
diagrammed in Figure 3.6.
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FIGURE 3.6 Diagrammatic representation of the addition law
of probability for independent events

“~BNA

-4 )

|:| = {B occurs and A does not occur} =B N A

EXAMPLE 3.17 Hypertension Look at Example 3.12, where

A={mother’'s DBP >90} and B ={father’s DBP >90}

Pr(A) = .1, Pr(B) = .2, and assume A and B are independent events. Suppose a
“hypertensive household” is defined as one in which either the mother or the
father is hypertensive, with hypertension defined for the mother and father, re-
spectively, in terms of events A and B. What is the probability of a hypertensive
household?

Solution: Pr(hypertensive household) is

Pr(AUB)=Pr(A)+Pr(B)x[1-Pr(A)]=.1+.2(.9)=.28

Thus, 28% of all households will be hypertensive.

It is possible to extend the addition law to more than two events. In particular, if
there are three events A, B, and C, then

Pr(AUBUC)=Pr(A)+Pr(B)+Pr(C)=Pr(AnB)—Pr(AnC)=Pr(BAC)+ Pr(AnBAC)

This result can be generalized to an arbitrary number of events, although that is
beyond the scope of this text (see [3]).

3.6 CONDITIONAL PROBABILITY

Suppose we want to compute the probability of several events occurring simultane-
ously. If the events are independent, then we can use the multiplication law of prob-
ability to do so. If some of the events are dependent, then a quantitative measure
of dependence is needed to extend the multiplication law to the case of dependent
events. Consider the following example:

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



3.6  Conditional Probability 51

Cancer Physicians recommend that all women over age 50 be screened for breast
cancer. The definitive test for identifying breast tumors is a breast biopsy. However,
this procedure is too expensive and invasive to recommend for all women over the
age of 50. Instead, women in this age group are encouraged to have a mammogram
every 1 to 2 years. Women with positive mammograms are then tested further with
a biopsy. Ideally, the probability of breast cancer among women who are mammo-
gram positive would be 1 and the probability of breast cancer among women who
are mammogram negative would be 0. The two events {mammogram positive} and
{breast cancer} would then be completely dependent; the results of the screening test
would automatically determine the disease state. The opposite extreme is achieved
when the events {mammogram positive} and {breast cancer} are completely inde-
pendent. In this case, the probability of breast cancer would be the same regardless
of whether the mammogram is positive or negative, and the mammogram would
not be useful in screening for breast cancer and should not be used.

These concepts can be quantified in the following way. Let A = {mammogram®},
B = {breast cancer}, and suppose we are interested in the probability of breast cancer
(B) given that the mammogram is positive (A). This probability can be written
Pr(A n B)/Pr(A).

DEFINITION 3.9  The quantity Pr(A n B)/Pr(A) is defined as the conditional probability of B given A,
which is written Pr(B|A).

However, from Section 3.4 we know that, by definition of the multiplication law
of probability, if two events are independent, then Pr(A N B) = Pr(A) x Pr(B). If both
sides are divided by Pr(A), then Pr(B) = Pr(A n B)/Pr(A) = Pr(B| A). Similarly, we can
show that if A and B are independent events, then Pr(B|A) = Pr(BIA) = Pr(B). This
relationship leads to the following alternative interpretation of independence in
terms of conditional probabilities.

EQUATION 3.5 (1) If A and B are independent events, then Pr(BIA)= Pr(B) = Pr(BIA).

(2) If two events A, B are dependent, then Pr(BIA)# Pr(B)# Pr(BIA) and
Pr(A n B) # Pr(A) x Pr(B).

DEFINITION 3.10 The relative risk (RR) of B given A is
Pr(BIA)/Pr(BIA)

Notice that if two events A, B are independent, then the RR is 1. If two events A, B
are dependent, then the RR is different from 1. Heuristically, the more the depen-
dence between events increases, the further the RR will be from 1.

Cancer Suppose that among 100,000 women with negative mammograms 20 will
be diagnosed with breast cancer within 2 years, or Pr(BlA) = 20/10° =.0002, whereas
1 woman in 10 with positive mammograms will be diagnosed with breast cancer with-
in 2 years, or Pr(BIA) = .1. The two events A and B would be highly dependent, because

RR= Pr(BIA) / Pr(BIZ) =.1/.0002 = 500
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In other words, women with positive mammograms are 500 times more likely to
develop breast cancer over the next 2 years than are women with negative mammo-
grams. This is the rationale for using the mammogram as a screening test for breast
cancer. If events A and B were independent, then the RR would be 1; women with
positive or negative mammograms would be equally likely to have breast cancer,
and the mammogram would not be useful as a screening test for breast cancer.

Sexually Transmitted Disease Using the data in Example 3.15, find the conditional
probability that doctor B makes a positive diagnosis of syphilis given that doctor A
makes a positive diagnosis. What is the conditional probability that doctor B makes
a positive diagnosis of syphilis given that doctor A makes a negative diagnosis?
What is the RR of B given A*?

Solution: Pr(B+|A+) = Pr(B* mA+)/Pr(A+) -.08/.1=.8

Thus, doctor B will confirm doctor A’s positive diagnoses 80% of the time. Similarly,
Pr(BlA7)=Pr(B* A7) [Pr(A7) = Pr(B* n A7) /9

We must compute Pr(B* N A-). We know that if doctor B diagnoses a patient as posi-
tive, then doctor A either does or does not confirm the diagnosis. Thus,

Pr(B*)=Pr(B* A A%)+Pr(B* A7)

because the events B- N A* and B* n A~ are mutually exclusive. If we subtract Pr(B* N A*)
from both sides of the equation, then

Pr(B* mA*) = Pr(B*)-Pr(B* mA*) =.17-.08=.09
Therefore, Pr(B*|A™)=.09/9=.1

Thus, when doctor A diagnoses a patient as negative, doctor B will contradict the
diagnosis 10% of the time. The RR of the event B* given A* is

pr(B'la*)/ pr(Bla")=8/.1=8
This indicates that doctor B is 8 times as likely to diagnose a patient as positive
when doctor A diagnoses the patient as positive than when doctor A diagnoses the

patient as negative. These results quantify the dependence between the two doctors’
diagnoses.

REVIEW QUESTIONS 3A

What is the frequency definition of probability?

What is the difference between independent and dependent events?

=
w
>
w
24

What are mutually exclusive events?
What is the addition law of probability?
What is conditional probability? How does it differ from unconditional probability?

o G b ON =

What is relative risk? How do you interpret it?

Total-Probability Rule

The conditional (Pr(BIA), Pr(BIZ)) and unconditional (Pr(B)) probabilities men-
tioned previously are related in the following way:
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EQUATION 3.6 For any events A and B,
Pr(B) = Pr(BI A)x Pr(A)+Pr(BI A)x Pr(A)

This formula tells us that the unconditional probability of B is the sum of the
conditional probability of B given A times the unconditional probability of A plus
the conditional probability of B given A not occurring times the unconditional prob-
ability of A not occurring.

To derive this, we note that if the event B occurs, it must occur either with A or
without A. Therefore,

Pr(B)=Pr(Bn A)+ Pr(Bn A)
From the definition of conditional probability, we see that
Pr(Bn A) = Pr(A)x Pr(BlA)
and
Pr(Bn A) = Pr(A)x Pr(BIA)
By substitution, it follows that
Pr(B) = Pr(BlA) Pr(A)+ Pr(BIA) Pr(A)

Stated another way, the unconditional probability of B is a weighted average of
the probabilities of B occurring in two mutually exclusive subsets (4, A), where the
weights are the probabilities of the subsets (Pr 14), Pr(A), respectively.

Cancer Let A and B be defined as in Example 3.19, and suppose that 7% of the gen-
eral population of women will have a positive mammogram. What is the probability
of developing breast cancer over the next 2 years among women in the general
population?

Solution:  Pr(B)= Pr(breastcancer)
= Pr(breastcancer | mammogram®)x Pr(mammogram®)
+ Pr(breast cancer | mammogram‘) X Pr(mammogram‘)

=.1(.07)+.0002(.93) = .00719 = 719/ 10°

Thus, the unconditional probability of developing breast cancer over the next
2 years in the general population (719/10%) is a weighted average of the conditional
probability of developing breast cancer over the next 2 years among women with
a positive mammogram (.1) and the conditional probability of developing breast
cancer over the next 2 years among women with a negative mammogram (20/105),
with weights of 0.07 and 0.93 corresponding to mammogram* and mammogram-
women, respectively.

In Equation 3.6 the probability of event B is expressed in terms of two mutually
exclusive events A and A. In many instances the probability of an event B can be

determined in more than two mutually exclusive subsets, denotedby A, A,, ..., A,.

DEFINITION 3.11 AsetofeventsA, ..., A, is exhaustive if at least one of the events must occur.
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Assume that events A , . . ., A, are mutually exclusive and exhaustive; that is, at
least one of the events Al, cee, Ak must occur and no two events can occur simultane-
ously. Thus, exactly one of the events A, . . ., A, must occur.

EQUATION 3.7 Total-Probability Rule

Let A, ..., A be mutually exclusive and exhaustive events. The unconditional
probability of B (Pr(B)) can then be written as a weighted average of the condi-
tional probabilities of B given Ai(Pr(B |A,-)) with weights = Pr(A,) as follows:

Pr(B):ﬁPr(BIA,.)xH(A,.)

To show this, we note that if B occurs, then it must occur together with one and only
one of the events, A, . . ., A,. Therefore,

-

Il
—

Pr(B)=Y Pr(Bn4;)

1

Also, from the definition of conditional probability,
Pr(Br A;)=Pr(A;)x Pr(Bl4))

By substitution, we obtain Equation 3.7.
An application of the total-probability rule is given in the following example:

Ophthalmology We are planning a 5-year study of cataract in a population of
5000 people 60 years of age and older. We know from census data that 45% of this
population is 60-64 years of age, 28% are 65-69 years of age, 20% are 70-74 years
of age, and 7% are 75 or older. We also know from the Framingham Eye Study
that 2.4%, 4.6%, 8.8%, and 15.3% of the people in these respective age groups will
develop cataract over the next 5 years [4]. What percentage of the population in
our study will develop cataract over the next 5 years, and how many people with
cataract does this percentage represent?

Solution: Let A, = {ages 60-64}, A, = {ages 65-69}, A, = {ages 70-74}, A, = {ages 75+}.
These events are mutually exclusive and exhaustive because each person in our
population must be in one and only one age group. Furthermore, from the conditions
of the problem we know that Pr(A)) = .45, Pr(A,) = .28, Pr(A,) = .20, Pr(A) = .07,
Pr(BIA)) = .024, Pr(BIA,) = .046, Pr(BIA,) =.088, and Pr(BIA,) =.153, where B = {develop
cataract in the next 5 years}. Finally, using the total-probability rule,

Pr(B) = Pr(BIA; ) x Pr(A;)+ Pr(BlA; ) x Pr(A,)
+ Pr(BlAg ) x Pr(Ay) + Pr(BlA, ) x Pr(A,)
= .024(.45)+.046(.28) +.088(.20) +.153(.07) = .052

Thus 5.2% of this population will develop cataract over the next 5 years, which
represents a total of 5000 x .052 = 260 people with cataract.

The definition of conditional probability also allows the multiplication law of
probability to be extended to the case of dependent events.
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EQUATION 3.8 Generalized Multiplication Law of Probability
IfA, ..., A, are an arbitrary set of events, then
Pr(A N Ay nn A
= Pr(Ay)x Pr(Aglay)x Pr(Asldy o Ay ) x - x Pr( Al A - Ay 2 4y)

If the events are independent, then the conditional probabilities on the right-
See page 48 for hand side of Equation 3.8 reduce to unconditional probabilities and the generalized
EQUATION 3.2 multiplication law reduces to the multiplication law for independent events given
in Equation 3.2. Equation 3.8 also generalizes the relationship Pr(A n B) = Pr(A) x
Pr(BIA) given in Definition 3.9 for two events to the case of more than two

events.

REVIEW QUESTIONS 3B

What is the total-probability rule?

2 Suppose the rate of type Il diabetes mellitus (DM) in 40- to 59-year-olds is 7%
among Caucasians, 10% among African Americans, 12% among Hispanics, and
5% among Asian Americans. Suppose the ethnic distribution in Houston, Texas,
among 40- to 59-year-olds is 30% Caucasian, 25% African American, 40% His-
panic, and 5% Asian American. What is the overall probability of type Il DM among
40- to 59-year-olds in Houston?

=
w
>
w
(24

3.7 BAYES' RULE AND SCREENING TESTS

The mammography test data given in Example 3.18 illustrate the general concept of
the predictive value of a screening test, which can be defined as follows:

DEFINITION 3.12 The predictive value positive (PV*) of a screening test is the probability that a per-
son has a disease given that the test is positive.

Pr(disease | test*)

The predictive value negative (PV-) of a screening test is the probability that a
person does not have a disease given that the test is negative.

Pr(no disease | test-)

DBt eii s Cancer Find PV*and PV-for mammography given the data in Example 3.19.

Solution: We see that PV* = Pr(breast cancer | mammogram®) = .1

whereas PV~ = Pr(breast cancer- | mammogram-)
=1 — Pr(breast cancer | mammogram-) = 1 —.0002 = .9998

Thus, if the mammogram is negative, the woman is virtually certain not to develop
breast cancer over the next 2 years (PV- = 1); whereas if the mammogram is positive,
the woman has a 10% chance of developing breast cancer (PV* =.10).
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56 CHAPTER 3 Probability

A symptom or a set of symptoms can also be regarded as a screening test for
disease. The higher the PV of the screening test or symptoms, the more valuable the
test will be. Ideally, we would like to find a set of symptoms such that both PV*and
PV-are 1. Then we could accurately diagnose disease for each patient. However, this
is usually impossible.

Clinicians often cannot directly measure the PV of a set of symptoms. How-
ever, they can measure how often specific symptoms occur in diseased and normal
people. These measures are defined as follows:

DEFINITION 3.13  The sensitivity of a symptom (or set of symptoms or screening test) is the probabil-
ity that the symptom is present given that the person has a disease.

DEFINITION 3.14  The specificity of a symptom (or set of symptoms or screening test) is the probabil-
ity that the symptom is not present given that the person does not have a disease.

DEFINITION 3.15 A false negative is defined as a negative test result when the disease or condition
being tested for is actually present. A false positive is defined as a positive test result
when the disease or condition being tested for is not actually present.

For a symptom to be effective in predicting disease, it is important that both the
sensitivity and specificity be high.

| O dRs el Cancer  Suppose the disease is lung cancer and the symptom is cigarette smoking.
If we assume that 90% of people with lung cancer and 30% of people without lung

cancer (essentially the entire general population) are smokers, then the sensitivity
and specificity of smoking as a screening test for lung cancer are .9 and .7, respec-
tively. Obviously, cigarette smoking cannot be used by itself as a screening criterion
for predicting lung cancer because there will be too many false positives (people
without cancer who are smokers).

B i el Cancer  Suppose the disease is breast cancer in women and the symptom is having
a family history of breast cancer (either a mother or a sister with breast cancer). If we

assume 5% of women with breast cancer have a family history of breast cancer but
only 2% of women without breast cancer have such a history, then the sensitivity of
a family history of breast cancer as a predictor of breast cancer is .05 and the speci-
ficity is .98 = (1 — .02). A family history of breast cancer cannot be used by itself to
diagnose breast cancer because there will be too many false negatives (women with
breast cancer who do not have a family history).

REVIEW QUESTIONS 3C

What is the sensitivity and specificity of a screening test?

2  What are the PV*and PV~ of a screening test? How does PV differ from sensitivity
and specificity?

=
w
>
w
24

3 The level of prostate-specific antigen (PSA) in the blood is frequently used as a screen-
ing test for prostate cancer. Punglia et al. [5] reported the following data regarding the
relationship between a positive PSA test (>4.1 ng/dL) and prostate cancer.
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TABLE 3.2 Association between PSA and prostate cancer

PSA test result Prostate cancer Frequency
+ + 92
+ - 27
_ + 46
- - 72

(@) What are the sensitivity and specificity of the test?
(b) What are the PV*and PV~ of the test?

Bayes’ Rule

Review Question 3C.3 assumes that each PSA* and PSA- participant (or at least a
representative sample of PSA* and PSA- participants) is evaluated for the presence
of prostate cancer. Thus, one can directly evaluate PV* and PV- from the data pro-
vided. Instead, in many screening studies, a random sample of cases and controls is
obtained. One can estimate sensitivity and specificity from such a design. However,
because cases are usually oversampled relative to the general population (e.g., if
there are an equal number of cases and controls), one cannot directly estimate PV*
and PV~ from the frequency counts available in a typical screening study. Instead, an
indirect method known as Bayes’ rule is used for this purpose.

The general question then becomes how can the sensitivity and specificity of a
symptom (or set of symptoms or diagnostic test), which are quantities a physician
can estimate, be used to compute PVs, which are quantities a physician needs to
make appropriate diagnoses?

Let A = symptom and B = disease. From Definitions 3.12, 3.13, and 3.14, we have

Predictive value positive = PV" = Pr(B|A)
Predictive value negative = PV~ = Pr(EM)
Sensitivity = Pr( AlB)
Specificity = Pr(ﬁ|1§)

Let Pr(B) = probability of disease in the reference population. We wish to compute Pr (BIA)
and Pr(BIA) in terms of the other quantities. This relationship is known as Bayes’ rule.

EQUATION 3.9 Bayes’ Rule
Let A = symptom and B = disease.

+ pr(AIB)xPr(B)
PV* = Pr(Bl4) - br(AlB)x Pr(B) + Pr{ AlB) x Pr(B)

In words, this can be written as

+ Sensitivity x x
~ Sensitivity x x + (1 — Specificity ) x (1 - x)

where x = Pr(B) = prevalence of disease in the reference population. Similarly,

- Specificity x (1 - x)
~ Specificity x (1 - x)+ (1 - Sensitivity) x x
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To derive this, we have, from the definition of conditional probability,

Pr(BnA)

PVt = Pr(BIA) Sy

Also, from the definition of conditional probability,
Pr(B A) = Pr(AlB)x Pr(B)
Finally, from the total-probability rule,

Pr(A)=Pr(AlB)x Pr(B)+ Pr(AlB) x Pr(B)

If the expressions for Pr(B n A) and Pr(A) are substituted into the equation for PV¥,
we obtain

+ Pr(AlB)x Pr(B)
PV =Pf(B|A)= H(A|B)Xpr(B)+Pr(A|E)XPr(E)

That is, PV* can be expressed as a function of sensitivity, specificity, and the prob-
ability of disease in the reference population. A similar derivation can be used to
obtain PV".

DOl Hypertension  Suppose 84% of hypertensives and 23% of normotensives are classi-
fied as hypertensive by an automated blood-pressure machine. What are the PV*and
PV~ of the machine, assuming 20% of the adult population is hypertensive?

Solution: The sensitivity = .84 and specificity = 1 — .23 =.77. Thus, from Bayes’ rule
it follows that

PV* =(.84)(.2)/[(-84)(.2)+(.23)(.8)]
=.168/.352 = .48

Similarly, PV = (.77)(.8)/[(.77)(.8)+(.16)(.2)]
=.616/.648 = .95

Thus, a negative result from the machine is reasonably predictive because we are
95% sure a person with a negative result from the machine is normotensive. How-
ever, a positive result is not very predictive because we are only 48% sure a person
with a positive result from the machine is hypertensive.

Example 3.26 considered only two possible disease states: hypertensive and
normotensive. In clinical medicine there are often more than two possible disease
states. We would like to be able to predict the most likely disease state given a
specific symptom (or set of symptoms). Let’s assume that the probability of having
these symptoms among people in each disease state (where one of the disease
states may be normal) is known from clinical experience, as is the probability of
each disease state in the reference population. This leads us to the generalized
Bayes' rule:
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3.7 Bayes' Rule and Screening Tests 59

EQUATION 3.10 Generalized Bayes’ Rule

Let B, B,, . . ., B, be a set of mutually exclusive and exhaustive disease states; that
is, at least one disease state must occur and no two disease states can occur at the
same time. Let A represent the presence of a symptom or set of symptoms. Then,

Pr(Bla)=pr(AlB)x Pr(B, )/{i” (alB;)x Pr (Bi)]

j=1

This result is obtained similarly to the result of Bayes’ rule for two disease states in Equa-
tion 3.9. Specifically, from the definition of conditional probability, note that

Pr(B;n A)
Pr(A)

Pr(Bla)=
Also, from the definition of conditional probability,

Pr(B; A) = Pr(AlB; ) x Pr(B;)
From the total-probability rule,

Pr(A)=Pr(AlB;)x Pr(B,)+-+Pr(Al B)x Pr(By)
If the expressions for Pr(B, N A) and Pr(A) are substituted, we obtain
Pr(AlB;)x Pr(B))

zl;zlPr(A|Bi)><Pr(Bi)

Pr(Bla)=

Pulmonary Disease Suppose a 60-year-old man who has never smoked cigarettes
presents to a physician with symptoms of a chronic cough and occasional breath-
lessness. The physician becomes concerned and orders the patient admitted to the
hospital for a lung biopsy. Suppose the results of the lung biopsy are consistent
either with lung cancer or with sarcoidosis, a fairly common, usually nonfatal lung
disease. In this case

A = {chronic cough, results of lung biopsy}
Disease state| B, = normal

B, =lung cancer

B, = sarcoidosis

Suppose that Pr(AIB,) =.001 Pr(AlB) =.9 Pr(AlB,)=.9

and that in 60-year-old, never-smoking men
Pr(B;)=.99 Pr(B,)=.001 Pr(B;)=.009

The first set of probabilities Pr(AlB) could be obtained from clinical experience with
the previous diseases, whereas the latter set of probabilities Pr(B) would have to
be obtained from age-, gender-, and smoking-specific prevalence rates for the dis-
eases in question. The interesting question now becomes what are the probabilities
Pr(BA) of the three disease states given the previous symptoms?
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60 CHAPTER 3 Probability

Solution: Bayes’ rule can be used to answer this question. Specifically,

Pr(BilA) = Pr(AlB,)x Pr(Bl)/{i{Pr(/ﬂBi) x Pr(B,.)}
pm
= .001(.99)/[.001(.99)+.9(.001)+.9(.009)]
.00099 /.00999 =.099
Pr(B,lA) = .9(.001)/[.001(.99)+.9(.001)+.9(.009)]
.00090 /.00999 =.090
.9(.009)/[.001(.99)+.9(.001) +.9(.009)]
=.00810/.00999 = 811

Pr(BylA)

Thus, although the unconditional probability of sarcoidosis is very low (.009), the
conditional probability of the disease given these symptoms and this age-gender-
smoking group is .811. Also, although the symptoms and diagnostic tests are con-
sistent with both lung cancer and sarcoidosis, the latter is much more likely among
patients in this age-gender-smoking group (i.e., among never- smoking men).

NS el Pulmonary Disease Now suppose the patient in Example 3.27 smoked two packs of
cigarettes per day for 40 years. Then assume Pr(B)) = .98, Pr(B,) = .01S, and Pr(B,) =.005

in this type of person. What are the probabilities of the three disease states for this
type of patient, given these symptoms?

Solution: Pr(B1|A) =.001(.98)/[.001(.98) +.9(.015) +.9(.005)]
=.00098 /.01898 = .052

Pr(BZ|A) =.9(.015)/.01898 =.01350 /.01898 =.711
Pr(B,l4) =.9(.005)/.01898 = 237

Thus, in this type of patient (i.e., a heavy-smoking man) lung cancer is the most
likely diagnosis.

REVIEW QUESTIONS 3D

What is Bayes' rule? How is it used?
2  What is the generalized Bayes' rule?

=
w
>
w
[24

3 Refer to Review Question 3B.2. Suppose a 40- to 59-year-old person in Houston
has type Il DM. What is the probability that this person is African American? His-
panic? Caucasian? Asian American? (Hint: Use the generalized Bayes' rule.)

4 Answer Review Question 3D.3 for a nondiabetic 40- to 59-year-old person in Houston.

3.8 BAYESIAN INFERENCE

The definition of probability given in Definition 3.1 is sometimes called the
frequency definition of probability. This definition forms the basis for the fre-
quentist method of inference, which is the main approach to statistical inference
featured in this book and used in statistical practice. However, Bayesian inference
is an alternative method of inference, espoused by a vocal minority of statisticians.
The Bayesian school of inference rejects the idea of the frequency definition of
probability, considering that it is a theoretical concept that can never be realized in
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practice. Instead, Bayesians conceive of two types of probability: a prior probability
and a posterior probability.

DEFINITION 3.16 The prior probability of an event is the best guess by the observer of an event’s
likelihood in the absence of data. This prior probability may be a single number, or
it may be a range of likely values for the probability, perhaps with weights attached
to each possible value.

| idBs 2 Hypertension  What is the prior probability of hypertension in Example 3.26?

Solution The prior probability of hypertension in the absence of additional data is
.20 because 20% of the adult population is hypertensive.

DEFINITION 3.17 The posterior probability of an event is the likelihood that an event will occur after
collecting some empirical data. It is obtained by integrating information from the
prior probability with additional data related to the event in question.

O iHBEscl Hypertension  What is the posterior probability of hypertension given that an auto-
mated blood-pressure machine has classified a person as hypertensive?

Solution: If we refer to Example 3.26 and let the event {true hypertensive} be de-
noted by B and the event {classified as hypertensive by an automated blood-pressure
machine} be denoted by A, we see that the posterior probability is given by PV* =
Pr(BIA) = .48.

SN idRs il Hypertension  What is the posterior probability of hypertension given that an auto-
mated blood-pressure machine has classified a person as normotensive?

Solution: The posterior probability = Pr(B|A)=1-Pr(BlA)=1- PV~ = .05. Thus,
the initial prior probability of 20% has been integrated with the automated blood-
pressure machine data to yield posterior probabilities of .48 and .05, for people who
are classified as hypertensive and normotensive by the automated blood-pressure
machine, respectively.

The main problem with Bayesian inference lies in specifying the prior prob-
ability. Two different people may provide different prior probabilities for an event
and may reach different conclusions (obtain different posterior probabilities), even
with the same data. However, in some cases the prior probability is well defined.
Also, having sufficient data diminishes the impact of the prior probability on the
posterior inference.

3.9 ROC CURVES

In some instances, a test provides several categories of response rather than simply
providing positive or negative results. In other instances, the results of the test may
be reported as a continuous variable. In either case, designation of a cutoff point for
distinguishing a test result as positive versus negative is arbitrary.
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TABLE 3.3 Ratings of 109 CT images by a single radiologist vs. true disease status

CT rating
True Definitely Probably Probably Definitely
disease normal normal Questionable abnormal abnormal
status 1) 2 (©)) (4) (5) Total
Normal 33 6 6 11 2 58
Abnormal 3 2 2 11 33 51
Total 36 8 8 22 35 109

Radiology The data in Table 3.3 provided by Hanley and McNeil [6], are ratings of
computed tomography (CT) images by a single radiologist in a sample of 109 sub-
jects with possible neurological problems. The true disease status is also known for
each of these subjects. The data are presented in Table 3.3. How can we quantify the
diagnostic accuracy of the test?

Unlike previous examples, this test has no obvious cutoff point to use for designat-
ing a subject as positive for disease based on the CT scan. For example, if we desig-
nate a subject as test-positive if he or she is either probably abnormal or definitely
abnormal (a rating of 4 or 5, or 4+), then the sensitivity of the test is (11 + 33)/51 =
44/51 = .86, whereas the specificity is (33 + 6 + 6)/58 = 45/58 = .78. In Table 3.4, we
compute the sensitivity and specificity of the radiologist’s ratings according to dif-
ferent criteria for test-positive.

To display these data, we construct a receiver operating characteristic (ROC) curve.

DEFINITION 3.18 A receiver operating characteristic (ROC) curve is a plot of the sensitivity (on the
y-axis) versus (1 - specificity) (on the x-axis) of a screening test, where the different
points on the curve correspond to different cutoff points used to designate test-
positive.

EXAMPLE 3.33 Radiology Construct an ROC curve based on the data in Table 3.4.

Solution: We plot sensitivity on the y-axis versus (1 — specificity) on the x-axis us-
ing the data in Table 3.4. The plot is shown in Figure 3.7.

TABLE 3.4  Sensitivity and specificity of the radiologist’s ratings according to different
test-positive criteria based on the data in Table 3.3

Test-positive criteria Sensitivity Specificity
1+ 1.0 0

2+ .94 .57
3+ .90 .67
4+ .86 .78
5+ .65 .97
6 + 0 1.0
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FIGURE 3.7 ROC curve for the data in Table 3.4*
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*Each point represents (1 — specificity, sensitivity) for different test-positive criteria.

The area under the ROC curve is a reasonable summary of the overall diagnos-
tic accuracy of the test. It can be shown [6] that this area, when calculated by the
trapezoidal rule, corresponds to the probability that for a randomly selected pair of
normal and abnormal subjects, the abnormal subject will have a higher CT rating.
It is assumed that for untied ratings the radiologist designates the subject with the
lower test score as normal and the subject with the higher test score as abnormal.
For tied ratings, it is assumed that the radiologist randomly chooses one patient as
normal and the other as abnormal.

EXAMPLE 3.34 Radiology Calculate the area under the ROC curve in Figure 3.7, and interpret what
it means.

Solution: The area under the ROC curve, when evaluated by the trapezoidal rule, is
given by

5(.94+1.0)(.57)+.5(.90 +.94)(.10) +.5(.86 +.90)(.11) +.5(.65 +.86)(.19)
+.5(0+.65)(.03)=.89

This means the radiologist has an 89% probability of correctly distinguishing a nor-
mal from an abnormal subject based on the relative ordering of their CT ratings. For
normal and abnormal subjects with the same ratings, it is assumed the radiologist
selects one of the two subjects at random.

In general, of two screening tests for the same disease, the test with the higher area
under its ROC curve is considered the better test, unless some particular level of sen-
sitivity or specificity is especially important in comparing the two tests.

3.10 PREVALENCE AND INCIDENCE

In clinical medicine, the terms prevalence and incidence denote probabilities in a spe-
cial context and are used frequently in this text.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



64 CHAPTER 3 Probability

DEFINITION 3.19 The prevalence of a disease is the probability of currently having the disease regard-
less of the duration of time one has had the disease. Prevalence is obtained by divid-
ing the number of people who currently have the disease by the number of people in
the study population.

N idBs il Hypertension  The prevalence of hypertension among adults (age 17 and older) was
reported to be 20.3%, as assessed by the NHANES study conducted in 1999-2000

[7]. It was computed by dividing the number of people who had reported taking a
prescription for hypertension and were 17 years of age and older (1225) by the total
number of people 17 years of age and older in the study population (6044).

DEFINITION 3.20 The cumulative incidence of a disease is the probability that a person with no prior
disease will develop a new case of the disease over some specified time period.

In Chapter 14 we distinguish between cumulative incidence, which is defined over
a long period of time, and incidence density, which is defined over a very short (or
instantaneous) period of time. For simplicity, before Chapter 14 we use the abbrevi-
ated term incidence to denote cumulative incidence.

Cancer The cumulative-incidence rate of breast cancer in 40- to 44-year-old U.S.
women over the time period 2002-2006 was approximately 118.4 per 100,000 [2].
This means that on January 1, 2002, about 118 in 100,000 women 40 to 44 years of
age who had never had breast cancer would develop breast cancer by December 31,
2002.

REVIEW QUESTIONS 3E

1 Suppose that of 25 students in a class, 5 are currently suffering from hay fever. Is
the proportion 5 of 25 (20%) a measure of prevalence, incidence, or neither?

2 Suppose 50 HIV-positive men are identified, 5 of whom develop AIDS over the next
2 years. Is the proportion 5 of 50 (10%) a measure of prevalence, incidence, or
neither?

=
w
>
w
[24

3.11 SUMMARY

In this chapter, probabilities and how to work with them using the addition and
multiplication laws were discussed. An important distinction was made between in-
dependent events, which are unrelated to each other, and dependent events, which
are related to each other. The general concepts of conditional probability and RR
were introduced to quantify the dependence between two events. These ideas were
then applied to the special area of screening populations for disease. In particular,
the notions of sensitivity, specificity, and PV, which are used to define the accuracy
of screening tests, were developed as applications of conditional probability. We also
used an ROC curve to extend the concepts of sensitivity and specificity when the
designation of the cutoff point for test-positive versus test-negative is arbitrary.

SUMMARY
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On some occasions, only sensitivities and specificities are available and we wish
to compute the PV of screening tests. This task can be accomplished using Bayes’
rule. The use of Bayes’ rule in the context of screening tests is a special case of Bayes-
ian inference. In Bayesian inference, we specify a prior probability for an event,
which, after data are collected, is then modified to a posterior probability. Finally,
prevalence and incidence, which are probabilistic parameters that are often used to
describe the magnitude of disease in a population, were defined.

In the next two chapters, these general principles of probability are applied to
derive some of the important probabilistic models often used in biomedical research,
including the binomial, Poisson, and normal models. These models will eventually
be used to test hypotheses about data.

PROBLEMS

Consider a family with a mother, father, and two children.
Let A, = {mother has influenza}, A, = {father has influenza},
A, = {first child has influenza}, A, = {second child has influ-
enza}, B ={at least one child has influenza}, C = {at least one
parent has influenza}, and D = {at least one person in the
family has influenza}.

*3.1 What does A, U A, mean?

*3.2 What does A, N A, mean?

*3.3 Are A, and A, mutually exclusive?

*3.4 What does A, U B mean?

*3.5 What does A, N B mean?

*3.6 Express C in terms of A1, A2, A3, and A4.

*3.7 Express D in terms of B and C.

*3.8 What does A; mean?

*3.9 What does A, mean?

*3.10 Represent C in terms of A A, A and A,

*3.11 Represent D in terms of B and C.

Suppose an influenza epidemic strikes a city. In 10% of
families the mother has influenza; in 10% of families the

father has influenza; and in 2% of families both the mother
and father have influenza.

3.12 Are the events A, = {mother has influenza} and A, =
{father has influenza} independent?

Suppose there is a 20% chance each child will get influ-
enza, whereas in 10% of two-child families both children
get the disease.

3.13 What is the probability that at least one child will get
influenza?

3.14 Based on Problem 3.12, what is the conditional prob-
ability that the father has influenza given that the mother has
influenza?

3.15 Based on Problem 3.12, what is the conditional prob-
ability that the father has influenza given that the mother
does not have influenza?

Mental Health

Estimates of the prevalence of Alzheimer’s disease have
recently been provided by Pfeffer et al. [8]. The estimates
are given in Table 3.5.

Suppose an unrelated 77-year-old man, 76-year-old
woman, and 82-year-old woman are selected from a com-
munity.

3.16 What is the probability that all three of these individu-
als have Alzheimer's disease?

3.17 What is the probability that at least one of the women
has Alzheimer's disease?

3.18 What is the probability that at least one of the three
people has Alzheimer's disease?

3.19 What is the probability that exactly one of the three
people has Alzheimer's disease?

3.20 Suppose we know one of the three people has
Alzheimer's disease, but we don't know which one. What is the
conditional probability that the affected person is a woman?
3.21 Suppose we know two of the three people have
Alzheimer's disease. What is the conditional probability that
they are both women?

3.22 Suppose we know two of the three people have
Alzheimer's disease. What is the conditional probability that
they are both younger than 80 years of age?

TABLE 3.5 Prevalence of Alzheimer’s disease
(cases per 100 population)

Age group Males Females
65-69 1.6 0.0
70-74 0.0 2.2
75-79 4.9 2.3
80-84 8.6 7.8
85+ 35.0 27.9
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TABLE 3.6 Age—gender distribution of retirement TABLE 3.7 Attack rate for influenza by age and
community treatment group

Age group Male (%) Female (%)? age QlV group Control group

65-69 5 10 3-4 3.78% 5.69%

70-74 9 17 5-8 1.70% 5.15%

75-79 11 18

80-84 8 12

85+ 4 6 Suppose that 80% of 3—4-year-old children and 70% of

2Percentage of total population.

Suppose the probability that both members of a married
couple, each of whom is 75-79 years of age, will have
Alzheimer's disease is .0015.

3.23 What is the conditional probability that the man will
be affected given that the woman is affected? How does
this value compare with the prevalence in Table 3.5? Why
should it be the same (or different)?

3.24 What is the conditional probability that the woman
will be affected given that the man is affected? How does
this value compare with the prevalence in Table 3.5? Why
should it be the same (or different)?

3.25 What is the probability that at least one member of the
couple is affected?

Suppose a study of Alzheimer's disease is proposed in a
retirement community with people 65+ years of age, where
the age—gender distribution is as shown in Table 3.6.

3.26 What is the expected overall prevalence of Alzheim-
er's disease in the community if the prevalence estimates in
Table 3.5 for specific age—gender groups hold?

3.27 Assuming there are 1000 people 65+ years of age
in the community, what is the expected number of cases of
Alzheimer's disease in the community?

Infectious Disease

Commonly used vaccines for influenza are trivalent and con-
tain only one type of influenza B virus. They may be ineffec-
tive against other types of influenza B virus. A randomized
clinical trial was performed among children 3 to 8 years of
age in 8 countries. Children received either a quadrivalent
vaccine (QIV) that had more than one influenza B virus or a
trivalent Hepatitis A vaccine (control) (Jain, et al., [9]. New
England Journal of Medicine 2013: 369(26): 2481-2491).
An attack rate (i.e.,% of children who developed influenza)
starting 14 days after vaccination until the end of the study
was computed for each vaccine group, stratified by age.
The following data were reported:

3.28 Suppose 3 children in a village ages 3, 5, and 7 are
vaccinated with the QIV vaccine. What is the probability
that at least one child among the 3 will get influenza®?

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5-8-year-old children in a village are vaccinated with QIV
vaccine. Also assume that children who are not vaccinated
have twice the incidence of influenza as the control group
in Table 3.7.

3.29 What % of 3—4-year-old children in the village will get
influenza?

3.30 What % of 5—8-year-old children in the village will get
influenza?

3.31 Suppose we identify a 5—8-year-old child with in-
fluenza in the village but are uncertain whether the child
was vaccinated. If we make the same assumptions as in
Problems 3.29-3.30, then what is the probability that the
child was vaccinated? (Hint: Use Bayes' rule here.)

Genetics

Suppose that a disease is inherited via a dominant mode
of inheritance and that only one of the two parents is
affected with the disease. The implications of this mode of
inheritance are that the probability is 1 in 2 that any particular
offspring will get the disease.

3.32 What is the probability that in a family with two children,
both siblings are affected?

3.33 What is the probability that exactly one sibling is affected?
3.34 What is the probability that neither sibling is
affected?

3.35 Suppose the older child is affected. What is the
probability that the younger child is affected?

3.36 If A, B are two events such that A = {older child is

affected}, B ={younger child is affected}, then are the events
A, B independent?

Suppose that a disease is inherited via an autosomal
recessive mode of inheritance. The implications of this
mode of inheritance are that the children in a family each
have a probability of 1 in 4 of inheriting the disease.

3.37 What is the probability that in a family with two children,
both siblings are affected?

3.38 What is the probability that exactly one sibling is
affected?

3.39 What is the probability that neither sibling is
affected?

Suppose that a disease is inherited via a sex-linked mode
of inheritance. The implications of this mode of inheritance



are that each male offspring has a 50% chance of inheriting
the disease, whereas the female offspring have no chance
of getting the disease.

3.40 In a family with one male and one female sibling, what
is the probability that both siblings are affected?

3.41 What is the probability that exactly one sibling is affected?
3.42 What is the probability that neither sibling is affected?
3.43 Answer Problem 3.40 for families with two male siblings.
3.44 Answer Problem 3.41 for families with two male
siblings.

3.45 Answer Problem 3.42 for families with two male siblings.

Suppose that in a family with two male siblings, both siblings
are affected with a genetically inherited disease. Suppose
also that, although the genetic history of the family is un-
known, only a dominant, recessive, or sex-linked mode of
inheritance is possible.

3.46 Assume that the dominant, recessive, and sex-linked
modes of inheritance follow the probability laws given in
Problems 3.32, 3.37, and 3.40 and that, without prior
knowledge about the family in question, each mode of in-
heritance is equally likely. What is the posterior probability
of each mode of inheritance in this family?

3.47 Answer Problem 3.46 for a family with two male sib-
lings in which only one sibling is affected.

3.48 Answer Problem 3.46 for a family with one male and
one female sibling in which both siblings are affected.

3.49 Answer Problem 3.48 where only the male sibling is
affected.

Obstetrics

The following data are derived from the Monthly Vital
Statistics Report (October 1999) issued by the National
Center for Health Statistics [10]. These data are pertinent
to livebirths only.

Suppose that infants are classified as low birthweight if they
have a birthweight <2500 g and as normal birthweight if
they have a birthweight 22500 g. Suppose that infants are
also classified by length of gestation in the following five
categories: <28 weeks, 28—-31 weeks, 32—-35 weeks, 36
weeks, and 237 weeks. Assume the probabilities of the dif-
ferent periods of gestation are as given in Table 3.8.

Also assume that the probability of low birthweight is .949
given a gestation of <28 weeks, .702 given a gestation of
28-31 weeks, .434 given a gestation of 32-35 weeks,
.201 given a gestation of 36 weeks, and .029 given a gesta-
tion of 237 weeks.

*3.50 What is the probability of having a low birthweight
infant?

3.51 Show that the events {length of gestation < 31 weeks}
and {low birthweight} are not independent.
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TABLE 3.8 Distribution of length of gestation

Length of gestation Probability
<28 weeks .007
28-31 weeks .012
32-35 weeks .050
36 weeks .037
>37 weeks .893

*3.52 What is the probability of having a length of gestation
<36 weeks given that an infant is low birthweight?

Pulmonary Disease

The familial aggregation of respiratory disease is a well-
established clinical phenomenon. However, whether this
aggregation is due to genetic or environmental factors or
both is somewhat controversial. An investigator wishes
to study a particular environmental factor, namely the re-
lationship of cigarette-smoking habits in the parents to
the presence or absence of asthma in their oldest child
age 5 to 9 years living in the household (referred to be-
low as their offspring). Suppose the investigator finds
that (1) if both the mother and father are current smok-
ers, then the probability of their offspring having asthma
is .15; (2) if the mother is a current smoker and the
father is not, then the probability of their offspring having
asthma is .13; (3) if the father is a current smoker and the
mother is not, then the probability of their offspring having
asthma is .05; and (4) if neither parent is a current smoker,
then the probability of their offspring having asthma is .04.

*3.53 Suppose the smoking habits of the parents are in-
dependent and the probability that the mother is a current
smoker is .4, whereas the probability that the father is a cur-
rent smoker is .5. What is the probability that both the father
and mother are current smokers?

*3.54 Consider the subgroup of families in which the mother
is not a current smoker. What is the probability that the
father is a current smoker among such families? How does
this probability differ from that calculated in Problem 3.53?

Suppose, alternatively, that if the father is a current smoker,
then the probability that the mother is a current smoker is .6;
whereas if the father is not a current smoker, then the prob-
ability that the mother is a current smoker is .2. Also assume
that statements 1, 2, 3, and 4 above hold.

*3.55 If the probability that the father is a current smoker is
.5, what is the probability that the father is a current smoker
and that the mother is not a current smoker?

*3.56 Are the current smoking habits of the father and the
mother independent? Why or why not?

*3.57 Under the assumptions made in Problems 3.55 and
3.56, find the unconditional probability that the offspring will
have asthma.
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*3.58 Suppose a child has asthma. What is the posterior
probability that the father is a current smoker?

*3.59 What is the posterior probability that the mother is a
current smoker if the child has asthma?

*3.60 Answer Problem 3.58 if the child does not have
asthma.

*3.61 Answer Problem 3.59 if the child does not have
asthma.

*3.62 Are the child’'s asthma status and the father's smok-
ing status independent? Why or why not?

*3.63 Are the child's asthma status and the mother's smok-
ing status independent? Why or why not?

Genetics, Obstetrics

Precise quantification of smoking during pregnancy is difficult
in retrospective studies. Routinely collected blood specimens
from newborns for screening purposes may provide a low-
cost method to objectively measure maternal smoking close
to the time of delivery. Serum cotinine is an important bio-
marker of recent smoking. A study was performed comparing
cotinine levels in dried blood spots in newborns with those
in umbilical cord blood (the gold standard) among 428 new-
borns in the California Genetic Screening Program (Yang et
al. [11]). The lowest detection limit for dried blood spot coti-
nine was 3.1 ng/mL. The data in Table 3.9 were presented
relating dried blood spot cotinine determinations to umbilical
cord blood cotinine determinations.

Suppose a cutoff of > 5 ng/mL is proposed as a criterion for
testing positive based on dried blood spot cotinine levels.

3.64 What is the sensitivity using this cut-point?
3.65 What is the specificity using this cut-point?

Suppose it is estimated based on a large sample of births in
Callifornia that 20% of mothers smoke at the time of delivery.

Suppose the screening test for detecting whether a mother
smokes at the time of pregnancy is based on a cutoff of 25
ng/mL using dried blood specimens from the newborn.

TABLE 3.9

3.66 What is the probability that a mother smokes at the
time of delivery if the dried blood specimen is =5 ng/mL?

3.67 What is another name for this quantity?

Pulmonary Disease

Research into cigarette-smoking habits, smoking prevention,
and cessation programs necessitates accurate measurement
of smoking behavior. However, decreasing social acceptabil-
ity of smoking appears to cause significant underreporting.
Chemical markers for cigarette use can provide objective
indicators of smoking behavior. One widely used noninvasive
marker is the level of saliva thiocyanate (SCN). In a Minne-
apolis school district, 1332 students in eighth grade (ages
12-14) participated in a study [12] whereby they

(1) Viewed a film illustrating how recent cigarette use
could be readily detected from small samples of saliva

(2) Provided a personal sample of SCN

(3) Provided a self-report of the number of cigarettes
smoked per week

The results are given in Table 3.10.

TABLE 3.10 Relationship between SCN levels and
self-reported cigarettes smoked per week

Self-reported

cigarettes smoked Number of Percent with

in past week students SCN =100 ug/mL
None 1163 3.3

1-4 70 4.3

5-14 30 6.7
15-24 27 29.6
25-44 19 36.8

45+ 23 65.2

Source: Based on the American Journal of Public Health, 71(12), 1320, 1981.

Distribution of Cotinine Level in Dried Blood Spots from Newborns by Maternal

Active Smoking Status* close to the time of delivery among 428 babies delivered in

California, 2001-2003

Cotinine Level Maternal Maternal

in Dried Active Active
Blood (ng/mL)  Smoking = yes Smoking = no
<3.1 2 326

3.1 0 2

4 0 2

5 0 1

6 2 1

7 1 0

8 1 1

Cotinine Level Maternal Maternal
in Dried Active Active

Blood (ng/mL)  Smoking = yes  Smoking = no
9 1 3
10 2 0
11 3 0
12 2 0
13 1 1
>14 76 0
Total 91 337

*Maternal active smoking at the time of delivery was defined as cord blood levels of >10 ng/mL.
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Suppose the self-reports are completely accurate and are
representative of the number of eighth-grade students who
smoke in the general community. We are considering using
an SCN level 2 100 ug/mL as a test criterion for identifying
cigarette smokers. Regard a student as positive if he or she
smokes one or more cigarettes per week.

*3.68 What is the sensitivity of the test for light-smoking
students (students who smoke < 14 cigarettes per week)?

*3.69 What is the sensitivity of the test for moderate-smoking
students (students who smoke 15—-44 cigarettes per week)?

*3.70 What is the sensitivity of the test for heavy-smoking
students (students who smoke > 45 cigarettes per week)?

*3.71 What is the specificity of the test?
*3.72 What is the PV* of the test?
*3.73 What is the PV~ of the test?

Suppose we regard the self-reports of all students who
report some cigarette consumption as valid but estimate
that 20% of students who report no cigarette consumption
actually smoke 1-4 cigarettes per week and an additional
10% smoke 5-14 cigarettes per week.

*3.74 Assuming the percentage of students with SCN >
100 pg/mL in these two subgroups is the same as in those
who truly report 1-4 and 5-14 cigarettes per week, com- il
pute the specificity under these assumptions.

*3.75 Compute the PV~ under these altered assumptions.
How does the true PV using a screening criterion of SCN
> 100 pg/mL for identifying smokers compare with the
PV~ based on self-reports obtained in Problem 3.737?

Hypertension

Laboratory measures of cardiovascular reactivity are receiv-
ing increasing attention. Much of the expanded interest is
based on the belief that these measures, obtained under
challenge from physical and psychological stressors, may
yield a more biologically meaningful index of cardiovascular
function than more traditional static measures. Typically,
measurement of cardiovascular reactivity involves the use
of an automated blood-pressure monitor to examine the
changes in blood pressure before and after a stimulating ex-
perience (such as playing a video game). For this purpose,
blood-pressure measurements were made with the Vita-
Stat blood-pressure machine both before and after playing
a video game. Similar measurements were obtained using
manual methods for measuring blood pressure. A person
was classified as a “reactor” if his or her DBP increased by
10 mm Hg or more after playing the game and as a nonre-
actor otherwise. The results are given in Table 3.11.

3.76 If the manual measurements are regarded as the
“true” measure of reactivity, then what is the sensitivity of
automated DBP measurements?

3.77 What is the specificity of automated DBP measurements?

[1ll Data set available
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TABLE 3.11 Classification of cardiovascular
reactivity using an automated and a
manual sphygmomanometer

ADBP, manual
ADBP, automated <10 >10
<10 51 7
>10 15 6

3.78 If the population tested is representative of the general
population, then what are the PV*and PV-using this test?

Otolaryngology

The data set in Table 3.12 is based on 214 children with
acute otitis media (otitis media with effusion, or OME) who
participated in a randomized clinical trial [13]. Each child
had OME at the beginning of the study in either one (unilat-
eral cases) or both (bilateral cases) ears and was randomly
assigned to receive a 14-day course of one of two antibiot-
ics, either cefaclor (CEF) or amoxicillin (AMO). The data
here concern the 203 children whose middle-ear status
was determined during a 14-day follow-up visit. The data
in Table 3.12 are presented in data set EAR.DAT (at www
.cengagebrain.com).

3.79 Does there seem to be any difference in the effect of
the antibiotics on clearance of otitis media? Express your
results in terms of relative risk (RR). Consider separate
analyses for unilateral and bilateral cases. Also consider an
analysis combining the two types of cases.

3.80 The investigators recorded the ages of the children
because they felt this might be an important factor in de-
termining outcome. Were they right? Try to express your
results in terms of RR.

3.81 While controlling for age, propose an analysis com-
paring the effectiveness of the two antibiotics. Express your
results in terms of RR.

3.82 Another issue in this trial is the possible dependence
between ears for the bilateral cases. Comment on this issue
based on the data collected.

The concept of a randomized clinical trial is discussed more
completely in Chapter 6. The analysis of contingency-table

TABLE 3.12 Format for EAR.DAT

Column Variable Format or code

1-3 ID

5 Clearance by 14 days 1 =yes/0 =no

7 Antibiotic 1 = CEF/2 = AMO

9 Age 1=<2yrs/2=2-5yrs
3=06+yrs

11 Ear 1 =1st ear/2 = 2nd ear
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data is studied in Chapters 10 and 13, in which many of the
formal methods for analyzing this type of data are discussed.

Gynecology

A drug company is developing a new pregnancy-test kit for
use on an outpatient basis. The company uses the preg-
nancy test on 100 women who are known to be pregnant,
for whom 95 test results are positive. The company uses the
pregnancy test on 100 other women who are known to not
be pregnant, of whom 99 test negative.

*3.83 What is the sensitivity of the test?
*3.84 What is the specificity of the test?

The company anticipates that of the women who will use the
pregnancy-test kit, 10% will actually be pregnant.

*3.85 What is the PV* of the test?

*3.86 Suppose the “cost” of a false negative (2c) is twice
that of a false positive (c) (because for a false negative
prenatal care would be delayed during the first trimester of
pregnancy). If the standard home pregnancy-test kit (made
by another drug company) has a sensitivity of .98 and a
specificity of .98, then which test (the new or standard) will
cost the least per woman using it in the general population
and by how much?

Mental Health

The Chinese Mini-Mental Status Test (CMMS) consists
of 114 items intended to identify people with Alzheimer’s
disease and senile dementia among people in China [14].
An extensive clinical evaluation of this instrument was per-
formed, whereby participants were interviewed by psychia-
trists and nurses and a definitive diagnosis of dementia
was made. Table 3.13 shows the results obtained for the
subgroup of people with at least some formal education.

Suppose a cutoff value of < 20 on the test is used to identify
people with dementia.

3.87 What is the sensitivity of the test?
3.88 What is the specificity of the test?

TABLE 3.13 Relationship of clinical dementia to
outcome on the Chinese Mini-Mental
Status Test
CMMS score Nondemented Demented
0-5 0 2
6-10 0 1
11-15 3 4
16-20 9 5
21-25 16 3
26-30 18 1
Total 46 16
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3.89 The cutoff value of 20 on the CMMS used to identify
people with dementia is arbitrary. Suppose we consider
changing the cutoff. What are the sensitivity and specificity
if cutoffs of 5, 10, 15, 20, 25, or 30 are used? Make a table
of your results.

3.90 Construct an ROC curve based on the table con-
structed in Problem 3.89.

3.91 Suppose we want both the sensitivity and specificity
to be at least 70%. Use the ROC curve to identify the pos-
sible value(s) to use as the cutoff for identifying people with
dementia, based on these criteria.

3.92 Calculate the area under the ROC curve. Interpret
what this area means in words in the context of this problem.

Demography

A study based on data collected from the Medical Birth
Registry of Norway looked at fertility rates according to
survival outcomes of previous births [15]. The data are
presented in Table 3.14.

3.93 What is the probability of having a livebirth (L) at a
second birth given that the outcome of the first pregnancy
was a stillbirth (D), that is, death?

3.94 Answer Problem 3.93 if the outcome of the first
pregnancy was a livebirth.

3.95 What is the probability of 0, 1, and 2+ additional
pregnancies if the first birth was a stillbirth?

3.96 Answer Problem 3.95 if the first birth was a live birth.

Mental Health

The €4 allele of the gene encoding apolipoprotein E (APOE)
is strongly associated with Alzheimer’s disease, but its value
in making the diagnosis remains uncertain. A study was
conducted among 2188 patients who were evaluated at
autopsy for Alzheimer’s disease by previously established
pathological criteria [16]. Patients were also evaluated clini-
cally for the presence of Alzheimer's disease. The data in
Table 3.15 were presented.

Suppose the pathological diagnosis is considered the gold
standard for Alzheimer’s disease.

3.97 If the clinical diagnosis is considered a screening test for
Alzheimer's disease, then what is the sensitivity of this test?
3.98 What is the specificity of this test?

To possibly improve on the diagnostic accuracy of the clini-
cal diagnosis for Alzheimer's disease, information on both
the APOE genotype as well as the clinical diagnosis were
considered. The data are presented in Table 3.16.

Suppose we consider the combination of both a clinical di-
agnosis for Alzheimer's disease and the presence of > 1 €4
allele as a screening test for Alzheimer's disease.

3.99 What is the sensitivity of this test?
3.100 What is the specificity of this test?
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TABLE 3.14 Relationship of fertility rates to survival outcome of previous births in Norway

Continuing to Second birth Continuing to Third birth
First birth second birth outcome third birth outcome
Perinatal outcome n n n n n

D 7022 5924 D 368 277 D 39
L 238
L 5556 3916 D 115
L 3801
L 350,693 265,701 D 3188 2444 D 140
L 2304
L 262513 79,450 D 1005
L 78,445

Note: D = dead, L = alive at birth and for at least one week.

TABLE 3.15 Relationship between clinical and
pathological diagnoses of Alzheimer’s
disease

Pathological diagnosis

Alzheimer's Other causes
Clinical diagnosis disease of dementia
Alzheimer's disease 1643 190
Other causes of dementia 127 228

Cardiovascular Disease

A fascinating subject of recent interest is the “Hispanic
paradox”: Census data “show” that coronary heart disease
(CHD) has a lower prevalence in Hispanic people than in
non-Hispanic whites (NHW) based on health interviews
of representative samples of people from different ethnic
groups from the U.S. population, although the risk-factor
profile of Hispanics is generally worse (more hyperten-
sion, diabetes, and obesity in this group than in NHW). To
study this further, researchers looked at a group of 1000
Hispanic men ages 50—64 from several counties in Texas
who were free of CHD in 1990 and followed them for 5
years. They found that 100 of the men had developed CHD
(either fatal cases or nonfatal cases in which the men
survived a heart attack).

3.101 Is the proportion 100 out of 1000 a prevalence rate,
an incidence rate, or neither?

Given other surveys over the same time period among
NHW in these counties, the researchers expected that the
comparable rate of CHD for NHW would be 89%.

Another important parameter in the epidemiology of CHD
is the case-fatality rate (the proportion of people who die
among those who have a heart attack). Among the 100
CHD cases ascertained among Hispanics, 50 were fatal.

3.102 What is the expected proportion of Hispanic men
who will be identified by health surveys as having a previous
heart attack in the past 5 years (who are by definition sur-
vivors) if we assume that the proportion of men with more
than one nonfatal heart attack is negligible? What is the
comparable proportion for NHW men if the expected case-
fatality rate is 20% among NHW men with CHD?

3.103 Are these proportions prevalence rates, incidence
rates, or neither? Do the results in this problem give insight
into why the Hispanic paradox occurs (do Hispanic men
truly have lower risk of CHD as government surveys would
indicate)? Why or why not?

Genetics

A dominantly inherited genetic disease is identified over
several generations of a large family. However, about half

TABLE 3.16 Influence of the APOE genotype in diagnosing Alzheimer’s disease (AD)
Both clinical and Only clinical Only pathological Neither clinical nor
pathological criteria for criteria for pathological criteria
APOE genotype criteria for AD AD AD for AD
>1 ¢4 allele 1076 66 66 67
No €4 allele 567 124 61 161
Total 1643 190 127 228
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the families have dominant disease with complete pen-
etrance, whereby if a parent is affected there is a 50%
probability that any one offspring will be affected. Similarly,
about half the families have dominant disease with reduced
penetrance, whereby if a parent is affected there is a 25%
probability that any one offspring will be affected.

Suppose in a particular family one parent and two of the two
offspring are affected.

3.104 What is the probability that exactly two of the two
offspring will be affected in a family with dominant disease
with complete penetrance?

3.105 What is the probability that exactly two of the two
offspring will be affected in a family with dominant disease
with reduced penetrance?

3.106 What is the probability that the mode of transmission
for this particular family is dominant with complete pen-
etrance? Is this a prior probability or a posterior probability?

3.107 Suppose you are a genetic counselor and are asked
by the parents what the probability is that if they have an-
other (a third) child he or she will be affected by the disease.
What is the answer?

SIMULATION—CLASS PROJECT

Infectious Disease

Suppose a standard antibiotic kills a particular type of bac-
teria 80% of the time. A new antibiotic is reputed to have
better efficacy than the standard antibiotic. Researchers
propose to try the new antibiotic on 100 patients infected
with the bacteria. Using principles of hypothesis testing
(covered in Chapter 7), researchers will deem the new an-
tibiotic “significantly better” than the standard one if it kills
the bacteria in at least 88 out of the 100 infected patients.

3.108 Suppose there is a true probability (true efficacy)
of 85% that the new antibiotic will work for an individual
patient. Perform a “simulation study” on the computer,
based on random number generation (using, for example,
MINITAB, Excel, or R) for a group of 100 randomly simu-
lated patients. Repeat this exercise 20 times with separate
columns for each simulated sample of 100 patients. For
what percentage of the 20 samples is the new antibiotic
considered “significantly better” than the standard anti-
biotic? (This percentage is referred to as the statistical
power of the experiment.) Compare results for different
students in the class.

3.109 Repeat the procedure in Problem 3.108 for each
simulated patient, assuming the true efficacy of the new
antibiotic is (a), 80%, (b) 90%, and (c) 95%, and compute
the statistical power for each of (a), (b), and (c).

3.110 Plot the statistical power versus the true efficacy.
Do you think 100 patients is a sufficiently large sample to
discover whether the new drug is “significantly better” if the
true efficacy of the drug is 90%? Why or why not?
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Infectious Disease, Cardiovascular Disease

A validation study is to be performed in a local hospital to
check the accuracy of assessment of hospital-acquired
infection (INF) following coronary bypass surgery (coronary-
artery bypass graft, or CABG). In a given year the hospital
performs 1100 CABG procedures. A Centers for Disease
Control and Prevention (CDC) algorithm is currently used
to categorize subjects as having INF. To validate this algo-
rithm, all CDC* subjects (N = 100) and a random sample
of CDC- subjects (N = 1000) will be ascertained by an
infectious-disease (ID) fellow and a detailed investigation
will be performed, including a chart review and documenta-
tion of antibiotic use. Assume the ID-fellow’s determination
is correct.

Suppose 100 CDC* subjects are ascertained, of whom the
ID fellow confirms 80. Because there are a large number of
CDC- subjects (1000), only a sample of 100 is studied, of
whom the ID fellow confirms 90.

3.111 What is the PV* of the CDC algorithm?
3.112 What is the PV~ of the CDC algorithm?
3.113 What is the sensitivity of the CDC algorithm?
3.114 What is the specificity of the CDC algorithm?

Genetics

Suppose a birth defect has a recessive form of inheritance.
In a study population, the recessive gene (a) initially has a
prevalence of 25%. A subject has the birth defect if both
maternal and paternal genes are of type a.

3.115 In the general population, what is the probability that
an individual will have the birth defect, assuming that mater-
nal and paternal genes are inherited independently?

A further study finds that after 10 generations (=200 years)
a lot of inbreeding has taken place in the population. Two
subpopulations (populations A and B), consisting of 30%
and 70% of the general population, respectively, have
formed. Within population A, prevalence of the recessive
gene is 40%, whereas in population B it is 10%.

3.116 Suppose that in 25% of marriages both people are
from population A, in 65% both are from population B, and
in 10% there is one partner from population A and one from
population B. What is the probability of a birth defect in the
next generation?

3.117 Suppose that a baby is born with a birth defect,
but the baby’s ancestry is unknown. What is the posterior
probability that the baby will have both parents from popula-
tion A, both parents from population B, or mixed ancestry,
respectively? (Hint: Use Bayes' rule.)

Orthopedics

Piriformis syndrome is a pelvic condition that involves mal-
function of the piriformis muscle (a deep buttock muscle),
which often causes back and buttock pain with sciatica



TABLE 3.17 FAIR test results on piriformis
syndrome patients

Clinical response VAS FAIR = 2 FAIR < 2 Total

Best <2 5 14 19
3-4 3 12 15
5-6 7 6 13

Worst >7 7 6 13

Total 22 38 60

(pain radiating down the leg). An electrophysiologic test
to detect piriformis syndrome involves measuring nerve-
conduction velocity (NCV) at two nerves in the leg (the tibial
and peroneal nerves) with the leg flexed in a specific posi-
tion. Increases in NCV in these nerves are often associated
with piriformis syndrome. The resulting test, called the flex-
ion abduction and internal rotation (FAIR) test, is positive if
the average NCV in these nerves is delayed by 2+ seconds
relative to normal.

A small study compared the FAIR test results with patient
self-reports of how they feel on a visual analog scale (VAS)
of 0—-10, with O indicating no pain and 10 very severe pain.
The results were as shown in Table 3.17.

Suppose physicians consider the FAIR test the gold stan-
dard, with a FAIR test result of > 2 defined as a true positive
and a FAIR test result of < 2 defined as a true negative.
Suppose a VAS of < 4 is considered a good clinical re-
sponse based on self-report (a test-negative) and a VAS of
> 5 is considered a bad clinical response (a test-positive).

3.118 What is the sensitivity of the VAS?
3.119 What is the specificity of the VAS?

3.120 The cutoff points of > 5 for a VAS test-positive and
< 4 for a VAS test-negative are arbitrary. Compute and
graph the ROC curve for the VAS test by varying the cutoff
point for a test-positive. (Use the cutoff points VAS > 0,
VAS > 3, VAS > 5, VAS > 7, and VAS > 11 as possible
criteria for test-positive.)

3.121 The area under the ROC curve is 65%. What does
it mean?

Cancer

Breast cancer is considered largely a hormonal disease.
An important hormone in breast-cancer research is estra-
diol. The data in Table 3.18 on serum estradiol levels were
obtained from 213 breast-cancer cases and 432 age-
matched controls. All women were age 50-59 years.

Suppose a serum-estradiol level of 20+ pg/mL is proposed
as a screening criterion for identifying breast-cancer cases.

3.122 What is the sensitivity of this test?
3.123 What is the specificity of this test?

Problems 73

TABLE 3.18 Serum-estradiol data

Serum estradiol (pg/mL) ~ Cases (N =213) Controls (N = 432)

1-4 28 72
5-9 96 233
10-14 53 86
15-19 17 26
20-24 10 6
25-29 3 5
30+ 6 4

The preceding sample was selected to oversample cases.
In the general population, the prevalence of breast cancer is
about 2% among women 50-59 years of age.

3.124 What is the probability of breast cancer among 50- to
59-year-old women in the general population who have a
serum-estradiol level of > 20 pg/mL? What is another name
for this quantity?

Cardiovascular Disease

Mayo Clinic investigators have tracked coronary-heart-
disease (CHD) mortality in Olmstead County, Minnesota,
for the past 20 years[17]. Mayo Clinic physicians provided
virtually all medical care to Olmstead County residents.
Deaths from CHD were subdivided into those that occurred
in hospital and those that occurred out of hospital. In-
hospital death rates are thought to be influenced mainly by
advances in medical care. Out-of-hospital death rates are
thought to be influenced mainly by changes in risk-factor
levels over time. For men, out-of-hospital CHD death rates
were 280 cases per 100,000 men per year and in-hospital
CHD death rates were 120 cases per 100,000 men per
year in 1998. For women, out-of-hospital CHD death rates
were 100 cases per 100,000 women per year; in-hospital
CHD death rates were 40 cases per 100,000 women per
year in 1998.

3.125 If 50% of the Olmstead County population is male
and 50% is female, what was the overall CHD mortality rate
in Olmstead County in 19987?

The investigators reported that for both men and women, in-
hospital CHD death rates were declining at a rate of 5.3%
per year, whereas out-of-hospital CHD death rates were
declining by 1.8% per year.

3.126 What is the expected overall CHD mortality rate in
Olmstead County in 2015 if these trends continue?

3.127 In 2015, what proportion of the CHD deaths will
occur in women?

Cancer

The SEER Cancer Registry [18] is an important resource
for estimating cancer incidence rates and documenting

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



74 CHAPTER 3 Probability

TABLE 3.19 Breast cancer 1-year cumulative
incidence rates by age among
Caucasian women age 50-74, SEER,
1995-2000 (period A)

Age group 1-year cumulative incidence per 100,000 women*
50-54 360
55-59 422
60-64 479
65-69 534
70-74 600

+ For example, for 100,000 50-54 year-old women who are disease-free at
baseline, 360 will develop breast cancer over a 1-year period.

changes in incidence rates over time. Cancer cases are
accumulated over 17 cancer registries and are converted
to cumulative incidence rates by dividing by U.S. Census
population estimates within specific age-groups. The fol-
lowing data were obtained for breast cancer 1-year cumula-
tive incidence rates for Caucasian women of age 50-74
from 1995 to 2000 (period A).

3.128 Suppose that among women who are age 50-74,
22% are age 50-54, 21% are age 55-59, 20% are age
60-64, 19% are age 65-69 and 18% are age 70-74.
What is the overall 1-year cumulative incidence among
Caucasian women ages 50-747?

The SEER data is also available for the time period 2001—
2006 (period B) as shown in Table 3.20.

TABLE 3.20 Breast cancer 1-year cumulative
incidence rates by age among
Caucasian women age 50-74, SEER,
2001-2006 (period B)

Age group 1-year cumulative incidence per 100,000 women*
50-54 314
55-59 412
60-64 510
65-69 544
70-74 558

3.129 Answer the question in problem 3.128 for the time
period 2001-2006.

3.130 What is the overall % change in 1-year cumulative
incidence between period A and period B?

3.131 Suppose that we have 100 women who are age 55
in the year 1995. What is the probability that at least 2 of
them will develop breast cancer by 19967

Radiology

Mobile displays have the potential to increase the flex-
ibility of consulting radiologists if they can be shown to be
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TABLE 3.21 Comparison of TB screening results
using an LCD and iPad 2 display

LCD iPad 2 N

+ + 38

+ - 1

- + 1

- - 200

comparable to traditional display modalities. A study was
performed comparing a mobile display iPad 2 with a larger
liquid crystal display (LCD) for the diagnosis of tuberculosis
(TB) on chest radiography (Abboud et al., [19]). De-identified
images of 240 chest X-rays were transferred from a PACS
workstation (LCD) to an iPad 2 tablet. The images were re-
viewed independently by 5 radiologists and were graded as
positive or negative for TB on both the LCD and the iPad 2.
The reviews occurred at different times to avoid recall bias.

A database of > 500 chest X-rays was created from TB
screening films over a 4-month period. Of these, 200 cases
originally interpreted as TB-negative and 40 cases originally
interpreted as TB-positive were selected at random for
study. The images were re-reviewed using both an LCD
and an iPad 2 imaging display, albeit at different times. The
results were as shown in Table 3.21.

3.132 If we regard the LCD interpretation as the gold stan-
dard, then what is the sensitivity of the iPad 2 interpretation?

3.133 If we regard the LCD interpretation as the gold stan-
dard, then what is the specificity of the iPad 2 interpretation?

The selection of images for this study was enriched to in-
crease the number of images originally interpreted as posi-
tive. Suppose the underlying percentage of positive TB tests
is 10% in a large sample of chest X-rays assessed by LCD.

3.134 If a subject tests positive on an iPad 2 display, then
what is the probability that he(she) will also test positive on
the LCD?

3.135 What is another name for the quantity in Problem 3.1347?

Cardiovascular Disease

The ankle-arm blood-pressure index (AAl) is defined as the
ratio of ankle systolic blood pressure/arm systolic blood pres-
sure and is used for the diagnosis of lower extremity arterial
disease. A study was conducted to investigate whether the
AAI can be used as a screening test for atherosclerotic dis-
eases in general [20]. The subjects were 446 male workers in a
copper smelter in Japan. Each subject had an AAl determina-
tion as well as an electrocardiogram (ECG). From the ECG,
an S-T segment depression was defined as an S-T segment
> 0.1 mV below the baseline in at least 1 of 12 leads in a
resting ECG. S-T segment depression is often used as one
characterization of an abnormal ECG. The data in Table 3.22
were presented relating AAl to S-T segment depression.



TABLE 3.22 Association between ankle-arm blood-
pressure index (AAI) and S-T segment
depression

S-T segment depression
+ _
AAl< 1.0 20 95
AAI>1.0 13 318

3.136 If an abnormal ECG as determined by S-T segment
depression is regarded as the gold standard for the pres-
ence of heart disease and an AAIl of < 1.0 is regarded as
a possible test criterion for heart disease, then what is the
sensitivity of the test?

3.137 What is the specificity of the test?

3.138 What is the PV*? (Hint: Assume that the subjects in
this study are a random sample from the general population
of Japan.)

3.139 What is the PV-?

3.140 Suppose the reproducibility of the AAIl test were
improved using better technology. Would the sensitivity of
the test increase, decrease, or remain the same? why?

Obstetrics, Health Promotion

A study was performed to assess the accuracy of self-
reported exposure to cigarette smoking in-utero. A com-
parison was made between daughters’ reports of smoking
by their mothers during pregnancy with the mother's self-
reports of their own smoking while pregnant with their
daughters. The results were as shown in Table 3.23.

3.141 If a mother's self-report is considered completely
accurate, then what is the PV* of the daughter’s report, in

References 75
TABLE 3.23 Relationship between mothers’ self-
reports of smoking while pregnant
and daughters’ reports of fetal smoke
exposure

Daughter’s report Mother's report of

of fetal smoke exposure smoking during pregnancy N
yes yes 6685
yes no 1126
no yes 1222
no no 23,227

which positive indicates smoking and negative indicates not
smoking?

3.142 If a mother's self-report is considered completely
accurate, then what is the PV~ of the daughter’s report?

Additional data on self-reported smoking indicate that the
mother is not always completely accurate. Saliva cotinine is
a biochemical marker that, if elevated, is a 100% accurate
indication of recent smoking.

Suppose if the mother states she is a nonsmoker during
pregnancy that saliva cotinine is elevated 5% of the time,
whereas if the mother states she is a smoker during preg-
nancy that saliva cotinine is elevated 97% of the time. As-
sume also that a daughter report adds no further information
regarding the probability of an elevated cotinine level once
the mother's self-report is known.

3.143 What is the probability that the saliva cotinine level
in a mother is elevated during pregnancy if the daughter
reports that the mother smoked in-utero?

3.144 What is the probability that the saliva cotinine level in
the mother is not elevated during pregnancy if the daughter
reports that the mother did not smoke in-utero?
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Discrete Probability A 4

41 INTRODUCTION

Chapter 3 defined probability and introduced some basic
tools used in working with probabilities. We now look at
problems that can be put into a probabilistic framework. That
is, by assessing the probabilities of certain events from actual
past data, we can consider specific probability models that fit
our problems.

DN iABs cii B Ophthalmology  Retinitis pigmentosa is a progressive ocular disease that in some
cases eventually results in blindness. The three main genetic types of the disease are

dominant, recessive, and sex-linked. Each genetic type has a different rate of pro-
gression, with the dominant mode being the slowest to progress and the sex-linked
mode the fastest. Suppose the prior history of disease in a family is unknown, but
one of the two male children is affected and the one female child is not affected.
Can this information help identify the genetic type?

The binomial distribution can be applied to calculate the probability of this
event occurring (one of two males affected, none of one female affected) under each
of the genetic types mentioned, and these results can then be used to infer the most
likely genetic type. In fact, this distribution can be used to make an inference for
any family for which we know k, of n, male children are affected and k, of n, female
children are affected.

Cancer A second example of a commonly used probability model concerns a can-
cer scare in Woburn, Massachusetts. A news story reported an “excessive” number
of cancer deaths in young children in this town and speculated about whether this
high rate was due to the dumping of industrial wastes in the northeastern part
of town [1]. Suppose 12 cases of leukemia were reported in a town where 6 would
normally be expected. Is this enough evidence to conclude that the town has an
excessive number of leukemia cases?

The Poisson distribution can be used to calculate the probability of 12 or more
cases if this town had typical national rates for leukemia. If this probability were
small enough, we would conclude that the number was excessive; otherwise, we
would decide that longer surveillance of the town was needed before arriving at a
conclusion.

77
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This chapter introduces the general concept of a discrete random variable and
describes the binomial and Poisson distributions in depth. This forms the basis for
the discussion (in Chapters 7, 10, and 14) of hypothesis testing based on the bino-
mial and Poisson distributions.

42 RANDOM VARIABLES

In Chapter 3 we dealt with very specific events, such as the outcome of a tuberculin
skin test or blood-pressure measurements taken on different members of a family.
We now want to introduce ideas that let us refer, in general terms, to different types
of events having the same probabilistic structure. For this purpose let’s consider the
concept of a random variable.

DEFINITION 4.1 A random variable is a function that assigns numeric values to different events in a
sample space.

Two types of random variables are discussed in this text: discrete and continuous.

DEFINITION 4.2 A random variable for which there exists a discrete set of numeric values is a discrete
random variable.

EXAMPLE 4.3 Otolaryngology Otitis media, a disease of the middle ear, is one of the most com-
mon reasons for visiting a doctor in the first 2 years of life other than a routine well-

baby visit. Let X be the random variable that represents the number of episodes of
otitis media in the first 2 years of life. Then X is a discrete random variable, which
takes on the values 0O, 1, 2, and so on.

Hypertension Many new drugs have been introduced in the past several decades to
bring hypertension under control—that is, to reduce high blood pressure to normo-
tensive levels. Suppose a physician agrees to use a new antihypertensive drug on a
trial basis on the first four untreated hypertensives she encounters in her practice,
before deciding whether to adopt the drug for routine use. Let X = the number of pa-
tients of four who are brought under control. Then X is a discrete random variable,
which takes on the values O, 1, 2, 3, 4.

DEFINITION 4.3 A random variable whose possible values cannot be enumerated is a continuous
random variable.

Environmental Health Possible health effects on workers of exposure to low levels
of radiation over long periods of time are of public health interest. One problem in
assessing this issue is how to measure the cumulative exposure of a worker. A study
was performed at the Portsmouth Naval Shipyard, where each exposed worker wore
a badge, or dosimeter, which measured annual radiation exposure in rem [2]. The
cumulative exposure over a worker’s lifetime could then be obtained by summing
the yearly exposures. Cumulative lifetime exposure to radiation is a good example
of a continuous random variable because it varied in this study from 0.000 to 91.414
rem; this would be regarded as taking on an essentially infinite number of values,
which cannot be enumerated.
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43 THE PROBABILITY-MASS FUNCTION FOR
A DISCRETE RANDOM VARIABLE

The values taken by a discrete random variable and its associated probabilities can be
expressed by a rule or relationship called a probability-mass function (pmf).

DEFINITION 4.4 A probability-mass function is a mathematical relationship, or rule, that assigns to
any possible value r of a discrete random variable X the probability Pr(X = r). This
assignment is made for all values r that have positive probability. The probability-mass
function is sometimes also called a probability distribution.

The probability-mass function can be displayed in a table giving the values
and their associated probabilities, or it can be expressed as a mathematical formula
giving the probabilities of all possible values.

H VN Es i Hypertension  Consider Example 4.4. Suppose from previous experience with the
drug, the drug company expects that for any clinical practice the probability that O

patients of 4 will be brought under control is .008, 1 patient of 4 is .076, 2 patients
of 4 is .265, 3 patients of 4 is .411, and all 4 patients is .240. This probability-mass
function, or probability distribution, is displayed in Table 4.1.

TABLE 4.1 Probability-mass function for the hypertension-control example

PrX=r) .008 .076 .265 411 .240

r 0 1 2 3 4

Notice that for any probability-mass function, the probability of any particular
value must be between 0 and 1 and the sum of the probabilities of all values must
exactly equal 1. Thus, 0 < Pr(X =r) <1, ¥ Pr(X =r) =1, where the summation is taken
over all possible values that have positive probability.

EXAMPLE 4.7

Hypertension In Table 4.1, for any clinical practice, the probability that between O
and 4 hypertensives are brought under control is 1; that is,

.008 +.076 +.265 + .411 +.240=1

Relationship of Probability Distributions
to Frequency Distributions

In Chapters 1 and 2 we discussed the concept of a frequency distribution in the
context of a sample. It was described as a list of each value in the data set and a cor-
responding count of how frequently the value occurs. If each count is divided by the
total number of points in the sample, then the frequency distribution can be con-
sidered as a sample analog to a probability distribution. In particular, a probability
distribution can be thought of as a model based on an infinitely large sample, giving
the fraction of data points in a sample that should be allocated to each specific value.
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80 CHAPTER 4 Discrete Probability Distributions

Because the frequency distribution gives the actual proportion of points in a sample
that correspond to specific values, the appropriateness of the model can be assessed
by comparing the observed sample-frequency distribution with the probability
distribution. The formal statistical procedure for making this comparison, called a
goodness-of-fit test, is discussed in Chapter 10.

Hypertension How can the probability-mass function in Table 4.1 be used to judge
whether the drug behaves with the same efficacy in actual practice as predicted by
the drug company? The drug company might provide the drug to 100 physicians
and ask each of them to treat their first four untreated hypertensives with it. Each
physician would then report his or her results to the drug company, and the com-
bined results could be compared with the expected results in Table 4.1. For example,
suppose that out of 100 physicians who agree to participate, 19 bring all their first
four untreated hypertensives under control with the drug, 48 bring three of four
hypertensives under control, 24 bring two of four under control, and the remaining
9 bring only one of four under control. The sample-frequency distribution can be
compared with the probability distribution given in Table 4.1, as shown in Table 4.2
and Figure 4.1.

TABLE 4.2 Comparison of the sample-frequency distribution and the theoretical-probability
distribution for the hypertension-control example

Number of hypertensives Probability distribution

under control = r PriX=r) Frequency distribution
0 .008 .000 =0/100

1 .076 .090 =9/100

2 .265 .240 =24/100

3 411 .480 =48/100

4 .240 .190 =19/100

FIGURE 4.1 Comparison of the frequency and probability distribution
for the hypertension-control example
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The distributions look reasonably similar. The role of statistical inference is to
compare the two distributions to judge whether differences between the two can
be attributed to chance or whether real differences exist between the drug’s per-
formance in actual clinical practice and expectations from previous drug-company
experience.

Students often ask where a probability-mass function comes from. In some
instances previous data can be obtained on the same type of random variable be-
ing studied, and the probability-mass function can be computed from these data.
In other instances previous data may not be available, but the probability-mass
function from some well-known distribution can be used to see how well it fits ac-
tual sample data. This approach was used in Table 4.2, where the probability-mass
function was derived from the binomial distribution and then compared with the
frequency distribution from the sample of 100 physician practices.

44 THE EXPECTED VALUE OF A DISCRETE
RANDOM VARIABLE

If a random variable has a large number of values with positive probability, then
the probability-mass function is not a useful summary measure. Indeed, we face
the same problem as in trying to summarize a sample by enumerating each data
value.

Measures of location and spread can be developed for a random variable in
much the same way as they were developed for samples. The analog to the arithme-
tic mean X is called the expected value of a random variable, or population mean,
and is denoted by E(X) or u. The expected value represents the “average” value of the
random variable. It is obtained by multiplying each possible value by its respective
probability and summing these products over all the values that have positive (that
is, nonzero) probability.

DEFINITION 4.5 The expected value of a discrete random variable is defined as

E(X)= u:ﬁ{x,Pr(X:;q]

where the x;’s are the values the random variable assumes with positive probability.

Note that the sum in the definition of | is over R possible values. R may be either finite
or infinite. In either case, the individual values must be distinct from each other.

EXAMPLE 4.9 Hypertension Find the expected value for the random variable shown in Table 4.1.

Solution: E(X) = 0(.008) + 1(.076) + 2(.265) + 3(.411) + 4(.240) = 2.80 =

Thus, on average about 2.8 hypertensives would be expected to be brought under
control for every 4 who are treated.

EXAMPLE 4.10 Otolaryngology Consider the random variable mentioned in Example 4.3 represent-
ing the number of episodes of otitis media in the first 2 years of life. Suppose this
random variable has a probability-mass function as given in Table 4.3.
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TABLE 4.3 Probability-mass function for the number of episodes of otitis media
in the first 2 years of life

r 0 1 2 3 4 5 6

Pr(X=r) 129 .264 271 .185 .095 .039 .017

What is the expected number of episodes of otitis media in the first 2 years of life?

Solution: E(X) = 0(.129) + 1(.264) + 2(.271) + 3(.185) + 4(.095) + 5(.039) + 6(.017) =
2.038

Thus, on average a child would be expected to have about two episodes of otitis
media in the first 2 years of life.

In Example 4.8 the probability-mass function for the random variable represent-
ing the number of previously untreated hypertensives brought under control was
compared with the actual number of hypertensives brought under control in 100
clinical practices. In much the same way, the expected value of a random variable
can be compared with the actual sample mean in a data set (X).

i Es B Hypertension  Compare the average number of hypertensives brought under con-
trol in the 100 clinical practices (x) with the expected number of hypertensives

brought under control (1) per 4-patient practice.
Solution: From Table 4.2 we have
x=[0(0)+1(9)+2(24)+3(48)+4(19)]/100 =2.77

hypertensives controlled per 4-patient clinical practice, while p = 2.80. This agree-
ment is rather good. The specific methods for comparing the observed average value
and expected value of a random variable (x and u) are covered in the material on
statistical inference in Chapter 7. Notice that X could be written in the form

% = 0(0/100) + 1(9/100) + 2(24/100) + 3(48/100) + 4(19/100)

that is, a weighted average of the number of hypertensives brought under control, where
the weights are the observed probabilities. The expected value, in comparison, can be
written as a similar weighted average, where the weights are the theoretical probabilities:

1 =0(.008) + 1(.076) + 2(.265) + 3(.411) + 4(.240)

Thus, the two quantities are actually obtained in the same way, one with weights
given by the “observed” probabilities and the other with weights given by the “theo-
retical” probabilities. If the observed and theoretical probabilities are close to each
other, then X will be close to p.

45 THE VARIANCE OF A DISCRETE
RANDOM VARIABLE

The analog to the sample variance (s?) for a random variable is called the variance
of the random variable, or population variance, and is denoted by Var(X) or 6% The vari-
ance represents the spread, relative to the expected value, of all values that have pos-
itive probability. In particular, the variance is obtained by multiplying the squared
distance of each possible value from the expected value by its respective probability
and summing over all the values that have positive probability.
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DEFINITION 4.6 The variance of a discrete random variable, denoted by Var(X), is defined by

Var(X)=0” = ZR:(Xi —M)ZPr(X =%;)

where the x;’s are the values for which the random variable takes on positive prob-
ability. The standard deviation of a random variable X, denoted by sd(X) or o, is
defined by the square root of its variance.

The population variance can also be expressed in a different (“short”) form as
follows:

EQUATION 4.1 A short form for the population variance is given by

R
62 = E(X—p)’ = Y x2Pr(X = x;) -2
in1

EXAMPLE 4.12 Otolaryngology Compute the variance and standard deviation for the random vari-
able depicted in Table 4.3.

Solution: We know from Example 4.10 that u = 2.038. Furthermore,

ixfpr(x =x;)=0%(.129) +1%(.264) + 2% (.271) + 3*(.185)
= +4%(.095)+5%(.039)+6%(.017)
=0(.129)+1(.264)+4(.271)+9(.185)
+16(.095)+25(.039)+36(.017)
=6.12

Thus, Var(X) = 6?> = 6.12 — (2.038)2 = 1.967. The standard deviation of X is
6 =+/1.967 =1.402.

How can we interpret the standard deviation of a random variable? The follow-
ing often-used principle is true for many, but not all, random variables:

EQUATION 4.2 Approximately 95% of the probability mass falls within two standard deviations (2c)
of the mean of a random variable.

If 1.9606 is substituted for 2¢ in Equation 4.2, this statement holds exactly for
normally distributed random variables and approximately for certain other random
variables. Normally distributed random variables are discussed in detail in Chapter 5.

EXAMPLE 4.13 Otolaryngology Find a, b such that approximately 95% of infants will have between
a and b episodes of otitis media in the first 2 years of life.

Solution: The random variable depicted in Table 4.3 has mean (1) = 2.038 and stan-
dard deviation (o) = 1.402. The interval p + 2 is given by

2.038 £2(1.402) = 2.038 + 2.805
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84 CHAPTER 4 Discrete Probability Distributions

or from —0.77 to 4.84. Because only positive-integer values are possible for this
random variable, the valid range is from a = 0 to b = 4 episodes. Table 4.3 gives the
probability of having <4 episodes as

129 +.264 +.271 + .185 + .095 = .944

The rule lets us quickly summarize the range of values that have most of the
probability mass for a random variable without specifying each individual value.
Chapter 6 discusses the type of random variable to which Equation 4.2 applies.

46 THE CUMULATIVE-DISTRIBUTION FUNCTION
OF A DISCRETE RANDOM VARIABLE

Many random variables are displayed in tables or figures in terms of a cumulative-
distribution function rather than a distribution of probabilities of individual values as
in Table 4.1. The basic idea is to assign to each individual value the sum of probabilities
of all values that are no larger than the value being considered. This function is defined
as follows:

DEFINITION 4.7  The cumulative-distribution function (cdf) of arandom variable X is denoted by F(X)
and, for a specific value x of X, is defined by Pr(X < x) and denoted by F(x).

EXAMPLE 4.14 Otolaryngology Compute the cdf for the otitis-media random variable in Table 4.3
and display it graphically.

Solution: The cdf is given by

F(x)=0 if x<O

F(x)=.129 if 0<x<l
F(x) =.393 if 1<x<2
F(x) = .664 if 2<x<3
F(x) =.849 if 3<x<4
F(x) =.944 if 4<x<5
F(x) =.983 if 5<x<6
F(x)=1.0 if x>6

The function is displayed in Figure 4.2.

Another way to distinguish between a discrete and continuous random variable
is by each variable’s cdf. For a discrete random variable, the cdf looks like a series of
steps and is sometimes called a step function. For a continuous random variable, the
cdf is a smooth curve. As the number of values increases, the cdf for a discrete ran-
dom variable approaches that of a smooth curve. In Chapter 5, we discuss in more
detail the cdf for continuous random variables.

REVIEW QUESTIONS 4A

What is the difference between a frequency distribution and a probability distribution?

2 What is the difference between a probability-mass function (pmf) and a cumulative-
distribution function (cdf)?

3 In Table 4.4 the random variable X represents the number of boys in families with
4 children.

=
w
>
w
a4

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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FIGURE 4.2 Cumulative-distribution function for the number of episodes of otitis media
in the first 2 years of life
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Number of episodes

TABLE 4.4 Number of boys in families with 4 children

X PrX=x)
0 1/16
1 1/4
2 3/8
3 1/4
4 1/16

(@) What is the expected value of X? What does it mean?
(b) What is the standard deviation of X?
(c) What is the cdf of X?

47 PERMUTATIONS AND COMBINATIONS

Sections 4.2 through 4.6 introduced the concept of a discrete random variable in
very general terms. The remainder of this chapter focuses on some specific discrete
random variables that occur frequently in medical and biological work. Consider the
following example.

Infectious Disease One of the most common laboratory tests performed on any
routine medical examination is a blood count. The two main aspects of a blood
count are (1) counting the number of white blood cells (the “white count”) and
(2) differentiating the white blood cells that do exist into five categories—namely,
neutrophils, lymphocytes, monocytes, eosinophils, and basophils (called the “dif-
ferential”). Both the white count and the differential are used extensively in mak-
ing clinical diagnoses. We concentrate here on the differential, particularly on the
distribution of the number of neutrophils k out of 100 white blood cells (which is
the typical number counted). We will see that the number of neutrophils follows a
binomial distribution.
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86 CHAPTER 4 Discrete Probability Distributions

To study the binomial distribution, permutations and combinations—impor-
tant topics in probability—must first be understood.

O idBs il Mental Health  Suppose we identify S men ages 50-59 with schizophrenia in a com-
munity, and we wish to match these subjects with normal controls of the same gender

and age living in the same community. Suppose we want to employ a matched-pair
design, where each case is matched with a normal control of the same gender and
age. Five psychologists are employed by the study, each of whom interviews a single
case and his matched control. If there are 10 eligible 50- to 59-year-old male controls
in the community (labeled A, B, . . ., ]), then how many ways are there of choosing
controls for the study if a control can never be used more than once?

Solution: The first control can be any of 4, . . ., J and thus can be chosen in 10 ways.
Once the first control is chosen, he can no longer be selected as the second control;
therefore, the second control can be chosen in 9 ways. Thus, the first two controls
can be chosen in any one of 10 x 9 = 90 ways. Similarly, the third control can be
chosen in any one of 8 ways, the fourth control in 7 ways, and the fifth control in
6 ways, and so on. In total, there are 10 x 9 x 8 x 7 x 6 = 30,240 ways of choosing
the 5 controls. For example, one possible selection is ACDFE. This means control A
is matched to the first case, control C to the second case, and so on. The selection
order of the controls is important because different psychologists may be assigned to
interview each matched pair. Thus, the selection ABCDE differs from CBAED, even
though the same group of controls is selected.

We can now ask the general question: How many ways can k objects be selected
out of n where the order of selection matters? Note that the first object can be se-
lected in any one of n = (n + 1) — 1 ways. Given that the first object has been selected,
the second object can be selected in any oneof n—1=(n+ 1) — 2 ways, . . . ; the kth
object can be selected in any oneofn—(k—-1)=n—-k+1=(n+ 1) — k ways.

DEFINITION 4.8 The number of permutations of n things taken k at a time is
2Po=nn-1)x---x(n-k+1)

It represents the number of ways of selecting k items of n, where the order of selec-
tion is important.

N idRs A Mental Health  Suppose 3 schizophrenic women ages 50-59 and 6 eligible controls
live in the same community. How many ways are there of selecting 3 controls?

Solution: To answer this question, consider the number of permutations of 6 things
taken 3 at a time.

Ly =6x5x4=120

Thus, there are 120 ways of choosing the controls. For example, one way is to match
control A to case 1, control B to case 2, and control C to case 3 (ABC). Another way
would be to match control F to case 1, control C to case 2, and control D to case 3
(FCD). The order of selection is important because, for example, the selection ABC
differs from the selection BCA.

In some instances we are interested in a special type of permutation: selecting n objects
out of nn, where order of selection matters (ordering 7 objects). By the preceding principle,

2By=n(n-1)x...x[n-(n-1)]=n(n-1)x-.-x2x1
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The special symbol generally used for this quantity is n!, which is called n factorial
and is defined as follows:

DEFINITION 4.9 n!=n factorial is defined asn(n-1)x -+ - x2x1

EXAMPLE 4.18 Evaluate 5 factorial.

5!1=5x4x3x2x1=120

The quantity 0! has no intuitive meaning, but for consistency it will be defined as 1.

Another way of writing ,, B is in terms of factorials. Specifically, from Defini-
tion 4.8 we can re-express , P in the form
2Po=nn-1)x-..x(n-k+1)
n(n=1)x - x(n-k+1)x(n-k)x(n-k-1)x - - x1
- (n—k)x(n-k-1)x...x1

— nY(n-k)!

EQUATION 4.3 Alternative Formula for Permutations
An alternative formula expressing permutations in terms of factorials is given by

2P =n!/(n-k)!

DB el Mental Health  Suppose 4 schizophrenic women and 7 eligible controls live in the
same community. How many ways are there of selecting 4 controls?

Solution: The number of ways = P, = 7(6)(5)(4) = 840.
Alternatively, P, = 7!/3! = 5040/6 = 840.

Mental Health Consider a somewhat different design for the study described in
Example 4.16. Suppose an unmatched study design, in which all cases and controls
are interviewed by the same psychologist, is used. If there are 10 eligible controls,
then how many ways are there of choosing 5 controls for the study?

Solution: In this case, because the same psychologist interviews all patients, what is
important is which controls are selected, not the order of selection. Thus, the question
becomes how many ways can 5 of 10 eligible controls be selected, where order is not
important? Note that for each set of 5 controls (say A, B, C, D, E), there are 5 x 4 x 3 x
2 x 1 =15! ways of ordering the controls among themselves (e.g., ACBED and DBCAE are
two possible orders). Thus, the number of ways of selecting 5 of 10 controls for the study
without respect to order = (number of ways of selecting 5 controls of 10 where order is
important)/S!=_ P./5!=(10x 9 x 8 x 7 x 6)/120 = 30,240/120 = 252 ways. Thus, ABCDE

107 §

and CDFIJ are two possible selections. Also, ABCDE and BCADE are not counted twice.

The number of ways of selecting 5 objects of 10 without respect to order is
referred to as the number of combinations of 10 things taken 5 at a time and is

denoted by ;,C; or [150) =252.

This discussion can be generalized to evaluate the number of combinations of n
things taken k at a time. Note that for every selection of k distinct items of n, there
are k(k—1)x---x2x1=k! ways of ordering the items among themselves. Thus, we
have the following definition:
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DEFINITION 4.10 The number of combinations of n things taken k at a time is

2Ci =(Z]=”(”-1)X--I;!><(n—k+1)

Alternatively, if we express permutations in terms of factorials, as in Equation 4.3,
we obtain

Cp = (Zj — P JK!
=n!/[(n-k)! k!]

Thus, we have the following alternative definition of combinations:

DEFINITION 4.11 The number of combinations of n things taken k at a time is

It represents the number of ways of selecting k objects out of n where the order of
selection does not matter.

EXAMPLE 4.21 [RIZICICoN

_7x6X$5

77T 3x2x1

Henceforth, for consistency we will always use the more common notation (Zj for
combinations. In words, this is expressed as “n choose k.”

=7%x5=35

n n
A special situation arises upon evaluating ( 0]. By definition, ( Oj =n!/(0!n!), and
n
0! was defined as 1. Hence, ( O) =1 for any n. This makes sense because there is only
1 way to select 0 objects out of n objects.

n
Frequently, [ k) will need to be computed for k=0, 1, . . ., n. The combinatorials

have the following symmetry property, which makes this calculation easier than it
appears at first.

EQUATION 4.4 For any non-negative integers n, k, where n > k,

n n
k) \n-k
To see this, note from Definition 4.11 that

e

If n — k is substituted for k in this expression, then we obtain

[r:k)z (n—k)![:i(n—k)]! ~(n —nk!)!k! - (Zj
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n
Intuitively, this result makes sense because [ p

lecting k objects of n without regard to order. However, for every selection of k objects,
we have also, in a sense, identified the other n — k objects that were not selected. Thus,
the number of ways of selecting k objects of n without regard to order should be the
same as the number of ways of selecting n — k objects of n without regard to order.

) represents the number of ways of se-

n
Hence, we need only evaluate combinatorials [ ] for the integers k < n/2.

n n
If k >n /2, then the relationship (n kj = [

k
EXAMPLE 4.22  WSEINEIC

Solution:
7 7 7
o)\1) 7
7 7 7 7% 6 7 7X6%5
(o]—l (1]—7 (z]—m—ﬂ (3]—m—35

(B Q0= G0 06

We can also use a computer program to evaluate combinatorials. For example, to

) can be used.

n
evaluate [ J, we can use the Stata comb command with parameters n and k, denoted

k
by comb (n, k).

EXAMPLE 4.23 [RIANEG [ ; ] using Stata.

Solution: We specify comb (7, 3), which is displayed as follows:

.display comb (7, 3)
35

We can also use the choose command of R to evaluate more than one combinatorial
at the same time.

EXAMPLE 4.24 BIOURG [g ] [f J o [g JusingR.

Solution: In R, the notation 0:8 means the vector of integers 0,1,2,..., 8. Thus, we
specify

> choose (8, 0:8)

[1] 1 8 28 56 70 56 28 8 1

REVIEW QUESTIONS 4B

1 Suppose we select 3 students randomly out of a class of 10 students to read a
paper from the literature and summarize the results for the class. How many ways
can the students be selected? Is this a permutation, a combination, or neither?

=
w
>
w
24

2 Suppose we select 2 students randomly from a class of 20 students. The first student
selected will analyze a data set on the computer and prepare summary tables, and the
second student will present the results to the class. How many ways can the students
be selected for these tasks? Is this a permutation, a combination, or neither?
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48 THE BINOMIAL DISTRIBUTION

All examples involving the binomial distribution have a common structure: a
sample of n independent trials, each of which can have only two possible outcomes,
which are denoted as “success” and “failure.” Furthermore, the probability of a suc-
cess at each trial is assumed to be some constant p, and hence, the probability of a
failure at each trial is 1 — p = g. The term “success” is used in a general way, without
any specific contextual meaning.

For Example 4.15, n =100 and a “success” occurs when a cell is a neutrophil.

Infectious Disease Reconsider Example 4.15 with S cells rather than 100, and ask
the more limited question: What is the probability that the second and fifth cells
considered will be neutrophils and the remaining cells non-neutrophils, given a
probability of .6 that any one cell is a neutrophil?

Solution: If a neutrophil is denoted by an x and a non-neutrophil by an o, then the
question being asked is: What is the probability of the outcome oxoox = Pr(oxo0x)?
Because the probabilities of success and failure are given, respectively, by .6 and .4,
and the outcomes for different cells are presumed to be independent, then the
probability is

qxpxqxqxp=p4q’=(.6)*(4)°

DO idBs il Infectious Disease  Now consider the more general question: What is the probabil-
ity that any 2 cells out of 5 will be neutrophils?

Solution: The arrangement oxoox is only one of 10 possible orderings that result in
2 neutrophils. Table 4.5 gives the 10 possible orderings.

TABLE 4.5 Possible orderings for 2 neutrophils of 5 cells

XX000 OXX00 00X0X
X0X00 0OX0Xx0 000XX
X00X0 OX00x
X000X 00XX0

In terms of combinations, the number of orderings = the number of ways of selecting
5
2 cells to be neutrophils out of S cells = (2) =(5x4)/(2x1)=10.

The probability of any of the orderings in Table 4.5 is the same as that for the
ordering oxoox, namely, (.6)%(.4)%. Thus, the probability of obtaining 2 neutrophils in

5 cells is [;)(.6)2 (4)° =10(.6)* (.4)* = .230.

Suppose the neutrophil problem is now considered more generally, with #» trials
rather than S trials, and the question is asked: What is the probability of k successes
(rather than 2 successes) in these n trials? The probability that the k successes will
occur at k specific trials within the »n trials and that the remaining trials will be fail-
ures is given by p*(1 — p)"*. To compute the probability of k successes in any of the
n trials, this probability must be multiplied by the number of ways in which k trials
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n
for the successes and n — k trials for the failures can be selected = ( K

Table 4.5. Thus, the probability of k successes in # trials, or k neutrophils in 7 cells, is
n\ ok n-k (M) k n-k
1- =
( kj p*(1-p) [ kjp q

EQUATION 4.5 Thedistribution of the number of successesin nstatistically independent trials, where
the probability of success on each trial is p, is known as the binomial distribu-
tion and has a probability-mass function given by

J, as was done in

Pr(X=Fk)= [Z]pkq"‘k, k=01,...,n

iR el A What is the probability of obtaining 2 boys out of 5 children if the probability of a
boy is .51 at each birth and the genders of successive children are considered inde-
pendent random variables?

Solution: Use a binomial distribution with n =35, p = .51, k = 2. Let X = number of
boys out of 5 births. Compute

Pr(X=2)= (2)(.51)2 (49)* = 3 i‘i (.51)°(.49)°

=10(.51)7(:49)° =.306

Using Binomial Tables

Often a number of binomial probabilities need to be evaluated for the same n and p,
which would be tedious if each probability had to be calculated from Equation 4.5.
Instead, for small n (n < 20) and selected values of p, refer to Table 1 in the Appendix,
where individual binomial probabilities are calculated. In this table, the number of
trials (n) is provided in the first column, the number of successes (k) out of the n trials
is given in the second column, and the probability of success for an individual trial
(p) is given in the first row. Binomial probabilities are provided forn=2, 3, ..., 20;
p=.05,.10,...,.50.

v idns i Infectious Disease  Evaluate the probability of 2 lymphocytes out of 10 white blood
cells if the probability of any one cell being a lymphocyte is .2.

Solution: Refer to Table 1 with n = 10, k = 2, p = .20. The appropriate probability,
given in the k = 2 row and p = .20 column under 7 = 10, is .3020.

Pulmonary Disease An investigator notices that children develop chronic bronchi-
tis in the first year of life in 3 of 20 households in which both parents have chronic
bronchitis, as compared with the national incidence of chronic bronchitis, which is
5% in the first year of life. Is this difference “real,” or can it be attributed to chance?
Specifically, how likely are infants in at least 3 of 20 households to develop chronic
bronchitis if the probability of developing disease in any one household is .05?

Solution: Suppose the underlying rate of disease in the offspring is .05. Under this as-
sumption, the number of households in which the infants develop chronic bronchitis
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92 CHAPTER 4 Discrete Probability Distributions

will follow a binomial distribution with parameters n = 20, p = .05. Thus, among 20
households the probability of observing k with bronchitic children is given by

20 .
( B ](.os)k (95)°%, k=0,1,...,20

The question is: What is the probability of observing at least 3 households with a
bronchitic child? The answer is

Frixz3)= 2(21? )('OS)k (95)" " =1- éﬁ? J(.Os)k (.95)7F

These three probabilities in the latter sum can be evaluated using the binomial table
(Table 1). Refer to n = 20, p = .05, and note that Pr(X = 0) = .3585, Pr(X = 1) = .3774,
Pr(X =2)=.1887. Thus,

Pr(X>3)=1-(3585+.3774 + .1887) = .0754

Thus, X > 3 is an unusual event but not very unusual. Usually .05 or less is the range
of probabilities used to identify unusual events. This criterion is discussed in more
detail in our work on p-values in Chapter 7. If 3 infants of 20 were to develop the
disease, it would be difficult to judge whether the familial aggregation was real until
a larger sample was available.

One question sometimes asked is why a criterion of Pr(X > 3 cases), rather than
Pr(X = 3 cases), was used to define unusualness in Example 4.29? The latter is what
we actually observed. An intuitive answer is that if the number of households studied in
which both parents had chronic bronchitis were very large (for example, n = 1500),
then the probability of any specific occurrence would be small. For example,
suppose 75 cases occurred among 1500 households in which both parents had
chronic bronchitis. If the incidence of chronic bronchitis were .05 in such families,
then the probability of 75 cases among 1500 households would be

(1500

s j(.os)75 (.95)"**° = 047

This result is exactly consistent with the national incidence rate (5% of households
with cases in the first year of life) and yet yields a small probability. This doesn’t
make intuitive sense. The alternative approach is to calculate the probability of ob-
taining a result at least as extreme as the one obtained (a probability of at least 75
cases out of 1500 households) if the incidence rate of .05 were applicable to families
in which both parents had chronic bronchitis. This would yield a probability of
approximately .50 in the preceding example and would indicate that nothing very
unusual is occurring in such families, which is clearly the correct conclusion. If this
probability were small enough, then it would cast doubt on the assumption that the
true incidence rate was .05 for such families. This approach was used in Example 4.29
and is developed in more detail in our work on hypothesis testing in Chapter 7.
Alternative approaches to the analysis of these data also exist, based on Bayesian
inference, but are beyond the scope of this text.

One question that arises is how to use the binomial tables if the probability of
success on an individual trial (p) is greater than .5. Recall that

(")
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Let X be a binomial random variable with parameters n and p, and let Y be a binomial
random variable with parameters n and g = 1 — p. Then Equation 4.5 can be rewritten as

EQUATION 4.6 Pr(X=k)= (Z)pkq”"k = [nfqu"-kpk =Pr(Y=n-k)

In words, the probability of obtaining k successes for a binomial random variable X
with parameters n and p is the same as the probability of obtaining n — k successes
for a binomial random variable Y with parameters n and g. Clearly, if p > .5, then
q=1-p<.5, and Table 1 can be used with sample size n, referring to the n — k row
and the g column to obtain the appropriate probability.

O iBs il Infectious Disease  Evaluate the probabilities of obtaining k neutrophils out of 5 cells
fork=0, 1, 2, 3, 4, 5, where the probability of any one cell being a neutrophil is .6.

Solution: Because p > .5, refer to the random variable Y with parameters n =5,
p=1-.6=4.

5 5
Pr(X=0)= (OJ(.6)0 (4) = [SJ(A)S (.6)" = Pr(Y =5)=.0102
on referring to the k = 5 row and p = .40 column under n = 5. Similarly,

Pr(X =1) = Pr(Y = 4) = .0768 on referring to the 4 row and .40 column under n = 5
Pr(X = 2) = Pr(Y = 3) = .2304 on referring to the 3 row and .40 column under n =5
Pr(X = 3) = Pr(Y = 2) = .3456 on referring to the 2 row and .40 column under n =35
Pr(X =4) = Pr(Y = 1) = .2592 on referring to the 1 row and .40 column under n =5
Pr(X =5) = Pr(Y =0) = .0778 on referring to the O row and .40 column under n =5

Using “Electronic” Tables

In many instances we want to evaluate binomial probabilities for n > 20 and/or for
values of p not given in Table 1 of the Appendix. For sufficiently large n, the normal
distribution can be used to approximate the binomial distribution, and tables of the
normal distribution can be used to evaluate binomial probabilities. This procedure is
usually less tedious than evaluating binomial probabilities directly using Equation
4.5 and is studied in detail in Chapter 5. Alternatively, if the sample size is not large
enough to use the normal approximation and if the value of n or p is not in Table 1,
then an electronic table can be used to evaluate binomial probabilities.

One example of an electronic table is provided by Microsoft Excel. A menu of
statistical functions is available to the user, including calculation of probabilities for
many probability distributions, including but not limited to those discussed in this
text. For example, one function in this menu is the binomial-distribution function,
which is called BINOMDIST and is discussed in detail at www.cengagebrain.com.
Using this function, we can calculate the probability-mass function and cdf for
virtually any binomial distribution.

Pulmonary Disease Compute the probability of obtaining exactly 75 cases of
chronic bronchitis and the probability of obtaining at least 75 cases of chronic
bronchitis in the first year of life among 1500 families in which both parents have
chronic bronchitis, if the underlying incidence rate of chronic bronchitis in the first
year of life is .0S5.
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94 CHAPTER 4 Discrete Probability Distributions

Solution: We use the BINOMDIST function of Excel to solve this problem. Table 4.6
gives the results. First, we compute Pr(X = 75), which is .047, which is unusual.
We then use the cdf option to compute Pr(X < 74), which equals .483. Finally, we
compute the probability of obtaining at least 75 cases by

Pr(X>75)=1-Pr(X <74)=.517
Hence, obtaining 75 cases out of 1500 children is clearly not unusual.

TABLE 4.6 Calculation of binomial probabilities using Excel

n 1500
k 75
p 0.05
Pr(X = 75) 0.047210 = BINOMDIST (75, 1500, .05, false)
Pr(X < 74) 0.483458 = BINOMDIST (74, 1500, .05, true)
Pr(X > 75) 0.516542 = 1 — BINOMDIST (74, 1500, .05, true)

s e Infectious Disease  Suppose a group of 100 women ages 60—64 received a new flu
vaccine in 2004, and 5 of them died within the next year. Is this event unusual, or

can this death rate be expected for people of this age-sex group? Specifically, how
likely are at least 5 of 100 60- to 64-year-old women who receive a flu vaccine to die
in the next year?

Solution: We first find the expected annual death rate in 60- to 64-year-old women.
From a 2004 U.S. life table, we find that 60- to 64-year-old women have an approximate
probability of death within the next year of .009 [3]. Thus, from the binomial distri-
bution, the probability that k of 100 women will die during the next year is given by

k
en is an “unusual” event. One approach to this problem might be to find the prob-
ability of obtaining at least 5 deaths in this group = Pr(X > 5) given that the prob-
ability of death for an individual woman is .009. This probability can be expressed as

100 K 100-k .
(009)"(.991) " ". We want to know whether 5 deaths in a sample of 100 wom-

g(lioj(.ow)k (.991)'**

Because this sum of 96 probabilities is tedious to compute, we instead compute

Pr(X<S5)= i [120

j(.009)k (.991)'°*

and then evaluate Pr(X > 5) =1 — Pr(X < 5). The binomial tables cannot be used be-
cause n > 20. Therefore, the sum of 5 binomial probabilities is evaluated using an
electronic table from R.

In R, the function used to calculate cdf’s for the binomial distribution is called
pbinom. Specifically, if X is a binomial distribution with parameters n and p, then

Pr(X <k)(n, p):ﬁ[ ’: ] p'q"" = pbinom (k,n, p)

i=0

Thus, to compute Pr(X = 5) (n = 100, p = 0.05) we use the R code given in Table 4.7,
which indicates that this probability = 0.002.
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TABLE 4.7 Calculation of the probability of at least 5 deaths among
100 women 60-64 years of age in 2004

This computes Pr (X < 4)
> pbinom (4,100, 0.009)
[1] 0.997809

This computes Pr (X 2 5)
> 1l-pbinom (4,100, 0.009)

[1] 0.00219104

We can also use R to evaluate and plot a set of binomial probabilities. For example, in
Table 4.8 we provide R code to calculate the binomial probabilities with n =100, p =
0.05and k=0, 1, 2, 3, 4, 5. For this purpose we can use the dbinom command of R

n
given by dbinom (k, n, p) = Pr(X = k) = ( kj pkq"*. These values are also displayed in
Figure 4.3.

Thus, at least 5 deaths in 100 is very unusual and would probably be grounds for
considering halting use of the vaccine.

TABLE 4.8 Table of binomial probabilities for n =100, p =0.05, k=0, 1, ..., 5.

> k<-0:5

> prob<-dbinom(k,100,0.05)

> results=rbind (round(k,0) ,prob)

> rownames (results) <-c(“k”, “Prob (X=k)”)

> results

[,1] [, 2] [,3] [,4] [,5] [,6]
k 0.000000000 1.00000000 2.00000000 3.0000000 4.0000000 5.0000000
Prob (X=k) 0.005920529 0.03116068 0.08118177 0.1395757 0.1781426 0.1800178

> barplot (prob, main="Display of Binomial Probabilities \n N=100,
p=0.05, for k=0, 1, 2, 3, 4, 5", ylab="Probabilities”, ylim=c (0,

0.2), names.arg:c(“O”, WM, WD wW3m o owgm o owgn) )

FIGURE 4.3 Displays of binomial probabilities for n=100, p=0.05, k=0,1, ..., 5.
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49 EXPECTED VALUE AND VARIANCE
OF THE BINOMIAL DISTRIBUTION

The expected value and variance of the binomial distribution are important both
in terms of our general knowledge about the binomial distribution and for our later
work on estimation and hypothesis testing. From Definition 4.5 we know that the
general formula for the expected value of a discrete random variable is

R
E(X)=Y xPr(X =x)
i=1
In the special case of a binomial distribution, the only values that take on positive
probability are 0, 1, 2, . . ., n, and these values occur with probabilities

ny) o n) 4 na
(Dt (..
7 n
Thus, E(X)= Y k kgn=k
us, E(X) kfz) (k}zﬂq

This summation reduces to the simple expression np. Similarly, using Definition 4.6,
we can show that

= 21N ne
Var(X) = (k=np) (k]pkq “=npg
k=0
which leads directly to the following result:

EQUATION 4.7 The expected value and the variance of a binomial distribution are np and npq,
respectively.

These results make good sense because the expected number of successes in n tri-
als is simply the probability of success in one trial multiplied by n, which equals np.
Furthermore, for a given number of trials », the binomial distribution has the highest
variance when p = 1/2, as shown in Figure 4.4. The variance of the distribution de-
creases as p moves away from 1/2 in either direction, becoming O when p =0 or 1. This
result makes sense because when p = 0, there must be 0 successes in # trials and when
p =1, there must be n successes in 7 trials, and there is no variability in either instance.
Furthermore, when p is near O or near 1, the distribution of the number of successes
is clustered near O and n, respectively, and there is comparatively little variability as
compared with the situation when p = 1/2. This point is illustrated in Figure 4.5.

REVIEW QUESTIONS 4C

1 The probability of a woman developing breast cancer over a lifetime is about 1/9.

(a) What is the probability that exactly 2 women of 10 will develop breast cancer
over a lifetime?

=
w
>
w
/~©

(b) What is the probability that at least 2 women of 10 will develop breast cancer
over a lifetime?

2 Suppose we have 10 subjects and the probability of having a disease at one point
in time for 1 subject is .1. What is the probability that exactly 1 of the 10 subjects
has the disease? Why is this not the same as .1?
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FIGURE 4.4 Plot of pg versus p

pq

~——————

~
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410 THE POISSON DISTRIBUTION

The Poisson distribution is perhaps the second most frequently used discrete distri-
bution after the binomial distribution. This distribution is usually associated with
rare events.

Infectious Disease Consider the distribution of number of deaths attributed to
typhoid fever over a long period of time, for example, 1 year. Assuming the prob-
ability of a new death from typhoid fever in any one day is very small and the
number of cases reported in any two distinct periods of time are independent ran-
dom variables, then the number of deaths over a 1-year period will follow a Poisson
distribution.

|2, s eieiss | Bacteriology  The preceding example concerns a rare event occurring over time. Rare
events can also be considered not only over time but also on a surface area, such as

the distribution of number of bacterial colonies growing on an agar plate. Suppose
we have a 100-cm? agar plate. We assume that the probability of finding any bacterial
colonies at any one point a (or more precisely in a small area around a) is very small
and proportional to the area and that the events of finding bacterial colonies at any
two points a,, a, are independent. Under these assumptions, the number of bacterial
colonies over the entire agar plate will follow a Poisson distribution.

Consider Example 4.33. Ask the question: What is the distribution of the
number of deaths caused by typhoid fever from time O to time t (where t is some
long period of time, such as 1 year or 20 years)?

Three assumptions must be made about the incidence of the disease. Consider
any general small subinterval of the time period t, denoted by At.

ASSUMPTION 4.1  Assume that
(1) The probability of observing 1 death is directly proportional to the length of the
time interval At. That is, Pr(1 death) = AAt for some constant A.
(2) The probability of observing O deaths over At is approximately 1 — AAt.
(3) The probability of observing more than 1 death over this time interval is essentially O.

ASSUMPTION 4.2  Stationarity Assume the number of deaths per unit time is the same throughout the
entire time interval t. Thus, an increase in the incidence of the disease as time goes
on within the time period t would violate this assumption. Note that t should not be
overly long because this assumption is less likely to hold as t increases.

ASSUMPTION 4.3 Independence If a death occurs within one time subinterval, then it has no bear-
ing on the probability of death in the next time subinterval. This assumption would
be violated in an epidemic situation because if a new case of disease occurs, then
subsequent deaths are likely to build up over a short period of time until after the
epidemic subsides.

Given these assumptions, the Poisson probability distribution can be derived:
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EQUATION 4.8 The probability of k events occurring in a time period ¢ for a Poisson random variable
with parameter A is

Pr(X=k)=e*u*/k!, k=0,1,2,...

where pu = At and e is approximately 2.71828.

Thus, the Poisson distribution depends on a single parameter p = At. Note that the
parameter A represents the expected number of events per unit time, whereas the param-
eter p represents the expected number of events over time period t. One important differ-
ence between the Poisson and binomial distributions concerns the numbers of trials
and events. For a binomial distribution there are a finite number of trials n, and the
number of events can be no larger than n. For a Poisson distribution the number of
trials is essentially infinite and the number of events (or number of deaths) can be
indefinitely large, although the probability of k events becomes very small as k increases.

Infectious Disease Consider the typhoid-fever example. Suppose the number of
deaths from typhoid fever over a 1-year period is Poisson distributed with parameter
1 =4.6. What is the probability distribution of the number of deaths over a 6-month
period? A 3-month period?

Solution: Let X = the number of deaths in 6 months. Because u = 4.6, t = 1 year, it
follows that A = 4.6 deaths per year. For a 6-month period we have A = 4.6 deaths per
year, t =.5 year. Thus, u = At = 2.3. Therefore,

Pr(X=0)=e?*=.100

H(X:l):%e’m =.231
2
Pr(X=2)=2'2—3|e‘23 =.265
3
Pr(X:B):zé,—“?" 23 =203
34
Pr(X=4)=="-¢?% =117
5
Pr(X=5)=2'5—3'e‘2'3 =.054

Pr(X=26)=1-(.100+.231+.265+.203 +.117 +.054) =.030

Let Y = the number of deaths in 3 months. For a 3-month period, we have A = 4.6
deaths per year, t = .25 year, u = At = 1.15. Therefore,

Pr(Y=0)=e""=317

pr(y= )=1'11|Se"115 364
2
Pr(Y:Z)—l';'S 15 = 209
3
Pr(y =3) 1;'5 -115 =080

Pr(Y 24)=1-(.317+.364+.209 +.080) =.030
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FIGURE 4.6 Distribution of the number of deaths attributable
to typhoid fever over various time intervals
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These distributions are plotted in Figure 4.6. Note that the distribution tends to
become more symmetric as the time interval increases or, more specifically, as u
increases.

The Poisson distribution can also be applied to Example 4.34, in which the dis-
tribution of the number of bacterial colonies in an agar plate of area A is discussed.
Assuming that the probability of finding 1 colony in an area the size of AA at any
point on the plate is AAA for some A and that the number of bacterial colonies found
at 2 different points of the plate are independent random variables, then the prob-
ability of finding k bacterial colonies in an area of size A is e u* /k!, where u = AA.

EXAMPLE 4.36 Bacteriology Assuming A = 100 cm? and A = .02 colonies per cm?, calculate the
probability distribution of the number of bacterial colonies.

Solution: We have u=2A =100(.02) = 2. Let X = the number of colonies.
Pr(X=0)=¢?=.135

Pr(X=1)=e?2'/11=2¢2=.271

Pr(X=2)=¢?22%/21=2¢7% =271
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EXAMPLE 4.37

EXAMPLE 4.38
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4.11 101

Computation of Poisson Probabilities

253 4
Pr(X=3)=e"2 /3!=§e
24/ 41=2 2
3

=.180

Pr(X=4)=¢ =.090

Pr(X 25)=1-(.135+.271+.271+.180 +.090) =.053

Clearly, the larger A is, the more bacterial colonies we would expect to find.

COMPUTATION OF POISSON PROBABILITIES
Using Poisson Tables

A number of Poisson probabilities for the same parameter p often must be evaluated.
This task would be tedious if Equation 4.8 had to be applied repeatedly. Instead, for
u < 20 refer to Table 2 in the Appendix, in which individual Poisson probabilities are
specifically calculated. In this table the Poisson parameter p is given in the first row,
the number of events (k) is given in the first column, and the corresponding Poisson
probability is given in the k row and p column.

Compute the probability of obtaining a least 5 events for a Poisson distribution with
parameter p = 3.

Solution: Refer to Appendix Table 2 under the 3.0 column. Let X = the number of
events.

Pr(X = O)=O498
Pr(X=1)=.14
Pr(X =2)=.2240
Pr(X = 3):2240
Pr(X=4)=.1

Thus Pr(X>5)=1 Pr(X <4)

1-(.0498 +.1494 +.2240 +.2240 +.1680)
=1-.8152=.1848

Electronic Tables for the Poisson Distribution

In many instances we want to evaluate a collection of Poisson probabilities for the
same |, but p is not given in Table 2 of the Appendix. For large p (u > 10), a normal
approximation, as given in Chapter 5, can be used. Otherwise, an electronic table
similar to that presented for the binomial distribution can be used. The POISSON
function of Excel can be used to compute individual and cumulative probabilities
for the Poisson distribution (see Companion Website for details).

Infectious Disease Calculate the probability distribution of deaths caused by
typhoid fever over a 1-year period using the information given in Example 4.35.

In this case, we model the number of deaths caused by typhoid fever by a Pois-
son distribution with pu =4.6. We will use the POISSON function of Excel. The results
are given in Table 4.9. We see that 9 or more deaths caused by typhoid fever would
be unusual over a 1-year period.
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TABLE 4.9 Calculation of the probability distribution of the number of deaths caused by typhoid
fever over a 1-year period using the POISSON function of Excel

Number of

deaths Probability

0 0.010 = POISSON (0, 4.6, false)
1 0.046 = POISSON (1, 4.6, false)
2 0.106 = POISSON (2, 4.6, false)
3 0.163 = POISSON (3, 4.6, false)
4 0.188 = POISSON (4, 4.6, false)
5 0.173 = POISSON (5, 4.6, false)
6 0.132 = POISSON (6, 4.6, false)
7 0.087 = POISSON (7, 4.6, false)
8 0.050 = POISSON (8, 4.6, false)
<=8 0.955 = POISSON (8, 4.6, true)
>=9 0.045 = 1 — POISSON (8, 4.6, true)

412 EXPECTED VALUE AND VARIANCE
OF THE POISSON DISTRIBUTION

In many instances we cannot predict whether the assumptions for the Poisson
distribution in Section 4.10 are satisfied. Fortunately, the relationship between
the expected value and variance of the Poisson distribution provides an important
guideline that helps identify random variables that follow this distribution. This
relationship can be stated as follows:

EQUATION 4.9 For a Poisson distribution with parameter p, the mean and variance are both
equal to p.

This fact is useful, because if we have a data set from a discrete distribution where
the mean and variance are about the same, then we can preliminarily identify it as a
Poisson distribution and use various tests to confirm this hypothesis.

D Es il Infectious Disease  The number of deaths attributable to polio during the years
1968-1977 is given in Table 4.10 [4, 5]. Comment on the applicability of the Poisson
distribution to this data set.

Solution: The sample mean and variance of the annual number of deaths caused by
polio during the period 1968-1977 are 18.0 and 23.1, respectively. The Poisson dis-
tribution will probably fit well here because the variance is approximately the same
as the mean.

TABLE 4.10 Number of deaths attributable to polio during the years 1968-1977

Year 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
Number of
deaths 15 10 19 23 15 17 23 17 26 15
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Suppose we are studying a rare phenomenon and want to apply the Poisson distribu-
tion. A question that often arises is how to estimate the parameter p of the Poisson
distribution in this context. Because the expected value of the Poisson distribution is y,
1 can be estimated by the observed mean number of events over time t (e.g., 1 year), if
such data are available. If the data are not available, other data sources can be used
to estimate p.

Occupational Health A public-health issue arose concerning the possible carcino-
genic potential of food ingredients containing ethylene dibromide (EDB). In some
instances foods were removed from public consumption if they were shown to have
excessive quantities of EDB. A previous study had looked at mortality in 161 white
male employees of two plants in Texas and Michigan who were exposed to EDB over
the time period 1940-1975 [6]. Seven deaths from cancer were observed among
these employees. For this time period, 5.8 cancer deaths were expected as calculated
from overall mortality rates for U.S. white men. Was the observed number of cancer
deaths excessive in this group?

Solution: Estimate the parameter u from the expected number of cancer deaths
from U.S. white male mortality rates; that is, u = 5.8. Then calculate Pr(X > 7), where
X is a Poisson random variable with parameter u = 5.8. Use the relationship

Pr(X>7)=1-Pr(X<6)
where Pr(X =k)=e3%(5.8)" /k!

Because p = 5.8 is not in Table 2 of the Appendix let’s use Excel to perform the calcu-
lations. Table 4.11 gives the results.

Thus, Pr(X > 7) = 1 - Pr(X < 6)
=1-.638=.362

Clearly, the observed number of cancer deaths is not excessive in this group.

TABLE 4.11 Calculation of the probability distribution of the number of cancer deaths
in the EDB example using the POISSON function of Excel

Mean

number of

deaths Probability
0 0.003 = POISSON (0, 5.8, false)
1 0.018 = POISSON (1, 5.8, false)
2 0.051 = POISSON (2, 5.8, false)
3 0.098 = POISSON (3, 5.8, false)
4 0.143 = POISSON (4, 5.8, false)
5 0.166 = POISSON (5, 5.8, false)
6 0.160 = POISSON (6, 5.8, false)

<=6 0.638 = POISSON (6, 5.8, true)

>=7 0.362 = 1 - POISSON (6, 5.8, true)
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413 POISSON APPROXIMATION TO THE
BINOMIAL DISTRIBUTION

As noted in the preceding section, the Poisson distribution seems to fit well in some
applications. Another important use for the Poisson distribution is as an approxima-
tion to the binomial distribution. Consider the binomial distribution for large n and
small p. The mean of this distribution is given by np and the variance by npq. Note
that g = (is approximately equal to) 1 for small p, and thus npq = np. Therefore, the
mean and variance of the binomial distribution are almost equal in this case, which
suggests the following rule:

EQUATION 4.10 Poisson Approximation to the Binomial Distribution
The binomial distribution with large n and small p can be accurately approxi-
mated by a Poisson distribution with parameter p = np.

The rationale for using this approximation is that the Poisson distribution is eas-
ier to work with than the binomial distribution. The binomial distribution involves

expressions such as (Z) and (1- p)"_k, which are cumbersome for large n.

N idBs e ii i Cancer, Genetics  Suppose we are interested in the genetic susceptibility to breast
cancer. We find that 4 of 1000 women ages 40-49 whose mothers have had breast

cancer also develop breast cancer over the next year of life. We would expect from
large population studies that 1 in 1000 women of this age group will develop a new
case of the disease over this period of time. How unusual is this event?

Solution: The exact binomial probability could be computed by letting n = 1000,
p=1/1000. Hence,
Pr(X>4)=1-Pr(X<3)

1000
0

1000

j(.001)° (.999)!0%0 +[ !

J(.001)1 (.999)°%°

+ (1020 O)(.001)2 (.999)°% + (10;) 0](-001)3 (:999)”

Instead, use the Poisson approximation with p = 1000(.001) = 1, which is obtained
as follows:

Pr(X24)=1-[Pr(X =0)+Pr(X =1)+ Pr(X = 2)+ Pr(X = 3)]
Using Table 2 of the Appendix under the p = 1.0 column, we find that
Pr(X=0)=.3679
Pr(X =1)=.3679

Pr(X =2)=.1839
Pr(X =3)=.0613

Thus, Pr(X >4)=1-(.3679+.3679+.1839+.0613)
=1-.9810=.0190

This event is indeed unusual and suggests a genetic susceptibility to breast cancer
among daughters of women who have had breast cancer. For comparative purposes,
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we have computed the exact binomial probabilities of obtaining 0, 1, 2, and 3
events, which are given by .3677, .3681, .1840, and .0613, respectively. The cor-
responding exact binomial probability of obtaining 4 or more breast-cancer cases
is .0189, which agrees almost exactly with the Poisson approximation of .0190 just
given.

How large should n be or how small should p be before the approximation is
“adequate”? A conservative rule is to use the approximation when n > 100 and
p <.01. As an example, we give the exact binomial probability and the Poisson ap-
proximation for n =100, p=.01, k=0, 1, 2, 3, 4, 5 in Table 4.12. The two probability
distributions agree to within .002 in all instances.

TABLE 4.12 An example of the Poisson approximation to the binomial distribution
forn=100,p=.01,k=0,1,...,5

Exact Exact
binomial Poisson binomial Poisson
k probability approximation k probability approximation
0 .366 .368 3 .061 .061
1 .370 .368 4 .015 .015
2 .185 .184 5 .003 .003

Infectious Disease An outbreak of poliomyelitis occurred in Finland in 1984 after
20 years without a single case being reported in the country. As a result, an intensive
immunization campaign was conducted within 5 weeks between February 9 and
March 15, 1985; it covered 94% of the population and was highly successful. During
and after the campaign, several patients with Guillain-Barré syndrome (GBS), a rare
neurologic disease often resulting in paralysis, were admitted to the neurologic units
of hospitals in Finland [7].

The authors provided data on monthly incidence of GBS from April 1984 to
October 1985. These data are given in Table 4.13.

TABLE 4.13 Monthly incidence of GBS in Finland from April 1984 to October 1985

Number of Number of Number of

Month GBS cases | Month GBS cases Month GBS cases
April 1984 3 November 1984 2 May 1985 2
May 1984 7 December 1984 3 June 1985 2
June 1984 0 January 1985 3 July 1985 6

July 1984 3 February 1985 8 August 1985 2
August 1984 4 March 1985 14 September 1985 2
September 1984 4 April 1985 7 October 1985 6
October 1984 2

Determine whether the number of cases in March 1985 is excessive compared with
the experience in the other 18 months based on the data in Table 4.13.

Solution: If there are n people in Finland who could get GBS and the monthly inci-
dence of GBS (p) is low, then we could model the number of GBS cases in 1 month
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(X) by a binomial distribution with parameters n and p. Because n is large and p
is small, it is reasonable to approximate the distribution of the number of GBS
cases in 1 month (X) by a Poisson distribution with parameter pu = np. To estimate
K, we use the average monthly number of GBS cases during the 18-month period
from April 1984 to October 1985, excluding the vaccine month of March 1985.
The mean number of cases per month = (3 +7 + ...+ 6)/18 = 3.67. We now
assess whether the number of cases in March 1985 (14) is excessive by comput-
ing Pr(X 2 14 | © = 3.67). We use Stata to perform this computation, as shown in
Table 4.14.

TABLE 4.14 Probability of observing 14 or more cases of GBS in Finland
during March 1985 (mean = 3.67)

.display poissontail (3.67, 14)
.00003092

The results indicate that Pr(X > 14 | p=3.67) = 3.09 x 10-. Thus, 14 cases in 1 month
is very unusual, given the 18-month experience in nonvaccine months, and possi-
bly indicates that the many cases in March 1985 are attributable to the vaccination
campaign.

REVIEW QUESTIONS 4D

1 Suppose the number of motor-vehicle fatalities in a city during a week is Poisson-
distributed, with an average of 8 fatalities per week.

(@) What is the probability that 12 fatalities occur in a specific week?

=
w
>
w
-4

(b) What is the probability that at least 12 fatalities occur during a specific week?

(c) How many motor-vehicle fatalities would have to occur during a given week
to conclude that there are an unusually high number of events in that week?
(Hint: Refer to Example 4.38.)
2 Suppose a rare infectious disease occurs at the rate of 2 per 10° people per year.

(@) What is the probability that in New York City (population about 8 million)
exactly 25 cases occur in a given year?

(b) What is the probability that at least 25 cases occur in a given year?
(Hint: Use the Poisson approximation to the binomial distribution.)

414 SUMMARY

In this chapter, random variables were discussed and a distinction between discrete
and continuous random variables was made. Specific attributes of random variables,
including the notions of probability-mass function (or probability distribution),
cdf, expected value, and variance were introduced. These notions were shown to
be related to similar concepts for finite samples, as discussed in Chapter 2. In par-
ticular, the sample-frequency distribution is a sample realization of a probability
distribution, whereas the sample mean (x) and variance (s?) are sample analogs of
the expected value and variance, respectively, of a random variable. The relation-
ship between attributes of probability models and finite samples is explored in more
detail in Chapter 6.

SUMMARY
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Problems

Finally, some specific probability models were introduced, focusing on the bino-
mial and Poisson distributions. The binomial distribution was shown to be applicable
to binary outcomes, that is, if only two outcomes are possible, where outcomes on
different trials are independent. These two outcomes are labeled as “success” and
“failure,” where the probability of success is the same for each trial. The Poisson dis-
tribution is a classic model used to describe the distribution of rare events.

The study of probability models continues in Chapter 5, where the focus is on
continuous random variables.

PROBLEMS

Let X be the random variable representing the number of
hypertensive adults in Example 3.12.

*4.1 Derive the probability-mass function for X.
*4.2 What is its expected value?

*4.3 What is its variance?

*4.4 What is its cumulative-distribution function?

Suppose we want to check the accuracy of self-reported
diagnoses of angina by getting further medical records on a
subset of the cases.

4.5 If we have 50 reported cases of angina and we want
to select 5 for further review, then how many ways can we
select these cases if order of selection matters?

4.6 Answer Problem 4.5 assuming order of selection does
not matter.

4.7 Evaluate 10 , 10 veeey 10 .
0 1 10
*4.8 Evaluate 9!.

4.9 Suppose 6 of 15 students in a grade-school class
develop influenza, whereas 20% of grade-school students
nationwide develop influenza. Is there evidence of an ex-
cessive number of cases in the class? That is, what is the
probability of obtaining at least 6 cases in this class if the
nationwide rate holds true?

4.10 What is the expected number of students in the class
who will develop influenza?

*4.11 What is the probability of obtaining exactly 6 events
for a Poisson distribution with parameter pu = 4.0?

*4.12 What is the probability of obtaining at least 6 events
for a Poisson distribution with parameter u = 4.0?

*4.13 What is the expected value and variance for a Pois-
son distribution with parameter . = 4.0?

Infectious Disease

Newborns were screened for human immunodeficiency
virus (HIV) or acquired immunodeficiency syndrome (AIDS)
in five Massachusetts hospitals. The data [8] are shown in
Table 4.15.

4.14 If 500 newborns are screened at the inner-city
hospital, then what is the exact binomial probability of
exactly 5 HIV-positive test results?

4.15 1If 500 newborns are screened at the inner-city hospi-

tal, then what is the exact binomial probability of at least
5 HIV-positive test results?

4.16 Answer Problems 4.14 and 4.15 using an approxima-
tion rather than an exact probability.

4.17 Answer Problem 4.14 for a mixed urban/suburban
hospital (hospital C).

4.18 Answer Problem 4.15 for a mixed urban/suburban
hospital (hospital C).

4.19 Answer Problem 4.16 for a mixed urban/suburban
hospital (hospital C).

4.20 Answer Problem 4.14 for a mixed suburban/rural
hospital (hospital E).

TABLE 4.15 Seroprevalence of HIV antibody in newborns’ blood samples, according to hospital category

Hospital Type Number tested
A Inner city 3741
B Urban/suburban 11,864
C Urban/suburban 5006
D Suburban/rural 3596
E Suburban/rural 6501

Number positive

Number positive (per 1000)
30 8.0
31 2.6
11 2.2
1 0.3
8 1.2

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



108 CHAPTER 4 Discrete Probability Distributions

4.21 Answer Problem 4.15 for a mixed suburban/rural
hospital (hospital E).
4.22 Answer Problem 4.16 for a mixed suburban/rural
hospital (hospital E).

Infectious Disease

One hypothesis is that gonorrhea tends to cluster in central
cities.

4.23 Suppose 10 gonorrhea cases are reported over a
3-month period among 10,000 people living in an urban
county. The statewide incidence of gonorrhea is 50 per
100,000 over a 3-month period. Is the number of gonorrhea
cases in this county unusual for this time period?

Otolaryngology

Assume the number of episodes per year of otitis media, a
common disease of the middle ear in early childhood, fol-
lows a Poisson distribution with parameter A = 1.6 episodes
per year.

*4.24 Find the probability of getting 3 or more episodes of
otitis media in the first 2 years of life.

*4.25 Find the probability of not getting any episodes of
otitis media in the first year of life.

An interesting question in pediatrics is whether the ten-
dency for children to have many episodes of otitis media is
inherited in a family.

*4,26 What is the probability that 2 siblings will both have
3 or more episodes of otitis media in the first 2 years of life?

*4.27 What is the probability that exactly 1 sibling will have
3 or more episodes in the first 2 years of life?

*4.28 What is the probability that neither sibling will have
3 or more episodes in the first 2 years of life?

*4.29 What is the expected number of siblings in a 2-sibling
family who will have 3 or more episodes in the first 2 years
of life?

Hypertension

A national study found that treating people appropriately for
high blood pressure reduced their overall mortality by 20%.
Treating people adequately for hypertension has been dif-
ficult because it is estimated that 50% of hypertensives do
not know they have high blood pressure, 50% of those who
do know are inadequately treated by their physicians, and
50% who are appropriately treated fail to follow this treat-
ment by taking the right number of pills.

4.30 What is the probability that among 10 true hyperten-
sives at least 50% are being treated appropriately and are
complying with this treatment?

4.31 What is the probability that at least 7 of the 10 hyper-
tensives know they have high blood pressure?
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4.32 If the preceding 50% rates were each reduced to
40% by a massive education program, then what effect
would this change have on the overall mortality rate among
true hypertensives; that is, would the mortality rate decrease
and, if so, what percentage of deaths among hypertensives
could be prevented by the education program?

Renal Disease

The presence of bacteria in a urine sample (bacteriuria) is
sometimes associated with symptoms of kidney disease in
women. Suppose a determination of bacteriuria has been
made over a large population of women at one point in
time and 5% of those sampled are positive for bacteriuria.

*4.33 If a sample size of 5 is selected from this population,
what is the probability that 1 or more women are positive for
bacteriuria?

*4.34 Suppose 100 women from this population are sam-
pled. What is the probability that 3 or more of them are
positive for bacteriuria?

One interesting phenomenon of bacteriuria is that there is
a “turnover”; that is, if bacteriuria is measured on the same
woman at two different points in time, the results are not
necessarily the same. Assume that 20% of all women who
are bacteriuric at time O are again bacteriuric at time 1
(1 year later), whereas only 4.2% of women who were not
bacteriuric at time O are bacteriuric at time 1. Let X be the
random variable representing the number of bacteriuric
events over the two time periods for 1 woman and still as-
sume that the probability that a woman will be positive for
bacteriuria at any one exam is 5%.

*4.35 What is the probability distribution of X?
*4.36 What is the mean of X?
*4.37 What is the variance of X?

Pediatrics, Otolaryngology

Otitis media is a disease that occurs frequently in the first
few years of life and is one of the most common reasons
for physician visits after the routine checkup. A study was
conducted to assess the frequency of otitis media in the
general population in the first year of life. Table 4.16 gives
the number of infants of 2500 infants who were first seen at
birth who remained disease-free by the end of the ith month
of life, i=0, 1, ..., 12. (Assume no infants have been lost
to follow-up.)

*4.38 What is the probability that an infant will have one or
more episodes of otitis media by the end of the sixth month
of life? The first year of life?

*4.39 What is the probability that an infant will have one or
more episodes of otitis media by the end of the ninth month
of life given that no episodes have been observed by the
end of the third month of life?



TABLE 4.16 Number of infants (of 2500) who
remain disease-free at the end of each
month during the first year of life

Disease-free infants at
the end of month /

0 2500
1 2425
2 2375
3 2300
4 2180
5 2000
6 1875
7 1700
8 1500
9 1300
10 1250
11 1225
12 1200

*4.40 Suppose an “otitis-prone family” is defined as one
in which at least three siblings of five develop otitis media
in the first 6 months of life. What proportion of five-sibling
families is otitis prone if we assume the disease occurs in-
dependently for different siblings in a family?

*4.41 What is the expected number of otitis-prone families
of 100 five-sibling families?

Cancer, Epidemiology

An experiment is designed to test the potency of a drug on
20 rats. Previous animal studies have shown that a 10-mg
dose of the drug is lethal 5% of the time within the first
4 hours; of the animals alive at 4 hours, 10% will die in the
next 4 hours.

4.42 What is the probability that 3 or more rats will die in
the first 4 hours?

4.43 Suppose 2 rats die in the first 4 hours. What is
the probability that 2 or fewer rats will die in the next
4 hours?

4.44 What is the probability that O rats will die in the 8-hour
period?

4.45 What is the probability that 1 rat will die in the 8-hour
period?

4.46 What is the probability that 2 rats will die in the 8-hour
period?

4.47 Can you write a general formula for the probability that
x rats will die in the 8-hour period? Evaluate this formula
forx=0,1, ..., 10. (Hint: Use the BINOMDIST function
of Excel.)

[1ll Data set available
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Problems

Environmental Health

An important issue in assessing nuclear energy is whether
excess disease risks exist in the communities surrounding
nuclear-power plants. A study undertaken in the community
surrounding Hanford, Washington, looked at the prevalence
of selected congenital malformations in the counties sur-
rounding the nuclear-test facility [9].

*4.48 Suppose 27 cases of Down's syndrome are found
and only 19 are expected based on Birth Defects Monitoring
Program prevalence estimates in the states of Washington,
Idaho, and Oregon. Are there significant excess cases in the
area around the nuclear-power plant?

Suppose 12 cases of cleft palate are observed, whereas
only 7 are expected based on Birth Defects Monitoring
Program estimates.

*4.49 What is the probability of observing exactly 12 cases
of cleft palate if there is no excess risk of cleft palate in the
study area?

*4.50 Do you feel there is a meaningful excess number of
cases of cleft palate in the area surrounding the nuclear-
power plant? Explain.

Health Promotion

A study was conducted among 234 people who had
expressed a desire to stop smoking but who had not yet
stopped. On the day they quit smoking, their carbon-
monoxide level (CO) was measured and the time was noted
from the time they smoked their last cigarette to the time of
the CO measurement. The CO level provides an “objec-
tive" indicator of the number of cigarettes smoked per day
during the time immediately before the quit attempt. How-
ever, it is known to also be influenced by the time since
the last cigarette was smoked. Thus, this time is provided
as well as a “corrected CO level,” which is adjusted for
the time since the last cigarette was smoked. Information
is also provided on the age and sex of the participants
as well as each participant’s self-report of the number
of cigarettes smoked per day. The participants were
followed for 1 year for the purpose of determining the
number of days they remained abstinent. Number of days
abstinent ranged from O for those who quit for less than
1 day to 365 for those who were abstinent for the full
year. Assume all people were followed for the entire year.

The data, provided by Dr. Arthur J. Garvey, Boston, Mas-
sachusetts, are given in Data Set SMOKE.DAT, at www
.cengagebrain.com. The format of this file is given in Table 4.17.

4.51 Develop a life table similar to Table 4.16, giving the
number of people who remained abstinent at 1, 2, .. .,
12 months of life (assume for simplicity that there are 30
days in each of the first 11 months after quitting and 35
days in the 12th month). Plot these data on the computer
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TABLE 4.17 Format of SMOKE.DAT

Variable

ID number

Age

Gender

Cigarettes/day

CO (x 10)

Minutes elapsed since the last cigarette smoked
LogCOAdj® (x 1000)

Days abstinent®

Columns Code

-3
-5

o~ =

1 =male, 2 = female
7-8
9-11

12-15

16-19

20-22

This variable represents adjusted CO values. CO values were adjusted for minutes elapsed since the last cigarette smoked using the formula,
log,,CO (adjusted) = log,,CO — (~0.000638) x (min — 80), where min is the number of minutes elapsed since the last cigarette smoked.

*Those abstinent less than 1 day were given a value of 0.

using either Excel or R or some other statistical package.
Compute the probability that a person will remain absti-
nent at 1, 3, 6, and 12 months after quitting.

4.52 Develop life tables for subsets of the data based on
age, gender, number of cigarettes per day, and CO level
(one variable at a time). Given these data, do you feel age,
gender, number of cigarettes per day, and/or CO level are
related to success in quitting? (Methods of analysis for life-
table data are discussed in more detail in Chapter 14.)

Genetics

4.53 A topic of some interest in the genetic literature
over at least the past 30 years has been the study of sex-
ratio data. In particular, one suggested hypothesis is that there
are enough families with a preponderance of males (females)
that the sexes of successive childbirths are not independent
random variables but rather are related to each other. This hy-
pothesis has been extended beyond just successive births, so
some authors also consider relationships between offspring
two birth orders apart (first and third offspring, second and
fourth offspring, etc.). Sex-ratio data from the first 5 births
in 51,868 families are given in Data Set SEXRAT.DAT (at
www.cengagebrain.com). The format of this file is given in
Table 4.18 [10]. What are your conclusions concerning the
preceding hypothesis based on your analysis of these data?

Infectious Disease

A study considered risk factors for HIV infection among
intravenous drug users [11]. It found that 40% of users who
had <100 injections per month (light users) and 55% of us-
ers who had >100 injections per month (heavy users) were
HIV positive.

4.54 What is the probability that exactly 3 of 5 light users
are HIV positive?

[1ll Data set available

TABLE 4.18 Format of SEXRAT.DAT

Variable Column
Number of children? 1

Sex of children® 3-7
Number of families 9-12

aFor families with 5+ children, the sexes of the first 5 children are listed. The
number of children is given as 5 for such families.

The sex of successive births is given. Thus, MMMF means the first 3
children were males and the fourth child was a female. There were 484 such
families.

4.55 What is the probability that at least 3 of 5 light users
are HIV positive?

4.56 Suppose we have a group of 10 light users and 10
heavy users. What is the probability that exactly 3 of the 20
users are HIV positive?

4.57 What is the probability that at least 4 of the 20 users
are HIV positive?

4.58 s the distribution of the number of HIV positive among
the 20 users binomial? Why or why not?

Ophthalmology, Diabetes

A study [12] of incidence rates of blindness among insulin-
dependent diabetics reported that the annual incidence rate
of blindness per year was 0.67% among 30- to 39-year-old
male insulin-dependent diabetics (IDDM) and 0.74% among
30- to 39-year-old female insulin-dependent diabetics.

4.59 If a group of 200 IDDM 30- to 39-year-old men is
followed, what is the probability that exactly 2 will go blind
over a 1-year period?

4.60 If a group of 200 IDDM 30- to 39-year-old women is
followed, what is the probability that at least 2 will go blind
over a 1-year period?
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4.61 What is the probability that a 30-year-old IDDM male
patient will go blind over the next 10 years?

4.62 After how many years of follow-up would we expect
the cumulative incidence of blindness to be 10% among
30-year-old IDDM females, if the incidence rate remains
constant over time?

4.63 What does cumulative incidence mean, in words, in
the context of this problem?

Cardiovascular Disease

An article was published [13] concerning the incidence of
cardiac death attributable to the earthquake in Los Angeles
County on January 17, 1994. In the week before the earth-
quake there were an average of 15.6 cardiac deaths per day
in Los Angeles County. On the day of the earthquake, there
were 51 cardiac deaths.

4.64 What is the exact probability of 51 deaths occurring
on one day if the cardiac death rate in the previous week
continued to hold on the day of the earthquake?

4.65 Is the occurrence of 51 deaths unusual? (Hint: Use
the same methodology as in Example 4.32.)

4.66 What is the maximum number of cardiac deaths that
could have occurred on the day of the earthquake to be
consistent with the rate of cardiac deaths in the past week?
(Hint: Use a cutoff probability of .05 to determine the maxi-
mum number.)

Environmental Health

Some previous studies have shown a relationship between
emergency-room admissions per day and level of pollution
on a given day. A small local hospital finds that the num-
ber of admissions to the emergency ward on a single day
ordinarily (unless there is unusually high pollution) follows
a Poisson distribution with mean = 2.0 admissions per day.
Suppose each admitted person to the emergency ward
stays there for exactly 1 day and is then discharged.

4.67 The hospital is planning a new emergency-room facil-
ity. It wants enough beds in the emergency ward so that for
at least 95% of normal-pollution days it will not need to turn

anyone away. What is the smallest number of beds it should )

have to satisfy this criterion?

4.68 The hospital also finds that on high-pollution days the
number of admissions is Poisson-distributed with mean
= 4.0 admissions per day. Answer Problem 4.67 for high-
pollution days.

4.69 On arandom day during the year, what is the probability
there will be 4 admissions to the emergency ward, assuming
there are 345 normal-pollution days and 20 high-pollution
days?

4.70 Answer Problem 4.67 for a random day during the year.

[1ll Data set available

Problems 111

Women’s Health

The number of legal induced abortions per year per 1000
U.S. women ages 15—44 [14] is given in Table 4.19.

For example, of 1000 women ages 15—44 in 1980, 25 had
a legal induced abortion during 1980.

4.71 If we assume (1) no woman has more than 1 abortion
and (2) the probability of having an abortion is independent
across different years, what is the probability that a 15-year-

old woman in 1975 will have an abortion over her 30 years
of reproductive life (ages 15—44, or 1975—2004)?

TABLE 4.19 Annual incidence of legal induced
abortions by time period

Legal induced abortions per year

Year per 1000 women ages 15—44
1975-1979 21
1980-1984 25
1985-1989 24
1990-1994 24
1995-2004 20

Studies have been undertaken to assess the relationship
between abortion and the development of breast cancer. In
one study among nurses (the Nurses’ Health Study Il), there
were 16,359 abortions among 2,169,321 person-years of
follow-up for women of reproductive age. (Note: 1 person-
year = 1 woman followed for 1 year.)

4.72 What is the expected number of abortions among
nurses over this time period if the incidence of abortion is
25 per 1000 women per year and no woman has more than
1 abortion?

4.73 Does the abortion rate among nurses differ signifi-
cantly from the national experience? Why or why not?
(Hint: Use the Poisson distribution.) A yes/no answer is not
acceptable.

Endocrinology

4.74 Consider the Data Set BONEDEN.DAT at www
.cengagebrain.com. Calculate the difference in bone density
of the lumbar spine (g/cm?) between the heavier-smoking twin
and the lighter-smoking twin (bone density for the heavier-
smoking twin minus bone density for the lighter-smoking twin)
for each of the 41 twin pairs. Suppose smoking has no rela-
tionship to bone density. What would be the expected number
of twin pairs with negative difference scores? What is the
actual number of twin pairs with negative difference scores?
Do you feel smoking is related to bone density of the lumbar
spine, given the observed results? Why or why not? A yes/no
answer is not acceptable. (Hint: Use the binomial distribution.)
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4.75 Sort the differences in smoking between members of
a twin pair (expressed in pack-years). Identify the subgroup
of 20 twin pairs with the largest differences in smoking.
Answer Problem 4.74 based on this subgroup of 20 twin pairs.

4.76 Answer Problem 4.74 for bone density of the femoral
neck.

4.77 Answer Problem 4.75 for bone density of the femoral
neck.

4.78 Answer Problem 4.74 for bone density of the femoral
shaft.

4.79 Answer Problem 4.75 for bone density of the femoral
shaft.

SIMULATION

An attractive feature of modern statistical packages such as
MINITAB, Excel, or R is the ability to use the computer to
simulate random variables on the computer and to compare
the characteristics of the observed samples with the theo-
retical properties of the random variables.

4.80 Draw 100 random samples from a binomial distribu-
tion, each based on 10 trials with probability of success =
.05 on each trial. Obtain a frequency distribution of the num-
ber of successes over the 100 random samples, and plot the
distribution. How does it compare with Figure 4.5(a)?

4.81 Answer Problem 4.80 for a binomial distribution with
parameters n = 10 and p = .95. Compare your results with
Figure 4.5(b).
4.82 Answer Problem 4.80 for a binomial distribution with
parameters n = 10 and p = .5. Compare your results with
Figure 4.5(c).

Cancer

The two-stage model of carcinogenesis is based on the
premise that for a cancer to develop, a normal cell must first
undergo a “first hit” and mutate to become a susceptible or
intermediate cell. An intermediate cell then must undergo a
“second hit" and mutate to become a malignant cell. A can-
cer develops if at least one cell becomes a malignant cell.
This model has been applied to the development of breast
cancer in females (Moolgavkar et al. [15]).

Suppose there are 10® normal breast cells and 0 interme-
diate or malignant breast cells among 20-year-old females.
The probability that a normal breast cell will mutate to
become an intermediate cell is 1077 per year.

4.83 What is the probability that there will be at least 5 inter-
mediate cells by age 217? (Hint: Use the Poisson distribution.)

4.84 What is the expected number of intermediate cells by
age 457

The probability that an intermediate cell will mutate to be-
come a malignant cell is 5 x 1077 per year.

4.85 Suppose a woman has 300 intermediate cells by age
45. What is the probability that she develops breast cancer
by age 467 By age 507 (Hint: Use the Poisson approximation
to the binomial distribution.)
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Dentistry

The data in Table 4.20 were reported by men in the Health
Professionals Follow-up Study on the number of teeth lost over
a 1-year period (January 1, 1987, to December 31, 1987).

TABLE 4.20 Distribution of number of teeth lost
from January 1, 1987, to December 31,
1987, among 38,905 men in the Health
Professionals Follow-up Study

Number of teeth lost Frequency
0 35,763
1 1,978
2 591
3 151
4 163
5-9 106

10+ 153

Total 38,905

4.86 If we assume the average number of teeth lost in the
5—9 group is 7 teeth and the average number of teeth lost
in the 10+ group is 12 teeth, what is the best estimate of
the average number of teeth lost per year?

4.87 Suppose that on January 1, 1987, a man is 50 years
old, that he will live for 30 more years (until 2016), and that
the rate of tooth loss over this 30-year period is the same
as in 1987. If a man has 13 teeth remaining on January 1,
1987, what is the probability he will need dentures (have 10
or fewer teeth remaining) during his 30-year lifetime? (Hint:
Use the Poisson distribution.)

4.88 Suppose dental practice improves over the 30-year
period. We assume the rate of tooth loss per year from
1987-2001 (15 years) is the same as in 1987, whereas the
rate of tooth loss per year from 2002—2016 (15 years) is half
the 1987 rate. What is the probability that the man in Prob-
lem 4.87 will require dentures under these altered assump-
tions? (Hint: Consider a mixture of two Poisson distributions.)

Hospital Epidemiology

Suppose the number of admissions to the emergency room
at a small hospital follows a Poisson distribution but the
incidence rate changes on different days of the week. On a
weekday there are on average two admissions per day, while
on a weekend day there is on average one admission per day.
4.89 What is the probability of at least one admission on a
Wednesday?

4.90 What is the probability of at least one admission on a
Saturday?

4.91 What is the probability of having 0, 1, and 2+ admis-
sions for an entire week, if the results for different days dur-
ing the week are assumed to be independent?



Obstetrics

Suppose the incidence of a specific birth defect in a high
socioeconomic status (SES) census tract is 50 cases per
100,000 births.

4.92 If there are 5000 births in the census tract in 1 year, then
what is the probability that there will be exactly 5 cases of the
birth defect during the year (census tract A in Table 4.21)?

Suppose the incidence of the same birth defect in a low
SES census tract is 100 cases per 100,000 births.

4.93 If there are 12,000 births in the census tract in 1
year, then what is the probability that there will be at least 8
cases of the birth defect during the year (census tract B in
Table 4.21)?

Suppose a city is divided into eight census tracts as shown
in Table 4.21.

4.94 Suppose a child is born with the birth defect but the
address of the mother is unknown. What is the probability
that the child comes from a low SES census tract?

4.95 What is the expected number of cases over 1 year in
the city?

Emergency Medicine

A study was performed concerning medical emergencies on
commercial airline flights (Peterson, et al., [16]). A database
was constructed based on calls to a medical communi-
cations center from 5 domestic and international airlines
representing approximately 10% of global passenger flight
volume from January 1, 2008 to October 31, 2010. There
were 11,920 in-flight medical emergencies (IFM) among
7,198,118 flights during the study period. Assume for this
entire problem that there is at most 1 IFM per flight.

4.96 Suppose a flight attendant works on 2 flights per day
for each of 300 days per year. What is the probability that
the flight attendant will encounter at least one IFM over a
1-year period?

Hint: Use the Poisson approximation to the binomial distribution.

4.97 Suppose the flight attendant’s total duration of em-
ployment is 20 years. What is the probability that he/she
encounters at least 10 IFMs on his/her flights over a 20-year
period? Make the same assumptions as in Problem 4.96.

Hint: Use a computer program (e.g., Excel, Stata, or R) to
solve this problem.
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Problems

The more significant IFMs result in an aircraft being forced
to land in an airport other than its original destination due to
the medical emergency (referred to as an aircraft diversion
or DIV). Suppose that 875 out of the 11,920 IFMs (7.3%)
resulted in a DIV.

4.98 Calculate the probability that a flight attendant en-
counters at least one DIV over his/her 20-year working
lifetlme. Make the same assumptions as in Problem 4.96.

Hint: Use a computer program (e.g., Excel, Stata, or R) to
solve this problem.

Epidemiology

A study was performed to assess the feasibility of a national
random digit dialing cellular phone survey among young
adults age 18—34 (Genderson et al., [17]). It was reported
that 3.1% of respondents were eligible to participate and
that 52% of eligible respondents agreed to participate.

4.99 Suppose the survey is given to 100 subjects. What
is the probability of obtaining at least 2 eligible responders
who agree to participate?

4.100 Suppose 1000 potential participants are contacted to
participate in the survey. What is the probability that at least 10
of the 1000 participants will be eligible and agree to participate?

Hint: Use a computer program to answer this question.

Cancer

A clinical trial was conducted among 178 patients with
advanced melanoma (a type of skin cancer) (Schwartzentruber,
et al. [18]). There were two treatment groups. Group A
received Interleukin-2. Group B received Interleukin-2 plus a
vaccine. Six percent of Group A patients and 16% of group B
patients had a complete or partial response to treatment.

Suppose we seek to extrapolate the results of the study to a
larger group of melanoma patients.

4.101 If 20 melanoma patients are given Interleukin-2 plus
a vaccine, what is the probability that exactly 5 of them will
have a positive response to treatment (either complete or
partial response)?

4.102 If 20 melanoma patients are given Interleukin-2 plus
a vaccine, what is the probability that at least 3 of them will
have a positive response to treatment?

One issue is that some patients experience side effects and
have to discontinue treatment. It was estimated that 19%

TABLE 4.21 Relationship between incidence of birth defects and census tract

Incidence of
Census tract SES Number of births/yr birth defects
A High 5000 50/10°
B Low 12,000 100/10°
C Low 10,000 100/10°
D Low 8000 100/10°

Incidence of
Census tract SES Number of births/yr birth defects
E Low 7000 100/10°
F Low 20,000 100/10°
G High 5000 50/10°
H Low 3000 100/10°
Total 70,000

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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of patients receiving Interleukin-2 plus vaccine developed
an arrhythmia (irregular heartbeat) and had to discontinue
treatment. Since the side effect was attributable to the
vaccine, assume that the patients would continue to take
Interleukin-2 if arrhythmia developed but not the vaccine
and that the probability of a positive response to treatment
would be the same as group A (i.e., 6%).

4.103 Suppose we have 10 patients who receive Interleu-
kin-2 plus vaccine of whom 2 develop arrhythmia and 8 do
not. What is the probability that exactly 3 of the 10 patients
will get a positive response to treatment?

Cancer

Mesothelioma is an asbestos-related neoplasm that is
resistant to current therapies and is associated with poor
prognosis. The average survival time after diagnosis is 12
months.

4.104 A surgeon tries an experimental treatment on 1
patient, and the patient survives for 18 months. If we as-
sume the distribution of survival time is Poisson-distributed,
then what is the probability that a patient will survive for at
least 18 months if the treatment had no benefit? Hint: Use
Table 2 of the Appendix.

4.105 The surgeon is encouraged by the result and tries
the treatment on 5 other patients. He finds that 3 of the 5
patients survive for at least 18 months. What is the prob-
ability that at least 3 of 5 patients would survive for at least
18 months if the treatment had no benefit?

4.106 The cutoff of 18 months is arbitrary. In a larger study,
the investigator wants to use a cutoff (x) so that the prob-
ability of surviving for at least x months is < 1%, if the treat-
ment has no benefit. What is the smallest integer value of x
that satisfies this criterion?
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Continuous Probability
Distributions O

51 INTRODUCTION

This chapter discusses continuous probability distributions.
Specifically, the normal distribution—the most widely used
distribution in statistical work—is explored in depth.

The normal, or Gaussian or “bell-shaped,” distribution is
the cornerstone of most methods of estimation and hypothesis
testing developed throughout the rest of this text. Many ran-
dom variables, such as distribution of birthweights or blood
pressures in the general population, tend to approximately
follow a normal distribution. In addition, many random vari-
ables that are not themselves normal are closely approxi-
mated by a normal distribution when summed many times. In
such cases, using the normal distribution is desirable because
it is easy to use and tables for the normal distribution are more
widely available than are tables for many other distributions.

N Es T Infectious Disease  The number of neutrophils in a sample of 2 white blood cells
is not normally distributed, but the number in a sample of 100 white blood cells is
very close to being normally distributed.

5.2 GENERAL CONCEPTS

We want to develop an analog for a continuous random variable to the concept
of a probability-mass function, as was developed for a discrete random variable
in Section 4.3. Thus, we would like to know which values are more probable than
others and how probable they are.

Hypertension Consider the distribution of diastolic blood-pressure (DBP) mea-
surements in 35- to 44-year-old men. In actual practice, this distribution is dis-
crete because only a finite number of blood-pressure values are possible since the
measurement is only accurate to within 2 mm Hg. However, assume there is no
measurement error and hence the random variable can take on a continuum of pos-
sible values. One consequence of this assumption is that the probabilities of specific
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116 CHAPTER 5 Continuous Probability Distributions

blood-pressure measurement values such as 117.3 are 0, and thus, the concept of
a probability-mass function cannot be used. The proof of this statement is beyond
the scope of this text. Instead, we speak in terms of the probability that blood pres-
sure falls within a range of values. Thus, the probabilities of DBPs (denoted by X)
falling in the ranges of 90 < X < 100, 100 < X < 110, and X > 110 might be 15%, 5%,
and 1%, respectively. People whose blood pressures fall in these ranges may be con-
sidered mildly hypertensive, moderately hypertensive, and severely hypertensive,
respectively.

Although the probability of exactly obtaining any value is 0, people still have the
intuitive notion that certain ranges of values occur more frequently than others. This
notion can be quantified using the concept of a probability-density function (pdf).

DEFINITION 5.1  The probability-density function of the random variable X is a function such that
the area under the density-function curve between any two points a and b is equal
to the probability that the random variable X falls between a and b. Thus, the total
area under the density-function curve over the entire range of possible values for the
random variable is 1.

The pdf has large values in regions of high probability and small values in
regions of low probability.

Hypertension A pdf for DBP in 35- to 44-year-old men is shown in Figure 5.1. Areas
A, B, and C correspond to the probabilities of being mildly hypertensive, moderately
hypertensive, and severely hypertensive, respectively. Furthermore, the most likely
range of values for DBP occurs around 80 mm Hg, with the values becoming increas-
ingly less likely as we move farther away from 80.

Not all continuous random variables have symmetric bell-shaped distributions
as in Figure 5.1.

Cardiovascular Disease Serum triglyceride level is an asymmetric, positively
skewed, continuous random variable whose pdf appears in Figure 5.2.

EXAMPLE 5.4

The cumulative-distribution function (or cdf) is defined similarly to that for a
discrete random variable (see Section 4.6).

Figure 5.1 The pdf of DBP in 35- to 44-year-old men
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FIGURE 5.2 The pdf for serum triglycerides
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DEFINITION 5.2 The cumulative-distribution function for the random variable X evaluated at the
point a is defined as the probability that X will take on values < a. It is represented by

the area under the pdf to the left of a.

DGVl Obstetrics  The pdf for the random variable representing the distribution of birth-
weights in the general population is given in Figure 5.3.

The cdf evaluated at 88 oz = Pr(X < 88) is represented by the area under this curve
to the left of 88 oz. The region X < 88 oz has a special meaning in obstetrics because
88 oz is the cutoff point obstetricians usually use for identifying low-birthweight
infants. Such infants are generally at higher risk for various unfavorable outcomes,

such as mortality in the first year of life.

Generally, a distinction is not made between the probabilities Pr(X < x) and
Pr(X < x) when X is a continuous random variable. This is because they represent the
same quantity since the probability of individual values is O; that is, Pr(X = x) = 0.

The expected value and variance for continuous random variables have the same
meaning as for discrete random variables (see Sections 4.4 and 4.5). However, the
mathematical definition of these terms is beyond the scope of this book.

DEFINITION 5.3 The expected value of a continuous random variable X, denoted by E(X), or y, is the
average value taken on by the random variable.

FIGURE 5.3 The pdf for birthweight
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118 CHAPTER 5 Continuous Probability Distributions

DEFINITION 5.4  The variance of a continuous random variable X, denoted by Var(X) or ¢?, is the av-
erage squared distance of each value of the random variable from its expected value,
which is given by E(X — p)? and can be re-expressed in short form as E(X?) — p2. The
standard deviation, or o, is the square root of the variance, that is, ¢ = /Var(X).

Hypertension The expected value and standard deviation of the distribution of DBP
in 35- to 44-year-old men are 80 and 12 mm Hg, respectively.

53 THE NORMAL DISTRIBUTION

The normal distribution is the most widely used continuous distribution. It is also
frequently called the Gaussian distribution, after the well-known mathematician
Karl Friedrich Gauss (Figure 5.4).

Hypertension Body weights or DBPs for a group of 35- to 44-year-old men approxi-
mately follow a normal distribution.

Many other distributions that are not themselves normal can be made approxi-
mately normal by transforming the data onto a different scale.

Cardiovascular Disease The distribution of serum-triglyceride concentrations from
this same group of 35- to 44-year-old men is likely to be positively skewed. However,
the log transformation of these measurements usually follows a normal distribution.

Generally speaking, any random variable that can be expressed as a sum of
many other random variables can be well approximated by a normal distribution.

For example, many physiologic measures are determined in part by a combina-
tion of several genetic and environmental risk factors and can often be well approxi-
mated by a normal distribution.

FIGURE 5.4  Karl Friedrich Gauss (1777-1855)
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Infectious Disease The number of lymphocytes in a differential of 100 white blood
cells (see Example 4.15 for the definition of a differential) tends to be normally
distributed because this random variable is a sum of 100 random variables, each
representing whether or not an individual cell is a lymphocyte.

Thus, because of its omnipresence the normal distribution is vital to statistical
work, and most estimation procedures and hypothesis tests that we will study as-
sume the random variable being considered has an underlying normal distribution.

Another important area of application of the normal distribution is as an
approximating distribution to other distributions. The normal distribution is
generally more convenient to work with than any other distribution, particularly
in hypothesis testing. Thus, if an accurate normal approximation to some other
distribution can be found, we often will want to use it.

DEFINITION 5.5 The normal distribution is defined by its pdf, which is given as

f(x) :ﬁexp[—ﬁ(x—u)z}, —o< X < oo

for some parameters |, 6, where ¢ > 0.

The exp function merely implies that the quantity to the right in brackets is the
power to which “e” (=2.71828) is raised. This pdf is plotted in Figure 5.5 for a normal
distribution with u = 50 and 6% = 100.

The density function follows a bell-shaped curve, with the mode at u and the
most frequently occurring values around p. The curve is symmetric about u, with
points of inflection on either side of i at u — ¢ and p + 6, respectively. A point of in-
flection is a point at which the slope of the curve changes direction. In Figure 5.5, the
slope of the curve increases to the left of u — ¢ and then starts to decrease to the right
of u — ¢ and continues to decrease until reaching p + o, after which it starts increas-
ing again. Thus, distances from p to points of inflection provide a good visual sense
of the magnitude of the parameter .

You may wonder why the parameters u and 62 have been used to define the nor-
mal distribution when the expected value and variance of an arbitrary distribution

FIGURE 5.5 The pdf for a normal distribution with mean 1 (50) and variance ¢2(100)
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120 CHAPTER 5 Continuous Probability Distributions

were previously defined as p and ¢2. Indeed, from the definition of the normal distri-
bution it can be shown, using calculus methods, that u and o2 are, respectively, the
expected value and variance of this distribution.

For DBP the parameters might be u = 80 mm Hg, o = 12 mm Hg; for birthweight they
might be u =120 oz, 6 = 20 oz.

EXAMPLE 5.10

Interestingly, the entire shape of the normal distribution is determined by the
two parameters p and ¢ If two normal distributions with the same variance ¢* and
different means u,, u,, where u,>u,, are compared, then their density functions will
appear as in Figure 5.6, where p, = 50, p, = 62, and ¢ = 7. The heights of the two
curves are the same, but one curve is shifted to the right relative to the other curve.

Similarly, two normal distributions with the same mean but different variances
(03 > 6?) can be compared, as shown in Figure 5.7, with p = 50, c,=5,and o, = 10.
Thus, the x value corresponding to the highest density (x = 50) is the same for each
curve, but the curve with the smaller standard deviation (o, = 5) is higher and has
a more concentrated distribution than the curve with the larger standard deviation
(0,= 10). Note that the area under any normal density function must be 1. Thus,
the two normal distributions shown in Figure 5.7 must cross, because otherwise one
curve would remain completely above the other and the areas under both curves
could not simultaneously be 1.

DEFINITION 5.6 A normal distribution with mean p and variance ¢ will generally be referred to
as an N(u,o?) distribution.

Note that the second parameter is always the variance 62, not the standard
deviation c.

Another property of the normal distribution is that the height = 1/ ( 21t(5). Thus,
the height is inversely proportional to . As noted previously, this helps us visualize o,
because the density at the value x = u for an N (u,c% ) distribution in Figure 5.7 is
larger than for an N(u, G%) distribution.

FIGURE 5.6 Comparison of two normal distributions with the same variance
and different means
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FIGURE 5.7 Comparison of two normal distributions with the same means
and different variances
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DEFINITION 5.7 A normal distribution with mean 0 and variance 1 is called a standard, or unit,
normal distribution. This distribution is also called an N(0,1) distribution.

We will see that any information concerning an N(u,c?) distribution can be ob-
tained from appropriate manipulations of an N(0,1) distribution.

54 PROPERTIES OF THE STANDARD NORMAL
DISTRIBUTION

To become familiar with the N(0,1) distribution, let’s discuss some of its properties.
First, the pdf in this case reduces to

(-1/2)x?

EQUATION 5.1 , —oo<X<+oo

1
xX)=—¢
A=
This distribution is symmetric about O, because f(x) = f(—x), as shown in Figure 5.8.

EQUATION 5.2 It can be shown that about 68% of the area under the standard normal density
lies between +1 and -1, about 95% of the area lies between +2 and -2, and about
99% lies between +2.5 and -2.5.

These relationships can be expressed more precisely by saying that

Pr-1<X<1)=.6827 Pr(-1.96 < X < 1.96) = .95
Pr(-2.576 < X < 2.576) = .99

Thus, the standard normal distribution slopes off very rapidly, and absolute val-
ues greater than 3 are unlikely. Figure 5.9 shows these relationships.

Tables of the area under the normal density function, or so-called normal tables,
take advantage of the symmetry properties of the normal distribution and generally
are concerned with areas for positive values of x.
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FIGURE 5.8 The pdf for a standard normal distribution
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FIGURE 5.9 Empirical properties of the standard normal distribution
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DEFINITION 5.8 The cumulative-distribution function (cdf) for a standard normal distribution
is denoted by

O(x)=Pr(X <x)

where X follows an N(0,1) distribution. This function is shown in Figure 5.10.

DEFINITION 5.9  The symbol ~ is used as shorthand for the phrase “is distributed as.” Thus, X ~ N(0,1)
means that the random variable X is distributed as an N(0,1) distribution.

Unlike the binomial and Poisson distributions, there is not a closed-form
algebraic expression for areas under the normal distribution. Hence, numerical
methods must be used to calculate these areas, which are generally displayed in
“normal-tables.”
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FIGURE 5.10 The cdf [®(x)] for a standard normal distribution
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Using Normal Tables

Column A in Table 3 of the Appendix presents ®(x) for various positive values of x
for a standard normal distribution. This cumulative distribution function is illus-
trated in Figure 5.11. Notice that the area to the left of 0 is .5.

Furthermore, the area to the left of x approaches 0 as x becomes small and
approaches 1 as x becomes large.

The right-hand tail of the standard normal distribution = Pr(X > x) is given in
column B of Appendix Table 3.

FAVIINIENEN 1f X ~ N(0,1), then find Pr(X < 1.96) and Pr(X < 1).

Solution: From the Appendix, Table 3, column A,
®(1.96) =.975 and ®(1) = .8413

EQUATION 5.3 Symmetry Properties of the Standard Normal Distribution
From the symmetry properties of the standard normal distribution,

D(—x)=Pr(X<-x)=Pr(X2x)=1-Pr(X<x)=1-D(x)

This symmetry property is depicted in Figure 5.12 for x = 1.

FIGURE 5.11 The cdf for a standard normal distribution [®(x)]
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FIGURE 5.12 lllustration of the symmetry properties of the normal distribution

0.4
0.3
2021
D(-1) 1-d(1)
0.1+
0.0 '
-1 0 1
X

O T Calculate Pr(X < -1.96) assuming X ~ N(O,1).

Solution: Pr(X £-1.96) = Pr(X 2 1.96) = .0250 from column B of Table 3.

Furthermore, for any numbers a, b we have Pr(a < X < b) = Pr(X < b) - Pr(X < a)
and thus, we can evaluate Pr(a < X < b) for any a, b from Table 3.

SO Es T Compute Pr(-1 < X < 1.5) assuming X ~ N(0,1).

Solution: Pr(-1<X<1.5)=Pr(X<1.5)-Pr(X<-1)
=Pr(X<1.5)-Pr(X21)=.9332-.1587
=.7745

s e Pulmonary Disease  Forced vital capacity (FVC), a standard measure of pulmonary
function, is the volume of air a person can expel in 6 seconds. Current research looks

at potential risk factors, such as cigarette smoking, air pollution, indoor allergens, or
the type of stove used in the home, that may affect FVC in grade-school children.
One problem is that age, gender, and height affect pulmonary function, and these
variables must be corrected for before considering other risk factors. One way to
make these adjustments for a particular child is to find the mean p and standard de-
viation ¢ for children of the same age (in 1-year age groups), gender, and height (in
2-in. height groups) from large national surveys and compute a standardized FVC,
which is defined as (X —u)/c, where X is the original FVC. The standardized FVC
then approximately follows an N(0,1) distribution, if the distribution of the original
FVC values was bell-shaped. Suppose a child is considered in poor pulmonary health
if his or her standardized FVC < —1.5. What percentage of children are in poor pul-
monary health?

Solution: Pr(X <-1.5) =Pr(X > 1.5) =.0668

Thus, about 7% of children are in poor pulmonary health.

A common misconception is that use of Z-scores by subtracting the mean and
dividing by the standard deviations [i.e., Z = (X — u/o)] will automatically create a
scale that is normally distributed. This is only true if the original scale (X) was nor-
mally distributed.
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In many instances we are concerned with tail areas on either side of O for a stan-
dard normal distribution. For example, the normal range for a biological quantity is
often defined by a range within x standard deviations of the mean for some specified
value of x. The probability of a value falling in this range is given by Pr(—x < X < x)
for a standard normal distribution. This quantity is tabulated in column D of Table 3
in the Appendix for various values of x.

DB Sl Pulmonary Disease  Suppose a child is considered to have normal lung growth if
his or her standardized FVC is within 1.5 standard deviations of the mean. What

proportion of children are within the normal range?

Solution: Compute Pr(-1.5 < X < 1.5). Under 1.50 in Table 3, column D gives this
quantity as .8664. Thus, about 87% of children have normal lung growth, according
to this definition.

Finally, column C of Table 3 provides the area under the standard normal den-
sity from O to x because these areas occasionally prove useful in work on statistical
inference.

s il Find the area under the standard normal density from O to 1.45.

Solution: Refer to column C of Table 3 under 1.45. The appropriate area is given
by .4265.

Of course, the areas given in columns A, B, C, and D are redundant in that
all computations concerning the standard normal distribution can be performed
using any one of these columns. In particular, we have seen that B(x) =1 — A(x).
Also, from the symmetry of the normal distribution we can easily show that C(x) =
A(x) — .5, D(x) =2 x C(x) = 2 x A(x) — 1.0. However, this redundancy is deliberate
because for some applications one of these columns may be more convenient
to use.

Using Electronic Tables for the Normal Distribution

It is also possible to use “electronic tables” to compute areas under a standard nor-
mal distribution. For example, in Excel the function NORMSDIST(x) provides the cdf
for a standard normal distribution for any value of x.

s A Using an electronic table, find the area under the standard normal density to the left
of 2.824.

Solution: We use the Excel function NORMSDIST evaluated at 2.824 [NORMS-
DIST(2.824)], with the result as follows:

x 2.824
NORMSDIST (x) 0.997629

The area is .9976.

The percentiles of a normal distribution are often frequently used in statisti-
cal inference. For example, we might be interested in the upper and lower fifth
percentiles of the distribution of FVC in children in order to define a normal range
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FIGURE 5.13 Graphic display of the (100 x u)th percentile of a standard
normal distribution (z,)
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of values. For this purpose, the definition of the percentiles of a standard normal
distribution is introduced:

DEFINITION 5.10 The (100 x u)th percentile of a standard normal distribution is denoted by z . It is
defined by the relationship

Pr(Z<z)=u, whereZ~N(0,1)

Figure 5.13 displays z,.

The function z, is sometimes referred to as the inverse normal function. In pre-
vious uses of the normal table, we were given a value x and have used the normal
tables to evaluate the area to the left of x—that is, ®(x)—for a standard normal
distribution.

To obtain z , we perform this operation in reverse. Thus, to evaluate z we must
find the area u in column A of Appendix Table 3 and then find the value z, that cor-
responds to this area. If u < .5, then we use the symmetry properties of the normal
distribution to obtain z, = -z, , where z,  can be obtained from Table 3.

1-u!

EXAMPLE 5.18 Compute z,, z,,, z,, and z ..

Solution: From Table 3 we have

®(1.96) = .975
®(1.645) = .95
®(0) =.5

®(-1.96) =1 - d(1.96) =1 - .975 = .025

Thus, z,,.=1.96

Z,4s=1.645
z,=0
Z s =—1.96

where for z, we interpolate between 1.64 and 1.65 to obtain 1.645.
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s il Compute the value x such that the area to the left of x under a standard normal
density = .85.

Solution: We use the qnorm function of R evaluated at .85 [gnorm (.85)] with the
result given as follows:

x <— qnorm (.85)

X

1.036

Thus, the area to the left of 1.036 under a standard normal density is .85.

The percentile z, is used frequently in our work on estimation in Chapter 6 and
hypothesis testing in Chapters 7-14.

REVIEW QUESTIONS S5A

1 What is the difference between a probability-density function (pdf) and a probability-
mass function?

2 Suppose a continuous random variable can only take on values between —1 and +1.
What is the area under the pdf from -2 to 27
3 What is a standard normal distribution?
4 (@) What is the area to the left of —0.2 under a standard normal distribution? What
symbol is used to represent this area?

(b) What is the area to the right of 0.3 under a standard normal distribution? What
symbol is used to represent this area?

5 (a) Whatisz, ? What does it mean?
(b) What is z,? What does it mean?

=
w
>
w
24

55 CONVERSION FROM AN N(U,62) DISTRIBUTION
TO AN N(0,1) DISTRIBUTION

iR il Hypertension  Suppose a mild hypertensive is defined as a person whose DBP is
between 90 and 100 mm Hg inclusive, and the subjects are 35- to 44-year-old men

whose blood pressures are normally distributed with mean 80 and variance 144.
What is the probability that a randomly selected person from this population will
be a mild hypertensive? This question can be stated more precisely: If X ~ N(80,144),
then what is Pr(90 < X < 100)?

(The solution is given on page 129.)

More generally, the following question can be asked: If X ~ N(u,6%), then what is
Pr(a < X < b) for any a, b? To solve this, we convert the probability statement about
an N(u,6?%) distribution to an equivalent probability statement about an N(0,1) distri-
bution. Consider the random variable Z = (X — p)/c. We can show that the following
relationship holds:

EQUATION 5.4 If X ~ N(u,6?) and Z = (X — w)/o, then Z ~ N(0,1).
EQUATION 5.5 Evaluation of Probabilities for Any Normal Distribution via Standardization

If X ~ N(u,6%?) and Z = (X — pw)/o

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



128 CHAPTER 5 Continuous Probability Distributions

then Pr(a<X<b):Pr(%<Z<bc;u):(D[(b—u)/c]—d)[(a—u)/o]

Because the ® function, which is the cumulative distribution function for a
standard normal distribution, is given in column A of Table 3 of the Appendix,
probabilities for any normal distribution can now be evaluated using the tables
in this text. This procedure is shown in Figure 5.14 for u = 80, 6 = 12, a = 90,
b =100, where the areas in Figure 5.14a and 5.14b are the same.

The procedure in Equation 5.5 is known as standardization of a normal variable.

EQUATION 5.6 The general principle is that for any probability expression concerning normal
random variables of the form Pr(a < X < b), the population mean p is subtracted
from each boundary point and divided by the standard deviation ¢ to obtain an
equivalent probability expression for the standard normal random variable Z,

Prl(a-p)/o < Z <(b-w)/o]

The standard normal tables are then used to evaluate this latter probability.

FIGURE 5.14 Evaluation of probabilities for any normal distribution using standardization
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s el Solution: The probability of being a mild hypertensive among the group of 35- to
44-year-old men can now be calculated.

90 -80 100—80)
<Z<
12 12

= Pr(0.833 < Z < 1.667) = d(1.667) — d(0.833)

Pr(90 < X <100) = Pr(

=.9522-.7977 =.155

Thus, about 15.5% of this population will have mild hypertension.

Botany Suppose tree diameters of a certain species of tree from some defined forest
area are assumed to be normally distributed with mean = 8 in. and standard devia-
tion = 2 in. Find the probability of a tree having an unusually large diameter, which
is defined as >12 in.

Solution: We have X ~ N(8,4) and require

Pr(X>12):1—Pr(X<12)=1—Pr(2<$)

=1-Pr(Z<2.0)=1-.977=.023

Thus, 2.3% of trees from this area have an unusually large diameter.

DN idBs i Cerebrovascular Disease  Diagnosing stroke strictly on the basis of clinical
symptoms is difficult. A standard diagnostic test used in clinical medicine to detect

stroke in patients is the angiogram. This test has some risks for the patient, and
researchers have developed several noninvasive techniques that they hope will be
as effective as the angiogram. One such method measures cerebral blood flow (CBF)
in the brain because stroke patients tend to have lower CBF levels than normal.
Assume that in the general population, CBF is normally distributed with mean =75
mL/100 g brain tissue and standard deviation = 17 mL/100 g brain tissue. A patient
is classified as being at risk for stroke if his or her CBF is lower than 40 mL/100 g
brain tissue. What proportion of normal patients will be mistakenly classified as be-
ing at risk for stroke?

Solution: Let X be the random variable representing CBF. Then X ~ N(75,17%) =
N(75,289). We want to find Pr(X < 40). We standardize the limit of 40 so as to use the
standard normal distribution. The standardized limit is (40 — 75)/17 =-2.06. Thus, if
Z represents the standardized normal random variable = (X — p)/c, then

Pr(X <40) = Pr(Z <-2.06)
=P(-2.06) =1-P(2.06) =1-.9803 =.020

Thus, about 2.0% of normal patients will be incorrectly classified as being at risk for
stroke.

If we use electronic tables, then the pdf, cdf, and inverse normal distribution
can be obtained for any normal distribution, and standardization is unnecessary. For
example, using Excel, the two functions NORMDIST and NORMINYV are available for
this purpose. To find the probability p that an N(u,6?) distribution is < x, we use the
function
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p = NORMDIST(x,11,6, TRUE)
To find the probability density fat x, we use the function
f=NORMDIST(x,u,6, FALSE)

To find the value x such that the cdf for an N(u,c?) distribution is equal to p, we use
the function

x = NORMINV (p,11,6)

More details and examples of using these functions are provided at www
.cengagebrain.com.

Using R, we evaluate

p =pnorm(x, mean = |, sd = 6)
f=dnorm(x, mean =y, sd = o)

x = qnorm(p, mean =, sd = o)

EQUATION 5.7 The pth percentile of a general normal distribution (x) can also be written in
terms of the percentiles of a standard normal distribution as follows:

X=U+z0

Ophthalmology Glaucoma is an eye disease that is manifested by high intraocular
pressure (IOP). The distribution of IOP in the general population is approximately
normal with mean = 16 mm Hg and standard deviation = 3 mm Hg. If the normal
range for IOP is considered to be between 12 and 20 mm Hg, then what percentage
of the general population would fall within this range?

Solution: Because IOP can only be measured to the nearest integer, we will associate
the recorded value of 12 mm Hg with a range of actual IOP values from 11.5 to 12.5
mm Hg. Similarly, we associate a recorded IOP value of 20 mm Hg with a range of
actual IOP values from 19.5 to 20.5 mm Hg. Hence, we want to calculate Pr(11.5 <
X £20.5), where X ~ N(16,9), as shown in Figure 5.15. The process of associating a
specific observed value (such as 12 mm Hg) with an actual range of value (11.5 <X <
12.5) is called “incorporating a continuity correction.”

FIGURE 5.15 Calculation of the proportion of people with IOP in the normal range
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We use the NORMDIST function of Excel to perform these computations.
First, we compute pl=Pr[X <20.5|X ~ N(16,9)] given by NORMDIST(20.5, 16, 3,
TRUE). Second, we compute p2 = Pr[X <11.5|X ~ N(16,9)] given by NORMDIST
(11.5, 16, 3, TRUE). Thus, Pr(11.5< X <£20.5) = pl1 - p2 =.866. The computations are
shown in the following spreadsheet.

pl=NORMDIST(20.5,16,3,true) 0.933193
p2=NORMDIST(11.5,16,3,true) 0.066807
p=pl-p2 0.866386

Thus, 86.6% of the population has IOP in the normal range.

s el Hypertension  Suppose the distribution of DBP in 35- to 44-year-old men is
normally distributed with mean = 80 mm Hg and variance = 144 mm Hg. Find the

upper and lower fifth percentiles of this distribution.

Solution: We could do this either using Table 3 (Appendix) or using a computer
program. If we use Table 3 and we denote the upper and lower 5th percentiles by x .

and x ,, respectively, then from Equation 5.7 we have

X, =80+2z(12)
=80-1.645(12) = 60.3 mm Hg

X4 =80+2,(12)
=80+ 1.645(12) =99.7 mm Hg

If we use the qnorm function of R, then we have
X s =qnorm (0.05, mean = 80, sd = 12)
X, =qnorm (0.95, mean = 80, sd = 12)

The results are given as follows:

>X<- gqnorm(0.05,mean = 80, sd = 12)

>X

[1] 60.26176

>y<- gnorm(0.95,mean 80, sd = 12)

>y
[1] 99.73824

REVIEW QUESTIONS 5B

1 What is the difference between a standard normal distribution and a general normal
distribution?

2 What does the principle of standardization mean?

=
18]
>
(18]
I~

3 Suppose the distribution of serum-cholesterol values is normally distributed, with
mean = 220 mg/dL and standard deviation = 35 mg/dL.

(@) What is the probability that a serum cholesterol level will range from 200 to
250 inclusive (that is, a high normal range)? Assume that cholesterol values
can be measured exactly—that is, without the need for incorporating a continu-
ity correction.

(b) (1) What is the lowest quintile of serum-cholesterol values (the 20th
percentile)?

(2) What is the highest quintile of serum-cholesterol values (the 80th
percentile)?
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56 LINEAR COMBINATIONS OF RANDOM VARIABLES

In work on statistical inference, sums or differences or more complicated linear
functions of random variables (either continuous or discrete) are often used. For this
reason, the properties of linear combinations of random variables are important to
consider.

DEFINITION 5.11  Alinear combination L of the random variables X , . . . X  is defined as any function
of the form L = ¢ X, +---+¢ X . A linear combination is sometimes also called a linear
contrast.

Renal Disease Let X, X, be random variables representing serum-creatinine lev-
els for Caucasian and African American individuals with end-stage renal disease.
Represent the sum, difference, and average of the random variables X , X, as linear
combinations of the random variables X, X,.

Solution: The sum is X, + X,, where ¢, = 1, ¢,= 1. The difference is X, — X, where
¢, =1, ¢,=-1. The average is (X, + X,)/2, where ¢, =0.5, ¢,=0.5.

It is often necessary to compute the expected value and variance of linear combina-
tions of random variables. To find the expected value of L, we use the principle that
the expected value of the sum of n random variables is the sum of the n respective
expected values. Applying this principle,

E(L) = E(c}X; ++¢,X,)
=E(c;X;)++E(c,X,) = E(X;)++¢,E(X,)

EQUATION 5.8 Expected Value of Linear Combinations of Random Variables
The expected value of the linear combination L=Y"" ¢,X; is E(L) =Y. GE(X;).

Renal Disease Suppose the expected values of serum creatinine for the Caucasian
and the African American individuals in Example 5.25 are 1.3 and 1.5, respectively.
What is the expected value of the average serum-creatinine level of a single Cauca-
sian and a single African American individual?

Solution: The expected value of the average serum-creatinine level = E(0.5X, +0.5X,)
=0.5E(X,) + 0.5E(X,) = 0.65 + 0.75 = 1.4.

To compute the variance of linear combinations of random variables, we assume
that the random variables are independent. Under this assumption, it can be shown
that the variance of the sum of n random variables is the sum of the respective
variances. Applying this principle,
Var(L) = Var(c; Xy +--+¢,X,,)
= Var(c,Xy) + -+ Var(c,X,)) = c2Var(X,) + -+ c2Var(X,,)

because

Var(c;X;) = c?Var(X;)
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EQUATION 5.9 Variance of Linear Combinations of Independent Random Variables
The variance of the linear combination L = 2:’=1c,-X,-, where X, ..., X are
independent is Var(L) = zz.ilc,.zVar(X,.).

G ials el elA | Renal Disease  Suppose X, and X, are defined as in Example 5.26. If we know that
Var(X,) = Var(X,) = 0.25, then what is the variance of the average serum-creatinine

level over a single Caucasian and a single African American individual?
Solution: We wish to compute Var(0.5X, + 0.5X,). Applying Equation 5.9,
Var(0.5X, + 0.5X,) = (0.5)*Var(X,) + (0.5)*Var(X,)
=0.25(0.25) + 0.25(0.25) = 0.125

Note that the variance of the average of X, and X, is less than the variance of indi-
vidual observations X, or X,.

The results for the expected value and variance of linear combinations in Equations
5.8 and 5.9 do not depend on assuming normality. However, linear combinations
of normal random variables are often of specific concern. It can be shown that any
linear combination of independent normal random variables is itself normally dis-
tributed. This leads to the following important result:

EQUATION 5.10 If X, ,..., X, are independent normal random variables with expected values
W, ..., W, and variances of,. .. ,Gﬁ, and L is any linear combination = z;ciX,.,
then L is normally distributed with

n n
Expected value = E(L) = ¥, cju; and variance = Var(L) = Y. ¢7o7
P i=1

2 GV Ra el Renal Disease  If X and X, are defined as in Examples 5.25-5.27 and are each nor-
mally distributed, then what is the distribution of the average = 0.5X, + 0.5X,?

Solution: Based on the solutions to Examples 5.26 and 5.27, we know that E(L) = 1.4,
Var(L) = 0.125. Therefore, (X, + X,)/2 ~ N(1.4,0.125).

5.7 NORMAL APPROXIMATION TO THE BINOMIAL
DISTRIBUTION

In Chapter 4 we introduced the binomial distribution to assess the probability of k
successes in n independent trials, where the probability of success (p) is the same for
each trial. If n is large, the binomial distribution is very cumbersome to work with
and an approximation is easier to use rather than the exact binomial distribution.
The normal distribution is often used to approximate the binomial because it is very
easy to work with. The key question is: When does the normal distribution provide
an accurate approximation to the binomial?

Suppose a binomial distribution has parameters n and p. If n is moderately large
and p is either near O or near 1, then the binomial distribution will be very positively
or negatively skewed, respectively (Figure 5.16a and 5.16b). Similarly, when n is
small, for any p, the distribution tends to be skewed (Figure 5.16¢). However, if n is
moderately large and p is not too extreme, then the binomial distribution tends to
be symmetric and is well approximated by a normal distribution (Figure 5.16d).
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FIGURE 5.16

EQUATION 5.11
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Symmetry properties of the binomial distribution
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We know from Chapter 4 that the mean and variance of a binomial distribution
are np and npq, respectively. A natural approximation to use is a normal distribution
with the same mean and variance—that is, N(np, npq). Suppose we want to compute
Pr(a £ X <b) for some integers a, b where X is binomially distributed with parameters
n and p. This probability might be approximated by the area under the normal curve
from a to b. However, we can show empirically that a better approximation to this

probability is the area under the normal curve from a —% to b+ % This is generally

the case when any discrete distribution is approximated by the normal distribution.

Thus the following rule applies:

Normal Approximation to the Binomial Distribution

If X is a binomial random variable with parameters n and p, then Pr(a < X < b)

is approximated by the area under an N(np, npq) curve from a —% to b +%. This

rule implies that for the special case a = b, the binomial probability Pr(X = a) is

1 1
approximated by the area under the normal curve from a — 5 to a+ 5 The only

exception to this rule is that Pr(X = 0) and Pr(X = n) are approximated by the area

under the normal curve to the left of% and to the right of n— %, respectively.
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We saw in Equation 5.10 that if X, ..., X are independent normal random
variables, then any linear combination of these variables L = z:’zlciXi is normally
distributed. In particular, if ¢; =---=¢, =1, then a sum of normal random variables

n . . .
L= zi=1X,- is normally distributed.
The normal approximation to the binomial distribution is a special case of a very
See page 133 for important statistical principle, the central-limit theorem, which is a generalization
EQUATION 5.10 of Equation 5.10. Under this principle, for large n, a sum of n random variables is ap-

proximately normally distributed even if the individual random variables being summed
are not themselves normal.

DEFINITION 5.12  Let X; be a random variable that takes on the value 1 with probability p and the value
0 with probability g = 1 — p. This type of random variable is referred to as a Bernoulli
trial. This is a special case of a binomial random variable with n = 1.

We know from the definition of an expected value that E(X) = 1(p) + 0(q) = p and
that E(X?) =1%(p) + 0%(q) = p. Therefore,

Var(X;) = EXP) - [ECX))' = p- p* = pA-p) = pq

Now consider the random variable
n
X=YX
i=1

This random variable represents the number of successes among n trials.

iRt eAc ) Interpret X, ..., X and X in the case of the number of neutrophils among 100
white blood cells (see Example 4.15).

Solution: In this case, n = 100 and X, = 1 if the ith white blood cell is a neutrophil
and X, = 0 if the ith white blood cell is not a neutrophil, wherei=1, ..., 100.
X represents the number of neutrophils among n = 100 white blood cells.

Given Equations 5.8 and 5.9, we know that

E(X)=E[ixi]=p+p+...+p=np

i=1

and

n n
Var(X) = Var[ZX,-J =Y Var(X;) = pq+ pq+-+ pq =npq
i=1 i=1

Given the normal approximation to the binomial distribution, we approximate
the distribution of X by a normal distribution with mean = np and variance = npq.
We discuss the central-limit theorem in more detail in Section 6.5.

Bl Suppose a binomial distribution has parameters n= 25, p=.4. How can Pr(7 < X <12)
be approximated?

Solution: We have np = 25(.4) = 10, npq = 25(.4)(.6) = 6.0. Thus, this distribution is
approximated by a normal random variable Y with mean 10 and variance 6. We spe-
cifically want to compute the area under this normal curve from 6.5 to 12.5. We have
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FIGURE 5.17 The approximation of the binomial random variable X with parameters n = 25,
p = .4 by the normal random variable Y with mean = 10 and variance = 6
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Pr(6.5<Y < 12.5)=¢(12‘5_10)— (6'5_10)

J6 J6
®(1.021) - O(-1.429) = &(1.021) - [1 - d(1.429)]
®(1.021) + ©(1.429) - 1 = .8463 +.9235-1=.770

This approximation is depicted in Figure 5.17. For comparison, we also computed
Pr(7 £ X £ 12) using the BINOMDIST function of Excel and obtained .773, which
compares well with the normal approximation of .770.

N idEs it Infectious Disease  Suppose we want to compute the probability that between
50 and 75 of 100 white blood cells will be neutrophils, where the probability that any

one cell is a neutrophil is .6. These values are chosen as proposed limits to the range
of neutrophils in normal people, and we wish to predict what proportion of people
will be in the normal range according to this definition.

Solution: The exact probability is given by

i (120J (6)k (.4)100—](
k=50

The normal approximation is used to approximate the exact probability. The mean of
the binomial distribution in this case is 100(.6) = 60, and the variance is 100(.6)(.4) = 24.
Thus, we find the area between 49.5 and 75.5 for an N(60,24) distribution. This area is

(75%60)_ (49%60

j = (3.164) — d(-2.143)
= ©(3.164)+ ®(2.143) -1

= .9992 +.9840 -1=.983
Thus, 98.3% of the people will be normal.

DR s Infectious Disease  Suppose a neutrophil count is defined as abnormally high if
the number of neutrophils is > 76 and abnormally low if the number of neutrophils

is £ 49. Calculate the proportion of people whose neutrophil counts are abnormally
high or low.
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Solution: The probability of being abnormally high is given by Pr(X = 76) = Pr(Y 2
75.5), where X is a binomial random variable with parameters n = 100, p = .6, and
Y ~ N(60,24). This probability is

1_®(75.5—60

N ]: 1-®(3.164) =.001

Similarly, the probability of being abnormally low is

Pr(X <49) ~ Pr(Y <49.5) = m(M)

J24
= (-2.143) = 1- D(2.143)

=1-.9840=.016

Thus, 0.1% of people will have abnormally high neutrophil counts and 1.6% will
have abnormally low neutrophil counts. These probabilities are shown in Figure 5.18.

For comparative purposes, we have also computed (using Excel) the proportion
of people who are in the normal range, abnormally high, and abnormally low based
on exact binomial probabilities. We obtain Pr(50 < X < 75) =.983, Pr(X = 76) = .0006,
and Pr(X £ 49) = .017, which corresponds almost exactly to the normal approxima-
tions used in Examples 5.31 and 5.32.

Under what conditions should this approximation be used?

EQUATION 5.12 The normal distribution with mean np and variance npq can be used to approxi-
mate a binomial distribution with parameters n and p when npg > 5. This condi-
tion is sometimes called “the rule of five.”

This condition is satisfied if n is moderately large and p is not too small or too
large. To illustrate this condition, the binomial probability distributions for p = .1,
n =10, 20, 50, and 100 are plotted in Figure 5.19 and p = .2, n = 10, 20, 50, and 100
are plotted in Figure 5.20, using R.

FIGURE 5.18 Normal approximation to the distribution of neutrophils
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FIGURE 5.19 R plot of binomial distribution, n =10, 20, 50, 100, p = .1
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Notice that the normal approximation to the binomial distribution does not fit
well in Figure 5.19a, n =10, p = .1 (npq = 0.9) or Figure 5.19b, n =20, p=.1 (npg = 1.8).
The approximation is marginally adequate in Figure 5.19¢, n =50, p = .1 (npq = 4.5),
where the right-hand tail is only slightly longer than the left-hand tail. The ap-
proximation is quite good in Figure 5.19d, n = 100, p = .1 (npq = 9.0), where the
distribution appears quite symmetric. Similarly, for p = .2, although the normal ap-
proximation is not good for n = 10 (Figure 5.20a, npg = 1.6), it becomes marginally
adequate for n = 20 (Figure 5.20b, npq = 3.2) and quite good for n = 50 (Figure 5.20c,
npq = 8.0) and n = 100 (Figure 5.20d, npqg = 16.0).

Note that the conditions under which the normal approximation to the bino-
mial distribution works well (namely, npg > 5), which corresponds to n moderate
and p not too large or too small, are generally not the same as the conditions for
which the Poisson approximation to the binomial distribution works well [n large
(= 100) and p very small (p < .01)]. However, occasionally both these criteria are
met. In such cases (for example, when n = 1000, p = .01), the two approximations
yield about the same results. The normal approximation is preferable because it is
easier to apply.
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FIGURE 5.20 R plot of binomial distribution, n =10, 20, 50, 100, p =.2
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58 NORMAL APPROXIMATION TO THE POISSON
DISTRIBUTION
The normal distribution can also be used to approximate discrete distributions other
than the binomial distribution, particularly the Poisson distribution. The motivation
for this is that the Poisson distribution is cumbersome to use for large values of u.
The same technique is used as for the binomial distribution; that is, the mean
and variance of the Poisson distribution and the approximating normal distribution
are equated.
EQUATION 5.13 Normal Approximation to the Poisson Distribution

A Poisson distribution with parameter p is approximated by a normal distribu-
tion with mean and variance both equal to u. Pr(X = x) is approximated by the

1 1
area under an N(u,u) density from x =3 to x+§ for x > 0 or by the area to the

left of% for x = 0. This approximation is used when p > 10.

The Poisson distributions for u = 2, 5, 10, and 20 are plotted using R in
Figure 5.21. The normal approximation is clearly inadequate for p = 2 (Figure 5.21a),
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FIGURE 5.21 R plot of Poisson distribution, u =2, 5, 10, 20
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marginally adequate for u = 5 (Figure 5.21b), and adequate for pu = 10 (Figure 5.21¢)
and p = 20 (Figure 5.21d).

Bacteriology Consider again the distribution of the number of bacteria in a Petri
plate of area A. Assume the probability of observing x bacteria is given exactly
by a Poisson distribution with parameter u = AA, where A = 0.1 bacteria/cm? and
A =100 cm? Suppose 20 bacteria are observed in this area. How unusual is this event?

EXAMPLE 5.33

Solution: The exact distribution of the number of bacteria observed in 100 cm? is
Poisson with parameter u = 10. We approximate this distribution by a normal distri-
bution with mean = 10 and variance = 10. Therefore, we compute

Pr(X = 20) = Pr(Y > 19.5)
where Y ~ N(AA,LA) = N(10,10)
We have

Pr(Y 219.5)=1-Pr(Y <19.5) =1 _q>(_19'5 ‘10)

V10

9.5
1- @(ﬁ) =1-®(3.004)

= 1-.9987=.0013
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Thus, 20 or more colonies in 100 cm? would be expected only 1.3 times in 1000
plates, a rare event indeed. For comparison, we have also computed the exact
Poisson probability of obtaining 20 or more bacteria, using Excel, and obtain
Pr(X =20|p=10) =.0035. Thus, the normal approximation is only fair in this case
but does result in the same conclusion that obtaining 20 or more bacteria in 100 cm?
is a rare event.

REVIEW QUESTIONS 5C

Why do we use the normal approximation to the binomial distribution?

2 Which of the following binomial distributions can be well approximated by a normal
distribution? A Poisson distribution? Both? Neither?

(@ n=40,p=.05
(b) n=300, p=.05
(c) n=500, p=.001
(d) n=1000, p=.001

3 The prevalence of glaucoma among the elderly in high-risk inner-city populations
is about 5%. Suppose an “Eyemobile” is sent to several neighborhoods in the
Chicago area to identify subjects for a new glaucoma study. If 500 elderly people
(age 65+) are screened by Eyemobile staff, then what is the probability of identifying
at least 20 glaucoma cases?

REVIEW

4  The number of deaths from heart failure in a hospital is approximately Poisson dis-
tributed with mean = 20 cases per year. In 2012, a hospital sees 35 deaths from
heart failure. Is this an unusual occurrence? Why or why not?

59 SUMMARY

In this chapter continuous random variables were discussed. The concept of a
probability-density function (pdf), which is the analog to a probability-mass function
for discrete random variables, was introduced. In addition, generalizations of the
concepts of expected value, variance, and cumulative distribution were presented
for continuous random variables.

The normal distribution, the most important continuous distribution, was then
studied in detail. The normal distribution is often used in statistical work because many
random phenomena follow this probability distribution, particularly those that can be
expressed as a sum of many random variables. It was shown that the normal distribu-
tion is indexed by two parameters, the mean p and the variance ¢?. Fortunately, all
computations concerning any normal random variable can be accomplished using the
standard, or unit, normal probability law, which has mean 0 and variance 1. Normal
tables were introduced to use when working with the standard normal distribution.
Alternatively, electronic tables can be used to evaluate areas and/or percentiles for any
normal distribution. Also, because the normal distribution is easy to use, it is often
employed to approximate other distributions. In particular, we studied the normal ap-
proximations to the binomial and Poisson distributions. These are special cases of the
central-limit theorem, which is covered in more detail in Chapter 6. Also, to facilitate
applications of the central-limit theorem, the properties of linear combinations of ran-
dom variables were discussed, for the case of independent random variables.

In the next three chapters, the normal distribution is used extensively as a foun-
dation for work on statistical inference.

>
(24
<
>3
=
D
(7]
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Continuous Probability Distributions

PROBLEMS

Cardiovascular Disease

Because serum cholesterol is related to age and sex, some
investigators prefer to express it in terms of z-scores. If X =
X- .
raw serum cholesterol, then Z = 7”, where L is the mean
c

and o is the standard deviation of serum cholesterol for a
given age—gender group. Suppose Z is regarded as a
standard normal random variable.

*5.1 What is Pr(Z < 0.5)?
*5.2 What is P(Z > 0.5)?
*5.3 What is Pr(-1.0 < Z< 1.5)?

Suppose a person is regarded as having high cholesterol
if Z> 2.0 and borderline cholesterol if 1.5 < Z < 2.0.

*5.4 What proportion of people have high cholesterol?
*5.5 What proportion of people have borderline cholesterol?

Nutrition

Suppose that total carbohydrate intake in 12- to 14-year-
old boys is normally distributed, with mean =124 g/1000 cal
and standard deviation = 20 g/1000 cal.

5.6 What percentage of boys in this age range have carbo-
hydrate intake above 140 g/1000 cal?

5.7 What percentage of boys in this age range have carbo-
hydrate intake below 90 g/1000 cal?

Suppose boys in this age range who live below the poverty
level have a mean carbohydrate intake of 121 g/1000 cal
with a standard deviation of 19 g/1000 cal.

5.8 Answer Problem 5.6 for boys in this age range and
economic environment.

5.9 Answer Problem 5.7 for boys in this age range and
economic environment.

Hypertension

A study was conducted assessing the effect of observer
training on measurement of blood pressure based on
NHANES data from 1999-2000 (Ostchega, et al., [1]). A
goal was that the difference in recorded blood pressure
between the observer and trainer be < 2 mm Hg in absolute
value. It was reported that the mean difference in systolic
blood pressure (SBP) between observers and trainers (i.e.,
mean observer SBP minus trainer SBP) = mean (A) was
0.189 mm Hg with sd = 2.428 mm Hg.

5.10 If we assume that the distribution of A is normally
distributed, then what % of (observer, trainer) pairs have a
mean difference of > 2 mm Hg in absolute value (i.e., either
> 2 mm Hg or < -2 mm Hg)?

5.11 If we assume that the distribution of A is normally dis-
tributed, then what is the 90 percentile (i.e., the upper decile)
and 10 percentile (i.e., the lower decile) of the distribution?
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Cardiovascular Disease, Pulmonary Disease

The duration of cigarette smoking has been linked to many
diseases, including lung cancer and various forms of heart
disease. Suppose we know that among men ages 30-34
who have ever smoked, the mean number of years they
smoked is 12.8 with a standard deviation of 5.1 years. For
women in this age group, the mean number of years they
smoked is 9.3 with a standard deviation of 3.2.

*5.12 Assuming that the duration of smoking is normally
distributed, what proportion of men in this age group have
smoked for more than 20 years?

*5.13 Answer Problem 5.12 for women.

Cardiovascular Disease

Serum cholesterol is an important risk factor for coronary
disease. We can show that serum cholesterol is approxi-
mately normally distributed, with mean = 219 mg/dL and
standard deviation = 50 mg/dL.

*5.14 If the clinically desirable range for cholesterol is
< 200 mg/dL, what proportion of people have clinically
desirable levels of cholesterol?

*5.15 Some investigators believe that only cholesterol
levels over 250 mg/dL indicate a high-enough risk for heart
disease to warrant treatment. What proportion of the popu-
lation does this group represent?

*5.16 What proportion of the general population has
borderline high-cholesterol levels—that is, > 200 but
< 250 mg/dL?

Hypertension

People are classified as hypertensive if their systolic blood
pressure (SBP) is higher than a specified level for their age
group, according to the algorithm in Table 5.1.

Assume SBP is normally distributed with mean and
standard deviation given in Table 5.1 for age groups 1-14
and 15-44, respectively. Define a family as a group of two
people in age group 1-14 and two people in age group
15-44. A family is classified as hypertensive if at least one
adult and at least one child are hypertensive.

*5.17 What proportion of 1-to 14-year-olds are hypertensive?

*5.18 What proportion of 15- to 44-year-olds are hyper-
tensive?

TABLE 5.1 Mean and standard deviation of SBP
(mm Hg) in specific age groups
Standard Specified
Age group Mean deviation hypertension level
1-14 105.0 5.0 115.0
15-44 125.0 10.0 140.0




*5.19 What proportion of families are hypertensive? (As-
sume that the hypertensive status of different members of a
family are independent random variables.)

*5.20 Suppose a community has 1000 families living in it.
What is the probability that between one and five families
are hypertensive?

Pulmonary Disease

Forced expiratory volume (FEV) is an index of pulmonary
function that measures the volume of air expelled after 1
second of constant effort. FEV is influenced by age, sex,
and cigarette smoking. Assume that in 45- to 54-year-old
nonsmoking men FEV is normally distributed with mean =
4.0 L and standard deviation = 0.5 L.

In comparably aged currently smoking men FEV is nor-
mally distributed, with mean = 3.5 L and standard deviation
=06 L.

5.21 If an FEV of less than 2.5 L is regarded as showing
some functional impairment (occasional breathlessness,
inability to climb stairs, etc.), then what is the probability
that a currently smoking man has functional impairment?

5.22 Answer Problem 5.21 for a nonsmoking man.

Some people are not functionally impaired now, but their
pulmonary function usually declines with age and they even-
tually will be functionally impaired. Assume that the decline
in FEV over n years is normally distributed, with mean =
0.03n L and standard deviation = 0.02n L.

5.23 What is the probability that a 45-year-old man with an
FEV of 4.0 L will be functionally impaired by age 75?

5.24 Answer Problem 5.23 for a 25-year-old man with an
FEV of 4.0 L.

Infectious Disease

The differential is a standard measurement made during a
blood test. It consists of classifying white blood cells into
the following five categories: (1) basophils, (2) eosinophils,
(3) monocytes, (4) lymphocytes, and (5) neutrophils. The
usual practice is to look at 100 randomly selected cells
under a microscope and to count the number of cells within
each of the five categories. Assume that a normal adult will
have the following proportions of cells in each category:
basophils, 0.5%; eosinophils, 1.5%; monocytes, 4%:; lym-
phocytes, 34%; and neutrophils, 60%.

*5.25 An excess of eosinophils is sometimes consistent
with a violent allergic reaction. What is the exact probability
that a normal adult will have 5 or more eosinophils?

*5.26 An excess of lymphocytes is consistent with vari-
ous forms of viral infection, such as hepatitis. What is
the probability that a normal adult will have 40 or more
lymphocytes?

*5.27 What is the probability a normal adult will have 50 or
more lymphocytes?
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*5.28 How many lymphocytes would have to appear in the
differential before you would feel the “normal” pattern was
violated?

*5.29 An excess of neutrophils is consistent with sev-
eral types of bacterial infection. Suppose an adult has x
neutrophils. How large would x have to be for the prob-
ability of a normal adult having x or more neutrophils to
be <5%?

*5.30 How large would x have to be for the probability of a
normal adult having x or more neutrophils to be <19%?

Blood Chemistry

In pharmacologic research a variety of clinical chemistry
measurements are routinely monitored closely for evidence
of side effects of the medication under study. Suppose
typical blood-glucose levels are normally distributed, with
mean = 90 mg/dL and standard deviation = 38 mg/dL.

5.31 If the normal range is 65—-120 mg/dL, then what per-
centage of values will fall in the normal range?

5.32 In some studies only values at least 1.5 times as high
as the upper limit of normal are identified as abnormal. What
percentage of values would fall in this range?

5.33 Answer Problem 5.32 for values 2.0 times the upper
limit of normal.

5.34 Frequently, tests that yield abnormal results are re-
peated for confirmation. What is the probability that for a
normal person a test will be at least 1.5 times as high as the
upper limit of normal on two separate occasions?

5.35 Suppose that in a pharmacologic study involving 6000
patients, 75 patients have blood-glucose levels at least 1.5
times the upper limit of normal on one occasion. What is the
probability that this result could be due to chance?

Cancer

A treatment trial is proposed to test the efficacy of vitamin
E as a preventive agent for cancer. One problem with
such a study is how to assess compliance among partici-
pants. A small pilot study is undertaken to establish criteria
for compliance with the proposed study agents. In this
study, 10 patients are given 400 |U/day of vitamin E and
10 patients are given similar-sized placebo capsules over
a 3-month period. Their serum vitamin E levels are mea-
sured before and after the 3-month period, and the change
(3-month - baseline) is shown in Table 5.2.

TABLE 5.2 Change in serum vitamin E (mg/dL)

in pilot study
Group Mean sd n
Vitamin E 0.80 0.48 10
Placebo 0.05 0.16 10
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*5.36 Suppose a change of 0.30 mg/dL in serum levels is
proposed as a test criterion for compliance; that is, a patient
who shows a change of > 0.30 mg/dL is considered a com-
pliant vitamin E taker. If normality is assumed, what percent-
age of the vitamin E group would be expected to show a
change of at least 0.30 mg/dL?

*5.37 Is the measure in Problem 5.36 a measure of sensi-
tivity, specificity, or predictive value?

*5.38 What percentage of the placebo group would be
expected to show a change of not more than 0.30 mg/dL?

*5.39 Is the measure in Problem 5.38 a measure of sensi-
tivity, specificity, or predictive value?

*5.40 Suppose a new threshold of change, A mg/dL, is pro-
posed for establishing compliance. We wish to use a level of
A such that the compliance measures in Problems 5.36 and
5.38 for the patients in the vitamin E and placebo groups are
the same. What should A be? What would be the compliance
in the vitamin E and placebo groups using this threshold level?

5.41 Suppose we consider the serum vitamin E assay as a
screening test for compliance with vitamin E supplementa-
tion. Participants whose change in serum vitamin E is > A
mg/dL will be considered vitamin E takers, and participants
whose change is < A mg/dL will be considered placebo

Continuous Probability Distributions

Cardiovascular Disease

A clinical trial was conducted to test the efficacy of nife-
dipine, a new drug for reducing chest pain in patients
with angina severe enough to require hospitalization. The
duration of the study was 14 days in the hospital unless
the patient was withdrawn prematurely from therapy, was
discharged from the hospital, or died prior to this time.
Patients were randomly assigned to either nifedipine or
propranolol and were given the same dosage of each
drug in identical capsules at level 1 of therapy. If pain did
not cease at this level of therapy or if pain recurred after
a period of pain cessation, then the patient progressed to
level 2, whereby the dosage of each drug was increased
according to a pre-specified schedule. Similarly, if pain
continued or recurred at level 2, then the patient pro-
gressed to level 3, whereby the dosage of the anginal drug
was increased again. Patients randomized to either group
received nitrates in any amount deemed clinically appropri-
ate to help control pain.

The main objective of the study was to compare the degree
of pain relief with nifedipine vs. propranolol. A secondary
objective was to better understand the effects of these
agents on other physiologic parameters, including heart rate
and blood pressure. Data on these latter parameters are

takers. Choose several possible values for A, and construct lill given in Data Set NIFED.DAT (at www.cengagebrain.com);

the receiver operating characteristic (ROC) curve for this
test. What is the area under the ROC curve? (Hint: The area
under the ROC curve can be computed analytically from the
properties of linear combinations of normal distributions.)

Pulmonary Disease

Refer to the pulmonary-function data in the Data Set FEV.DAT
at www.cengagebrain.com (see Problem 2.23, p. 38).
We are interested in whether smoking status is related to
level of pulmonary function. However, FEV is affected by
age and sex; also, smoking children tend to be older than
nonsmoking children. For these reasons, FEV should be
standardized for age and sex. To accomplish this, use the
z-score approach outlined in Problem 5.1, where the
z-scores here are defined by age—sex groups.

5.42 Plot the distribution of z-scores for smokers and non-
smokers separately. Do these distributions look normal? Do
smoking and pulmonary function seem in any way related in
these data?

5.43 Repeat the analyses in Problem 5.42 for the subgroup
of children 10+ years of age (because smoking is very rare
before this age). Do you reach similar conclusions?

5.44 Repeat the analyses in Problem 5.43 separately for boys
and girls. Are your conclusions the same in the two groups?

(Note: Formal methods for comparing mean FEVs between
smokers and nonsmokers are discussed in the material on
statistical inference in Chapter 8.)

[1ll Data set available
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the format of this file is shown in Table 5.3.

5.45 Describe the effect of each treatment regimen on
changes in heart rate and blood pressure. Does the distri-
bution of changes in these parameters look normal or not?

5.46 Compare graphically the effects of the treatment regi-
mens on heart rate and blood pressure. Do you notice any
difference between treatments?

TABLE 5.3 Format of NIFED.DAT

Variable Code
ID
Treatment group N = nifedipine/
P = propanolol
Baseline heart rate? beats/min
Level 1 heart rate® beats/min
Level 2 heart rate beats/min
Level 3 heart rate beats/min
Baseline SBP? mm Hg
Level 1 SBP® mm Hg
Level 2 SBP mm Hg
Level 3 SBP mm Hg

2Heart rate and SBP immediately before randomization.

PHighest heart rate and SBP at each level of therapy.

Note: Missing values indicate one of the following:

(1) The patient withdrew from the study before entering this level of therapy.

(2) The patient achieved pain relief before reaching this level of therapy.

(8) The patient encountered this level of therapy, but this particular piece of
data was missing.



(Note: Formal tests for comparing changes in heart rate and
blood pressure in the two treatment groups are covered in
Chapter 8.)

Hypertension

Well-known racial differences in blood pressure exist be-
tween Caucasian and African American adults. These differ-
ences generally do not exist between Caucasian and African
American children. Because aldosterone levels have been re-
lated to blood-pressure levels in adults in previous research,
an investigation was performed to look at aldosterone levels
among African American children and Caucasian children [2].

*5.47 If the mean plasma-aldosterone level in African Ameri-
can children was 230 pmol/L with a standard deviation of
203 pmol/L, then what percentage of African American
children have levels <300 pmol/L if normality is assumed?

*5.48 If the mean plasma-aldosterone level in Caucasian
children is 400 pmol/L with standard deviation of 218 pmol/L,
then what percentage of Caucasian children have levels <
300 pmol/L if normality is assumed?

*5.49 The distribution of plasma-aldosterone concentra-
tion in 53 Caucasian and 46 African American children is
shown in Figure 5.22. Does the assumption of normality
seem reasonable? Why or why not? (Hint: Qualitatively
compare the observed number of children who have levels
< 300 pmol/L with the expected number in each group un-
der the assumption of normality.)

Hepatic Disease

Suppose we observe 84 alcoholics with cirrhosis of the
liver, of whom 29 have hepatomas—that is, liver-cell carci-
noma. Suppose we know, based on a large sample, that the
risk of hepatoma among alcoholics without cirrhosis of the
liver is 24%.

5.50 What is the probability that we observe exactly 29
alcoholics with cirrhosis of the liver who have hepatomas if
the true rate of hepatoma among alcoholics (with or without
cirrhosis of the liver) is .247?

5.51 What is the probability of observing at least 29 hepa-
tomas among the 84 alcoholics with cirrhosis of the liver
under the assumptions in Problem 5.507?

5.52 What is the smallest number of hepatomas that would
have to be observed among the alcoholics with cirrhosis of
the liver for the hepatoma experience in this group to differ
from the hepatoma experience among alcoholics without
cirrhosis of the liver? (Hint: Use a 5% probability of getting
a result at least as extreme to denote differences between
the hepatoma experiences of the two groups.)

Diabetes, Obstetrics

Pregnant women with gestational diabetes mellitus (GDM)
are at risk for long-term weight gain and subsequent devel-
opment of type Il diabetes. A pilot weight loss clinical trial

Problems 145
FIGURE 5.22 Plasma-aldosterone concentrations

in 53 Caucasian and 46 African American children. Values
within the shaded area were undetectable (< 50 pmol/L).
The solid horizontal lines indicate the mean values, and
the broken horizontal lines indicate the mean + se. The
concept of standard error (se) is discussed in Chapter 6.
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was conducted where women with GDM were randomized
to either an active intervention using a web-based delivery
or a control intervention (Nicklas et al. [3]). Women were
randomized at 6 weeks postpartum and then were seen at
follow-up visits at 6 months and 12 months postpartum. At
12 months postpartum, women in the active group lost a
mean of 0.2 Ib. with a standard deviation of 15.4 Ibs.

5.53 If we assume that the change in weight from pre-
pregnancy to 12 months is normally distributed, then what
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percent of women in the active group were at or below their
pre-pregnancy weight at 12 months postpartum?

Hint: For all parts of this problem, assume that weights
can be measured exactly and no continuity correction is
necessary.

At 12 months postpartum, women in the control group gained
amean of 7.9 Ibs. with a standard deviation of 15.3 Ibs. com-
pared with their pre-pregnancy weight.

5.54 What is the probability that a control group woman
was at or below her pre-pregnancy weight at 12 months?

Hint: Make the same assumptions as in Problem 5.53.

5.55 What are the approximate 10th and 90th percentiles
of weight change from pre-pregnancy to 12 months post-
partum among women in the active group? Among women
in the control group?

Hint: Make the same assumptions as in Problems 5.53 and
5.54.

Officials in the State Health Department are considering
using the active intervention in the general population of
women with GDM. However, they expect that 80% of the
women who are offered the intervention will actually com-
ply with the intervention and are expected to have a weight
gain distribution similar to the active group. The remaining
20% of women will lose interest and are expected to have
a weight gain distribution similar to the control group.

5.56 What % of the GDM women in the program will be ex-
pected to be no more than 2 Ibs. above their pre-pregnancy
weight?

The program will be implemented if at least 50% of the
GDM women in the program are no more than 2 Ibs. above
their pre-pregnancy weight at 12 months postpartum.

5.57 Based on the results in Problem 5.56, should the pro-
gram be implemented? Why or why not?

Environmental Health

5.58 A study was conducted relating particulate air pollu-
tion and daily mortality in Steubenville, Ohio [4]. On average
over the past 10 years there have been 3 deaths per day in
Steubenville. Suppose that on 90 high-pollution days—days
in which the total suspended particulates are in the highest
quartile among all days—the death rate is 3.2 deaths per day,
or 288 deaths observed over the 90 high-pollution days. Are
there an unusual number of deaths on high-pollution days?

Nutrition

Refer to Data Set VALID.DAT (at www.cengagebrain.com)
described in Table 2.16 (p. 38).

5.59 Consider the nutrients saturated fat, total fat, and total
calories. Plot the distribution of each nutrient for both the

[1ll Data set available
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Continuous Probability Distributions

diet record and the food-frequency questionnaire. Do you
think a normal distribution is appropriate for these nutrients?

(Hint: Compute the observed proportion of women who
fall within 1.0, 1.5, 2.0, and 2.5 standard deviations of the
mean. Compare the observed proportions with the ex-
pected proportions based on the assumption of normality.)

5.60 Answer Problem 5.59 using the In(nutrient) transfor-
mation for each nutrient value. Is the normality assumption
more appropriate for log-transformed or untransformed
values, or neither?

5.61 A special problem arises for the nutrient alcohol con-
sumption. There are often a large number of nondrinkers
(alcohol consumption = 0) and another large group of drinkers
(alcohol consumption > 0). The overall distribution of alcohol
consumption appears bimodal. Plot the distribution of
alcohol consumption for both the diet record and the
food frequency questionnaire. Do the distributions appear
unimodal or bimodal? Do you think the normality assumption
is appropriate for this nutrient?

Cancer, Neurology

A study concerned the risk of cancer among patients with
cystic fibrosis [5]. Given registries of patients with cystic
fibrosis in the United States and Canada, cancer incidence
among cystic-fibrosis patients between January 1, 1985,
and December 31, 1992, was compared with expected
cancer-incidence rates based on the Surveillance Epidemi-
ology and End Results program from the National Cancer
Institute from 1984 to 1988.

5.62 Among cystic-fibrosis patients, 37 cancers were
observed, whereas 45.6 cancers were expected. What
distribution can be used to model the distribution of the
number of cancers among cystic-fibrosis patients?

5.63 Are there an unusually low number of cancers among
cystic-fibrosis patients?
5.64 In the same study 13 cancers of the digestive tract
were observed, whereas only 2 cancers were expected. Are
there an unusually high number of digestive cancers among
cystic-fibrosis patients?

Hypertension

A doctor diagnoses a patient as hypertensive and pre-
scribes an antihypertensive medication. To assess the
clinical status of the patient, the doctor takes n replicate
blood-pressure measurements before the patient starts the
drug (baseline) and n replicate blood-pressure measure-
ments 4 weeks after starting the drug (follow-up). She
uses the average of the n replicates at baseline minus the
average of the n replicates at follow-up to assess the clini-
cal status of the patient. She knows, from previous clinical
experience with the drug, that the mean diastolic blood
pressure (DBP) change over a 4-week period over a large
number of patients after starting the drug is 5.0 mm Hg with



variance 33/n, where n is the number of replicate measures
obtained at both baseline and follow-up.

5.65 If we assume the change in mean DBP is normally
distributed, then what is the probability that a subject
will decline by at least 5 mm Hg if 1 replicate measure is
obtained at baseline and follow-up?

5.66 The physician also knows that if a patient is untreated
(or does not take the prescribed medication), then the mean
DBP over 4 weeks will decline by 2 mm Hg with variance
33/n. What is the probability that an untreated subject
will decline by at least 5 mm Hg if 1 replicate measure is
obtained at both baseline and follow-up?

5.67 Suppose the physician is not sure whether the patient
is actually taking the prescribed medication. She wants
to take enough replicate measurements at baseline and
follow-up so that the probability in Problem 5.65 is at least
five times the probability in Problem 5.66. How many repli-
cate measurements should she take?

Endocrinology

A study compared different treatments for preventing bone
loss among postmenopausal women younger than 60 years
of age [6]. The mean change in bone-mineral density of the
lumbar spine over a 2-year period for women in the placebo
group was —1.8% (a mean decrease), with a standard de-
viation of 4.3%. Assume the change in bone-mineral density
is normally distributed.

5.68 If a decline of 2% in bone-mineral density is consid-
ered clinically significant, then what percentage of women
in the placebo group can be expected to show a decline of
at least this much?

The change in bone-mineral density of the lumbar spine over
a 2-year period among women in the alendronate 5-mg group
was +3.5% (a mean increase), with a standard deviation of
4.2%.

5.69 What percentage of women in the alendronate 5-mg
group can be expected to have a clinically significant de-
cline in bone-mineral density as defined in Problem 5.687?

5.70 Suppose 10% of the women assigned to the alen-
dronate 5-mg group are actually not taking their pills (non-
compliers). If noncompliers are assumed to have a similar
response as women in the placebo group, what percentage
of women complying with the alendronate 5-mg treatment
would be expected to have a clinically significant decline?
(Hint: Use the total-probability rule.)

Cardiovascular Disease

Obesity is an important determinant of cardiovascular dis-
ease because it directly affects several established cardio-
vascular risk factors, including hypertension and diabetes.
It is estimated that the average weight for an 18-year-old
woman is 123 Ibs. and increases to 142 Ibs. at 50 years
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of age. Also, let us assume that the average SBP for a
50-year-old woman is 125 mm Hg, with a standard deviation
of 15 mm Hg, and that SBP is normally distributed.

5.71 What proportion of 50-year-old women is hyperten-
sive, if hypertension is defined as SBP > 140 mm Hg?

From previous clinical trials, it is estimated that for every
10 Ibs. of weight loss there is, on average, a corresponding
reduction in mean SBP of 3 mm Hg.

5.72 Suppose an average woman did not gain any weight
from age 18 to 50. What average SBP for 50-year-old
women would be expected under these assumptions?

5.73 If the standard deviation of SBP under the assumption
in Problem 5.72 remained the same (15 mm Hg), and the
distribution of SBP remained normal, then what would be
the expected proportion of hypertensive women under the
assumption in Problem 5.727?

5.74 What percentage of hypertension at age 50 is attrib-
utable to the weight gain from age 18 to 507?

SIMULATION

5.75 Draw 100 random samples from a binomial distribution
with parameters n = 10 and p = .4. Consider an approxima-
tion to this distribution by a normal distribution with mean =
np =4 and variance = npq = 2.4. Draw 100 random samples
from the normal approximation. Plot the two frequency distri-
butions on the same graph, and compare the results. Do you
think the normal approximation is adequate here?

5.76 Answer the question in Problem 5.75 for a binomial
distribution with parameters n = 20 and p = .4 and the
corresponding normal approximation.

5.77 Answer the question in Problem 5.75 for a binomial
distribution with parameters n = 50 and p = .4 and the cor-
responding normal approximation.

SIMULATION

An apparatus displaces a collection of balls to the top of
a stack by suction. At the top level (Level 1) each ball is
shifted 1 unit to the left or 1 unit to the right at random with
equal probability (see Figure 5.28). The ball then drops
down to Level 2. At Level 2, each ball is again shifted 1 unit
to the left or 1 unit to the right at random. The process
continues for 15 levels; the balls remain at the bottom for a
short time and are then forced by suction to the top. (Note:
A similar apparatus, located in the Museum of Science,
Boston, Massachusetts, is displayed in Figure 5.24.)

5.78 What is the exact probability distribution of the posi-
tion of the balls at the bottom with respect to the entry posi-
tion (arbitrarily denoted by 0)?

5.79 Can you think of an approximation to the distribution
derived in Problem 5.787?
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FIGURE 5.23 Apparatus for random displacement of balls

Level o
o
o
o
1 o
o— o
o °
o o
3 3
2 o o
o o o
o o o
o o o
<) o <)
3 o o
o o o o
o o o o
o o o o
<) o <) <)
: etc.
etc.
o
o
: o o o
o o o o o
15 o o o o o o o
o o o o o o o
o o o o o o o
| | | | 1 1 1
etc.--- -3 -2 -1 0 1 2 3 .- etc.

FIGURE 5.24 Probability apparatus at the Museum
of Science, Boston
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Photo taken by David Rosner; courtesy of the Museum of Science, Boston.

SIMULATION

5.80 Perform a simulation of this process (e.g., using
MINITAB, Excel, or R) with 100 balls, and plot the frequency
distribution of the position of the balls at the bottom with
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respect to the entry position. Does the distribution appear
to conform to the distributions derived in Problems 5.78
and 5.797

Orthopedics

A study was conducted of a diagnostic test (the FAIR
test, i.e., hip flexion, adduction, and internal rotation) used
to identify people with piriformis syndrome (PS), a pelvic
condition that involves malfunction of the piriformis muscle
(a deep buttock muscle), which often causes lumbar and
buttock pain with sciatica (pain radiating down the leg)
[7]. The FAIR test is based on nerve-conduction velocity
and is expressed as a difference score (nerve-conduction
velocity in an aggravating posture minus nerve-conduction
velocity in a neutral posture). It is felt that the larger the
FAIR test score, the more likely a participant will be to
have PS. Data are given in the Data Set PIRIFORM.DAT
for 142 participants without PS (piriform = 1) and 489
participants with PS (piriform = 2) for whom the diagnosis
of PS was based on clinical criteria. The FAIR test value
is called MAXCHG and is in milliseconds (ms). A cutoff
point of > 1.86 ms on the FAIR test is proposed to define
a positive test.

5.81 What is the sensitivity of the test for this cutoff point?
5.82 What is the specificity of the test for this cutoff point?
5.83 Suppose that 70% of the participants who are referred
to an orthopedist who specializes in PS will actually have the
condition. If a test score of > 1.86 ms is obtained for a par-
ticipant, then what is the probability that the person has PS?
5.84 The criterion of > 1.86 ms to define a positive test is
arbitrary. Using different cutoff points to define positivity,
obtain the ROC curve for the FAIR test. What is the area
under the ROC curve? What does it mean in this context?

5.85 Do you think the distribution of FAIR test scores within
a group is normally distributed? Why or why not?



Ophthalmology

Retinitis pigmentosa (RP) is a genetic ocular disease that
results in substantial visual loss and in many cases leads to
blindness. One measure commonly used to assess the vi-
sual function of these patients is the Humphrey 30-2 visual-
field total point score. The score is a measure of central
vision and is computed as a sum of visual sensitivities over
76 locations, with a higher score indicating better central
vision. Normals have an average total point score of 2500
db (decibels), and the average 37-year-old RP patient has a
total point score of 900 db. A total point score of < 250 db
is often associated with legal blindness. Longitudinal stud-
ies have indicated that the change in total point score over
N years of the average RP patient is normally distributed
with mean change = 45N and variance of change = 1225/\.
(Assume the total point score is measured without error;
hence, no continuity correction is needed.)

5.86 What is the probability that a patient will change by
> 200 db over 5 years?

5.87 If a 37-year-old RP patient has an initial total point
score of 900 db, what is the probability that the patient
will become legally blind (that is, have a total point score of
< 250 db) by age 507

Suppose a new treatment is discovered based on ocular
implants. The treatment immediately lowers total point score
by 50 db. However, the long-term effect is to reduce the
mean rate of decline to 25 db per year (from the previous
45 db per year), while maintaining the same variance of
change as previously (that is, variance of change over
N years = 1225N).

5.88 If a 37-year-old RP patient has an initial total point score
of 900 db and receives the implant treatment, what is the prob-
ability that the patient will become legally blind by age 507

Diabetes

Physicians recommend that children with type-I (insulin-
dependent) diabetes keep up with their insulin shots to
minimize the chance of long-term complications. In addition,
some diabetes researchers have observed that growth rate
of weight during adolescence among diabetic patients is
affected by level of compliance with insulin therapy. Sup-
pose 12-year-old type-I| diabetic boys who comply with their
insulin shots have a weight gain over 1 year that is normally
distributed, with mean = 12 Ibs. and variance = 12 Ibs.

5.89 What is the probability that compliant type-I diabetic
12-year-old boys will gain at least 15 Ibs. over 1 year?

Conversely, 12-year-old type-l diabetic boys who do not
take their insulin shots have a weight gain over 1 year that is
normally distributed with mean = 8 Ibs. and variance = 12 Ibs.

5.90 Answer the question in Problem 5.89 for noncompli-
ant type-| diabetic 12-year-old boys.

It is generally assumed that 75% of type-| diabetics comply
with their insulin regimen. Suppose that a 12-year-old type-I
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diabetic boy comes to clinic and shows a 5-lb. weight gain
over 1 year (actually, because of measurement error, as-
sume this is an actual weight gain from 4.5 to 5.5 Ibs.). The
boy claims to be taking his insulin medication.

5.91 What is the probability that he is telling the truth?

Environmental Health

Some previous studies have shown that mortality rates are
higher on days with high pollution levels. In a follow-up on
this observation, a group of 50 nonfatal heart attack cases
were ascertained over a 1-year period. For each case, the
level of pollution (total suspended particulates) was mea-
sured on the day of the heart attack (index date) and also
1 month before the heart attack (control date).

The results shown in Table 5.4 were obtained:

TABLE 5.4 Comparison of pollution levels on
index date vs. control date

Pollution level on index date > pollution level

on control date 30
Pollution level on control date > pollution level

on index date 15
Pollution level the same on

both days 5
Total 50

5.92 Suppose the level of pollution has nothing to do with
the incidence of heart attack. How many heart attacks
would be expected to occur where the pollution level on the
index date is higher than the pollution level on the control
date? (Ignore cases where the pollution level on the index
and control dates are the same.)

5.93 Given the preceding data, assess whether pollution
level acts as a trigger effect in causing heart attack. (Hint:
Use the normal approximation to the binomial distribution.)

Researchers also analyzed cases occurring in the winter
months. They found that on 10 days the pollution level on
the index date was higher than on the control date, whereas
on 4 days the pollution level on the control date was higher
than on the index date. For 2 cases, the pollution level was
the same on both days.

5.94 Answer Problem 5.93 based on cases in winter.

Ophthalmology

A previous study found that people consuming large
quantities of vegetables containing lutein (mainly spin-
ach) were less likely to develop macular degeneration,
a common eye disease among older people (age 65+)
that causes a substantial loss in visual acuity and in some
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cases can lead to total blindness. To follow up on this
observation, a clinical trial is planned in which participants
65+ years of age without macular degeneration will be
assigned to either a high-dose lutein supplement tablet
or a placebo tablet taken once per day. To estimate the
possible therapeutic effect, a pilot study was conducted
in which 9 people 65+ years of age were randomized to
placebo and 9 people 65+ years of age were randomized
to lutein tablets (active treatment). Their serum lutein level
was measured at baseline and again after 4 months of
follow-up. From previous studies, people with serum lu-
tein > 10 mg/dL are expected to get some protection from
macular degeneration. However, the level of serum lutein
may vary depending on genetic factors, dietary factors,
and study supplements.

5.95 Suppose that among people randomized to placebo, at
a 4-month follow-up mean serum lutein level = 6.4 mg/dL with
standard deviation = 3 mg/dL. If we presume a normal distribu-
tion for serum lutein, then what percentage of placebo subjects
will have serum lutein in the therapeutic range (> 10 mg/dL)?
(For the following problems, assume that lutein can be mea-
sured exactly, so that no continuity correction is necessary.)

5.96 Suppose that among people randomized to lutein
tablets, at a 4-month follow-up the mean serum lutein level
= 21 mg/dL with standard deviation = 8 mg/dL. If we pre-
sume a normal distribution for serum-lutein values among
lutein-treated participants, then what percentage of people
randomized to lutein tablets will have serum lutein in the
therapeutic range?

Suppose for the sake of simplicity that the incidence
of macular degeneration is 1% per year among people
65+ years of age in the therapeutic range (=10 mg/dL) and
2% per year among people 65+ years of age with lower
levels of lutein (< 10 mg/dL).

5.97 What is the expected incidence rate of macular de-
generation among lutein-treated participants? (Hint: Use
the total-probability rule.)

5.98 What is the expected relative risk of macular degener-
ation for lutein-treated participants versus placebo-treated
participants in the proposed study?

Pediatrics

A study was recently published in Western Australia on the
relationship between method of conception and prevalence
of major birth defects (Hansen et al. [8]).

The prevalence of at least one major birth defect among
infants conceived naturally was 4.2%, based on a large
sample of infants. Among 837 infants born as a result of in-
vitro fertilization (IVF), 75 had at least one major birth defect.

5.99 How many infants with at least one birth defect would
we expect among the 837 IVF infants if the true prevalence
of at least one birth defect in the IVF group were the same
as for infants conceived naturally?
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5.100 Does an unusual number of infants have at least one
birth defect in the IVF group? Why or why not? (Hint: Use
an approximation to the binomial distribution.)

In addition, data were also provided regarding specific birth
defects. There were 6 chromosomal birth defects among
the IVF infants. Also, the prevalence of chromosomal birth
defects among infants conceived naturally is 9/4000.

5.101 Are there an unusual number of chromosomal birth
defects in the IVF group? (Hint: Use an approximation to the
binomial distribution.)

Accident Epidemiology

Automobile accidents are a frequent occurrence and one
of the leading causes of morbidity and mortality among
persons 18-30 years of age. The National Highway & Traf-
fic Safety Administration (NHTSA) has estimated that the
average driver in this age group has a 6.5% probability of
having at least one police-reported automobile accident
over the past year.

Suppose we study a group of medical interns who are
on a typical hospital work schedule in which they have
to work through the night for at least one of every three
nights. Among 20 interns, 5 report having had an auto-
mobile accident over the past year while driving to or from
work.

Suppose the interns have the same risk of having an auto-
mobile accident as a typical person ages 18-30.

5.102 What is a reasonable probability model for the num-
ber of interns with at least one automobile accident over the
past year? What are the parameters of this model?

5.103 Apply the model in Problem 5.102 to assess whether
there is an excessive number of automobile accidents
among interns compared with the average 18- to 30-year-
old. Explain your answer.

The study is expanded to include 50 medical interns, of
whom 11 report having had an automobile accident over
the past year.

One issue in the above study is that not all people report au-
tomobile accidents to the police. The NHTSA estimates that
only half of all auto accidents are actually reported. Assume
this rate applies to interns.

5.104 What is an exact probability model for the num-
ber of automobile accidents over the past year for the
50 medical interns? (Note: The 11 reported accidents
include both police-reported and non-police-reported
accidents).

5.105 Assess whether there is an excessive number of
automobile accidents among interns under these altered
assumptions. Explain your answer. (Hint: An approximation
may be helpful.)

5.106 What is the 40th percentile of a normal distribution
with mean = 5 and variance = 9?



5.107 What is the sum of the 40th and 60th percentiles of
a normal distribution with a mean = 8.2 and variance = 9.57?

5.108 Whatis z,?

Obstetrics

A study was performed of different predictors of low birth-
weight deliveries among 32,520 women in the Nurses’
Health Study [9].

The data in Table 5.5 were presented concerning the distri-
bution of birthweight in the study:

TABLE 5.5 Distribution of birthweight in the
Nurses’ Health Study

Category Birthweight (g) N %

A <2500 1850 5.7
B 2500-2999 6289 19.3
C 3000-3499 13,537 41.6
D 3500-3999 8572 26.4
E 4000+ 2272 7.0
Total 32,520 100.0

5.109 If 20 women are randomly chosen from the study,
what is the probability that exactly 2 will have a low birth-
weight delivery (defined as < 2500 g)?

5.110 What is the probability that at least 2 women will
have a low birthweight delivery?
An important risk factor for low birthweight delivery is ma-

ternal smoking during pregnancy (MSMOK). The data in
Table 5.6 were presented relating MSMOK to birthweight.

TABLE 5.6 Association between maternal smoking
and birthweight category in the Nurses’
Health Study

Category Birthweight (g) % MSMOK = yes

A <2500 40

B 2500-2999 34

C 3000-3499 25

D 3500-3999 19

E 4000+ 15

5.111 If 50 women are selected from the < 2500 g group,
then what is the probability that at least half of them will
have smoked during pregnancy?

5.112 What is the probability that a woman has a low birth-
weight delivery if she smokes during pregnancy? (Hint: Use
Bayes' rule.)

Cancer

The Shanghai Women's Health Study (SWHS) was under-
taken to determine risk factor for different cancers among
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Asian women. The women were recruited from urban com-
munities in 1997-2000 and were interviewed every 2 years
to obtain health-related information.

One issue is whether risk prediction models derived from
American populations are also applicable to Asian women.

5.113 Suppose the expected number of breast cancer
cases among a large number of 45- to 49-year-old women
in this study who were followed for 7 years is 149, while
the observed number of cases is 107. Are there an unusu-
ally small number of cases among Asian women? Why or
why not?

Another aspect of the study is to use the SWHS data to
predict the long-term incidence of breast cancer in Chinese
women. Those incidence data are presented in Table 5.7.

TABLE 5.7 Incidence rate of breast cancer by age
in the SWHS
Annual incidence
Age per 10° women
40-44 63.8
45-49 86.6
50-54 92.6
55-59 107.0
60-64 120.9

5.114 What is the predicted cumulative incidence of breast
cancer from age 40 to 64 (i.e., over a 25-year period)
among Chinese women? (Assume no deaths during this
period.)

5.115 Suppose that in the year 2000 there are 10,000,000
Chinese women age 40 years with no prior breast cancer.
What is the expected number of breast cancer cases in this
group by the year 2025? (Assume no deaths during this
period.)

5.116 What is the difference between a prevalence rate of
breast cancer and an incidence rate of breast cancer?

Diabetes

The Diabetes Prevention Trial (DPT) involved a weight loss
trial in which half the subjects received an active interven-
tion and the other half a control intervention. For subjects
in the active intervention group, the average reduction
in body mass index (BM|, i.e., weight in kg/height? in m?)
over 24 months was 1.9 kg/m2 The standard deviation of
change in BMI was 6.7 kg/m?2.

5.117 If the distribution of BMI change is approximately
normal, then what is the probability that a subject in the ac-
tive group would lose at least 1 BMI unit over 24 months?

In the control group of the Diabetes Prevention Trial, the
mean change in BMI was 0 units with a standard deviation
of 6 kg/m2.
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5.118 What is the probability that a random control group
participant would lose at least 1 BMI unit over 24 months?

It was known that only 70% of the subjects in the active
group actually complied with the intervention; that is, 30%
of subjects either dropped out or did not attend the required
group and individual counseling meetings. We will refer to
this latter 30% of subjects as dropouts.

5.119 If we assume that dropouts had the same distribution
of change as the subjects in the control group, then what is
the probability that an active subject who complied with the
intervention lost at least 1 kg/m??

Ophthalmology, Genetics

Age-related macular degeneration (AMD) is a common
eye disease among the elderly that can lead to partial
or total loss of vision. It is well known that smoking and
excessive weight tend to be associated with higher in-
cidence rates of AMD. More recently, however, several
genes have been found to be associated with AMD as
well. One gene that has been considered is the Y402H
gene (RS 1061170). There are three genotypes for
the Y402H gene—TT, TC, and CC. The relationship
between AMD and the Y402H genotype is as follows:

TABLE 5.8 Association between Y402H genotype
and prevalence of AMD in a high-risk

population
Y402H AMD =yes AMD = no
TT (wild type) 41 380
TC 119 527
CcC 121 278
Total 281 1185

5.120 What is the relative risk for AMD for the CC geno-
type compared with the TT genotype?

One issue is whether the Y402H gene is in Hardy-
Weinberg equilibrium (HWE). For a gene to be in HWE,
its two alleles must assort independently.

5.121 Under HWE, what is the expected frequency of the TC
genotype among the 1185 subjects in the AMD = no group?

5.122 Are the data consistent with HWE? Specifically, is
the number of heterozygotes (TC) significantly lower than
expected under HWE?

Hypertension

Blood pressure readings are known to be highly variable.
Suppose we have mean SBP for one individual over n visits
with k readings per visit (Xn,k ) The variability of ()7(”,,() de-
pends on n and k and is given by the formula 62 = 62/n +
62/(nk), where 62 = between visit variability and 6 = within
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visit variability. For 30- to 49-year-old Caucasian females,
6, =42.9 and 6® = 12.8. For one individual, we also assume
that X,, x is normally distributed about their true long-term
mean = [ with variance = 62,

5.123 Suppose a woman is measured at two visits with two
readings per visit. If her true long-term SBP = 130 mm Hg,
then what is the probability that her observed mean SBP
is 2140 mm Hg? (Ignore any continuity correction.) (Note:
By true mean SBP we mean the average SBP over a large
number of visits for that subject.)

5.124 Suppose we want to observe the woman over n
visits, where n is sufficiently large so that there is less than
a 5% chance that her observed mean SBP will not differ
from her true mean SBP by more than 5 mm Hg. What is
the smallest value of n to achieve this goal? (Note: Assume
two readings per visit.)

It is also known that over a large number of 30- to 49-year-old
Caucasian women, their true mean SBP is normally distrib-
uted with mean = 120 mm Hg and standard deviation = 14
mm Hg. Also, over a large number of African American 30- to
49-year-old women, their true mean SBP is normal with mean
=130 mm Hg and standard deviation = 20 mm Hg.

5.125 Suppose we select a random 30- to 49-year-old
Caucasian woman and a random 30- to 49-year-old African
American woman. What is the probability that the African
American woman has a higher true SBP?

Hint: Use Equation 5.10 (on page 133).

Ornithology

The Christmas Bird Count (CBC) is an annual tradition in
Lexington, Massachusetts. A group of volunteers counts the
number of birds of different species over a 1-day period.
Each year, there are approximately 30—35 hours of obser-
vation time split among multiple volunteers. The following
counts were obtained for the Northern Cardinal (or cardinal,
in brief) for the period 2005-2011.

TABLE 5.9 Number of Cardinals observed
Christmas Day, 2005-2011, Lexington,

Massachusetts
Year Number Year Number
2005 76 2009 62
2006 47 2010 69
2007 63 2011 62
2008 53

Note: X % =432, ¥/ x=27,212

5.126 What is the mean number of cardinal birds per year
observed from 2005 to 20117

5.127 What is the standard deviation (sd) of the number of
cardinal birds observed?



Suppose we assume that the distribution of the number of
cardinal birds observed per year is normally distributed and
that the true mean and sd are the same as the sample mean
and sd calculated in Problems 5.126 and 5.127.

5.128 What is the probability of observing at least 60
cardinal birds in 20127 (Hint: Apply a continuity correction
where appropriate.)

The observers wish to identify a normal range for the num-
ber of cardinal birds observed per year. The normal range
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will be defined as the interval (L, U), where L is the largest
integer < 15th percentile and U is the smallest integer >
85th percentile .

5.129 If we make the same assumptions as in Problem
5.128, then what is L? What is U?

5.130 What is the probability that the number of cardinal
birds will be > U at least once on Christmas day during the
10-year period 2012-2021? (Hint: Make the same as-
sumptions as in Problem 5.128.)
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6.1 INTRODUCTION

Chapters 3 through 5 explored the properties of different
probability models. In doing so, we always assumed the
specific probability distributions were known.

EXAMPLE 6.1 ‘ Infectious Disease We assumed the number of neutrophils in a sample of 100 white
blood cells was binomially distributed, with parameter p = .6.

EXAMPLE 6.2 ‘ Bacteriology We assumed the number of bacterial colonies on a 100-cm? agar plate
was Poisson distributed, with parameter p = 2.

EXAMPLE 6.3 Hypertension We assumed the distribution of diastolic blood-pressure (DBP)
measurements in 35- to 44-year-old men was normal, with mean p = 80 mm Hg and
standard deviation ¢ = 12 mm Hg.

In general, we have been assuming that the properties of the underlying
distributions from which our data are drawn are known and that the only question
left is what we can predict about the behavior of the data given an understanding
of these properties.

O ARs Gl Hypertension  Using the model in Example 6.3, we could predict that about
95% of all DBP measurements from 35- to 44-year-old men should fall between

80 + 2 (12) mm Hg = 56 and 104 mm Hg.

The problem addressed in the rest of this text is that we have a data set and we
want to infer the properties of the underlying distribution from this data set. This in-
ference usually involves inductive reasoning rather than deductive reasoning; that
is, in principle, a variety of different probability models must at least be explored to see
which model best “fits” the data.

Statistical inference can be further subdivided into the two main areas of esti-
mation and hypothesis testing. Estimation is concerned with estimating the values
of specific population parameters; hypothesis testing is concerned with testing
whether the value of a population parameter is equal to some specific value. Prob-
lems of estimation are covered in this chapter, and problems of hypothesis testing
are discussed in Chapters 7 through 10.

154
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Some typical problems that involve estimation follow.

LGV RS Hypertension  Suppose we measure the systolic blood pressure (SBP) of a group
of Samoan villagers and we believe the underlying distribution is normal. How

can the parameters of this distribution (1, 6%) be estimated? How precise are our
estimates?

DOV ES S Infectious Disease  Suppose we look at people living within a low-income census
tract in an urban area and we wish to estimate the prevalence of human immuno-

deficiency virus (HIV) in the community. We assume the number of cases among n
people sampled is binomially distributed, with some parameter p. How is the para-
meter p estimated? How precise is this estimate?

In Examples 6.5 and 6.6, we were interested in obtaining specific values as
estimates of our parameters. These values are often referred to as point estimates.
Sometimes we want to specify a range within which the parameter values are likely
to fall. If this range is narrow, then we may feel our point estimate is good. This type
of problem involves interval estimation.

RS s S Ophthalmology  An investigator proposes to screen a group of 1000 people ages
65 or older to identify those with visual impairment—that is, a visual acuity of

20/50 or worse in both eyes, even with the aid of glasses. Suppose we assume the
number of people with visual impairment ascertained in this manner is binomi-
ally distributed, with parameters n = 1000 and unknown p. We would like to ob-
tain a point estimate of p and provide an interval about this point estimate to see
how precise our point estimate is. For example, we would feel more confidence
in a point estimate of 5% if this interval were .04-.06 than if it were .01-.10.

6.2 THE RELATIONSHIP BETWEEN POPULATION
AND SAMPLE

Obstetrics Suppose we want to characterize the distribution of birthweights of all
liveborn infants born in the United States in 2013. Assume the underlying distribu-
tion of birthweight has an expected value (or mean) u and variance 2. Ideally, we
wish to estimate u and o? exactly, based on the entire population of U.S. liveborn
infants in 2013. But this task is difficult with such a large group. Instead, we decide
to select a random sample of n infants who are representative of this large group and
use the birthweights x,, ..., x, from this sample to help us estimate p and ¢ What
is a random sample?

DEFINITION 6.1 A random sample is a selection of some members of the population such that each
member is independently chosen and has a known nonzero probability of being
selected.

DEFINITION 6.2 A simple random sample is a random sample in which each group member has the
same probability of being selected.
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DEFINITION 6.3 The reference, target, or study population is the group we want to study. The
random sample is selected from the study population.

For ease of discussion, we use the abbreviated term “random sample” to denote
a simple random sample. Although many samples in practice are random samples,
this is not the only type of sample used in practice. A popular alternative design is
cluster sampling.

Cardiovascular Disease The Minnesota Heart Study seeks to accurately assess the
prevalence and incidence of different types of cardiovascular morbidity (such as
heart attack and stroke) in the greater Minneapolis-St. Paul metropolitan area, as
well as trends in these rates over time. It is impossible to survey every person in the
area. It is also impractical to survey, in person, a random sample of people in the area
because that would entail dispersing a large number of interviewers throughout the
area. Instead, the metropolitan area is divided into geographically compact regions,
or clusters. A random sample of clusters is then chosen for study, and several inter-
viewers go to each cluster selected. The primary goal is to enumerate all households
in a cluster and then survey all members of these households, with the secondary
goal being to identify all adults age 21 years and older. The interviewers then invite
age-eligible individuals to be examined in more detail at a centrally located health
site within the cluster. The total sample of all interviewed subjects throughout the
metropolitan area is called a cluster sample. Similar strategies are also used in many
national health surveys. Cluster samples require statistical methods that are beyond
the scope of this book. See Cochran [1] for more discussion of cluster sampling.

In this book, we assume that all samples are random samples from a reference
population.

0 HEsel s Epidemiology  The Nurses’ Health Study 3 is a large epidemiologic study involving
more than 40,000 nurses residing in 11 large states in the United States. The nurses

were first contacted by internet in 2013 and have been followed every 6 months
by internet or smart phone. Suppose we want to select a sample of 100 nurses to
test a new procedure for obtaining blood samples by mail. One way of selecting the
sample is to assign each nurse an ID number and then select the nurses with the
lowest 100 ID numbers. This is definitely not a random sample because each nurse is
not equally likely to be chosen. Indeed, because the first two digits of the ID number
are assigned according to state, the 100 nurses with the lowest ID numbers would all
come from the same state. An alternative method of selecting the sample is to have
a computer generate a set of 100 random numbers (from among the numbers 1 to
over 40,000), with one number assigned to each nurse in the study. Thus, each nurse
is equally likely to be included in the sample. This would be a truly random sample.
(More details on random numbers are given in Section 6.3.)

In practice, there is rarely an opportunity to enumerate each member of the
reference population so as to select a random sample, so the researcher must assume
that the sample selected has all the properties of a random sample without formally
being a random sample.

In Example 6.8 the reference population is finite and well defined and can be
enumerated. In many instances, however, the reference population is effectively
infinite and not well defined.
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OB G Cancer  Suppose we want to estimate the S-year survival rate of women who are
initially diagnosed as having breast cancer at the ages of 45-54 and who undergo

radical mastectomy at this time. Our reference population is all women who have
ever had a first diagnosis of breast cancer when they were 45-54 years old, or who-
ever will have such a diagnosis in the future when they are 45-54 years old, and who
receive radical mastectomies.

This population is effectively infinite. It cannot be formally enumerated, so a
truly random sample cannot be selected from it. However, we again assume the
sample we have selected behaves as if it were a random sample.

In this text we assume all reference populations discussed are effectively infi-
nite, although, as in Examples 6.8 and 6.10, many are actually very large but finite.
Sampling theory is the special branch of statistics that treats statistical inference for
finite populations; it is beyond the scope of this text. See Cochran [1] for a good
treatment of this subject.

6.3 RANDOM-NUMBER TABLES

In this section, practical methods for selecting random samples are discussed.

RSP Hypertension  Suppose we want to study how effective a hypertension treatment
program is in controlling the blood pressure of its participants. We have a roster of

all 1000 participants in the program, but because of limited resources only 20 can
be surveyed. We would like the 20 people chosen to be a random sample from the
population of all participants in the program. How should we select this random
sample?

A computer-generated list of random numbers would probably be used to select
this sample.

DEFINITION 6.4 A random number (or random digit) is a random variable X that takes on the
values 0, 1, 2, . . ., 9 with equal probability. Thus,

Pr(X=0)=Pr(X =1) == Pr(X =9) ==&

DEFINITION 6.5 Computer-generated random numbers are collections of digits that satisfy the
following two properties:

(1) Each digitO0, 1, 2, ..., 9 is equally likely to occur.

(2) The value of any particular digit is independent of the value of any other digit
selected.

Table 4 in the Appendix lists 1000 random digits generated by a computer
algorithm.
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N IAE SR Suppose S is a particular random digit selected. Does this mean 5’s are more likely to
occur in the next few digits selected?

Solution: No. Each digit either after or before the 5 is still equally likely to be any of
the digits 0, 1, 2, . . ., 9 selected.

Computer programs generate large sequences of random digits that approxi-
mately satisfy the conditions in Definition 6.5. Thus, such numbers are sometimes
referred to as pseudorandom numbers because they are simulated to approximately
satisfy the properties in Definition 6.5.

SO iRs G Hypertension  How can the random digits in Appendix Table 4 be used to select
20 random participants in the hypertension treatment program in Example 6.12?

Solution: A roster of the 1000 participants must be compiled, and each participant
must then be assigned a number from 000 to 999. Perhaps an alphabetical list of the
participants already exists, which would make this task easy. Twenty groups of three
digits would then be selected, starting at any position in the random-number table.
For example, starting at the first row of Table 4 would yield the numbers listed in
Table 6.1.

TABLE 6.1 Twenty random participants chosen from 1000 participants
in the hypertension treatment program

First 3 rows of random-number table Actual random numbers chosen

32924 22324 18125 09077 329 242 232 418 125
L1 JL I L LI

54632 90374 94143 49295 090 775 463 290 374
JL L L LI

88720 43035 97081 83373 941 434 929 588 720
I LI L L

430 359 708 183 373

Therefore, our random sample would consist of the people numbered 329,
242, ..., 373 in the alphabetical list. In this particular case there were no repeats in
the 20 three-digit numbers selected. If there had been repeats, then more three-digit
numbers would have been selected until 20 unique numbers were selected. This
process is called random selection.

Diabetes Suppose we want to conduct a clinical trial to compare the effectiveness
of an oral hypoglycemic agent for diabetes with standard insulin therapy. A small
study of this type will be conducted on 10 patients: 5 patients will be randomly
assigned to the oral agent and 5 to insulin therapy. How can the table of random
numbers be used to make the assignments?

Solution: The prospective patients are numbered from O to 9, and five unique ran-
dom digits are selected from some arbitrary position in the random-number table
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(e.g., from the 28th row). The first five unique digits are 6, 9, 4, 3, 7. Thus, the patients
numbered 3, 4, 6, 7, 9 are assigned to the oral hypoglycemic agent and the remaining
patients (numbered O, 1, 2, 5, 8) to standard insulin therapy. In some studies the pro-
spective patients are not known in advance and are recruited over time. In this case,
if 00 is identified with the 1st patient recruited, 01 with the 2nd patient recruited, . . .,
and 09 with the 10th patient recruited, then the oral hypoglycemic agent would be
assigned to the 4th (3 + 1), 5th (4 + 1), 7th (6 + 1), 8th (7 + 1), and 10th (9 + 1) pa-
tients recruited and the standard therapy to the 1st (0 + 1), 2nd (1 + 1), 3rd (2 + 1),
6th (5 + 1), and 9th (8 + 1) patients recruited.

This process is called random assignment. It differs from random selection
(Example 6.14) in that, typically, the number, in this case of patients, to be assigned
to each type of treatment (5) is fixed in advance. The random-number table helps
select the 5 patients who are to receive one of the two treatments (oral hypoglyce-
mic agent). By default, the patients not selected for the oral agent are assigned to
the alternative treatment (standard insulin therapy). No additional random num-
bers need be chosen for the second group of 5 patients. If random selection were
used instead, then one approach might be to draw a random digit for each patient.
If the random digit is from O to 4, then the patient is assigned to the oral agent; if
the random digit is from 5 to 9, then the patient is assigned to insulin therapy. One
problem with this approach is that in a finite sample, equal numbers of patients are
not necessarily assigned to each therapy, which is usually the most efficient design.
Indeed, referring to the first 10 digits in the 28th row of the random-number table
(69644 37198), we see that 4 patients would be assigned to oral therapy (patients 4,
5, 6, and 8) and 6 patients would be assigned to insulin therapy (patients 1, 2, 3, 7,
9, 10) if the method of random selection were used. Random assignment is prefer-
able in this instance because it ensures an equal number of patients assigned to each
treatment group.

Obstetrics The birthweights from 1000 consecutive infants delivered at Boston
City Hospital (serving a low-income population) are enumerated in Table 6.2 and are
also available in BIRTHWEIGHT.XLS. For this example, consider this population as
effectively infinite. Suppose we wish to draw 5 random samples of size 10 from this
population using a computer. How can these samples be selected?

Solution: MINITAB has a function that allows sampling from columns. The user
must specify the number of rows to be sampled (the size of the random sample to
be selected). Thus, if the 1000 birthweights are stored in a single column (e.g., C1),
and we specify 10 rows to be sampled, then we will obtain a random sample of size
10 from this population. This random sample of size 10 can be stored in a differ-
ent column (e.g., C2). This process can be repeated 5 times and results stored in 5
separate columns. It is also possible to calculate the mean x and standard devia-
tion (s) for each random sample. The results are shown in Table 6.3. One issue in
obtaining random samples on the computer is whether the samples are obtained
with or without replacement. The default option is sampling without replacement,
whereby the same data point from the population cannot be selected more than
once in a specific sample. In sampling with replacement (sometimes called boot-
strap sampling), repetitions are permissible within a particular sample. Table 6.3
uses sampling without replacement.
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TABLE 6.2 Sample of birthweights (oz) obtained from 1000 consecutive
deliveries at Boston City Hospital

ID
Numbers 0 1 2 3 4 5 6 7 8 9 10 11 12 183 14 15 16 17 18 19

000-019 116 124 119 100 127 103 140 82 107 132 100 92 76 129 138 128 115 133 70 121
020-039 114 114 121 107 120 1283 83 96 116 110 71 86 136 118 120 110 107 157 89 71
040-059 98 105 106 52 123 101 111 130 129 94 124 127 128 112 83 95 118 115 86 120
060-079 106 115 100 107 131 114 121 110 115 93 116 76 138 126 143 93 121 135 81 135
080-099 108 152 127 118 110 115 109 133 116 129 118 126 137 110 32 139 132 110 140 119
100-119 109 108 103 88 87 144 105 138 115 104 129 108 92 100 145 93 115 85 124 123
120-139 141 96 146 115 124 113 98 110 153 165 140 132 79 101 127 137 129 144 126 155
140-159 120 128 119 108 113 93 144 124 89 126 87 120 99 60 115 86 143 97 106 148
160-179 113 135 117 129 120 117 92 118 80 132 121 119 57 126 126 77 135 130 102 107
180-199 115 135 112 121 89 135 127 115 133 64 91 126 78 85 106 94 122 111 109 89
200-219 99 118 104 102 94 113 124 118 104 124 133 80 117 112 112 112 102 118 107 104
220-239 90 113 132 122 89 111 118 108 148 103 112 128 86 111 140 126 143 120 124 110
240-259 142 92 132 128 97 132 99 131 120 106 115 101 130 120 130 89 107 152 90 116
260-279 106 111 120 198 123 152 135 83 107 55 131 108 100 104 112 121 102 114 102 101
280-299 118 114 112 133 139 113 77 109 142 144 114 117 97 96 93 120 149 107 107 117
300-319 93 103 121 118 110 89 127 100 156 106 122 105 92 128 124 125 118 113 110 149
320-339 98 98 141 131 92 141 110 134 90 88 111 137 67 95 102 75 108 118 99 79
340-359 110 124 122 104 133 98 108 125 106 128 132 95 114 67 134 136 138 122 103 113
360-379 142 121 125 111 97 127 117 122 120 80 114 126 103 98 108 100 106 98 116 109
380-399 98 97 129 114 102 128 107 119 84 117 119 128 121 113 128 111 112 120 122 91
400-419 117 100 108 101 144 104 110 146 117 107 126 120 104 129 147 111 106 138 97 90
420-439 120 117 94 116 119 108 109 106 134 121 125 105 177 109 109 109 79 118 92 103
440-459 110 95 111 144 130 83 93 81 116 115 131 135 116 97 108 103 134 140 72 112
460-479 101 111 129 128 108 90 113 99 103 41 129 104 144 124 70 106 118 99 85 93
480-499 100 105 104 113 106 88 102 125 132 123 160 100 128 131 49 102 110 106 96 116
500-519 128 102 124 110 129 102 101 119 101 119 141 112 100 105 155 124 67 94 134 123
520-539 92 56 17 135 141 105 133 118 117 112 87 92 104 104 132 121 118 126 114 90
540-559 109 78 117 165 127 122 108 109 119 98 120 101 96 76 143 83 100 128 124 137
560-579 90 129 89 125 131 118 72 121 91 1183 91 137 110 137 111 135 105 88 112 104
580-599 102 122 144 114 120 136 144 98 108 130 119 97 142 115 129 125 109 103 114 106
600-619 109 119 89 98 104 115 99 138 122 91 161 96 138 140 32 132 108 92 118 58
620-639 158 127 121 75 112 121 140 80 125 73 115 120 85 104 95 106 100 87 99 113
640-659 95 146 126 58 64 137 69 90 104 124 120 62 83 96 126 155 133 115 97 105
660-679 117 78 105 99 123 86 126 121 109 97 131 133 121 125 120 97 101 92 111 119
680-699 117 80 145 128 140 97 126 109 113 125 157 97 119 103 102 128 116 96 109 112
700-719 67 121 116 126 106 116 77 119 119 122 109 117 127 114 102 75 88 117 99 136
720-739 127 136 103 97 130 129 128 119 22 109 145 129 96 128 122 115 102 127 109 120
740-759 111 114 115 112 146 100 106 137 48 110 97 103 104 107 123 87 140 89 112 123
760-779 130 123 125 124 135 119 78 125 103 55 69 83 106 130 98 81 92 110 112 104
780-799 118 107 117 123 138 130 100 78 146 137 114 61 132 109 133 132 120 116 133 133
800-819 86 116 101 124 126 94 93 132 126 107 98 102 135 59 137 120 119 106 125 122
820-839 101 119 97 86 105 140 89 139 74 131 118 91 98 121 102 115 115 135 100 90
840-859 110 113 136 140 129 117 117 129 143 88 105 110 123 87 97 99 128 128 110 132
860-879 78 128 126 93 148 121 95 121 127 80 109 105 136 141 103 95 140 115 118 117
880-899 114 109 144 119 127 116 103 144 117 131 74 109 117 100 103 123 93 107 113 144
900-919 99 170 97 135 115 89 120 106 141 137 107 132 132 58 113 102 120 98 104 108
920-939 85 115 108 89 88 126 122 107 68 121 113 116 94 85 093 132 146 98 132 104
940-959 102 116 108 107 121 132 105 114 107 121 101 110 137 122 102 125 104 124 121 111
960-979 101 93 93 88 72 142 118 157 121 58 92 114 104 119 91 52 110 116 100 147
980-999 114 99 1283 97 79 81 146 92 126 122 72 153 97 89 100 104 124 83 81 129
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TABLE 6.3 Five random samples of size 10 from the population of infants
whose birthweights (0z) appear in Table 6.2

Sample
Individual 1 2 3 4 5
1 97 177 97 101 137
2 117 198 125 114 118
3 140 107 62 79 78
4 78 99 120 120 129
5 99 104 132 115 87
6 148 121 135 117 110
7 108 148 118 106 106
8 135 133 137 86 116
9 126 126 126 110 140
10 121 115 118 119 98
X 116.90 132.80 117.00 106.70 111.90
s 21.70 32.62 22.44 14.13 20.46

6.4 RANDOMIZED CLINICAL TRIALS

An important advance in clinical research is the acceptance of the randomized clini-
cal trial (RCT) as the optimal study design for most studies.

DEFINITION 6.6 A randomized clinical trial is a type of research design used for comparing different
treatments, in which patients are assigned to a specific treatment by some random
mechanism. The process of assigning treatments to patients is called randomization.
Randomization means the types of patients assigned to different treatment modali-
ties will be similar if the sample sizes are large. However, if the sample sizes are small,
then patient characteristics of treatment groups may not be comparable. Thus, it is
customary to present a table of characteristics of different treatment groups in RCTs
to check that the randomization process is working well.

s A Hypertension  The SHEP (Systolic Hypertension in the Elderly Program) was de-
signed to assess the ability of antihypertensive drug treatment to reduce risk of

stroke among people age 60 years or older with isolated systolic hypertension.
Isolated systolic hypertension is defined as elevated SBP (=160 mm Hg) but normal
DBP (<90 mm Hg) [2]. Of the 4736 people studied, 2365 were randomly assigned to
active drug treatment and 2371 were randomly assigned to placebo. The baseline
characteristics of the participants were compared by treatment group to check that
the randomization achieved its goal of providing comparable groups of patients in
the two treatment groups (see Table 6.4). We see the patient characteristics of the
two treatment groups are generally very similar.

The importance of randomization in modern clinical research cannot be overes-
timated. Before randomization, comparison of different treatments was often based
on selected samples, which are often not comparable.
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TABLE 6.4 Baseline characteristics of randomized SHEP? participants by treatment group

Active-
Characteristic treatment group Placebo group Total
Number randomized 2365 2371 4736
Age, y
Average® 71.6 (6.7) 71.5(6.7) 71.6 (6.7)
Percentage
60-69 411 41.8 415
70-79 44.9 44.7 44.8
>80 14.0 13.4 13.7
Race—sex, %°
Black men 4.9 4.3 4.6
Black women 8.9 9.7 9.3
White men 38.8 38.4 38.6
White women 47.4 47.7 47.5
Education, y® 11.7 (3.5) 11.7 (38.4) 11.7 (3.5)
Blood pressure, mm Hg®
Systolic 170.5 (9.5) 170.1 (9.2) 170.3 (9.4)
Diastolic 76.7 (9.7) 76.4 (9.8) 76.6 (9.7)
Antihypertensive medication at initial contact, % 33.0 33.5 33.3
Smoking, %
Current smokers 12.6 12.9 12.7
Past smokers 36.6 37.6 371
Never smokers 50.8 49.6 50.2
Alcohol use, %
Never 21.5 21.7 21.6
Formerly 9.6 10.4 10.0
Occasionally 55.2 53.9 54.5
Daily or nearly daily 138.7 14.0 13.8
History of myocardial infarction, % 4.9 4.9 4.9
History of stroke, % 1.5 1.8 1.4
History of diabetes, % 10.0 10.2 10.1
Carotid bruits, % 6.4 7.9 7.1
Pulse rate, beats/min®™ 70.3 (10.5) 71.3(10.5) 70.8 (10.5)
Body-mass index, kg/m? 27.5 (4.9) 27.5 (5.1) 27.5 (5.0)
Serum cholesterol, mmol/L?
Total cholesterol 6.1 (1.2) 6.1 (1.1) 6.1 (1.1)
High-density lipoprotein 1.4 (0.4) 1.4 (0.4) 1.4 (0.4)
Depressive symptoms, %° 111 11.0 1.1
Evidence of cognitive impairment, % 0.3 0.5 0.4
No limitation of activities of daily living, % 95.4 93.8 94.6
Baseline electrocardiographic abnormalities, %¢ 61.3 60.7 61.0

2SHEP = Systolic Hypertension in the Elderly Program.

*Values are mean (sd).

°Included among the whites were 204 Asians (5% of whites), 84 Hispanics (2% of whites), and 41 classified as “other” (1% of whites).

4P < .05 for the active-treatment group compared with the placebo group.

°Depressive-symptom-scale score of 7 or greater.

Cognitive-impairment-scale score of 4 or greater.

90ne or more of the following Minnesota codes: 1.1 to 1.3 (Q/QS), 3.1 to 3.4 (high R waves), 4.1 to 4.4 (ST depression), 5.1 to 5.4 (T wave changes),
6.1 to 6.8 (AV-conduction defects), 7.1 to 7.8 (ventricular-conduction defects), 8.1 to 8.6 (arrhythmias), and 9.1 to 9.3 and 9.5 (miscellaneous items).
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N idns i Infectious Disease  Aminoglycosides are a type of antibiotic that are effective
against certain types of gram-negative organisms. They are often given to critically

ill patients (such as cancer patients, to prevent secondary infections caused by the
treatment received). However, there are also side effects of aminoglycosides, includ-
ing nephrotoxicity (damage to the kidney) and ototoxicity (temporary hearing
loss). For several decades, studies have been performed to compare the efficacy and
safety of different aminoglycosides. Many studies have compared the most common
aminoglycoside, gentamicin, with other antibiotics in this class (such as tobramy-
cin). The earliest studies were nonrandomized studies. Typically, physicians would
compare outcomes for all patients treated with gentamicin in an infectious disease
service over a defined period of time with outcomes for all patients treated with
another aminoglycoside. No random mechanism was used to assign treatments to
patients. The problem is that patients prescribed tobramycin might be sicker than
patients prescribed gentamicin, especially if tobramycin is perceived as a more ef-
fective antibiotic and is “the drug of choice” for the sickest patient. Ironically, in a
nonrandomized study, the more effective antibiotic might actually perform worse
because this antibiotic is prescribed more often for the sickest patients. Recent clini-
cal studies are virtually all randomized studies. Patients assigned to different antibi-
otics tend to be similar in randomized studies, and different types of antibiotics can
be compared using comparable patient populations.

Design Features of Randomized Clinical Trials

The actual method of randomization differs widely in different studies. Random
selection, random assignment, or some other random process may be used as the
method of randomization. In clinical trials, random assignment is sometimes called
block randomization.

DEFINITION 6.7 Block randomization is defined as follows in clinical trials comparing two treatments
(treatments A and B). A block size of 2n is determined in advance, where for every 2n
patients entering the study, n patients are randomly assigned to treatment A and the
remaining n patients are assigned to treatment B. A similar approach can be used in
clinical trials with more than two treatment groups. For example, if there are k treat-
ment groups, then the block size might be kn, where for every kn patients, n patients
are randomly assigned to the first treatment, n patients are randomly assigned to
the second treatment, . . ., n patients are randomly assigned to the kth treatment.

Thus, with two treatment groups under block randomization, for every 2n pa-
tients an equal number of patients will be assigned to each treatment. The advan-
tage is that treatment groups will be of equal size in both the short and the long run.
Because the eligibility criteria, types of patients entering a trial, or other procedures
in a clinical trial sometimes change as a study progresses, this ensures comparability
of treatment groups over short periods of time as the study procedures evolve. One
disadvantage of blocking is that it may become evident what the randomization
scheme is after a while, and physicians may defer entering patients into the study
until the treatment they perceive as better is more likely to be selected. To avert this
problem, a variable block size is sometimes used. For example, the block size might
be 8 for the first block, 6 for the second block, 10 for the third block, and so on.

Another technique that is sometimes used in the randomization process is
stratification.
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DEFINITION 6.8 In some clinical studies, patients are subdivided into subgroups, or strata, according
to characteristics thought important for patient outcome. Separate randomization
lists are maintained for each stratum to ensure comparable patient populations
within each stratum. This procedure is called stratification. Either random selection
(ordinary randomization) or random assignment (block randomization) might be
used for each stratum. Typical characteristics used to define strata are age, gender, or
overall clinical condition of the patient.

Another important advance in modern clinical research is the use of blinding.

DEFINITION 6.9 A clinical trial is called double blind if neither the physician nor the patient knows
what treatment he or she is getting. A clinical trial is called single blind if the
patient is blinded as to treatment assignment but the physician is not. A clinical
trial is unblinded if both the physician and patient are aware of the treatment
assignment.

Currently, the gold standard of clinical research is the randomized double-blind
study, in which patients are assigned to treatments at random and neither the
patient nor the physician is aware of the treatment assignment.

O iRs i Hypertension  The SHEP study referred to in Example 6.17 was a double-blind study.
Neither the patients nor the physicians knew whether the antihypertensive medica-
tion was an active drug or a placebo. Blinding is always preferable to prevent biased
reporting of outcome by the patient and/or the physician. However, it is not always
feasible in all research settings.

Cerebrovascular Disease Atrial fibrillation (AF) is a common symptom in the
elderly, characterized by a specific type of abnormal heart rhythm. For example,
former President George H. W. Bush had this condition while in office. It is
well known that the risk of stroke is much higher among people with AF than
for other people of comparable age and gender, particularly among the elderly.
Warfarin is a drug considered effective in preventing stroke among people with
AF. However, warfarin can cause bleeding complications and it is important to
determine the optimal dose for each patient in order to maximize the benefit of
stroke prevention while minimizing the risk of bleeding. Unfortunately, monitoring
the dose requires blood tests every few weeks to assess the prothrombin time
(a measure of the clot-forming capacity of blood), after which the dose may be
increased, decreased, or kept the same. Because it is usually considered impractical
to give control patients regular sham blood tests, the dilemma arises of how best to
select a good control treatment to compare with warfarin in a clinical-trial setting.
In most clinical trials involving warfarin, patients are assigned at random to either
warfarin or control treatment, where control is simply nontreatment. However,
it is important in this setting that the people making the sometimes subjective
determination of whether a stroke has occurred be blind to treatment assignment
of individual patients.

Another issue with blinding is that patients may be blind to treatment
assignment initially, but the nature of side effects may strongly indicate the actual
treatment received.
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Cardiovascular Disease As part of the Physicians’ Health Study, a randomized study
was performed comparing aspirin with placebo in preventing cardiovascular disease.
One side effect of regular intake of aspirin is gastrointestinal bleeding. The presence
of this side effect strongly indicates that the type of treatment received was aspirin.

REVIEW QUESTIONS 6A

1 What is a random sample?

2 What is a randomized clinical trial?

3 Why was the use of randomization an important advance in clinical research?

6.5 ESTIMATION OF THE MEAN OF A DISTRIBUTION

Now that we have discussed the meaning of a random sample from a population
and have explored some practical methods for selecting such samples using computer-
generated random numbers, let’s move on to estimation. The question remains:
How is a specific random sample x,, . . ., x, used to estimate u and ¢?, the mean and
variance of the underlying distribution? Estimating the mean is the focus of this
section, while estimating the variance is covered in Section 6.7.

Point Estimation

A natural estimator to use for estimating the population mean p is the sample mean
_ n
X=Y X;/n
i=1

What properties of X make it a desirable estimator of u? We must forget about our
particular sample for the moment and consider the set of all possible samples of
size 1 that could have been selected from the population. The values of X in each of
these samples will, in general, be different. These values will be denoted by X1, X2,
and so forth. In other words, we forget about our sample as a unique entity and con-
sider it instead as representative of all possible samples of size n that could have been
drawn from the population. Stated another way, x is a single realization of a random
variable X over all possible samples of size n that could have been selected from the
population. In the rest of this text, the symbol X denotes a random variable, and x
denotes a specific realization of the random variable X in a sample.

DEFINITION 6.10  The sampling distribution of X is the distribution of values of X over all possible sam-
ples of size n that could have been selected from the reference population.

Figure 6.1 gives an example of such a sampling distribution. This is a frequency dis-
tribution of the sample mean from 200 randomly selected samples of size 10 drawn
from the distribution of 1000 birthweights given in Table 6.2, as displayed by the
Statistical Analysis System (SAS) procedure PROC CHART.

We can show that the average of these sample means (x's), when taken over a
large number of random samples of size n, approximates u as the number of samples
selected becomes large. In other words, the expected value of X over its sampling
distribution is equal to p. This result is summarized as follows:
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FIGURE 6.1 Sampling distribution of X over 200 samples of size 10 selected from the population
of 1000 birthweights given in Table 6.2 (100 = 100.0-100.9, etc.)
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EQUATION 6.1 Let X, ..., X be arandom sample drawn from some population with mean u.
Then, for the sample mean X, E(X) = .

Note that Equation 6.1 holds for any population regardless of its underlying
distribution. In words, we refer to X as an unbiased estimator of L.

DEFINITION 6.11  We refer to an estimator of a parameter 6 as 6. An estimator 6 of a parameter 6 is un-
biased if E(0) =60. This means that the average value of 6 over a large number of
random samples of size n is 6.

The unbiasedness of X is not sufficient reason to use it as an estimator of p. For
symmetric distributions, many unbiased estimators of u exist, including the sample
median and the average value of the largest and smallest data points in a sample.
Why is X chosen rather than any of the other unbiased estimators? The reason is
that if the underlying distribution of the population is normal, then it can be shown
that the unbiased estimator with the smallest variance is given by X. Thus, X is
called the minimum variance unbiased estimator of p.

This concept is illustrated in Figure 6.2, where for 200 random samples of size 10
drawn from the population of 1000 birthweights in Table 6.2, the sampling distribu-
tion of the sample mean (X) is plotted in Figure 6.2a, the sample median in Figure 6.2b,
and the average of the smallest and largest observations in the sample in Figure 6.2c.
Note that the variability of the distribution of sample means is slightly smaller than
that of the sample median and considerably smaller than that of the average of the
smallest and largest observations.
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FIGURE 6.2 Sampling distributions of several estimators of p for 200 random samples
of size 10 selected from the population of 1000 birthweights given
in Table 6.2 (100 = 100.0-101.9, etc.)
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Standard Error of the Mean

From Equation 6.1 we see that X is an unbiased estimator of u for any sample size
n. Why then is it preferable to estimate parameters from large samples rather than
from small ones? The intuitive reason is that the larger the sample size, the more
precise an estimator X is.
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Obstetrics Consider Table 6.3 (p. 161). Notice that the 50 individual birthweights
range from 62 to 198 oz and have a sample standard deviation of 23.79 oz. The five
sample means range from 106.7 to 132.8 oz and have a sample standard deviation
of 9.77 oz. Thus, the sample means based on 10 observations are less variable from
sample to sample than are the individual observations, which can be considered as
sample means from samples of size 1.

Indeed, we would expect the sample means from repeated samples of size 100

to be less variable than those from samples of size 10. We can show this is true.

See page 133 for Using the properties of linear combinations of independent random variables given
EQUATION 5.9 in Equation §.9,

Var(X) = (niz) Var[i X,.]

o i=1
(5 )3 var(x)
-1
However, by definition Var(X;) = 2. Therefore,
Var(X) =(1/n?)(6® + 6% + -+ 6% ) = (1/n2)(n02) =o?/n

The standard deviation (sd) = v/variance; thus, sd(i) =06 //n. We have the follow-
ing summary:

EQUATION 6.2 LetX , ..., X, bearandom sample from a population with underlying mean u and
variance 2. The set of sample means in repeated random samples of size n from
this population has variance 6%/n. The standard deviation of this set of sample
means is thus 6/+/n and is referred to as the standard error of the mean or the
standard error.

In practice, the population variance o2 is rarely known. We will see in Section 6.7
that a reasonable estimator for the population variance ¢? is the sample variance s?,
which leads to the following definition:

DEFINITION 6.12  The standard error of the mean (sem), or the standard error (se), is given by G/ Jn
and is estimated by s/vn. The standard error represents the estimated standard de-
viation obtained from a set of sample means from repeated samples of size n from a
population with underlying variance ¢

Note that the standard error is not the standard deviation of an individual observa-
tion X, but rather of the sample mean X. The standard error of the mean is illustrated
in Figure 6.3. In Figure 6.3a, the frequency distribution of the sample mean is plotted
for 200 samples of size 1 drawn from the collection of birthweights in Table 6.2. Similar
frequency distributions are plotted for 200 sample means from samples of size 10 in
Figure 6.3b and from samples of size 30 in Figure 6.3c. Notice that the spread of the
frequency distribution in Figure 6.3a, corresponding to n = 1, is much larger than
the spread of the frequency distribution in Figure 6.3b, corresponding to n = 10.
Furthermore, the spread of the frequency distribution in Figure 6.3b, corresponding
to n =10, is much larger than the spread of the frequency distribution in Figure 6.3c,
corresponding to n = 30.
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FIGURE 6.3 lllustration of the standard error of the mean (100 = 100.0-103.9, etc.)
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Obstetrics Compute the standard error of the mean for the third sample of birth-
weights in Table 6.3 (p. 161).

Solution: The standard error of the mean is given by

s/\n =22.44/\10 = 7.09

The standard error is a quantitative measure of the variability of sample means
obtained from repeated random samples of size n drawn from the same population.
Notice that the standard error is directly proportional to both 1/+/n and to the
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population standard deviation ¢ of individual observations. It justifies the concern
with sample size in assessing the precision of our estimate X of the unknown popu-
lation mean p. The reason it is preferable to estimate p from a sample of size 400
rather than from one of size 100 is that the standard error from the first sample will
be half as large as in the second sample. Thus, the larger sample should provide a
more precise estimate of p. Notice that the precision of our estimate is also affected
by the underlying variance ¢ from the population of individual observations,
a quantity that is unrelated to the sample size n. However, 6> can sometimes be
affected by experimental technique. For example, in measuring blood pressure, 6>
can be reduced by better standardization of blood-pressure observers and/or by
using additional replicates for individual subjects (for example, using an average of
two blood-pressure readings for each subject rather than a single reading).

EXAMPLE 6.24 Gynecology Suppose a woman wants to estimate her exact day of ovulation for
contraceptive purposes. A theory exists that at the time of ovulation the body tem-

perature rises 0.5 to 1.0°F. Thus, changes in body temperature can be used to guess
the day of ovulation.

To use this method, we need a good estimate of basal body temperature during
a period when ovulation is definitely not occurring. Suppose that for this purpose
a woman measures her body temperature on awakening on the first 10 days after
menstruation and obtains the following data: 97.2°, 96.8°, 97.4°, 97.4°, 97.3°, 97.0°,
97.1°, 97.3°, 97.2°, 97.3°. What is the best estimate of her underlying basal body
temperature (u)? How precise is this estimate?

Solution: The best estimate of her underlying body temperature during the non-
ovulation period (u) is given by

x=(97.2+96.8+...+97.3)/10 =97.20°

The standard error of this estimate is given by

s/10 = 0.189//10 = 0.06°

In our work on confidence intervals (ClIs) later in this section (p. 173), we show
that for many underlying distributions, we can be fairly certain the true mean p is
approximately within two standard errors of X. In this case, true mean basal body
temperature (u) is within 97.20° £ 2(0.06)° = (97.1°-97.3°). Thus, if the temperature
is elevated by at least 0.5° above this range on a given day, then it may indicate
the woman was ovulating and, for contraceptive purposes, should not have inter-
course on that day.

REVIEW QUESTIONS 6B

What is a sampling distribution?
Why is the sample mean X used to estimate the population mean p?

What is the difference between a standard deviation and a standard error?

=
w
>
w
[2 4

A O N =

Suppose we have a sample of five values of hemoglobin A1c (HgbA1c) obtained from
a single diabetic patient. HgbA1c is a serum measure often used to monitor compli-
ance among diabetic patients. The values are 8.5%, 9.3%, 7.9%, 9.2%, and 10.3%.

(@) What is the standard deviation for this sample?

(b) What is the standard error for this sample?
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5 Suppose the number of values from the patient in Review Question 6B.4 increases

from 5 to 20.

(@) Would you expect the standard deviation to increase, decrease, or remain the
same? Why?

(b) Would you expect the standard error to increase, decrease, or remain the
same? Why?

Central-Limit Theorem

If the underlying distribution is normal, then it can be shown that the sample mean
is itself normally distributed with mean p and variance o2/n (see Section 5.6). In
other words, X ~ N (u, o? /n) . If the underlying distribution is not normal, we would
still like to make some statement about the sampling distribution of the sample
mean. This statement is given by the following theorem:

EQUATION 6.3 Central-Limit Theorem
Let X, ..., X, be arandom sample from some population with mean p and vari-
ance o2 Then, for large n, X <N (i, 0 /n) even if the underlying distribution of
individual observations in the population is not normal. (The symbol < is used
to represent “approximately distributed.”)

This theorem is very important because many of the distributions encountered in
practice are not normal. In such cases the central-limit theorem can often be applied;
this lets us perform statistical inference based on the approximate normality of the
sample mean despite the nonnormality of the distribution of individual observations.

RSl Obstetrics  The central-limit theorem is illustrated by plotting, in Figure 6.4a,
the sampling distribution of mean birthweights obtained by drawing 200 random

samples of size 1 from the collection of birthweights in Table 6.2. Similar sampling
distributions of sample means are plotted from samples of size 5, in Figure 6.4b,
and samples of size 10, in Figure 6.4c. Notice that the distribution of individual
birthweights (i.e., sample means from samples of size 1) is slightly skewed to the
left. However, the distribution of sample means becomes increasingly closer to
bell-shaped as the sample size increases to 5 and 10.

SOV Es G Cardiovascular Disease  Serum triglycerides are an important risk factor for cer-
tain types of coronary disease. Their distribution tends to be positively skewed, or

skewed to the right, with a few people with very high values, as is shown in Figure 6.5.
However, hypothesis tests can be performed based on mean serum triglycerides over
moderate samples of people because from the central-limit theorem the distribu-
tion of means will be approximately normal, even if the underlying distribution of
individual measurements is not. To further ensure normality, the data can also be
transformed onto a different scale. For example, if a log transformation is used, then
the skewness of the distribution is reduced and the central-limit theorem will be
applicable for smaller sample sizes than if the data are kept in the original scale.

Obstetrics Compute the probability that the mean birthweight from a sample of 10
infants from the Boston City Hospital population in Table 6.2 will fall between 98.0
and 126.0 oz (i.e.,98 < X <126) if the mean birthweight for the 1000 birthweights from
the Boston City Hospital population is 112.0 oz with a standard deviation of 20.6 oz.
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FIGURE 6.4 lllustration of the central-limit theorem: 100 = 100-103.9 in Figure 6.4(a): = 100-101.9
in Figures 6.4(b) and (c).
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Solution: The central-limit theorem is applied, and we assume X follows a normal
distribution with mean p = 112.0 oz and standard deviation ¢/+/n = 20.6//10 = 6.51
oz. It follows that

zﬂ%ogx<ma®=¢p%0—ﬂﬂq_ f&w4m0)

6.51 6.51
= ®(2.15)- ®(-2.15)
=®(2.15)-[1-®(2.15)] = 2®(2.15) -1
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FIGURE 6.5 Distribution of single serum-triglyceride measurements and of means of such
measurements over samples of size n
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Refer to Table 3 in the Appendix and obtain
Pr(98.0 < X <126.0) = 2(.9842)-1.0 =.968

Thus, if the central-limit theorem holds, 96.8% of the samples of size 10 would
be expected to have mean birthweights between 98 and 126 oz. This value can be
checked by referring to Figure 6.2(a) (on page 167). Note that the 90 column cor-
responds to the birthweight interval 90.0-91.9, the 92 column to 92.0-93.9, and
so forth. Note that 0.5% of the birthweights are in the 90 column, 0.5% in the
94 column, 1% in the 96 column, 1% in the 126 column, and 1.5% in the 128 col-
umn. Thus, 2% of the distribution is less than 98.0 oz, and 2.5% of the distribution
is 126.0 oz or greater. It follows that 100% — 4.5% = 95.5% of the distribution is actu-
ally between 98 and 126 oz. This value corresponds well to the 96.8% predicted by
the central-limit theorem, confirming that the central-limit theorem holds approxi-
mately for averages from samples of size 10 drawn from this population.

Interval Estimation

We have been discussing the rationale for using x to estimate the mean of a dis-
tribution and have given a measure of variability of this estimate, namely, the
standard error. These statements hold for any underlying distribution. However,
we frequently wish to obtain an interval of plausible estimates of the mean as well
as a best estimate of its precise value. Our interval estimates will hold exactly if the
underlying distribution is normal and only approximately if the underlying distribu-
tion is not normal, as stated in the central-limit theorem.

DO NRs G  Obstetrics  Suppose the first sample of 10 birthweights given in Table 6.3 (on
page 161) has been drawn. Our best estimate of the population mean p would be
the sample mean X =116.9 oz. Although 116.9 oz is our best estimate of u, we still
are not certain that p is 116.9 oz. Indeed, if the second sample of 10 birthweights
had been drawn, a point estimate of 132.8 oz would have been obtained. Our point
estimate would certainly have a different meaning if it was highly likely that u was
within 1 oz of 116.9 rather than within 1 1b (16 oz).

We have assumed previously that the distribution of birthweights in Table 6.2
was normal with mean p and variance . It follows from our previous discussion of
the properties of the sample mean that X ~ N (u,cz /n) Thus, if © and o were known,
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then the behavior of the set of sample means over a large number of samples of size
n would be precisely known. In particular, 95% of all such sample means will fall

within the interval (u -1.96 G/\/E, u+1.96 G/x/ﬁ).

EQUATION 6.4 Alternatively, if we re-express X in standardized form by

X-u

2= oln

then Z should follow a standard normal distribution. Hence, 95% of the Z val-
ues from repeated samples of size n will fall between —1.96 and +1.96 because
these values correspond to the 2.5th and 97.5th percentiles from a standard
normal distribution. However, the assumption that ¢ is known is somewhat
artificial, because ¢ is rarely known in practice.

t Distribution

Because ¢ is unknown, it is reasonable to estimate ¢ by the sample standard devia-
tion s and to try to construct Cls using the quantity ()_( - u) / (S/ Jn ) The problem is
that this quantity is no longer normally distributed.

This problem was first solved in 1908 by a statistician named William Gossett.
For his entire professional life, Gossett worked for the Guinness Brewery in Ireland.
He chose to identify himself by the pseudonym “Student,” and thus the distribution
of (X —u) / (S/ \/ﬁ) is usually referred to as Student’s t distribution. Gossett found
that the shape of the distribution depends on the sample size n. Thus, the ¢t distribu-
tion is not a unique distribution but is instead a family of distributions indexed by a
parameter referred to as the degrees of freedom (df) of the distribution.

EQUATION 6.5 If X, ..., X, ~N(uoc? and are independent, then (X —u)/(S/\/E) is distributed
as a t distribution with (n — 1) df.

Once again, Student’s t distribution is not a unique distribution but is a family of
distributions indexed by the degrees of freedom d. The t distribution with d degrees
of freedom is sometimes referred to as the ¢, distribution.

DEFINITION 6.13  The 100 x uth percentile of a ¢ distribution with d degrees of freedom is denoted by
t,, thatis,

Pr(td < td’u) =u

What does Ly, o5 mean?

Solution: t,, . is the 95th percentile or the upper 5th percentile of a ¢ distribution

with 20 degfees of freedom.

It is interesting to compare a t distribution with d degrees of freedom with an
N(O, 1) distribution. The density functions corresponding to these distributions are
depicted in Figure 6.6 for the special case where d = 5.

Notice that the t distribution is symmetric about O but is more spread out than
the N(0, 1) distribution. It can be shown that for any o, where a.> .5, t,,_ is always
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FIGURE 6.6 Comparison of Student’s t distribution with 5 degrees of freedom with an N(0, 1)
distribution
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larger than the corresponding percentile for an N(0, 1) distribution (z, ). This re-
lationship is shown in Figure 6.6. However, as d becomes large, the t distribution
converges to an N(O, 1) distribution. An explanation for this principle is that for
finite samples the sample variance (s?) is an approximation to the population vari-
ance (¢%). This approximation gives the statistic ()_( - u) / (S/ Jn ) more variability than
the corresponding statistic ()_( - ].L) / (G/ Jn ) As n becomes large, this approximation
gets better and §? will converge to ¢2. The two distributions thus get more and more
alike as n increases in size. The upper 2.5th percentile of the t distribution for various
degrees of freedom and the corresponding percentile for the normal distribution are
given in Table 6.5.

TABLE 6.5 Comparison of the 97.5th percentile of the t distribution and the normal distribution

d td,.975 2.975 d td,.975 2.975

4 2.776 1.960 60 2.000 1.960

9 2.262 1.960 o0 1.960 1.960
29 2.045 1.960

The difference between the f distribution and the normal distribution is greatest
for small values of n (n < 30). Table 5 in the Appendix gives the percentage points of
the t distribution for various degrees of freedom. The degrees of freedom are given in
the first column of the table, and the percentiles are given across the first row. The
uth percentile of a t distribution with d degrees of freedom is found by reading across
the row marked d and reading down the column marked u.

Bl Find the upper Sth percentile of a t distribution with 23 df.

Solution: Find t,, ,,, which is given in row 23 and column .95 of Appendix Table 5
and is 1.714.

Statistical packages such as MINITAB, Excel, SAS, Stata, or R, will also compute
exact probabilities associated with the t distribution. This is particularly useful for
values of the degrees of freedom (d) that are not given in Table 5.
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If 6 is unknown, we can replace ¢ by S in Equation 6.4 and correspondingly
replace the z statistic by a t statistic given by

(=X
S/\n
The t statistic should follow a t distribution with n — 1 df. Hence, 95% of the t statis-

tics in repeated samples of size n should fall between the 2.5th and 97.5th percen-
tiles of a ¢, distribution, or

Pr(tn—l,.OZS <t< tn—l,.975) =95%

More generally, 100% x (1 — a)) of the ¢ statistics should fall between the lower and
upper a/2 percentile of a t_, distribution in repeated samples of size n or

Pr(tn—l,oc/z <t< tn—l,l—(x/Z) =l-a
This inequality can be written in the form of two inequalities:

t and

< X-p X-p <t
n-1,0/2 S \/E S/\/E n-1,1-o./2

If we multiply both sides of each inequality by (S/ Jn ) and add p to both sides, we
obtain

WAty yapS/Nn<X and X <t, i qpS/Nn+p

Finally, if we subtract t,_; ,, $/</n from both sides of the first inequality and
ty11-a/2 $//n from both sides of the second inequality, we get

u< X - tn—l,oc/Z S/\/E and X - tn—l,l—(x/z S/‘/E <u
Expressed as one inequality, this is
Xty 11 a2 S/Nn<p<X- tio1,02 §/\n

From the symmetry of the ¢ distribution, t_, =~ _ .,
rewritten as

so this inequality can be
X- Li1i—a/2 S/\/E <u<X+ Lii-0/2 S/\/E

and we can say that
PT(X ~tyt1mas2 S/ <P <Xty 1o S/\/E) =1l-a

The interval ()_(— ty11-0/2 S/\/E,)_(+ ty11-0/2 S/\/E) is referred to as a 100% x (1 — o)

CI for p. This can be summarized as follows:

EQUATION 6.6 Confidence Interval for the Mean of a Normal Distribution
A 100% x (1 — o) CI for the mean p of a normal distribution with unknown
variance is given by

()7 - tn—l,l—a/Z S/‘/Er)? + tn—l,l—a/Z S/\/E)

A shorthand notation for the CI is
Xt 11-a/2 5/\/E
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S CNidEs Rl Compute a 95% CI for the mean birthweight based on the first sample of size 10 in
Table 6.3 (on page 161).

Solution: We have n =10, X =116.90, s = 21.70. Because we want a 95% CI, o = .05.
Therefore, from Equation 6.6 the 95% CI is

[116.9 -1 975(21.70)/710,116.9+ 15 4,5(21.70)/3/10 |

From Table 5, t, =2.262. Therefore, the 95% CI is

779,975
[116.9-2.262(21.70)/10,116.9+2.262(21.70)/3/10 |
=(116.9-15.5,116.9+15.5)
=(101.4,132.4)

Note that if the sample size is large (say, >200), then the percentiles of a t distribu-
tion are virtually the same as for a normal distribution. In this case, a reasonable
approximate 100% x (1 — o) CI for p is given as follows:

EQUATION 6.7 Confidence Interval for the Mean of a Normal Distribution (Large-Sample Case)
An approximate 100% x (1 — o) CI for the mean p of a normal distribution with
unknown variance is given by

(’_‘ ~Z1_a2 SN X+ 21 S/\/E)

This interval should only be used if n > 200. In addition, Equation 6.7 can
also be used for n < 200 if the standard deviation (o) is known, by replacing
s with o.

You may be puzzled at this point as to what a CI is. The parameter u is a fixed
unknown constant. How can we state that the probability that it lies within
some specific interval is, for example, 95%? The important point to understand
is that the boundaries of the interval depend on the sample mean and sample
variance and vary from sample to sample. Furthermore, 95% of such intervals
that could be constructed from repeated random samples of size n contain the
parameter .

IR Obstetrics  Consider the five samples of size 10 from the population of birthweights

as shown in Table 6.3 (p. 161). Because t, ,,, = 2.262, the 95% Cl is given by
_ _ _ 2.262s _ 2.262s
X -t s/\n, X+t s/\n)=|x- X+
(= to75 8/, 4t 5513 = (- 22502, 5.0 2280

=(X-0.715s,X +0.715s)

The interval is different for each sample and is given in Figure 6.7. A dashed line has
been added to represent an imaginary value for p. The idea is that over a large num-
ber of hypothetical samples of size 10, 95% of such intervals contain the parameter
K. Any one interval from a particular sample may or may not contain the parameter
w. In Figure 6.7, by chance all five intervals contain the parameter u. However, with
additional random samples this need not be the case.

Therefore, we cannot say there is a 95% chance that the parameter p will fall
within a particular 95% CI. However, we can say the following:
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FIGURE 6.7

A collection of 95% Cls for the mean . as computed from repeated samples of size 10

(see Table 6.3) from the population of birthweights given in Table 6.2

The midpoint of each interval is X;

I
101.4

T 1
116.9 132.4

|
|
|
|
|
|
(116.9 - 15.5) ! (116.9 + 15.5)
s | |
109.5 | 132.8 156.1
(132.8-23.3) | (132.8 +23.3)
[ : | |
101.0 I 117.0 133.0
(117.0 - 16.0) ! (117.0 + 16.0)
1 1 : ]
T T | 1
96.6 106.7 1 116.8
(106.7 - 10.1) ' (106.7 +10.1)
|
| i |
97.3 111.9 126.5
(111.9 - 14.6) | (111.9 + 14.6)
I
u

EQUATION 6.8 Over the collection of all 95% ClIs that could be constructed from repeated

random samples of size n, 95% will contain the parameter .

The length of the CI gives some idea of the precision of the point estimate x. In
this particular case, the length of each CI ranges from 20 to 47 oz, which makes the
precision of the point estimate x doubtful and implies that a larger sample size is
needed to get a more precise estimate of .

EXAMPLE 6.33

Gynecology Compute a 95% CI for the underlying mean basal body temperature
using the data in Example 6.24 (p. 170).

Solution: The 95% CI is given by

Xkl o755/ =97.2°+2.262(0.189)/V10 = 97.2° + 0.13°
=(97.07°,97.33°)

We can also consider Cls with a level of confidence other than 95%.

Suppose the first sample in Table 6.3 has been drawn. Compute a 99% CI for the
underlying mean birthweight.

EXAMPLE 6.34

Solution: The 99% CI is given by

(116.9 15, 995 (21.70)/4/10,116.9 + £ 995 (21.70)/4/10)

From Table S of the Appendix we see that t, ... = 3.250, and therefore the 99% ClI is

,.995

(116.9-3.250(21.70)/4/10,116.9 + 3.250(21.70)/7/10) = (94.6,139.2)
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Notice that the 99% CI (94.6, 139.2) computed in Example 6.34 is wider than
the corresponding 95% CI (101.4, 132.4) computed in Example 6.31. The ratio-
nale for this difference is that the higher the level of confidence desired that u lies
within an interval, the wider the CI must be. Indeed, for 95% CIs the length was
2(2.262) s/n; for 99% ClIs, the length was 2(3.250)s/V/n. In general, the length of
the 100% x (1 — o) CI is given by

2ty 11-0/2 5/\/5

Therefore, we can see the length of a CI is governed by three variables: n, s, and o.

EQUATION 6.9 Factors Affecting the Length of a Cl

Thelength ofa 100% x (1 - o) Clforpequals 2t,, 1,/ s/</n and is determined by 1,
s, and o.

n  As the sample size (n) increases, the length of the CI decreases.

s As the standard deviation (s), which reflects the variability of the distribu-
tion of individual observations, increases, the length of the CI increases.

o As the confidence desired increases (o decreases), the length of the CI increases.

DO EsGEil Gynecology  Compute a 95% CI for the underlying mean basal body temperature
using the data in Example 6.24, assuming that the number of days sampled is 100

rather than 10.
Solution: The 95% ClI is given by
97.2° %ty 975 (0.189)/\/100 =97.2°+1.984(0.189)/10 = 97.2°+ 0.04°
=(97.16°97.24°)

where we use the gt function of R to estimate t,, ,,. by 1.984. Notice that this inter-
val is much narrower than the corresponding interval (97.07°, 97.33°) based on a
sample of 10 days given in Example 6.33.

DO EE A Compute a 95% CI for the underlying mean basal temperature using the data in
Example 6.24, assuming that the standard deviation of basal body temperature is

0.4° rather than 0.189° with a sample size of 10.
Solution: The 95% ClI is given by
97.2°+2.262(0.4)/410 = 97.2°+0.29° = (96.91°,97.49°)

Notice that this interval is much wider than the corresponding interval (97.07°,
97.33°) based on a standard deviation of 0.189° with a sample size of 10.

Usually only n and o can be controlled. s is a function of the type of variable
being studied, although s itself can sometimes be decreased if changes in technique
can reduce the amount of measurement error, day-to-day variability, and so forth.
An important way in which s can be reduced is by obtaining replicate measurements
for each individual and using the average of several replicates for an individual,
rather than a single measurement.

Up to this point, CIs have been used as descriptive tools for characterizing the
precision with which the parameters of a distribution can be estimated. Another use
for ClIs is in making decisions on the basis of data.
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Cardiovascular Disease, Pediatrics Suppose we know from large studies that the
mean cholesterol level in children ages 2-14 is 175 mg/dL. We wish to see if there is
a familial aggregation of cholesterol levels. Specifically, we identify a group of fathers
who have had a heart attack and have elevated cholesterol levels (=250 mg/dL) and
measure the cholesterol levels of their 2- to 14-year-old offspring.

Suppose we find that the mean cholesterol level in a group of 100 such children
is 207.3 mg/dL with standard deviation = 30 mg/dL. Is this value far enough from
175 mg/dL for us to believe that the underlying mean cholesterol level in the popu-
lation of all children selected in this way is different from 175 mg/dL?

Solution: One approach would be to construct a 95% CI for p on the basis of our
sample data. We then could use the following decision rule: If the interval contains
175 mg/dL, then we cannot say the underlying mean for this group is any different
from the mean for all children (175), because 175 is among the plausible values
for u provided by the 95% CI. We would decide there is no demonstrated familial
aggregation of cholesterol levels. If the CI does not contain 175, then we would
conclude the true underlying mean for this group is different from 175. If the lower
bound of the CI is above 175, then there is a demonstrated familial aggregation of
cholesterol levels. The basis for this decision rule is discussed in the chapters on
hypothesis testing.
The CI in this case is given by

207.3 + tog 45(30)/4/100 =207.3 + 6.0 =(201.3,213.3)

Clearly, 175 is far from the lower bound of the interval, and we thus conclude there
is familial aggregation of cholesterol.

REVIEW QUESTIONS 6C

What does a 95% CI mean?
2 (a) Derive a 95% ClI for the underlying mean HgbA1c in Review Question 6B.4.

(b) Suppose that diabetic patients with an underlying mean HgbA1c < 7% are
considered in good compliance. How do you evaluate the compliance of the
patient in Review Question 6B.47?

=
w
>
w
[24

3 (a) What is the difference between a t distribution and a normal distribution?

(b) What is the 95th percentile of a ¢ distribution with 30 df? What symbol is used
to denote this percentile?

4  What is the central-limit theorem? Why is it important in statistics?

6.6 CASE STUDY: EFFECTS OF TOBACCO USE ON BONE-
MINERAL DENSITY (BMD) IN MIDDLE-AGED WOMEN

There were 41 twin pairs in this study. We wish to assess whether there is a relation-
ship between BMD of the lumbar spine and cigarette smoking. One way to approach
this problem is to calculate the difference in BMD between the heavier-smoking
twin and the lighter-smoking twin for each twin pair and then calculate the average
of these differences over the 41 twin pairs. In this study, there was a mean difference
in BMD of —0.036 + 0.014 g/cm? (mean = se) for the 41 twin pairs. We can use CI
methodology to address this question. Specifically, the 95% CI for the true mean dif-
ference (u,) in BMD between the heavier- and lighter-smoking twins is
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~0.036 + 149 g75 (s/v/41)
However, because se = s/v/41, another way to express this formula is

~0.036 % £ 49, 475 (5¢) = —0.036 +2.021(0.014)
=-0.036+0.028 = (~0.064,-0.008)

Because the upper bound of the 95% Cl is less than 0, we can be fairly confident that
the true mean difference is less than 0. Stated another way, we can be fairly confi-
dent the true mean BMD for the heavier-smoking twins is lower than that for the
lighter-smoking twins. In statistical terms, we say there is a significant association
between BMD and cigarette smoking. We discuss assessment of statistical signifi-
cance in more detail in Chapter 7.

6.7 ESTIMATION OF THE VARIANCE OF A DISTRIBUTION

Point Estimation

In Chapter 2, the sample variance was defined as

1 < -
s2 = mizl(x,. -x)

This definition is somewhat counterintuitive because the denominator would be
expected to be n rather than n — 1. A more formal justification for this definition is
now given. If our sample x,, . . ., x, is considered as coming from some population
with mean p and variance 6%, then how can the unknown population variance ¢*
be estimated from our sample? The following principle is useful in this regard:

EQUATION 6.10 Let X, ..., X, be a random sample from some population with mean u and
variance ¢® The sample variance $? is an unbiased estimator of ¢* over all
possible random samples of size n that could have been drawn from this
population; that is, E(S?) = ¢%

Therefore, if repeated random samples of size n are selected from the population,
as was done in Table 6.3, and the sample variance s? is computed from each sample,
then the average of these sample variances over a large number of such samples of size
n is the population variance o2. This statement holds for any underlying distribution.

EXAMPLE 6.38 Gynecology Estimate the variance of the distribution of basal body temperature us-
ing the data in Example 6.24 (on page 170).

Solution: We have

n
s?= %z(x,. -%)? =0.0356
i=1

which is an unbiased estimate of ¢2.

Note that the intuitive estimator for ¢?> with n in the denominator rather than
n -1, that is,
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tends to underestimate the underlying variance ¢? by a factor of (n — 1)/n. This factor
is considerable for small samples but tends to be negligible for large samples. A more
complete discussion of the relative merits of different estimators for ¢? is given in [3].

The Chi-Square Distribution

The problem of interval estimation of the mean of a normal distribution was dis-
cussed in Section 6.5. We often want to obtain interval estimates of the variance
as well. Once again, as was the case for the mean, the interval estimates will hold
exactly only if the underlying distribution is normal. The interval estimates perform
much more poorly for the variance than for the mean if the underlying distribution
is not normal, and they should be used with caution in this case.

|l Hypertension  An Arteriosonde machine “prints” blood-pressure readings on a tape so
that the measurement can be read rather than heard. A major argument for using

such a machine is that the variability of measurements obtained by different observ-
ers on the same person will be lower than with a standard blood-pressure cuff.

Suppose we have the data in Table 6.6, consisting of systolic blood pressure (SBP)
measurements obtained on 10 people and read by two observers. We use the differ-
ence d, between the first and second observers to assess interobserver variability. In
particular, if we assume the underlying distribution of these differences is normal
with mean p and variance ¢?, then it is of primary interest to estimate ¢2. The higher
6?is, the higher the interobserver variability.

TABLE 6.6 SBP measurements (mm Hg) from an Arteriosonde machine obtained
from 10 people and read by two observers

Observer
Person (/) 1 2 Difference (d)
1 194 200 -6
2 126 123 +3
3 130 128 +2
4 98 101 -3
5 136 135 +1
6 145 145 0
7 110 111 -1
8 108 107 +1
9 102 99 +3
10 126 128 -2

We have seen previously that an unbiased estimator of the variance o2 is given
by the sample variance S$2. In this case,

Mean difference = (-6 +3+----2)/10=-02=d

Sample variance =s* = Y (d; —d)* /9
P

_ [(—6+ 0'2)2 +ooet (=2 +o,2)ZJ/9 =8.178

How can an interval estimate for 6> be obtained?
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To obtain an interval estimate for %, a new family of distributions, called
chi-square (y?) distributions, must be introduced to enable us to find the sampling
distribution of $? from sample to sample.

n
DEFINITION 6.14 1fG=Y X?

i=1
where X, ..., X, ~ N(0,1)

and the X;’s are independent, then G is said to follow a chi-square dzistribution
with n degrees of freedom (df). The distribution is often denoted by Xx.

The chi-square distribution is actually a family of distributions indexed by the
parameter n referred to, again, as the degrees of freedom, as was the case for the ¢
distribution. Unlike the t distribution, which is always symmetric about O for any
degrees of freedom, the chi-square distribution only takes on positive values and is
always skewed to the right. The general shape of these distributions is indicated in
Figure 6.8.

For n =1, 2, the distribution has a mode at O [3]. For n > 3, the distribution has
a mode greater than 0 and is skewed to the right. The skewness diminishes as n
increases. It can be shown that the expected value of a 2 distribution is n and the
variance is 2n.

DEFINITION 6.15 The uth percentile of a x5 distribution (i.e., a chi-square distribution with d df’) is de-
noted by xﬁ,u, where Pr(x3 < X%,u) = u. These percentiles are shown in Figure 6.9 for a
chi-square distribution with 5 df and appear in Table 6 in the Appendix.

Table 6 is constructed like the ¢ table (Table 5), with the degrees of freedom (d)
indexed in the first column and the percentile (#) indexed in the first row. The main
difference between the two tables is that both lower (u < 0.5) and upper (u > 0.5) per-
centiles are given for the chi-square distribution, whereas only upper percentiles are

FIGURE 6.8  General shape of various 2 distributions with d df

Frequency
[9)]
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FIGURE 6.9 Graphic display of the percentiles of a 2 distribution
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given for the t distribution. The t distribution is symmetric about 0, so any lower
percentile can be obtained as the negative of the corresponding upper percentile.
Because the chi-square distribution is, in general, a skewed distribution, there is no
simple relationship between the upper and lower percentiles.

DB Find the upper and lower 2.5th percentiles of a chi-square distribution with 10 df.

Solution: According to Appendix Table 6, the upper and lower percentiles are given,
respectively, by

10,975 =20.48 and x7y 25 =3.25

For values of d not given in Table 6, a computer program, such as Excel, R, or
Stata, can be used to obtain percentiles.

For example, in Excel the CHIINV function can be used to obtain upper percen-
tiles of the chi-square distribution. Specifically, CHIINV(p,d) = upper pth percentile

of a chi-square distribution with d d.f. = x7, . In R, the qchisq function can be used

to obtain percentiles of the chi-square distribution. Specifically, qchisq(p,d) = lower
pth percentile of a chi-square distribution with d d.f. = x .

o idis i Find the upper and lower Sth percentile of a chi-square distribution with 8 d.f. using
Excel and R.

Solution:

Excel

The upper Sth percentile= xé_gs = CHIINV(0.05,8) =15.51.
Thelower 5th percentile= Xg,.os = CHIINV(0.95,8) =2.73.

Theupper 5th percentile= xépgs =qchisq(0.95,8) =15.51.

Thelower 5th percentile= x5 o5 = qchisq(0.05,8) = 2.73.
These are denoted by chisq_8_upper and chisq_8_lower in the R output below.
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> chisq_8_upper<-qchisq(0.95,8)
> chisq_8_upper

[1] 15.50731

> chisq_8_lower<-qchisq(0.05,8)

> chisq_8_lower

[1] 2.732637

Interval Estimation

To obtain a 100% x (1 — o) CI for 6 we use the following formula:

EQUATION 6.11 A 100% x (1 - o) CI for o2 is given by

[(” - 1)52/)(%—1,1-01/2,(” - 1)52/)(;%—1,0(/2]

To show why this is true, we need to find the sampling distribution of $%. Suppose we
assume that X, ..., X ~ N(u,0%. Then it can be shown that

2,,2
EQUATION 6.12 s2 ~&T
n_

To see this, we recall from Section 5.5 that if X ~ N(u,0?) and if we standardize
X (that is, we subtract u and divide by o), thus creating a new random variable
Z = (X —w)/o, then Z will be normally distributed with mean 0 and variance 1. Thus,
from Definition 6.14 (see page 183) we see that

n n
EQUATION 6.13 S 27 =Y (X, -w?*/o*~ x2 = chi-squaredistribution with n df
i=1 i=1

Because we usually don’t know p, we estimate u by x. However, it can be shown
that if we substitute X for u in Equation 6.13, then we lose 1 df [3], resulting in the
relationship

EQUATION 6.14 i(xi -XY [o? %2y
i=1

Howeveg, we recall from the definition of a sample variance that $*=
Zrzl(Xi - X) /(n —1). Thus, multiplying both sides by (1 — 1) yields the relationship

Substituting into Equation 6.14, we obtain
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(n-1s*

EQUATION 6.15 T2 Xn-1

If we multiply both sides of Equation 6.15 by ¢?/(n — 1), we obtain Equation 6.12,

2
2 o 2
S ~n_1Xn—l

Thus, from Equation 6.12 we see that $? follows a chi-square distribution with n — 1
df multiplied by the constant ¢?/(n — 1). Manipulations similar to those given in
Section 6.5 can now be used to obtain a 100% x (1 — o) CI for ¢2.

In particular, from Equation 6.12 it follows that

2,2 2,2
o _ (&} 11—
Pr Xn 1,0/2 <SZ < Xn 1,1-0/2
n-1 n-1

=1l-a

This inequality can be represented as two separate inequalities:
2,2 2,2
oy O %n-11-
Xn 1,0/2 <Sz and SZ < Xn 1,1-0/2
n-1 n-1

If both sides of the first inequality are multiplied by (n-1) / xﬁ,m ;> and both sides of
the second inequality are multiplied by (n - 1)/ Xﬁ—l,l—a /2, then we have

(n-1)8*
2

1152
02<(HZA and <o

Xn-1,0/2 Xn-11-a/2
or, on combining these two inequalities,
n-1)s? n-1)s?
(115" _ o (n-1)
Xn-11-a/2 Xn-1,0/2

It follows that

2
Xn-1,1-0/2 Xn-1,0/2

Thus, the interval [ (1= 1)S? /37 11-0/2, (1= 1) $* /X_1,62 | is @ 100% x (1 - ) CI for o2,

Hypertension We now return to the specific data set in Example 6.39 (see page 182).
Suppose we want to construct a 95% CI for the interobserver variability as defined
by c2.

Solution: Because there are 10 people and s> = 8.178, the required interval is given by

(95%/%3,975:95%/%3,005) =[ 9(8.178)/19.02,9(8.178)/2.70 | = (3.87,27.26)

Similarly, a 95% CI for o is given by (W,m) =(1.97,5.22). Notice that the CI
for 6% is not symmetric about s? = 8.178, in contrast to the CI for u, which was sym-
metric about X. This characteristic is common in ClIs for the variance.

We could use the CI for ¢ to make decisions concerning the variability of the
Arteriosonde machine if we had a good estimate of the interobserver variability of
blood-pressure readings from a standard cuff. For example, suppose we know from
previous work that if two people are listening to blood-pressure recordings from a
standard cuff, then the interobserver variability as measured by the variance of the
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6.8  Estimation for the Binomial Distribution 187

set of differences between the readings of two observers is 35. This value is outside
the range of the 95% CI for 6%(3.87, 27.26), and we thus conclude that the interob-
server variability is reduced by using an Arteriosonde machine. Alternatively, if this
prior variance were 15, then we could not say that the variances obtained from us-
ing the two methods are different.

Note that the CI for ¢* in Equation 6.11 is only valid for normally distributed
samples. If the underlying distribution is not normal, then the level of confidence for
this interval may not be 1 — o even if the sample size is large. This is different from
the CI for p given in Equation 6.6 (see page 176), which will be valid for large n based
on the central-limit theorem, even if the underlying distribution is not normal.

REVIEW QUESTIONS 6D

1 What is the difference between a t distribution and a chi-square distribution? When
do we use each?

2 Suppose we have a normal distribution with mean = 0 and variance = 5. We draw a

sample of size 8 from this distribution and compute the sample variance, s What is
the probability that s > 10?

=
[43)
>
18]
I~

6.8 ESTIMATION FOR THE BINOMIAL DISTRIBUTION

Point Estimation

Point estimation for the parameter p of a binomial distribution is discussed in this
section.

B Cancer  Consider the problem of estimating the prevalence of malignant melanoma
in 45- to 54-year-old women in the United States. Suppose a random sample of 5000
women is selected from this age group, of whom 28 are found to have the disease.
Let the random variable X, represent the disease status for the ith woman, where X, =1
if the ith woman has the disease and O if she does not; i=1, ..., 5000. The random
variable X; was also defined as a Bernoulli trial in Definition 5.12. Suppose the preva-
lence of the disease in this age group = p. How can p be estimated?

n
We let X = ZX,- = the number of women with malignant melanoma among the

n women. Frorrl1 1Example 5.29, we have E(X) = np and Var(X) = npq. Note that X can
also be looked at as a binomial random variable with parameters n and p because X
represents the number of events in n independent trials.

Finally, consider the random variable p = sample proportion of events. In our
example, p = proportion of women with malignant melanoma. Thus,

~ 1&
p==YX=X/n
nia

See pages 166 and 168 for
EQUATIONS 6.1
AND 6.2

Because p is a sample mean, the results of Equation 6.1 apply and we see that
E(p) = E(X;) = u = p. Furthermore, from Equation 6.2 it follows that

Var(p)=c*/n=pq/n and se(p)=pq/n

Thus, for any sample of size n the sample proportion p is an unbiased estimator
of the population proportion p. The standard error of this proportion is given

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



188 CHAPTER 6 Estimation

exactly by /pg/n and is estimated by, / pg/n- These principles can be summarized
as follows:

EQUATION 6.16 Point Estimation of the Binomial Parameter p
Let X be a binomial random variable with parameters n and p. An unbiased es-
timator of p is given by the sample proportion of events p. Its standard error is

given exactly by \/pg/n and is estimated by / pg/n.

O iRs e Estimate the prevalence of malignant melanoma in Example 6.43, and provide its
standard error.

Solution: Ourbest estimate of the prevalence rate of malignant melanoma among 45- to
54-year-old women is 28/5000 = .0056. Its estimated standard error is

-0056(.9944)/5000 =.0011

Interval Estimation—Normal-Theory Methods

Point estimation of the parameter p of a binomial distribution was covered in the
previous section. How can an interval estimate of the parameter p be obtained?

GV Cancer Suppose we are interested in estimating the prevalence rate of breast cancer
among 50- to 54-year-old women whose mothers have had breast cancer. Suppose that
in a random sample of 10,000 such women, 400 are found to have had breast cancer at
some point in their lives. We have shown that the best point estimate of the prevalence
rate p is given by the sample proportion p = 400/10,000 =.040 . How can an interval
estimate of the parameter p be obtained? (See the solution in Example 6.46.)

Let’s assume the normal approximation to the binomial distribution is valid—
whereby from Equation 5.11 the number of events X observed out of n women will
be approximately normally distributed with mean np and variance npq or, corre-
spondingly, the proportion of women with events = p = X/n is normally distributed
with mean p and variance pg/n.

The normal approximation can actually be justified on the basis of the central-
limit theorem. Indeed, in the previous section we showed that p could be repre-
sented as an average of n Bernoulli trials, each of which has mean p and variance pgq.
Thus, for large n, from the central-limit theorem, we can see that p = X is normally
distributed with mean p = p and variance ¢/n = pg/n, or

EQUATION 6.17 P~N(p,pq/n)
Alternatively, because the number of successes in n Bernoulli trials = X = np

(which is the same as a binomial random variable with parameters n and p), if Equa-
tion 6.17 is multiplied by n,

EQUATION 6.18 X~ N(np,npq)
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6.8  Estimation for the Binomial Distribution 189

This formulation is indeed the same as that for the normal approximation to the bi-
nomial distribution, which was given in Equation 5.11. How large should n be before
this approximation can be used? In Chapter 5 we said the normal approximation to
the binomial distribution is valid if npq > 5. However, in Chapter 5 we assumed p was
known, whereas here we assume it is unknown. Thus, we estimate p by p and g by
G =1-p and apply the normal approximation to the binomial if np§ > 5. Therefore,
the results of this section should only be used if npg > 5. An approximate 100% x
(1 — o) CI for p can now be obtained from Equation 6.17 using methods similar to
those given in Section 6.5.

EQUATION 6.19 Normal-Theory Method for Obtaining a Cl for the Binomial Parameter p (Wald Method)
An approximate 100% x (1 — o) CI for the binomial parameter p based on the
normal approximation to the binomial distribution is given by

P * 21 oo Pd/n

This method of interval estimation should only be used if npg > 5.

Specifically, to derive Equation 6.19, from Equation 6.17 we see that

Pr(p —Z_g2PA/N < P < P+Z1—a/2\/PQ/”) =l-a
This inequality can be written in the form of two inequalities:
P=2igp\Pa/n<p and p<p+zi_op\pg/n

To explicitly derive a CI based on these inequalities requires solving a quadratic
equation for p in terms of p. To avoid this, it is customary to approximate \/pg/n by

JPd/n and to rewrite the inequalities in the form
P=Zi_ap\NPi/m<p and p<p+ziqpnypi/n

We now add z,_,,/p4/n to both sides of the first inequality and subtract this quan-
tity from both sides of the second inequality, obtaining

P<P+2igppa/n and p-zi_yp\pg/n<p

Combining these two inequalities, we get
P=Z1_a2PA/N < P < P+2i_qp Pa/n

or Pr(f) ~ 2N PAM<p<p +Zl—a/2\/i7é/n) =l-a

The approximate 100% x (1 — o) CI for p is given by

(13 - Zl—a/zVﬁ@/”ff’ + Zl—a/Z\/ﬁé/")

Cancer Using the data in Example 6.45, derive a 95% CI for the prevalence rate of
breast cancer among 50- to 54-year-old women whose mothers have had breast cancer.

Solution: p=.040 «=.05 z_,, =196 n=10,000.

We have that npg=10,000(0.040)(0.4611)=2384 >5. Thus, we can use the large
sample method in Equation 6.19.
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Therefore, an approximate 95% CI is given by

[.040 ~1.96,/.04(.96)/10,000,.040 +1.96,/.04(.96)/10,000 |

= (.040 —.004, .040 +.004) = (.036, .044)

Suppose we know the prevalence rate of breast cancer among all 50- to
54-year-old American women is 2%. Because 2% is less than .036 (the lower con-
fidence limit), we can be quite confident that the underlying rate for the group
of women whose mothers have had breast cancer is higher than the rate in the
general population.

We can also obtain large sample confidence limits for the binomial parameter p
using a computer program. For example, using Stata if we specify

cii n x, wald

where n = number of trials and x = number of successes, we will obtain a 95% CI for
the binomial parameter p.

VRS A Cancer Use Stata to obtain a 95% CI for the proportion of women who develop
breast cancer based on the data in Example 6.46.

Solution: We use the cii command and obtain the following output:

cii 10000 400, wald

—Binomial Wald-—

Variable | Obs Mean Std. Err. [95% Conf. Intervall]
____________ oo oo
| 10000 .04 .0019596 .0361593 .0438407

The results are the same as in Example 6.46.

Interval Estimation—Exact Methods

The question remains: How is a CI for the binomial parameter p obtained when
either the normal approximation to the binomial distribution is not valid or a more
exact CI is desired?

| Cancer, Nutrition  Suppose we want to estimate the rate of bladder cancer in rats that
have been fed a diet high in saccharin. We feed this diet to 20 rats and find that 2

develop bladder cancer. In this case, our best point estimate of p is jy = % =.1.
However, because
npq =20(2/20)(18/20)=1.8<5

the normal approximation to the binomial distribution cannot be used and thus
normal-theory methods for obtaining Cls are not valid. How can an interval
estimate be obtained in this case?

A small-sample method for obtaining confidence limits will be presented.
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EQUATION 6.20 ExactMethodfor Obtaininga Clforthe Binomial Parameter p (Clopper-Pearson Method)
An exact 100% x (1 — a) CI for the binomial parameter p that is always valid is
given by (p,, p,), where p,, p, satisfy the equations

I (n
Pr(szlp=p1)=%=g(kjpf(l—pl)”‘k

n
Pr(X3xlp=pz)=%=k_20(kjp§(l—pz)”k

A rationale for this CI is given in our discussion of hypothesis testing for the
binomial distribution in Section 7.9 on page 259.

The main problem with using this method is the difficulty in computing expres-
sions such as

X
> [ijka—p)"-k
k=0
Fortunately, computer programs exist for the evaluation of such expressions, one of
which is provided by Stata.

We use the cii command of Stata, where the default method for computing
confidence intervals for the binomial parameter p is based on the exact method.
Specifically, if we specify

cii n x

where n = number of trials and x = number of successes, then we will obtain a 95%
CI for p.

DB il Cancer Derive an exact 95% CI for the probability of developing bladder cancer
based on the data in Example 6.48.

Solution: We use the cii command of Stata and obtain the following output:
. cii 20 2

—Binomial Exact-—
Variable | Obs Mean Std. Err. [95% Conf. Intervall
____________ P
| 20 .1 .067082 .0123485 .3169827

Thus, the exact 95% CI for p = (0.01, 0.32). Note that this interval is not symmetric
about the point estimate for p (0.10).

Another approach to solving this problem is to use the BINOMDIST function of
Excel. From Equation 6.20, we need to find values of p, and p, such that

Pr(X=2lp=p)=.025 and Pr(X<2lp=p,)=.025

However, Pr(X 2 2lp=p)=1-Pr(X < 1lp=p)=1-BINOMDIST(1, 20, p,, TRUE)
and Pr(X < 21p = p,) = BINOMDIST(2, 20, p,, TRUE). Hence we set up a spreadsheet
in which the first column has values of p, from .01 to 1.0 in increments of .01; the
second column has 1 — BINOMDIST(1, 20, p,, TRUE); the third column has values
of p, from .01 to 1.0 in increments of .01; and the fourth column has BINOMDIST
(2, 20, p,, TRUE). An excerpt from the spreadsheet is shown in Table 6.7.
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TABLE 6.7 Evaluation of exact binomial confidence limits using Excel,
based on the data in Example 6.48

P, 1 — BINOMDIST(1,20,p,, TRUE) P, BINOMDIST(2,20,p,, TRUE)
0.01 0.017 0.25 0.091
0.02 0.060 0.26 0.076
0.03 0.120 0.27 0.064
0.04 0.190 0.28 0.053
0.05 0.264 0.29 0.043
0.06 0.340 0.30 0.035
0.07 0.413 0.31 0.029
0.08 0.483 0.32 0.023
0.09 0.548 0.33 0.019
0.1 0.608 0.34 0.015

Usually with exact confidence limits accurate to a fixed number of decimal
places, we cannot exactly satisfy Equation 6.20. Instead, we use a more conservative
approach. We find the largest value of p, so that Pr(X > x| p =p ) < 0/2 and the small-
est value of p, so that Pr(X < xlp = p,) < a/2. Based on Table 6.7 with a = .05, the
values of p, and p, that satisfy these inequalities are p, =.01 and p, = .32. Hence, the
95% CI for p is (.01, .32).

| cli e Health Promotion  Suppose that as part of a program for counseling patients with
many risk factors for heart disease, 100 smokers are identified. Of this group, 10

give up smoking for at least 1 month. After a 1-year follow-up, 6 of the 10 patients
are found to have taken up smoking again. The proportion of ex-smokers who start
smoking again is called the recidivism rate. Derive a 99% CI for the recidivism rate.

Solution: Exact binomial confidence limits must be used, because

npg =10(.6)(.4) =2.4 <5

We can also use the Stata command cii to obtain exact 99% confidence limits
for p. The general form of this command is

.cii n x, level (%)
where % is the level of confidence, n is the number of trials and x is the number of

successes. The results for the recidivism data are as follows:

.cii 10 6, level(99)
--Binomial Exact --
Variable | Obs Mean Std. Err. [99% Conf. Interval]

| 10 .6 .1549193 .1909163 .9232318

We see that the 99% exact binomial confidence interval is (.19, .92).
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REVIEW QUESTIONS 6E

1 Suppose an experimental weight-loss program is provided for 40 overweight participants.
A participant is considered partially successful if he or she has lost 5 Ib or more after
6 months. Suppose that 10 of the 40 participants are partially successful in losing weight.

=
w
>
w
24

(@) What is an estimate of the partial-success rate?

(b) Derive a 95% ClI for the proportion of partial successes.

2 Aparticipant is considered completely successful if he or she has lost 20 Ib or more
after 6 months. Suppose that 4 of the 40 participants are completely successful at
losing weight.

(@) What is an estimate of the complete success rate?

(b) Derive a 95% CI for the proportion of participants who were completely
successful at losing weight.

6.9 ESTIMATION FOR THE POISSON DISTRIBUTION
Point Estimation

In this section, we discuss point estimation for the parameter A of a Poisson distribution.

Cancer, Environmental Health A study in Woburn, Massachusetts, in the 1970s
looked at possible excess cancer risk in children, with a particular focus on leukemia.
This study was later portrayed in the book and movie titled A Civil Action. An impor-
tant environmental issue in the investigation concerned the possible contamination
of the town’s water supply. Specifically, 12 children (<19 years of age) were diagnosed
with leukemia in Woburn during the period January 1, 1970 to December 31, 1979. A
key statistical issue is whether this represents an excessive number of leukemia cases,
assuming that Woburn has had a constant 12,000 child residents (<19 years old) dur-
ing this period and that the incidence rate of leukemia in children nationally is 5 cases
per 100,000 person-years. Can we estimate the incidence rate of childhood leukemia
in Woburn during the 1970s and provide a CI about this estimate?

We let X = the number of children who developed leukemia in Woburn during
the 1970s. Because X represents a rare event, we assume that X follows a Poisson
distribution with parameter p = AT. We know from Chapter 4 that for a Poisson dis-
tribution, E(X) = AT, where T= time and A = number of events per unit time.

DEFINITION 6.16 A person-year is a unit of time defined as 1 person being followed for 1 year.

This unit of follow-up time is commonly used in longitudinal studies—that is,
studies in which the same individual is followed over time.

| Es T Cancer, Environmental Health  How many person-years accumulated in the Woburn
study in Example 6.51?

Solution: In the Woburn study, 12,000 children were each followed for 10 years.
Thus, a total of 120,000 person-years accumulated. This is actually an approxima-
tion, because the children who developed leukemia over the 10-year period were
followed only up to the time they developed the disease. It is also common to cur-
tail follow-up for other reasons, such as death or the development of other types of
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cancer. However, the number of children for whom follow-up is curtailed for these
reasons is probably small and the approximation is likely to be accurate.

Finally, although children moved in and out of Woburn over the 10-year period,
we assume there was no net migration in or out of the area during the 1970s.

We now wish to assess how to estimate A based on an observed number of events
X over T person-years.

EQUATION 6.21 Point Estimation for the Poisson Distribution
Let’s assume the number of events X over T person-years is Poisson-distributed
with parameter u =AT. An unbiased estimator of A is given by A=X/T, where X
is the observed number of events over T person-years.
If A is the incidence rate per person-year, T = number of person-years of
follow-up, and we assume a Poisson distribution for the number of events X over
T person-years, then the expected value of X is given by E(X) = AT. Therefore,

E(\) = E(X)/T
=AT/T =

Thus, ) is an unbiased estimator of A.

EXAMPLE 6.53 Cancer, Environmental Health Estimate the incidence rate of childhood leukemia
in Woburn during the 1970s based on the data provided in Example 6.51.

Solution: There were 12 events over 120,000 person-years, so the estimated inci-
dence rate = 12/120,000 = 1/10,000 = 0.0001 events per person-year. Because can-
cer incidence rates per person-year are usually very low, it is customary to express
such rates per 100,000 (or 10%) person-years—that is, to change the unit of time to
10° person-years. Thus, if the unit of time = 10° person-years, then T = 1.2 and A=
0.0001 (10°) = 10 events per 100,000 person-years.

Interval Estimation

The question remains as to how to obtain an interval estimate for A. We use a similar
approach as was used to obtain exact confidence limits for the binomial proportion
p in Equation 6.20 (p. 191). For this purpose, it is easier to first obtain a CI for u =
expected number of events over time T of the form (u,,u,) and then obtain the cor-
responding CI for A from (u,/T, w,/T). The approach is given as follows:

EQUATION 6.22 Exact Method for Obtaining a Cl for the Poisson Parameter A
An exact 100% x (1 — a) CI for the Poisson parameter A is given by (u,/T, p,/T),
where p ,u, satisfy the equations

Pr(X2xlp=p)="2=3 e uk/kl
2 k=x
x—1
=1-Y eMpk/k!
k=0
o X
PrX <xlp=pp)=> =3 €2z /k!
k=0

and x = observed number of events, T = number of person-years of follow-up.
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As in obtaining exact confidence limits for the binomial parameter p, it is difficult to
exactly compute u,, p, to satisfy Equation 6.22. Table 7 in the Appendix provides the
solution to these equations. This table can be used to find 90%, 95%, 98%, 99%, or
99.8% ClIs for p if the observed number of events (x) is < 50. The observed number
of events (x) is listed in the first column, and the level of confidence is given in the
first row. The CI is obtained by cross-referencing the x row and the 1 — o. column.

| RS G Suppose we observe 8 events and assume the number of events is Poisson-distributed
with parameter p. Find the 95% CI for p.

Solution: We refer to Table 7 under the x = 8 row and the 0.95 column to find the
95% CI for u = (3.45, 15.76).

We see this CI is not symmetric about x (8), because 15.76 -8 =7.76 > 8 — 3.45 = 4.55.
This is true for all exact CIs based on the Poisson distribution unless x is very large.

DB ei ) Cancer, Environmental Health Compute a 95% CI for both the expected number
of childhood leukemias (i) and the incidence rate of childhood leukemia per 10°
person-years (A) in Woburn based on the data provided in Example 6.51.

Solution: We observed 12 cases of childhood leukemia over 10 years. Thus, from
Table 7, referring to x = 12 and level of confidence 95%, we find that the 95% CI for p =
(6.20, 20.96). Because there were 120,000 person-years =T, a 95% CI for the incidence
rate = 229 _20.96 020 105 2096 s
120,000 "120,000 120,000 120,000

events per 10° person-years = (5.2, 17.5) events per 10° person-years = 95% CI for A.

) events per person-year or (

We can also use the Stata cii command to obtain an exact 95% CI for the inci-
dence rate (A). The general syntax is

.cii py x, poisson
where py = number of person-years and x = number of events. The results for the

leukemia data are as follows:

.cii 120000 12, poisson
--Poisson Exact--

Variable | Exposure Mean Std. Err. [95% Conf. Interval]
____________ o o e e e e e oo
| 120000 .0001 .0000289 .0000517 .0001747

We see that the 95% CI for A = (5.2/10%, 17.5/10%), which agrees with our results from
Table 7. Stata can also be used to obtain a 95% CI for p if we just have available a
number of events, by setting py = 1.

B ETG S Cancer, Environmental Health  Interpret the results in Example 6.55. Specifically,
do you feel there was an excess childhood leukemia risk in Woburn, Massachusetts,
relative to expected U.S. incidence rates?

Solution: Referring to Example 6.51, we note that the incidence rate of childhood
leukemia in the United States during the 1970s was 5 events per 10° person-years.
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We denote this rate by A. Referring to Example 6.55, we see that the 95% CI for A
in Woburn = (5.2, 17.5) events per 10° person-years. The lower bound of the 95% CI
exceeds A, (= §), so we can conclude there was a significant excess of childhood leu-
kemia in Woburn during the 1970s. Another way to express these results is in terms
of the standardized morbidity ratio (SMR) defined by

incidence rate in Woburn for childhood leukemia _ 10/10° _

SMR = — - : = 5=
U.S. incidence rate for childhood leukemia 5/10

If the U.S. incidence rate is assumed to be known, then a 95% CI for SMR is given by

(% , %) = (1.04,3.50). Because the lower bound of the CI for SMR is > 1, we conclude

there is a significant excess risk in Woburn. We pursue a different approach in
Chapter 7, addressing this issue in terms of hypothesis testing and p-values.

In some instances, a random variable representing a rare event over time is assumed
to follow a Poisson distribution but the actual amount of person-time is either unknown
or is not reported in an article from the literature. In this instance, it is still possible to
use Appendix Table 7 or a computer program to obtain a CI for p, although it is impos-
sible to obtain a CI for A.

DO RS GRSy Occupational Health  In Example 4.40, a study was described concerning the pos-
sible excess cancer risk among employees with high exposure to ethylene dibromide

in two plants in Texas and Michigan. Seven deaths from cancer were reported over
the period 1940-1975, whereas only 5.8 cancer deaths were expected based on mor-
tality rates for U.S. white men. Find a 95% CI for the expected number of deaths
among the exposed workers, and assess whether their risk differs from that of the
general population.

Solution: In this case, the actual number of person-years used in computing the
expected number of deaths was not reported in the original article. Indeed, the com-
putation of the expected number of deaths is complex because

(1) Each worker is of a different age at the start of follow-up.
2) The age of a worker changes over time.
3) Mortality rates for men of the same age change over time.

However, we can use Appendix Table 7 to obtain a 95% CI for u. Because x = 7
events, we have a 95% CI for p = (2.81, 14.42). The expected number of deaths based
on U.S. mortality rates for Caucasian males = 5.8, which falls within the preceding
interval. Thus, we conclude the risk among exposed workers does not differ from the
general population.

Table 7 can also be used for applications of the Poisson distribution other than those
based specifically on rare events over time.

|2 NN ekl Bacteriology  Suppose we observe 15 bacteria in a Petri dish and assume the number
of bacteria is Poisson-distributed with parameter p. Find a 90% CI for p.

Solution: We refer to the 15 row and the 0.90 column in Table 7 to obtain the 90%
CI (9.25, 23.10).
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6.10 ONE-SIDED CONFIDENCE INTERVALS

In the previous discussion of interval estimation, what are known as two-sided ClIs
have been described. Frequently, the following type of problem occurs.

DRl Cancer A standard treatment exists for a certain type of cancer, and the patients
receiving the treatment have a 5-year survival probability of 30%. A new treatment
is proposed that has some unknown survival probability p. We would only be inter-
ested in using the new treatment if it were better than the standard treatment. Sup-
pose that 40 out of 100 patients who receive the new treatment survive for 5 years.
Can we say the new treatment is better than the standard treatment?

One way to analyze these data is to construct a one-sided CI, where we are inter-
ested in only one bound of the interval, in this case the lower bound. If 30% is below
the lower bound, then it is an unlikely estimate of the 5-year survival probability for
patients getting the new treatment. We could reasonably conclude from this that the
new treatment is better than the standard treatment in this case.

EQUATION 6.23 Upper One-Sided CI for the Binomial Parameter p — Normal-Theory Method
An upper one-sided 100% x (1 — o) Cl is of the form p > p, such that

Pr(p>p)=1-a

If we assume that the normal approximation to the binomial holds true, then
we can show that this CI is given approximately by

P>p=21\Pq/n

This interval estimator should only be used if npg > 5.

To see this, note that if the normal approximation to the binomial distribution
holds, then p ~ N(p, pg/n). Therefore, by definition

Pr(ﬁ<p+zl_a1/pq/n)=1—oc

We approximate \/pg/n by \[pg/n and subtract z,_,+/pg/n from both sides of the
equation, yielding

P21 pifn <p
01 p> sy B Pr(p > s o i) <1

Therefore, if the normal approximation to the binomial distribution holds, then
P> P—2,_y\/P4/n is an approximate upper 100% x (1 — &) one-sided CI for p.

Notice that z;_,, is used in constructing one-sided intervals, whereas z,_,, was
used in constructing two-sided intervals.

OB GEEE Suppose a 95% CI for a binomial parameter p is desired. What percentile of the nor-
mal distribution should be used for a one-sided interval? For a two-sided interval?

Solution: For o = .05, we use z, .. =z, = 1.645 for a one-sided interval and
Z1_0sj;2 = Z975 = 1.96 for a two-sided interval.
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DB GEEY Cancer  Construct an upper one-sided 95% CI for the survival probability based on
the cancer-treatment data in Example 6.59.

Solution: First check that npg = 100(.4)(.6) = 24 > 5. The CI is then given by
Pr[p>.40 - 255 [4(6)/100 | = .95
Prp >.40 —1.645(.049)] =.95

Pr(p>.319)=.95

Because .30 is not within the given interval [that is, (.319, 1.0)], we conclude the
new treatment is better than the standard treatment.

If we were interested in 5-year mortality incidence rather than the 5-year sur-
vival probability, then a one-sided interval of the form Pr(p < p,) = 1 — 0. would be ap-
propriate because we would only be interested in the new treatment if its mortality
incidence were lower than that of the standard treatment.

EQUATION 6.24 Lower One-Sided Cl for the Binomial Parameter p — Normal-Theory Method
The interval p < p, such that
Prip<p)=1-a
is referred to as a lower one-sided 100% x (1 — o)) CI and is given approximately by

P<p+zo\pi/n

This expression can be derived in the same manner as in Equation 6.23 by starting
with the relationship

Pr(f)>p—zl_a./pq/n)=1—oc

If we approximate \/pg/n by \/pg/n and add z,_,/ pq/n to both sides of the equation,
we get

Pr(p<ﬁ+zl_a\/m)=1—a

O EE G Cancer Compute a lower one-sided 95% CI for the 5-year mortality incidence using
the cancer-treatment data in Example 6.59.

Solution: We have p =.6. Thus, the 95% CI is given by

Pr p<.6+1.6456(.4)/100 | =.95
Pr(p<.6+1.645(.049)] =.95

Pr(p <.681)=.95

Because 70% is not within this interval [that is, (0, .681)], we can conclude the new
treatment has a lower 5-year mortality incidence than the old treatment.
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Similar methods can be used to obtain one-sided CIs for the mean and variance
of a normal distribution, for the binomial parameter p using exact methods, and for
the Poisson expectation p using exact methods.

6.11 THE BOOTSTRAP

O RS GEET Infectious Disease  Suppose we refer to the hospital stay data in Table 2.13 (HOSPI-
TAL.DAT). Obtain a point estimate and a 95% Cl for the duration of hospital stay.

Solution: It is reasonable to consider using large sample confidence limits for the
mean of a normal distribution given in Equation 6.6 (p. 176). Indeed, we have that
X = 8.6 days, s =5.72 days, and n = 25.

Thus, the large sample 95% CI for p would be:

1y 075 5/

8.6 +2.064(5.72) //25
8.6+2.36
=(6.24,10.96).

Il =l

However, the confidence interval formula in Equation 6.6 assumes that the distribution
of hospital stay is normal or that the central limit theorem can be used. To check this
assumption, we plot the distribution of duration of stay using R as shown in Figure 6.10.

The distribution appears right-skewed and far from being normal. How can we
check the validity of the 95% Cl computed in Example 6.63? A simulation-based ap-
proach, known as the Bootstrap approach, can be used for this purpose for estimat-
ing confidence intervals.

DEFINITION 6.17  Suppose we have an original sample denoted by X = {x, ..., x }. A bootstrap sample
Y={y, ...y, is a sample chosen with replacement from X such that each observa-
tion in X has an equal probability of being chosen. Thus, it is possible that the same
observation x; will be chosen for multiple observations in ¥, or that some observa-
tion x, will not be chosen for any observation in Y. Mathematically,

FIGURE 6.10 Plot of duration of stay in HOSPITAL.DAT
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Pr(Y, = Xi) =1/n,1=1, ..., m;j=1,..., n,

where Y, ..., Y _ are independent. In most applications, m = n.

The rationale for bootstrap sampling is that the population distribution of X is
estimated from the empirical distribution {x,, ..., x_} each with probability 1/n. The
advantage is that no specific functional form is assumed for the distribution of X.

| NS G Hypertension  Suppose we obtain the sample of 10 systolic blood-pressure (SBP)
measurements taken with an Arteriosonde machine based on Observer 1 in Table 6.6

(p- 182). Select 10 bootstrap samples of size 10 from this sample.

Solution: We will use the first row of random digits in Table 4 (also see Table 6.1)
to select the bootstrap samples. The digit O will correspond to selecting the tenth
sample point. We will denote the jth sample point in the ith bootstrap sample by y,.
The samples selected are shown in Table 6.8.

TABLE 6.8 Two bootstrap samples of size 10 selected from a sample of 10 SBP Arteriosonde
measurements taken by 1 observer.

Bootstrap sample 1 Bootstrap sample 2
Random Bootstrap Random Bootstrap
ID Original Sample digits sample Digits sample

1 194 3 130 1 194
2 126 2 126 8 108
3 130 9 102 1 194
4 98 2 126 2 126
5 136 4 98 5 136
6 145 2 126 0 126
7 110 2 126 9 102
8 108 3 130 0 126
9 102 2 126 7 110
10 126 4 98 7 110

mean 127.5 118.8 133.2

sd 27.9 13.6 33.7

Note that the first random digit is 3 for the first bootstrap sample so that y,, = x, = 130. The second random digit is 2,
so y,, = x,= 126, etc. Also, some original sample points (e.g., x,) are selected multiple times (x, is selected 5 times in
the first bootstrap sample), while some other sample points (e.g., xe) are not selected at all. Note that the mean and sd
are different in each bootstrap sample and are different from the mean and sd of the original sample.

EQUATION 6.25 Bootstrap confidence intervals

The idea is that if we select many bootstrap samples, compute the mean of each
sample, and plot the distribution of means, then this will reflect the variation
in the sample mean from the reference population. Thus, if we wish to obtain a
100% x (1 — o) CI for p, we can:

1. Generate N bootstrap samples of size n from the original sample. Typi-
cally, N is large (= 1000).
2. Compute the mean of each bootstrap sample.
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3. Sort the means and determine the upper and lower 100% x (o./2) percen-
tile of the distribution (denoted by y, ,, andy,,, respectively).
4. The Bootstrap 100% X (1 — o) CI for p is given by (y,,,, ¥,_,,)-

Note that this method of confidence interval estimation makes no assumptions as
to the underlying distribution of the original sample. If the central limit theorem
holds, the bootstrap CI in equation 6.25 should be approximately the same as the
large sample CI in equation 6.6.

|V ES G Infectious Disease  Determine a 95% CI for the mean duration of stay in the Data
Set HOSPITAL.DAT (Table 2.13) using bootstrap methods.

Solution: We use the sample command of R to select N = 1000 bootstrap samples
and the mean command to calculate the mean of each of the samples. We then use
the quantile command to determine the 2.5th and 97.5th percentiles of the 1000
sample means. The R code used for this purpose is given in Table 6.9.

TABLE 6.9 The R code for obtaining 95% Bootstrap confidence limits for the mean duration of stay
in HOSPITAL.DAT.

> a<— numeric(1000)

> for (i in 1:1000){

+ a[il<—-mean(sample(Dur_stay,25,replace=T))}
> quantile(a,c(.025,.975))

2.5% 97.5%

6.68 11.04

We see that the 95% CI for p = (6.68, 11.04).
A histogram of the means of the 1000 bootstrap samples is given in Figure 6.11.

FIGURE 6.11 Histogram of the mean duration of stay obtained from 1000 bootstrap samples from
HOSPITAL.DAT
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The distribution of sample means looks slightly positively skewed, which is con-
sistent with the bootstrap 95% CI (6.68, 11.04) being asymmetric with respect to the
mean in the original sample (8.6) and notably different from the large sample 95%
CI (6.24, 10.96) given in the solution to Example 6.63.

Thus, the large sample 95% CI for p based on n = 25 is probably not ap-
propriate for this type of data and the bootstrap CI is preferable. The bootstrap
method for obtaining CI can also be used to obtain confidence limits for other
parameters. More details about bootstrap sampling is provided in Efron and
Tibshirani [4].

6.12 Summary

This chapter introduced the concept of a sampling distribution. This concept is
crucial to understanding the principles of statistical inference. The fundamental
idea is to forget about our sample as a unique entity and instead regard it as a ran-
dom sample from all possible samples of size n that could have been drawn from
the population under study. Using this concept, X was shown to be an unbiased
estimator of the population mean u; that is, the average of all sample means over
all possible random samples of size n that could have been drawn will equal the
population mean. Furthermore, if our population follows a normal distribution,
then X has minimum variance among all possible unbiased estimators and is thus
called a minimum-variance unbiased estimator of \. Finally, if our population follows
a normal distribution, then X also follows a normal distribution. However, even
if our population is not normal, the sample mean still approximately follows a
normal distribution for a sufficiently large sample size. This very important idea,
which justifies many of the hypothesis tests we study in the rest of this book, is
called the central-limit theorem.

The idea of an interval estimate (or CI) was then introduced. Specifically, a
95% CI is defined as an interval that will contain the true parameter for 95% of
all random samples that could have been obtained from the reference population.
The preceding principles of point and interval estimation were applied to the
following:

>
(2 4
<
>3
=
o]
(%}

(1) Estimating the mean p of a normal distribution

(2) Estimating the variance ¢? of a normal distribution
(3) Estimating the parameter p of a binomial distribution
(4) Estimating the parameter A of a Poisson distribution

(5) Estimating the expected value u of a Poisson distribution

The t and chi-square distributions were introduced to obtain interval esti-
mates for (1) and (2), respectively. Finally, the bootstrap CI was introduced to
obtain confidence limits for the mean when the assumption of normality is
questionable, and can also be applied to obtain confidence limits for other pa-
rameters from other distributions.

In Chapters 7 through 14, the discussion of statistical inference continues,
focusing primarily on testing hypotheses rather than on parameter estimation. In
this regard, some parallels between inference from the points of view of hypothesis
testing and Cls are discussed.
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Problems

PROBLEMS

Gastroenterology

Suppose we are asked to construct a list of treatment as-
signments for patients entering a study comparing different
treatments for duodenal ulcer.

6.1 Anticipating that 20 patients will be entered in the
study and two treatments will be used, construct a list of
random-treatment assignments starting in the 28th row of
the random-number table (Table 4 in the Appendix).

6.2 Count the number of people assigned to each treat-
ment group. How does this number compare with the ex-
pected number in each group?

6.3 Suppose we change our minds and decide to enroll
40 patients and use four treatment groups. Use a computer
program (such as MINITAB or Excel) to construct the list of
random-treatment assignments referred to in Problem 6.1.

6.4 Answer Problem 6.2 for the list of treatment assign-
ments derived in Problem 6.3.

Pulmonary Disease

The data in Table 6.10 concern the mean triceps skin-fold
thickness in a group of normal men and a group of men with
chronic airflow limitation [5].

TABLE 6.10 Triceps skin-fold thickness in normal
men and men with chronic airflow

limitation
Group Mean sd n
Normal 1.35 0.5 40
Chronic airflow limitation 0.92 0.4 32

Source: Adapted from Chest, 85(6), 58S-59S, 1984.

*6.5 What is the standard error of the mean for each group?
6.6 Assume that the central-limit theorem is applicable.
What does it mean in this context?

6.7 Find the upper 1st percentile of a t distribution with 16 df.

6.8 Find the lower 10th percentile of a t distribution with
28 df.

6.9 Find the upper 2.5th percentile of a t distribution with 7 df.

6.10 What are the upper and lower 2.5th percentiles for a
chi-square distribution with 2 df? What notation is used to
denote these percentiles?

Refer to the data in Table 2.13. Regard this hospital as typi-
cal of Pennsylvania hospitals.

6.11 Compute a 95% CI for the mean age.

6.12 Compute a 95% CI for the mean white blood count
following admission.

6.13 Answer Problem 6.12 for a 90% CI.

6.14 What is the relationship between your answers to
Problems 6.12 and 6.137?

*6.15 What is the best point estimate of the percentage
of males among patients discharged from Pennsylvania
hospitals?

*6.16 What is the standard error of the estimate obtained
in Problem 6.15%7

*6.17 Provide a 95% ClI for the percentage of males among
patients discharged from Pennsylvania hospitals.

Microbiology

A nine-laboratory cooperative study was performed to
evaluate quality control for susceptibility tests with 30-ug
netilmicin disks [6]. Each laboratory tested three standard
control strains on a different lot of Mueller-Hinton agar, with
150 tests performed per laboratory. For protocol control,
each laboratory also performed 15 additional tests on each
of the control strains using the same lot of Mueller-Hinton
agar across laboratories. The mean zone diameters for each
of the nine laboratories are given in Table 6.11.

*6.18 Provide a point and interval estimate (95% CI) for
the mean zone diameter across laboratories for each type
of control strain, assuming each laboratory uses different
media to perform the susceptibility tests.

*6.19 Answer Problem 6.18 assuming each laboratory uses
a common medium to perform the susceptibility tests.

*6.20 Provide a point and interval estimate (95% ClI) for the
interlaboratory standard deviation of mean zone diameters
for each type of control strain, assuming each laboratory
uses different media to perform the susceptibility tests.

*6.21 Answer Problem 6.20 assuming each laboratory uses
a common medium to perform the susceptibility tests.

6.22 Are there any advantages to using a common medium
versus using different media for performing the susceptibil-
ity tests with regard to standardization of results across
laboratories?

Renal Disease

A study of psychological and physiological health in a cohort of
dialysis patients with end-stage renal disease was conducted
[7]. Psychological and physiological parameters were initially
determined at baseline in 102 patients; these parameters were
determined again in 69 of the 102 patients at an 18-month
follow-up visit. The data in Table 6.12 were reported.

6.23 Provide a point and interval estimate (95% CI) for the
mean of each parameter at baseline and follow-up.

6.24 Do you have any opinion on the physiological and
psychological changes in this group of patients? Explain.
(Note: A lower score on the PAIS scale indicates worse
adjustment to illness.)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



204 CHAPTER 6 Estimation

TABLE 6.11 Mean zone diameters with 30-pug netilmicin disks tested in nine separate laboratories
Type of control strain
E. coli S. aureus P. aeruginosa
Laboratory Different media Common medium Different media Common medium Different media Common medium
A 27.5 23.8 25.4 23.9 20.1 16.7
B 24.6 21.1 24.8 24.2 184 17.0
C 25.3 25.4 24.6 25.0 16.8 171
D 28.7 25.4 20.8 26.7 21.7 18.2
E 23.0 24.8 27.5 25.3 20.1 16.7
F 26.8 25.7 28.1 25.2 20.3 19.2
G 24.7 26.8 31.2 271 22.8 18.8
H 24.3 26.2 24.3 26.5 19.9 18.1
| 24.9 26.3 25.4 25.1 19.3 19.2
TABLE 6.12 Psychological and physiological parameters in patients with end-stage renal disease
Baseline (n =102) 18-month follow-up (n = 69)
Variable Mean sd Mean sd
Serum creatinine (mmol/L) 0.97 0.22 1.00 0.19
Serum potassium (mmol/L) 4.43 0.64 4.49 0.71
Serum phosphate (mmol/L) 1.68 0.47 1.57 0.40
Psychological Adjustment to lliness (PAIS) scale 36.50 16.08 23.27 18.79

Ophthalmology, Hypertension

A study is conducted to test the hypothesis that people with
glaucoma have higher-than-average blood pressure. The
study includes 200 people with glaucoma whose mean SBP
is 140 mm Hg with a standard deviation of 25 mm Hg.

6.25 Construct a 95% CI for the true mean SBP among
people with glaucoma.

6.26 If the average SBP for people of comparable age is
130 mm Hg, is there an association between glaucoma and
blood pressure?

Sexually Transmitted Disease

Suppose a clinical trial is conducted to test the efficacy of a new
drug, spectinomycin, for treating gonorrhea in females. Forty-six
patients are given a 4-g daily dose of the drug and are seen
1 week later, at which time 6 of the patients still have gonorrhea.

*6.27 What is the best point estimate for p, the probability
of a failure with the drug?
*6.28 What is a 95% Cl for p?

*6.29 Suppose we know penicillin G at a daily dose of 4.8
megaunits has a 10% failure rate. What can be said in com-
paring the two drugs?
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Pharmacology

Suppose we want to estimate the concentration (ug/mL)
of a specific dose of ampicillin in the urine after various pe-
riods of time. We recruit 25 volunteers who have received
ampicillin and find they have a mean concentration of 7.0
png/mL with a standard deviation of 2.0 pug/mL. Assume
the underlying population distribution of concentrations is
normally distributed.

*6.30 Find a 95% ClI for the population mean concentration.

*6.31 Find a 99% CI for the population variance of the
concentrations.

*6.32 How large a sample would be needed to ensure
that the length of the Cl in Problem 6.30 is 0.5 ug/mL
assuming the sample standard deviation remains at
2.0 pug/mL?

Environmental Health

Much discussion has taken place concerning possible
health hazards from exposure to anesthetic gases. In one
study conducted in 1972, 525 Michigan nurse anesthetists
were surveyed by mail questionnaires and telephone inter-
views to determine the incidence rate of cancer [8]. Of this



group, 7 women reported having a new malignancy other
than skin cancer during 1971.

6.33 What is the best estimate of the 1971 incidence rate
from these data?

6.34 Provide a 95% Cl for the true incidence rate.

A comparison was made between the Michigan report and
the 1969 cancer-incidence rates from the Connecticut tu-
mor registry, where the expected incidence rate, based on
the age distribution of the Michigan nurses, was determined
to be 402.8 per 100,000 person-years.

6.35 Comment on the comparison between the observed
incidence rate and the Connecticut tumor registry data.

Obstetrics, Serology

A new assay is developed to obtain the concentration of
M. hominis mycoplasma in the serum of pregnant women.
The developers of this assay want to make a statement on
the variability of their laboratory technique. For this purpose,
10 subsamples of 1 mL each are drawn from a large serum
sample for one woman, and the assay is performed on each
subsample. The concentrations are as follows: 24, 23, 25, 24,
252423 24 24 25,

*6.36 Assuming the distribution of concentrations in the log
scale to the base 2 is normal, obtain the best estimate of the
variance of the concentrations from these data.

*6.37 Compute a 95% Cl for the variance of the concentra-
tions.

*6.38 Assuming the point estimate in Problem 6.36 is the
true population parameter, what is the probability that a par-
ticular assay, when expressed in the log scale to the base 2,
is no more than 1.5 log units off from its true mean value for
a particular woman?

*6.39 Answer Problem 6.38 for 2.5 log units.

Hypertension

Suppose 100 hypertensive people are given an antihyper-
tensive drug and the drug is effective in 20 of them. By
effective, we mean their DBP is lowered by at least 10 mm
Hg as judged from a repeat blood-pressure measurement
1 month after taking the drug.

6.40 What is the best point estimate of the probability p of
the drug being effective?

6.41 Suppose we know that 10% of all hypertensive patients
who are given a placebo will have their DBP lowered by 10
mm Hg after 1 month. Can we carry out some procedure to
be sure we are not simply observing the placebo effect?

6.42 What assumptions have you made to carry out the
procedure in Problem 6.41?

Suppose we decide a better measure of the effectiveness
of the drug is the mean decrease in blood pressure rather

[1ll Data set available
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than the measure of effectiveness used previously. Let
d;=x;-y;,i=1,...,100, where x,= DBP for the ith per-
son before taking the drug and y, = DBP for the ith person
1 month after taking the drug. Suppose the sample mean
of the d.is +5.3 and the sample variance is 144.0.

6.43 What is the standard error of d ?
6.44 What is a 95% Cl for the population mean of d?

6.45 Can we make a statement about the effectiveness of
the drug?

6.46 What does a 95% CI mean, in words, in this case?

SIMULATION

Draw six random samples of size 5 from the data in Table 6.2
(p. 160). The data in Table 6.2 are also available in the Data
Set BIRTHWEIGHT.DAT at www.cengagebrain.com.

6.47 Compute the mean birthweight for each of the six
samples.

6.48 Compute the standard deviation based on the
sample of six means. What is another name for this
quantity?

6.49 Select the third point from each of the six samples,
and compute the sample sd from the collection of six third
points.

6.50 What theoretical relationship should there be between
the standard deviation in Problem 6.48 and the standard
deviation in Problem 6.497?

6.51 How do the actual sample results in Problems 6.48
and 6.49 compare?

Obstetrics

Figure 6.4b (p. 172) plotted the sampling distribution of
the mean from 200 samples of size 5 from the population
of 1000 birthweights given in Table 6.2. The mean of the
1000 birthweights in Table 6.2 is 112.0 oz with standard
deviation 20.6 oz.

*6.52 If the central-limit theorem holds, what proportion of
the sample means should fall within 0.5 Ib of the population
mean (112.0 0z)?

*6.53 Answer Problem 6.52 for 1 Ib rather than 0.5 Ib.
*6.54 Compare your results in Problems 6.52 and 6.53

with the actual proportion of sample means that fall in these
ranges.

*6.55 Do you feel the central-limit theorem is applicable for
samples of size 5 from this population? Explain.

Hypertension, Pediatrics

The etiology of high blood pressure remains a subject of
active investigation. One widely accepted hypothesis is that
excessive sodium intake adversely affects blood-pressure
outcomes. To explore this hypothesis, an experiment was
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set up to measure responsiveness to the taste of salt and

Nutrition

to relate the responsiveness to blood-pressure level. The | ,; Data Set VALID.DAT, at www.cengagebrain.com, provides

protocol used involved giving 3-day-old infants in the new-
born nursery a drop of various solutions, thus eliciting the
sucking response and noting the vigor with which they
sucked—denoted by MSB (mean number of sucks per burst
of sucking). The content of the solution was changed over
10 consecutive periods: (1) water, (2) water, (3) 0.1 molar
salt + water, (4) 0.1 molar salt + water, (5) water, (6) water,
(7) 0.8 molar salt + water, (8) 0.3 molar salt + water, (9)
water, (10) water. In addition, as a control, the response of
the baby to the taste of sugar was also measured after the
salt-taste protocol was completed. In this experiment, the
sucking response was measured over five different periods
with the following stimuli: (1) nonnutritive sucking, that is, a
pure sucking response was elicited without using any exter-
nal substance; (2) water; (3) 5% sucrose + water; (4) 15%
sucrose + water; (5) nonnutritive sucking.

The data for the first 100 infants in the study are given in
Data Set INFANTBP.DAT. The format of the data is given in
Data Set INFANTBP.DOC at www.cengagebrain.com.

Construct a variable measuring the response to salt. For
example, one possibility is to compute the average MSB for
trials 3 and 4 — average MSB for trials 1 and 2 = average
MSB when the solution was 0.1 molar salt + water — aver-
age MSB when the solution was water. A similar index could
be computed comparing trials 7 and 8 with trials 5 and 6.

6.56 Obtain descriptive statistics and graphic displays for
these salt-taste indices. Do the indices appear to be normally
distributed? Why or why not? Compute the sample mean for
this index, and obtain 95% Cls about the point estimate.

6.57 Construct indices measuring responsiveness to sugar
taste, and provide descriptive statistics and graphical dis-
plays for these indices. Do the indices appear normally
distributed? Why or why not? Compute the sample mean
and associated 95% Cls for these indices.

6.58 We want to relate the indices to blood-pressure level.
Provide a scatter plot relating mean SBP and mean DBP,
respectively, to each of the salt-taste and sugar-taste indi-
ces. Does there appear to be a relation between the indices
and blood-pressure level? We discuss this in more detail in
our work on regression analysis in Chapter 11.

Genetics

Data Set SEXRAT.DAT, at www.cengagebrain.com, lists lalL

the sexes of children born in over 50,000 families with more
than one child.

6.59 Use interval-estimation methods to determine if
the sex of successive births is predictable from the sex of
previous births.

[1ll Data set available
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estimated daily consumption of total fat, saturated fat, and
alcohol as well as total caloric intake using two different
methods of dietary assessment for 173 subjects.

6.60 Calculate the large sample and bootstrap 95% ClI for
mean total fat, saturated fat, and alcohol intake based on the
diet record from this population. Use 1000 bootstrap samples.

6.61 Compare results from the two methods and comment
on whether the large sample method is appropriate for these
nutrients.

One issue is that people with higher total caloric intake
generally have higher intakes of specific nutrients. One
way to normalize nutrient intake for total caloric intake is to
compute

Calorie-adjusted total fat = % calories from total fat = total
fat (g) x 9 / total caloric intake.

Similarly,

Calorie-adjusted saturated fat = saturated fat (g) x 9 / total
caloric intake.

6.62 Compute the large sample and bootstrap 95% CI for
mean calorie-adjusted total fat and saturated fat.

6.63 Answer the question in Problem 6.61 for calorie-adjusted
total fat and calorie-adjusted saturated fat.

Infectious Disease

A cohort of hemophiliacs is followed to elicit information on
the distribution of time to onset of AIDS following serocon-
version (referred to as /atency time). All patients who sero-
convert become symptomatic within 10 years, according to
the distribution in Table 6.13.

TABLE 6.13 Latency time to AIDS among
hemophiliacs who become HIV positive

Latency time (years) Number of patients

2
6
9
33
49
66
52
37
18
11
4
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6.64 Assuming an underlying normal distribution, compute
95% Cls for the mean and variance of the latency times.



6.65 Still assuming normality, estimate the probability p that
a patient’s latency time will be at least 8 years.

6.66 Now suppose we are unwilling to assume a normal
distribution for latency time. Re-estimate the probability p
that a patient’s latency time will be at least 8 years, and
provide a 95% Cl for p.

Environmental Health
We have previously described Data Set LEAD.DAT (at

www.cengagebrain.com), in which children were classified L

according to blood-lead level in 1972 and 1973 by the vari-
able lead_grp, where 1 = blood-lead level < 40 ug/100 mL
in both 1972 and 1973, 2 = blood-lead level > 40 nug/100
mL in 1973, 3 = blood-lead level > 40 ug/100 mL in 1972
but <40 pg/100 mL in 19783.

6.67 Compute the mean, standard deviation, standard error,
and 95% Cl for the mean verbal IQ for children with specific
values of the variable lead_grp. Provide a box plot compar-
ing the distribution of verbal IQ for subjects with lead_grp =
1, 2, and 3. Summarize your findings concisely.
6.68 Answer Problem 6.67 for performance 1Q.

6.69 Answer Problem 6.67 for full-scale Q.

Cardiology

Data Set NIFED.DAT (at www.cengagebrain.com) was il

described earlier. We wish to look at the effect of each
treatment separately on heart rate and systolic blood pres-
sure (SBP).

6.70 Provide separate point estimates and 95% Cls for the
changes in heart rate and SBP (level 1 to baseline) for the
subjects randomized to nifedipine and propranolol, respec-
tively. Also provide box plots of the change scores in the
two treatment groups.

6.71 Answer Problem 6.70 for level 2 to baseline.
6.72 Answer Problem 6.70 for level 3 to baseline.

6.73 Answer Problem 6.70 for the last available level to
baseline.

6.74 Answer Problem 6.70 for the average heart rate (or
blood pressure) over all available levels to baseline.

Occupational Health

6.75 Suppose that there are 6 deaths due to bladder can-
cer among workers in a tire plant from 1/1/64 to 12/31/83,
while 1.8 are expected based on U.S. mortality rates. Pro-
vide a 95% CI for the expected number of deaths from
bladder cancer over 20 years among the tire workers. Is the
number of cases of bladder cancer in this group excessive?

6.76 Suppose that there are 4 deaths due to stomach can-
cer among workers in a tire plant from 1/1/64 to 12/31/83,

[1ll Data set available
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Problems

while 2.5 are expected based on U.S. mortality rates.
Provide a 95% CI for the expected number of deaths from
stomach cancer over 20 years among the tire workers. Is
the number of cases of stomach cancer excessive?

Cancer

The value of mammography as a screening test for breast
cancer has been controversial, particularly among young
women. A study was recently performed looking at the rate
of false positives for repeated screening mammograms
among approximately 10,000 women who were members
of Harvard Pilgrim Health Care, a large health-maintenance
organization in New England [9].

The study reported that of a total of 1996 tests given to
40- to 49-year-old women, 156 yielded false-positive results.

6.77 What does a false-positive test result mean, in words,
in this context?

6.78 Some physicians feel a mammogram is not cost-
effective unless one can be reasonably certain (e.g., 95%
certain) that the false-positive rate is less than 10%. Can
you address this issue based on the preceding data®? (Hint:
Use a Cl approach.)

6.79 Suppose a woman is given a mammogram every
2 years starting at age 40. What is the probability that she
will have at least one false-positive test result among 5
screening tests during her forties? (Assume the repeated
screening tests are independent.)

6.80 Provide a two-sided 95% Cl for the probability estimate
in Problem 6.79.

SIMULATION

Nutrition

On the computer, draw 1000 bootstrap samples of size 5
from the distribution of 173 values of In(alcohol DR [diet
record] + 1) in the Data Set VALID.DAT, where alcoh_dr is
the amount of alcohol consumed as reported by diet record
by a group of 173 American nurses who recorded each
food eaten on a real-time basis, over four 1-week periods
spaced approximately 3 months apart over the course of
1 year. For each sample of size 5, compute the sample
mean X, the sample standard deviation s, and the test sta-
tistic t given by

t_f—uo

~ s/in

where n = 5 and 1, = overall mean of In(alcohol DR + 1)
over the 173 nurses = 1.7973.

6.81 What distribution should the t-values follow if the
central-limit theorem holds? Assume | is the population
mean for In(alcoh_dr + 1).

6.82 If the central-limit theorem holds, then what percent-
age of t-values should exceed 2.776 in absolute value?
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6.83 Determine the actual percent of t-values that exceed
2.776 in absolute value. Do you feel the central-limit theo-
rem is applicable to these data for samples of size 57

Cardiovascular Disease

A study was performed to investigate the variability of cho-
lesterol and other lipid measures in children. The reported
within-subject standard deviation for cholesterol in children
was 7.8 mg/dL [10].

6.84 Suppose two total cholesterol determinations are
obtained from one child, yielding an average value of 200
mg/dL. What is a two-sided 90% CI for the true mean
total cholesterol for that child? (Hint: Assume the sample
standard deviation of cholesterol for the child is known to
be 7.8 mg/dL.)

6.85 Suppose an average of two total cholesterol determina-
tions is to be used as a screening tool to identify children with
high cholesterol. The investigators wish to find a value ¢, such
that all children whose mean cholesterol values over two de-
terminations are >c will be called back for further screening,
whereas children whose mean cholesterol values are <c will
not be followed any further. To determine c, the investigators
want to choose a value ¢ such that the lower one-sided 90%
Cl for p if the observed average cholesterol over two deter-
minations = ¢ would exclude 250 mg/dL. What is the largest
value of ¢ that satisfies this requirement?

Endocrinology

Refer to Data Set BONEDEN.DAT at www.cengagebrain.com. lall

6.86 Assess whether there is a relationship between BMD
at the femoral neck and cigarette smoking using Cl method-
ology. (Hint: Refer to Section 6.6.)

6.87 Assess whether there is a relationship between BMD
at the femoral shaft and cigarette smoking using Cl method-
ology. (Hint: Refer to Section 6.6.)

SIMULATION

6.88 Using the computer, generate 200 random samples
from a binomial distribution with n = 10 and p = .6. Derive a
large sample two-sided 90% CI for p based on each sample.

6.89 What percentage of the Cls include the parameter p?

6.90 Do you think that the large-sample binomial confidence-
limit formula is adequate for this distribution?

6.91 Answer Problem 6.88 for a binomial distribution with
n=20and p=.6.

6.92 Answer Problem 6.89 for a binomial distribution with
n=20and p=.6.

6.93 Answer Problem 6.90 for a binomial distribution with
n=20and p=.6.

[1ll Data set available
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6.94 Answer Problem 6.88 for a binomial distribution with
n=>50and p=.6.
6.95 Answer Problem 6.89 for a binomial distribution with
n=50and p=.6.
6.96 Answer Problem 6.90 for a binomial distribution with
n=50and p=.6.

Hypertension

A patient who is taking antihypertensive medication is asked
by her doctor to record her blood pressure at home to
check that it is in the normotensive range. On each of 10
days, she took an average of two readings, with results as
shown in Table 6.14.

TABLE 6.14 Home blood-pressure recordings for

one patient
Day SBP (mm Hg) DBP (mm Hg)
1 121 87.5
2 109 81
3 1175 91.5
4 125 94
5 125 87.5
6 129 90.5
7 123 90
8 118.5 85.5
9 123.5 87.5
10 127 89
Mean 121.85 88.40
sd 5.75 3.56
n 10 10

The doctor wants to assess whether the underlying mean
SBP for this woman is <140 or 2140 mm Hg.

6.97 Provide a 95% CI for true mean SBP for this patient.

6.98 Answer the doctor's question given the result in Prob-
lem 6.97.

Another issue the doctor wants to study is what the hyper-
tensive status of the patient usually is. A person is classified
as hypertensive on any one day if either his or her SBP is
2140 mm Hg or his or her DBP is 290 mm Hg.

6.99 What proportion of days would the woman be classi-
fied as hypertensive based on the preceding data?

A person would be classified as hypertensive overall if his or
her probability of being hypertensive on an individual day (p)
is 220% based on a large number of days.

6.100 Develop a 95% CI for p based on your answer to
Problem 6.99.

6.101 Would the person be classified as hypertensive
overall based on your answer to Problem 6.1007? Why or
why not? Explain your answer.



Sports Medicine

Injuries are common in football and may be related to a
number of factors, including the type of playing surface, the
number of years of playing experience, and whether any pre-
vious injury exists. A study of factors affecting injury among
Canadian football players was recently reported [11].

The rate of injury to the upper extremity (that is, shoulder to
hand) on a dry field consisting of natural grass was 2.73 inju-
ries per 1000 games. Assume this rate is known without error.

6.102 The study reported 45 injuries to the upper extrem-
ity on a dry field consisting of artificial turf over the course
of 10,112 games. What procedure can be used to assess
whether the risk of injury is different on artificial turf versus
natural grass?

6.103 Provide a 95% Cl for the rate of injury to the upper ex-
tremity on artificial turf. (Hint: Use the Poisson distribution.)
Express each rate as the number of injuries per 1000 games.

Hypertension

A hypertensive patient has been on antihypertensive medi-
cation for several years. Her physician wants to monitor her
blood pressure via weekly measurements taken at home.
Each week for 6 weeks she takes several blood pressure
readings and averages the readings to get a summary blood
pressure for the week. The diastolic blood pressure (DBP)
results are shown in Table 6.15.

TABLE 6.15 Weekly mean DBP readings
for an individual patient

Week Mean DBP Mean DBP
(mm Hg) Week (mm Hg)
1 89 4 84
2 88 5 82
3 81 6 89.5
Mean 85.75
sd 3.66

6.104 Her doctor is considering taking her off antihyperten-
sive medications but wants to be fairly certain that her “true”
DBP is less than 90 mm Hg. Use a statistical approach to
answer this question. (Hint: Consider a Cl approach.)

The doctor takes the patient off antihypertensive medica-
tion and instructs her to measure her blood pressure for
3 consecutive weeks. The doctor will put the patient back
on antihypertensive medication if her mean DBP over the
3 weeks is 290 mm Hg.

6.105 Suppose there is no real change in the patient’s
underlying mean blood pressure regardless of whether s